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Abstract. We complete our study of linear series on curves lying on an Enriques surface
by showing that, with the exception of smooth plane quintics, there are no exceptional
curves on Enriques surfaces, that is, curves for which the Clifford index is not computed
by a pencil.

1. Introduction

On a smooth irreducible curve C of genus at least 4 there are two very important and
much studied invariants, a classical one, the gonality, gonC, and a modern one, the Clifford
index, Cliff C. Their importance ranges from projective geometrical to moduli properties
and tells a lot about the curve itself, for example, when C is not hyperelliptic, about the
syzygies of its ideal in the canonical embedding.

After the work of Coppens and Martens [CM] we know that there is a relation between
these invariants

gonC − 3 ≤ Cliff C ≤ gonC − 2
and one would like to know what are the properties of curves realizing one of the two
equalities. As it turns out, for the general curve one has Cliff C = gonC − 2, while curves
for which Cliff C = gonC−3, called exceptional curves, are conjectured to be extremely rare
[ELMS]. As a matter of fact, aside for smooth plane curves, very few cases of exceptional
curves are known, almost all lying on K3 surfaces [ELMS].

The starting idea of this work was that, given the flexibility and richness of the Picard
group of Enriques surfaces, we should investigate if there are exceptional curves lying on
them. One such case was already known, the one of smooth plane quintics [St, Um1].

The main result of this note is that, in fact, the above are the only examples:

Theorem 1.1. On an Enriques surface there are no exceptional curves other than smooth
plane quintics.

In particular, for any smooth curve C on an Enriques surface S such that C2 6= 10, we
have Cliff C = gonC − 2.

This result gives more evidence for the conjecture in [ELMS].
We remark that similar results were proved for curves on del Pezzo and K3 surfaces by

the first author in [Kn2] and [Kn3].
Now in [KL1] we computed the gonality of a general smooth curve C in a linear system

|L| on an Enriques surface S. Recalling the two functions [CD], [KL1, Def.1.1 and 1.2]

φ(L) := inf{|F.L| : F ∈ PicS, F 2 = 0, F 6≡ 0}
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µ(L) = min{B.L− 2 : B ∈ Pic(S) with B2 = 4, φ(B) = 2, B 6≡ L},
as an immediate consequence of Theorem 1.1 and [KL1, Thm.1.3 and Prop.4.13], we are
now able to compute the Clifford index of C:

Corollary 1.2. Let |L| be a base-component free linear system on an Enriques surface with
L2 ≥ 6 and let C be a general curve in |L|. Then

Cliff C = min{2φ(L)− 2, µ(L)− 2, bL
2

4
c}.

As a matter of fact, by Theorem 1.1 and [KL1, Cor.1.5], the cases when the Clifford
index is not 2φ(L)− 2 are completely characterized.

We point out that this is particularly important for us in the study of Gaussian maps on
curves on Enriques surfaces in [KL2], which is a key ingredient to obtain the genus bound
g ≤ 17 for Enriques-Fano threefolds in [KLM]. In fact, the results in [KL2] depend on the
Clifford index of the curves and not on their gonality.

Another application of Theorem 1.1 will be in [KL4], where we will prove that a linearly
normal Enriques surface S ⊂ Pr is scheme-theoretically cut out by quadrics if and only if
φ(OS(1)) ≥ 4 (improving [GLM2, Thm.1.3]) and that, when φ(OS(1)) = 3 and degS ≥ 18,
the intersection of the quadrics containing S is the union of S and the 2-planes spanned
by the plane cubics contained in S. Moreover, in [KL4] we will also use Theorem 1.1 to
give a new proof (after [GLM1, Thm.1.1]) of the projective normality of a linearly normal
Enriques surface S ⊂ Pr of degree at least 12.

We now give an outline of the ideas concurring in the proof of our main result. The
Clifford dimension of a smooth curve is defined to be the least integer r such that there
is a grd computing its Clifford index. In this language, the exceptional curves are precisely
the ones of Clifford dimension at least 2 and curves of Clifford dimensions r ≤ 9 are well
classified by [ELMS] and [Mar], for example for r = 2 we get smooth plane curves, for r = 3
complete intersections of two cubics in P3. In general the study of grd’s with r ≥ 2 on curves
on surfaces by using vector bundle methods is much harder than the case r = 1, because
the vector bundles arising have ranks at least 3, and are therefore much more difficult to
handle than the ones of rank two, where various instability criteria can be used. In this
note we show how to overcome this difficulty on an Enriques surface, but our methods and
ideas can in principle be used also on other surfaces. The main idea is to use the geometry
of the surface to find suitable line subbundles of the vector bundles, and after saturating we
study the quotient bundle, which is of rank one less. This seems to be a promising method
in the cases where one knows that the Picard group of the surface is particularly “rich” (at
least of rank two!). However, as we will see below, vector bundle methods are not sufficient
to treat the cases of Clifford dimension 3, where we will need a more geometric approach,
see Section 4.

We give some preliminary results in Section 2. Then we divide the proof of Theorem 1.1
into four parts: the cases of plane curves (r = 2) in Section 3, the cases of the complete
intersections of two cubics (r = 3) in Section 4, the cases of Clifford dimension from 4 to 9
in Section 5, and the cases of higher Clifford dimension in Section 6. Finally in Section 7
we prove a result about Brill-Noether loci announced in [KL1, Rmk.4.16].

2. Preliminary results

In this section we will gather some results that will be used throughout the note.

Definition 2.1. We denote by ∼ (resp. ≡) the linear (resp. numerical) equivalence of
divisors or line bundles on a smooth surface. A line bundle L is primitive if L ≡ kL′
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implies k = ±1. If V ⊆ H0(L) is a linear system, we denote its base scheme by Bs |V |.
A nodal curve on an Enriques surface S is a smooth rational curve contained in S. A
nodal cycle is a divisor R > 0 such that, for any 0 < R′ ≤ R we have (R′)2 ≤ −2.

We will use that if R is a nodal cycle, then h0(OS(R)) = 1 and h0(OS(R+KS)) = 0.

Lemma 2.2. Let C be an exceptional curve of Clifford dimension r on an Enriques surface.
Then

(1) φ(C) ≥ r

and

(2) Cliff C ≤ 2φ(C)− 3.

Proof. By [ELMS, Proof of Prop.3.2] any (not necessarily complete) pencil of divisors on C
has degree ≥ 2r, whence (1). Since Cliff C = gonC − 3 and gonC ≤ 2φ(C) we get (2). �

Lemma 2.3. Let L be a base-point free line bundle on an Enriques surface S with L2 ≥ 6.
Assume that L+KS ∼ D1 +D2 for two divisors D1 and D2 satisfying h0(Di) ≥ 2, i = 1, 2.
Then OC(D1) and OC(D2) contribute to the Clifford index of any smooth C ∈ |L| and

Cliff OC(D1) = Cliff OC(D2) ≤ D1.D2 − 2 max{h1(D1), h1(D2)} ≤ D1.D2.

Also Cliff OC(D1) = D1.D2 if and only if h0(OC(Di)) = h0(Di) and h1(Di) = 0 for i = 1, 2.

Proof. This follows the lines and ideas in [Kn2, Lemma3.6]. �

Given a smooth curve C on a smooth surface S and a base-point free line bundle A on
C, a standard construction ([CP], [Laz], [Par]) allows to define a vector bundle E(C,A) of
rank h0(A) and with det E(C,A) = OS(C), sitting in an exact sequence

(3) 0 −→ H0(A)∗ ⊗OS −→ E −→ NC/S −A −→ 0

and whose properties are listed in the mentioned references.

Lemma 2.4. Let C be a smooth irreducible curve on a smooth irreducible regular surface
S and let A be a complete base-point free grd on C with r ≥ 1 and h0(NC/S − A) > 0. Let
s ∈ H0(E(C,A)) be a nonzero section and let D ≥ 0 be the divisorial subscheme of the zero
locus of s. Then we have an exact sequence

(4) 0 −→ OS(D) −→ E(C,A) −→ F −→ τ −→ 0,

where F is locally free of rank r, τ is a torsion sheaf supported on a finite set and F is
globally generated off a finite set contained in C ∪ Supp(τ). Moreover h0(F∗) = 0 and, if
D > 0, also h1(F∗) = 0. Define M = detF . Then M is nontrivial, base-component free,
C ∼M +D and, if D > 0, then M|C ≥ A. Finally

(5) Cliff A = D.M + length(τ) + c2(F)− 2 rkF .

Proof. The exact sequence (4) and the facts that F is locally free of rank r and τ is a torsion
sheaf supported on a finite set are standard ([GL, 2.12] or [Par, 1.11]). As h0(NC/S−A) > 0
we see from (3) that E = E(C,A) is globally generated off a finite set contained in C, whence
F is globally generated off a finite set contained in C ∪ Supp(τ). As H i(E(KS)) = 0 for
i = 1, 2 we get from (4) that h0(F∗) = 0 and, if D > 0, also h1(F∗) = 0. Taking c1 in (4)
yields C ∼M +D and using c2(E) = degA and (4) we get

Cliff A = c2(E)− 2(rk E − 1) = D.M + c2(F) + length(τ)− 2 rkF ,
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showing (5). If D > 0, tensoring (3) and (4) by OS(−D) and taking global sections yields
h0(M|C − A) > 0, that is M|C ≥ A. In particular we get that M is nontrivial, otherwise
we would have that D ∼ C > 0, hence OC ≥ A, a contradiction. Moreover M is globally
generated off a finite set since F is, hence M is base-component free. �

Lemma 2.5. Let C be a smooth irreducible curve of Clifford index c on an Enriques surface
S, let L = OS(C) and let A be a line bundle on C that computes the Clifford index of C
with h0(NC/S − A) > 0 and h0(A) ≥ 3. Let s ∈ H0(E(C,A)) be a nonzero section and
let D ≥ 0 be the divisorial subscheme of the zero locus of s and let F ,M be defined as in
Lemma 2.4. Suppose that L2 ≥ 6, c ≤ 2φ(L)− 3 and h0(D) ≥ 2.

Then D2 > 0 and M2 > 0. Consequently h1(M) = h1(M + KS) = 0, h1(D) ≤ 1,
h1(D +KS) ≤ 1, −2 ≤ c2(F)− 2 rkF ≤ 0 and D.M ≤ c+ 2.

Proof. Assume first that M2 = 0. Then M ∼ mP for an elliptic pencil |P | and an integer
m ≥ 1. By [Kn2, Prop.3.2] we have c2(F)− 2 rkF ≥ −2m, whence by (5) we get

c ≥ mP.D − 2m = mP.L− 2m ≥ 2mφ(L)− 2m ≥ 2φ(L)− 2,

a contradiction. Therefore M2 > 0, hence h1(M) = h1(M + KS) = 0 since M is nef, and
by [Kn2, Prop.3.2] again it follows that c2(F)− 2 rkF ≥ −2. It follows from (5) again that
D.M ≤ c+ 2. Note that φ(L) ≥ 2, whence L is base-point free by [CD, Thm.4.4.1].

Since M2 ≥ 2 we have h0(M + KS) ≥ 2, whence by Lemma 2.3 we must have D.M ≥
c+2h1(D), hence h1(D) ≤ 1. The latter immediately yields by Riemann-Roch that D2 ≥ 0,
and if D2 = 0, we get 2φ(L) ≤ D.L = D.M ≤ c + 2, contradicting our assumption. It
follows that D2 > 0, whence h0(D + KS) ≥ 2, h1(D + KS) ≤ 1 and D.M ≥ c by Lemma
2.3 once more. Now D.M ≥ c implies c2(F)− 2 rkF ≤ 0. �

Let R be a vector bundle of rank r ≥ 1 on a smooth surface S with R globally generated
off a finite set, h0(R∗) = 0 and c1(R)2 > 0. It is a standard fact (see for example the proof of
[Kn2, Prop.3.2(a)]), that for a general subspace V ⊆ H0(R) of dimension r, the evaluation
map V ⊗OS → R is generically an isomorphism and drops rank along an irreducible curve
C ∈ |detR|, which is smooth away from the points where R is not globally generated, and
the cokernel is a torsion free sheaf of rank one.

Definition 2.6. A vector bundle R of rank r ≥ 1 on a surface S is said to be good if
it is globally generated off a finite set, h0(R∗) = 0, c1(R)2 > 0 and there is a subspace
V ⊆ H0(R) of dimension r such that the evaluation map V ⊗ OS −→ R is injective and
drops rank along a smooth, irreducible curve C ∈ |detR|.

For our purposes it will be sufficient to know the following

Lemma 2.7. Let L be a line bundle on a smooth regular surface S with L2 > 0 and
Z ⊂ S a zero-dimensional subscheme such that |JZ ⊗ L| 6= ∅, dim(Bs |JZ ⊗ L|) = 0
and Bs |JZ ⊗ L| is curvilinear. Let R be the dual of the kernel of the evaluation map
H0(JZ ⊗ L)⊗OS → JZ ⊗ L. Then R is good.

Proof. Let V = H0(JZ ⊗ L) and set W = Bs |JZ ⊗ L|. Then, by assumption, V ∼=
H0(JW ⊗ L) and we have a short exact sequence

0 −→ R∗ −→ V ⊗OS −→ JW ⊗ L −→ 0,

where R∗ is well-known to be locally free and is seen to satisfy h0(R∗) = 0 and c1(R) ∼ L.
By Bertini’s theorem [Ei, Prop.1.1], the general element in |JW ⊗ L| is a smooth irre-

ducible curve. Pick any such curve C and consider the restriction map sequence

(6) 0 −→ OS −→ JW ⊗ L −→ OC(L)(−W ) −→ 0.



BRILL-NOETHER THEORY OF CURVES ON ENRIQUES SURFACES II: THE CLIFFORD INDEX 5

Taking evaluation maps in (6), the snake lemma yields a short exact sequence

0 // R∗ // VC ⊗OS
evVC // OC(L)(−W ) // 0

where VC := Im{H0(JW ⊗ L)→ H0(OC(L)(−W )). Dualizing, we obtain

0 // V ∗C ⊗OS // R // OC(W ) // 0

and we see that V ∗C ⊆ H0(R) is the desired subspace. �

The main application of this construction will be the following useful tool

Proposition 2.8. Let R be a vector bundle of rank at least 2 on an Enriques surface
S, with R globally generated off a finite set, h0(R∗) = 0 and c1(R)2 > 0. Set c(R) =
c2(R)− 2(rkR− 1) and M = detR. Then c(R) ≥ 0.

If c(R) ≤ 1, then h1(R∗) = 0 and furthermore:
(i) If c(R) = 0 and φ(M) ≥ 2, then M2 ≤ 8, and if equality occurs, then M ≡ 2M0,

with M2
0 = 2.

(ii) If c(R) = 1, h0(R(KS)) ≥ 2, φ(M) ≥ 2 and R is good, then one of the following
occurs:

(ii-a) M2 = 12 and M ∼ 3E1 + 2E2, with Ei > 0, E2
i = 0 and E1.E2 = 1.

(ii-b) (M2, φ(M)) = (10, 3), rkR = 2 or 4 and M ∼ 2E + R + KS, with R nodal,
E > 0, E2 = 0 and E.R = 3.

(ii-c) (M2, φ(M)) = (10, 2).
(ii-d) M2 ≤ 8.

Proof. As mentioned above, for a general subspace V ⊆ H0(R) of dimension rkR, the
evaluation map yields a short exact sequence

(7) 0 −→ V ⊗OS −→ R −→ B −→ 0,

where B is a torsion free sheaf of rank one on some reduced irreducible C ∈ |detR|, given
by wedging the sections in a basis of V . Moreover B is globally generated off a finite set
whence h0(B) > 0. Dualizing we obtain

(8) 0 −→ R∗ −→ V ∗ ⊗OS −→ A −→ 0,

where A is a torsion free sheaf of rank one on C. Moreover, if R is good, then we can and
will assume that C is smooth and A and B are line bundles with B = NC/S −A.

One easily sees that c2(R) = degA, h1(A) = h0(R ⊗ KS) and rkR + h1(R∗) = h0(A),
so that c(R) = Cliff A+ 2h1(R∗) ≥ Cliff A.

Now c(R) ≥ 0 follows from [Kn2, Prop.3.2(a)]. If h1(A) = 0, then one easily sees, as in
the proof of [Kn2, Prop.3.2(a)], that c(R) ≥ 2. Therefore, if c(R) ≤ 1, we have that A is
special and, using [EKS, Thm.A,appendix], we deduce that h1(R∗) = 0 and c(R) = Cliff A.

We have left to prove (i) and (ii).
We first prove (i). If c(R) = 0 it follows again from [EKS, Thm.A,appendix] that either

pg(C) = 0, or pg(C) ≥ 1 and either A = OC or A = ωC or C possesses a g1
2 (that is, a line

bundle L with degL = 2 and h0(L) = 2). The case pg(C) = 0 cannot happen for general C
constructed as above, because, as R is globally generated off a finite set, it follows that C
moves, whence S would be covered by (singular) rational curves, a contradiction. Therefore,
the general C obtained as above has pg(C) ≥ 1, whence also pa(C) ≥ 1. Now h0(A) =
rkR ≥ 2 so it cannot be A = OC . If A = ωC = OC(C+KS), twisting the exact sequence (8)
byOS(−C−KS) and dualizing we deduce that B⊗OC(C+KS) ∼= Ext1OS

(OC ,OS) ∼= OC(C)
and therefore B ∼= OC(KS). Now it is easily seen that H0(OC(KS)) = 0, a contradiction.
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Therefore, the general C obtained as above has a g1
2, which is necessarily base-point free,

since C is not rational. It is standard that any Z in this linear system poses dependent
conditions on |M + KS |, and since φ(M) ≥ 2, then |M + KS | is base-point free, and if
M2 ≥ 8 we can apply [Kn1, Prop.3.7] and find that there is an effective divisor D on S
passing through Z and such that 2D2 ≤ D.M ≤ D2 + 2 ≤ 4. Also, as C is irreducible, we
have D.C = D.M ≥ 2, and we get the only two possibilities (D2, D.M) = (0, 2) or (2, 4).
Since φ(M) ≥ 2, we have h0(D) = h0(D + KS) = 1 in the first case, whence there are
only finitely many such divisors D with D.M = 2. Choosing Z general, which we can do
since the g1

2 is base-point free, we can avoid this case. Hence we are in the second case and
M ≡ 2D by the Hodge index theorem. This proves (i).

Now we prove (ii). Since R is good we can assume that C is smooth and A is a special
line bundle on C with Cliff A = 1. By assumption h1(A) = h0(R ⊗ KS) ≥ 2, whence
Cliff C ≤ 1. If Cliff C = 0, then C is hyperelliptic, and, as in the proof of (i), we get
M2 ≤ 8.

We can therefore assume Cliff C = 1. We can furthermore assume that either M2 ≥ 12
or (M2, φ(M)) = (10, 3), since otherwise we would be in one of the cases (ii-c) or (ii-d).

We first show that the case (M2, φ(M), rkR) = (10, 3, 3) does not occur.
Indeed, in this case |A| is a g2

5, that is base-point free since Cliff C = 1, whence A is
very ample since g(C) = 6. Hence C is isomorphic to a smooth plane quintic. By [KL1,
Lemma2.18] we can choose an E > 0 such that E2 = 0, E.M = 3, |M − E| is base-point
free and h0(M − E) = 3. As in the proof of [KL1, Prop.4.13] we have that there is an
effective divisor Z3 ⊂ C of degree 3 such that |OC(M − E)(−Z3)| is a base-point free,
complete g1

4 on C, call it A0. It is well-known that any g1
4 on a smooth plane quintic

comes from projecting from a point on the curve, that is there is a point y ∈ C such that
A ∼ A0 + y ∼ OC(M − E)(−Z3 + y). If y ∈ SuppZ3, then OC(M − E) > A, which is
impossible, since h0(OC(M−E)) = h0(A) = 3 and OC(M−E) is base-point free. Therefore
y 6∈ SuppZ3, which will be useful later on.

Let now E = E(C,A0), which is locally free of rank two and sits into

(9) 0 −→ H0(A0)∗ ⊗OS −→ E −→ NC/S −A0 −→ 0.

Now h1(−E) = 0 (as E.M = φ(M) = 3 implies h0(E) = h0(E + KS) = 1) whence
h0(E(−E)) = h0((NC/S − A0)(−E)) = h0(OC(M − E)(−A0)) = h0(OC(Z3)) = 1 and E is
globally generated off a finite set. We also claim that

(10) h0(E) = 3.

To prove this, we saturate the inclusion 0→ OS(E)→ E to obtain a short exact sequence

(11) 0 −→ OS(∆) −→ E −→ JX(M −∆) −→ 0

with ∆ ≥ E and X ⊂ S a 0-dimensional subscheme. Furthermore c2(E) = 4 = ∆.(M−∆)+
degX ≥ ∆.(M −∆). Moreover |M −∆| is base-component free. If M −∆ ∼ 0 then (11)
yields the contradiction 3 = h0(M − E) ≤ h0(E(−E)) = 1. Therefore (M −∆)2 ≥ 0 and
h0(M −∆) ≥ 2. If (M −∆)2 = 0 we get the contradiction 4 ≥ (M −∆).M ≥ 2φ(M) = 6.
Hence (M −∆)2 > 0 and ∆.M ≥ E.M = 3, so that ∆2 ≥ −4 + ∆.M ≥ −1, giving ∆2 ≥ 0.
Now one easily sees, by the Hodge index theorem and M2 = 10, that ∆2 ≥ 2 implies
∆2 = (M − ∆)2 = 2 and ∆.(M − ∆) = 3. But then ∆.M = 5, yielding φ(M) = 2, a
contradiction. Therefore, we only have the two possibilities

(12) (∆2,∆.(M −∆), (M −∆)2, degX) = (0, 3, 4, 1), (0, 4, 2, 0).
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In both these cases we see that h0(∆) = 1 since ∆.M < 2φ(M) = 6, whence h1(∆) = 0.
Moreover, in the first case, as (M −∆).M = 7 < 3φ(M) = 9, we must have φ(M −∆) = 2.
Therefore |M −∆| is base-point free in this case. It follows that in both cases of (12) we
have h0(JX(M −∆)) = 2. Therefore (10) follows by taking cohomology in (11).

Comparing with (9) we see that h0(NC/S − A0) = 1. Taking evaluation maps in (9) we
get that the scheme where E fails to be globally generated is precisely the unique member
T6 ∈ |NC/S −A0| of length 6. Moreover we note that

(13) T6 = (E ∩ C) ∪ Z3.

The inclusion A0 = A− y ⊂ A yields the exact sequence

(14) 0 // OS // R // E // τy // 0

where τy is a torsion sheaf of length one supported only at y.
By (10) and (14) we get h0(R) ≤ 4. On the other hand, using (7) and the fact that

h0(B) > 0, we get h0(R) = 3 + h0(B) ≥ 4, whence h0(R) = 4 and h0(B) = h0(NC/S −
A) = 1. Furthermore it follows that the scheme where R fails to be globally generated
is precisely the unique member T5 ∈ |NC/S − A| of length 5. Note that T5 = T6 − y (as
divisors on C). Since we have seen that y 6∈ SuppZ3 we have y ∈ E ∩ C by (13), whence
T5 = X2 ∪ Z3, where X2 = E ∩ C − y. Now from

0 // OS // JT5/S ⊗M // JT5/C ⊗M // 0

we see that Bs |JT5 ⊗M | = T5 since JT5/C ⊗M ∼= A. We now claim that any M ′ ∈ |M |
passing through X2 ⊆ E ∩ C must pass through the whole of E ∩ C. Assuming the claim
for a moment, we get the contradiction Bs |JT5 ⊗M | = T6. To see the claim first note that
the exact sequence

0 −→ OS −→ J(E∩C)/S(M) −→ OC(M − E) −→ 0

shows that h0(J(E∩C)/S(M)) = 4, since h0(OC(M −E)) = 3, which is easily seen to follow
from h0(M−E) = 3. To see the claim it is therefore enough to show that h0(JX2/S(M)) = 4.
To this end first note that from the exact sequence

0 −→ OS −→ JX2/S(M) −→ OC(M)(−X2) −→ 0

we see that W := Bs |JX2/S ⊗M | ⊆ E ∩ C, since OC(M)(−X2) ∼= OC(M − E)(y) and
OC(M − E) is base-point free. Hence W is curvilinear of length at most 3. Blowing-up S
at most three times, we resolve the base-scheme of |JX2/S ⊗M | and therefore the resulting
linear system is base-point free and not composite with a pencil, so that its general divisor
is irreducible by Bertini’s theorem. It follows that the general divisor M0 ∈ |JX2/S ⊗M |
is irreducible. Now h0(M) = 6 and degX2 = 2, whence, to prove that h0(JX2/S(M)) = 4,
we can just show that |M | separates X2. By Reider’s theorem [Re, Thm.1], if |M | does
not separate X2, there exists an effective divisor G on S such that X2 ⊂ G and either
G2 = 0, G.M = 1, 2 or G2 = −2, G.M = 0. But the first case is excluded since φ(M) = 3
and the second since G.M = G.M0 ≥ 2.

We have therefore proved that the case (M2, φ(M), rkR) = (10, 3, 3) does not occur.
Now assume (M2, φ(M)) = (10, 3). Then Riemann-Roch yields

h0(A)− h1(A) = rkR− h0(R(KS)) = degA− 5 = 2(rkR− 1)− 4 = 2 rkR− 6,

whence rkR + h0(R(KS)) = 6, which yields the two possibilities (rkR, h0(R(KS))) =
(h0(A), h1(A)) = (2, 4) or (4, 2), by assumption. In the first case |A| is a g1

3 and in the
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second |ωC −A| is. Therefore C is trigonal. This also holds for M2 ≥ 12, since Cliff C = 1,
therefore, in the remaining cases to treat, we have that C is trigonal. Denote a g1

3 by |A0|.
We now use [KL1, Prop.3.1]. If we are in case (a) of that proposition there is a base-

component free line bundle D such that 2D2 ≤ D.M ≤ D2 + 3 ≤ 6 and OC(D) ≥ A0. If
D2 = 0, then we must have OC(D) ∼ A0 and D.M = 3, but this is impossible, since D has
to be a multiple of an elliptic pencil. Therefore D2 = 2 and D.M ≤ 5, whence φ(M) ≤ 2.
Therefore M2 ≥ 12 by our assumptions, and the Hodge index theorem yields M2 = 12 and
D.M = 5. We can write D ∼ E1 + E2 for Ei > 0, E2

i = 0, E1.E2 = 1, E1.M = 2 and
E2.M = 3. Now (M − 3E1)2 = 0, whence M ∼ 3E1 + F for some F > 0 with F 2 = 0 by
[KL1, Lemma2.4]. But 3 = E2.M = 3 + E2.F yields E2.F = 0, whence F ≡ 2E2 by [KL3,
Lemma2.1]. Therefore M ≡ 3E1 + 2E2 and we are in case (ii-a).

If we are in case (b) of [KL1, Prop.3.1] then M2 = 10 and we have M ∼ 2N+R+KS for
some nodal R and N > 0 such that N.M ≥ φ(M) = 3, N.(N +R) = 3 and |N +R +KS |
is base-component free. Since 3 ≤ N.M = N2 + N.(N + R) we must have N2 ≥ 0, and
similarly, as h0(N + R + KS) ≥ 2, we must have 6 = 2φ(M) ≤ (N + R).M , whence
(N +R)2 ≥ 4. Using M2 = 10 we see that the only possibility is N2 = 0 and (N +R)2 = 4,
therefore N.R = 3, which shows that we are in case (ii-b). �

3. Plane curves

It it easily seen that an Enriques surface can contain plane curves of degree up to 4 and
it is a nontrivial result of Stagnaro [St] and Umezu [Um1] that the same happens for plane
quintics (however never general in their linear system [KL1, Prop.4.13]). On the other
hand, in this section we will prove that, on an Enriques surface, there are no smooth plane
curves of degree at least 6. We remark that in [GLM1] the same result was proved for
degree at least 9. The present proof is independent of that one.

Proposition 3.1. On an Enriques surface there are no curves which are isomorphic to a
smooth plane curve of degree d ≥ 6.

Proof. Assume, to get a contradiction, that C is a smooth plane curve of degree d ≥ 6
lying on an Enriques surface S, that is C has a very ample line bundle A with h0(A) = 3,
degA = d. We set L = OS(C) and let E > 0 be a nef divisor such that E.L = φ(L).

If d = 6, then gon(C) = 5 and L2 = 18, whence 3 ≤ φ(L) ≤ b
√

18c = 4.
We will now rule out the case d = 6, φ(L) = 3. Set M = L−2E, so that M2 = 6,M.L =

12, hence H2(M) = H0(−M +KS) = 0. From the exact sequence

0 −→ −M −→ 2E −→ OC(2E) −→ 0

we see that if H1(−M) = 0 we are done: In fact this implies that |OC(2E)| is a base-point
free complete g1

6 on C, but this is not possible on a smooth plane sextic, as any such g1
6 is

contained in the linear series cut out by the lines (this is a well-known fact, see for example
[LP]). Suppose then that H1(−M) 6= 0. By [KL3, Cor.2.5] M is not quasi-nef, that is
there is a ∆ > 0 such that ∆2 = −2 and ∆.M ≤ −2, whence, by [KL1, Lemma2.3], setting
k = −∆.M ≥ 2, there exists an A > 0 such that A2 = 6, A.∆ = k and M ∼ A+ k∆. Now
0 ≤ L.∆ = 2E.∆ +M.∆ whence E.∆ ≥ 1. From 3 = E.M = E.A+ kE.∆ we see that the
only possibility is k = 2 and E.∆ = 1, therefore L.∆ = 2E.∆ + M.∆ = 0 and the Hodge
index theorem implies that L ≡ 6E+3∆. In particular 2E+∆ is nef, (2E+∆)2 = 2, hence
h0(2E+∆) = 2, h1(2E+∆) = 0. Also L−2E−∆ ≡ 2(2E+∆) whence hi(2E+∆−L) = 0,
i = 0, 1. From the exact sequence

0 −→ 2E + ∆− L −→ 2E + ∆ −→ OC(2E + ∆) −→ 0
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we see that we are done because, as above, |OC(2E + ∆)| is a base-point free complete g1
6

on C, leading to the same contradiction.
We now proceed with the proof of the other cases. Since (E +KS)|C > 0 we have

h0(NC/S −A) = h0(ωC(−A)(KS) ≥ h0(ωC(−A)(−(E +KS)|C)) ≥
≥ h0(ωC −A)− φ(L) = h1(A)− φ(L) = g − d+ 2− φ(L) =

=
1
2

(d− 1)(d− 2)− d+ 2− φ(L) ≥ 1
2
d(d− 5) + 3− b

√
d(d− 3)c,

whence we have shown that

(15) if d ≥ 7 then h0(NC/S −A) ≥ 5

and

(16) if d = 6 then (L2, φ(L)) = (18, 4) and h0(NC/S −A) ≥ 2.

Set E = E(C,A). By (3), (15) and (16) we get

h0(E) ≥ 8 if d ≥ 7, and h0(E) ≥ 5 if d = 6.

Moreover, as h0(NC/S −A) > 0, we get by (3) that E is globally generated off a finite set.
We first need the following

Lemma 3.2. Let s ∈ H0(E) be a nonzero section. Denote by D ≥ 0 the divisorial sub-
scheme of the zero locus of s. Then we have an exact sequence as in (4) with h0(D) = 1,
D ≤ L and c1(F)2 − 4c2(F) = d(d− 7) + 2D.L− 3D2 + 4 length(τ).

Proof. By Lemma 2.4 we get an exact sequence as in (4) with rkF = 2, M = detF
nontrivial, base-component free and L ∼ M + D. The formula for c1(F)2 − 4c2(F) is
immediate from (5). Assume, to get a contradiction, that h0(D) ≥ 2. Then Lemma 2.5
and (5) yield D2 > 0, M2 > 0 and d− 4 = c ≥ D.M − 2 + length(τ), hence D.M ≤ d− 2.
From the Hodge index theorem D2M2 ≤ (D.M)2 ≤ (d− 2)2, hence, as D2 ≥ 2, M2 ≥ 2 we
have D2 +M2 ≤ 1

2(d− 2)2 + 2 with equality if and only if either D2 = 2 or M2 = 2. Also

(17) d(d− 3) = L2 = D2 +M2 + 2D.M ≤ 1
2

(d− 2)2 + 2 + 2(d− 2) =
1
2
d2,

whence d = 6 and we must have equalities all along, in particular D.M = d − 2 = 4 and
(D2,M2) = (2, 8) or (8, 2). By the Hodge index theorem we deduce that either L ≡ 3D with
D2 = 2 or L ≡ 3M with M2 = 2, but this is a contradiction since, by (16), φ(L) = 4. �

Continuation of the proof of Proposition 3.1. Now consider the set

(18) Q = {Γ : Γ > 0,Γ.L ≤ L2 and either Γ is nodal or |2Γ| is a genus one pencil}.
We note that Q is a finite set by standard arguments. We define

(19) Π =
⋃

Γ∈Q
Γ.

Then we have

Lemma 3.3. If h0(E) ≥ 6 then there are two distinct points x and y on S lying outside of
Π and a section s of E vanishing at x and y.

Proof. This follows, almost verbatim, from the proof of [GL, (2.10)]. �

Conclusion of the proof of Proposition 3.1. Consider the two cases
(I) h0(E) ≥ 6 (in particular if d ≥ 7),
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(II) d = 6 and h0(E) = 5

and choose a nonzero section s of H0(E) subject to the following conditions:

(I) s ∈ H0(E) vanishes on x and y as in Lemma 3.3,
(II) s ∈ H0(E) vanishes on E, where E.L = φ(L) = 4.

The existence of such a section follows by Lemma 3.3 in case (I) above, while, in case
(II), it follows from (3) twisted by OS(−E) and by h0((NC/S −A)−E|C) = h0(ωC(−A)−
(E + KS)|C) ≥ h1(A) − φ(L) ≥ 2. Now by Lemma 3.2 we have an exact sequence as
in (4) with h0(D) = 1, in particular D2 ≤ 0 by Riemann-Roch, and c1(F)2 − 4c2(F) =
d(d−7)+2D.L−3D2 +4 length(τ) ≥ d(d−7)+2D.L+4 length(τ). Let Γ be an irreducible
component of D. Then either Γ is nodal or Γ2 ≥ 0. In the latter case h0(Γ) ≤ h0(D) = 1
therefore h0(Γ) = 1 and Γ2 = 0 by Riemann-Roch. Then Γ is indecomposable of canonical
type and by [CD, Prop.3.1.2] we get that |2Γ| is a genus one pencil. Since D − Γ ≥ 0 and
L−D > 0 we get, by the nefness of L, that L.Γ ≤ L.D ≤ L2, therefore Γ ∈ Q.

In case (I), by the choice of x and y, we have that x 6∈ D, y 6∈ D hence x, y ∈ Supp(τ).
Therefore length(τ) ≥ 2 and c1(F)2 − 4c2(F) ≥ d(d − 7) + 2D.L + 8 ≥ 2. In case (II)
D ≥ E, whence D.L ≥ E.L = 4 and again c1(F)2 − 4c2(F) ≥ 2.

As in the proof of [KL1, Prop.3.1] there are two line bundles M1 and M2 and a zero-
dimensional subscheme W ⊂ S fitting in an exact sequence

0 −→M1 −→ F −→ JW ⊗M2 −→ 0,

with M = detF ∼ M1 + M2 and such that either M1 ≥ M2 or W = ∅ and the sequence
splits. Moreover we find (M1 −M2)2 = c1(F)2 − 4c2(F) + 4 length(W ) ≥ 2. Hence, in any
case, without loss of generality, we can assume, by Riemann-Roch, that M1 > M2. Recall
that M2 is base-component free and nontrivial, whence M2 is nef with h0(M2) ≥ 2.

Case (I). We have c2(F) = M1.M2 + length(W ), whence by (5),

(20) c = D.M + length(τ) + c2(F)− 4 ≥ D.M1 +D.M2 +M1.M2 − 2.

Assume first that M2
2 = 0. Then M2 ∼ mP for an elliptic pencil |P | and an integer m ≥ 1

and M2.(D+M1) = M2.L = mP.L ≥ 2mφ(L). Then (20) yields c ≥ D.M1 +2mφ(L)−2 ≥
D.M1 + 2φ(L) − 2, whence D.M1 ≤ −1 by (2) and it follows that D > 0. Since D.L =
D.M1 +D.M2 +D2 ≤ −1 +D.M2 +D2 and L is nef we must have D.M2 +D2 ≥ 1. Recall
that D2 ≤ 0. Now if D.M2 ≤ 2, then D2 = 0 and 2 ≤ φ(L) ≤ D.L ≤ 1 a contradiction.
Hence D.M2 ≥ 3 and (D +M2 +KS)2 ≥ 4, h0(D +M2 +KS) ≥ 3 by Riemann-Roch and
(20) gives c ≥ D.M2 + (D +M2).M1 − 2 ≥ (D +M2).M1 + 1, contradicting Lemma 2.3.

Then M2
2 > 0, whence by Riemann-Roch, h0(M2) ≥ 2, h0(M2 + KS) ≥ 2 and also

h0(M1) ≥ h0(M2) ≥ 2, h0(M1 + KS) ≥ h0(M2 + KS) ≥ 2. By (20) we have c ≥ D.M1 −
2 + (D +M1).M2, hence by Lemma 2.3 we have D.M1 ≤ 2 and similarly D.M2 ≤ 2.

IfD.M1 ≤ −1 thenD > 0. ThereforeD.L = D.M1+D.M2+D2 ≤ 1+D2, a contradiction
both if D2 = 0 and if D2 ≤ −2. Hence D.M1 ≥ 0 and similarly D.M2 ≥ 0. Then
d−4 = c ≥ (D+M1).M2−2 hence (D+M1).M2 ≤ d−2 and similarly (D+M2).M1 ≤ d−2.
From Lemma 2.3 we deduce that h1(D+M2) ≤ 1, whence (D+M2)2 ≥ 0 by Riemann-Roch
and, if equality occurs, we get the contradiction 2φ(L) ≤ (D + M2).L = (D + M2).M1 ≤
d− 2 = gon(C)− 1. This shows that (D +M2)2 > 0 and similarly (D +M1)2 > 0.

From the Hodge index theorem we get (D +M1)2M2
2 ≤ ((D +M1).M2)2 ≤ (d− 2)2, so

that (D +M1)2 +M2
2 ≤ 1

2(d− 2)2 + 2 and we get the same contradiction as in (17) above
and the following lines. This concludes the proof of Proposition 3.1 in Case (I).
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Case (II). First write M1 ∼M2 +M3 with M3 > 0 and M2
3 > 0 and set l = length(τ) +

length(W ). We have c2(F) = M1.M2 + length(W ), whence by (5) we get

2 = c = D.M + length(τ) + c2(F)− 4 =
= D.M1 +D.M2 +M1.M2 − 4 + length(τ) + length(W ) =(21)
= 2D.M2 +D.M3 +M2

2 +M2.M3 − 4 + l.

Moreover, by our assumptions, (4) and h2(D) = 0 we have

5 = h0(E) ≥ χ(D) + h0(F)− length(τ) ≥
≥ χ(D) + χ(M1) + h0(M2)− length(W )− length(τ) =

= 3 +
1
2
D2 +M2

2 +
1
2
M2

3 +M2.M3 + h1(M2)− l

whence, combining with (21),

4 = φ(L) = E.L ≤ D.L = D2 + 2D.M2 +D.M3 ≤

≤ 8 +
1
2
D2 − 2M2

2 −
1
2
M2

3 − 2M2.M3 − h1(M2).(22)

Assume first M2
2 = 0. Then M2 ∼ mP for an elliptic pencil |P | and an integer m ≥ 1

and we have h1(M2) = m, hence, since M2
3 ≥ 2 and P.M3 ≥ 2φ(M3) ≥ 2, (22) yields the

contradiction 4 ≤ 7 + 1
2D

2 − 2mP.M3 −m ≤ 7− 5m ≤ 2.
This shows that M2

2 > 0, hence h1(M2) = 0, M2.M3 ≥ 2 and (22) yields the contradiction
4 ≤ −1

2M
2
3 ≤ −1. This concludes the proof of case (II) and of Proposition 3.1. �

Remark 3.4. The fact that there are no smooth plane sextics on an Enriques surface
answers positively the question raised in [GLM1, Rem.3.9]. Also, for the same reason, in
the latter article, Lemma 3.1 is no longer needed.

To end the section we will show a result that will have applications in the study of
Gaussian maps of these curves ([KL2, Proof of Prop.5.14]).

Proposition 3.5. Let L be a base-point free line bundle on an Enriques surface with
(L2, φ(L)) = (14, 3) or (16, 2). Then the general curve in |L| possesses no base-point free
complete g2

6.

Proof. Assume to get a contradiction that a general smooth irreducible curve C ∈ |L| has
a base-point free line bundle A with h0(A) = 3 and degA = 6. Set E = E(C,A) as usual.

Case 1: (L2, φ(L)) = (14, 3).
Take a nef E > 0 with E.L = 3 and E2 = 0. Then from (3), using h1(−E) = 0, we get

(23) h0(E(−E)) = h0(ωC −A− (E +KS)|C) ≥ h1(A)− 3 = 1,

so that there is a nonzero section in H0(E) which vanishes along E. By Lemma 2.4 we
get a sequence as in (4) with D ≥ E and a decomposition L ∼ D +M where M = detF .
Using the same notation as in that lemma, we have, for l = length(τ),

(24) 6 = c2(E) = D.M + c2(F) + l.

If M2 = 0, then M ∼ mP for an elliptic pencil P and an integer m ≥ 1. We have
P.D = P.L ≥ 2φ(L) = 6, whence from (24) and [Kn2, Prop.3.2] we get the contradiction

6 = D.M + c2(F) + l ≥ mP.D − 2m+ 4 ≥ 4m+ 4 ≥ 8.

Hence M2 > 0 and by [Kn2, Prop.3.2] we have c2(F) ≥ 2. Combining with (24) we get

(25) D.M ≤ 4− l ≤ 4.
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We divide the rest of the proof of Case 1 into the two subcases:

(1A) h0(D) ≥ 2 or h0(D +KS) ≥ 2,
(1B) h0(D) = h0(D +KS) = 1.

Case (1A): We have D.L ≥ 2φ(L) = 6, whence by (25) we have

(26) D2 = D.(L−M) ≥ 2.

We now claim that h1(−D) = 0. Indeed, if not, by [KL3, Cor.2.5], there exists a ∆ > 0
with ∆2 = −2 and ∆.D ≤ −2. Then ∆.M = ∆.(L−D) ≥ 2, since L is nef. It follows that
(M+∆)2 ≥ 4 and, by [KL3, Lemma2.1] and (25), 0 ≤ (M+∆).D ≤ 2, but this contradicts
the Hodge index theorem. Therefore, from

(27) 0 −→ −D −→M −→ OC(M) −→ 0

and Lemma 2.4 we find

(28) h0(M) = h0(OC(M)) ≥ h0(A) = 3,

hence, in particular

(29) M2 ≥ 4.

From (25) and (26) and the fact that L2 = D2 + M2 + 2D.M ≥ 6 + 2D.M we see that if
D.M = 4 then D2 = 2 and M2 = 4. At the same time we see from the Hodge index theorem
that D.M ≤ 3 implies D2 = 2 and M2 = 4, which yields L2 ≤ 12, a contradiction. Hence
D.M = 4, D2 = 2 and M2 = 4. In particular M.L = 8. It follows that φ(M) = 2, because
if φ(M) = 1, by [KL1, Lemma2.4], we can write M ∼ 2M1 + M2 with Mi > 0, M2

i = 0
and M1.M2 = 1. But then M.L ≥ 3φ(L) = 9, a contradiction. Therefore φ(M) = 2, so
that M is base-point free by [CD, Thm.4.4.1] and OC(M) is base-point free as well. But
by (28) we have h0(OC(M)) = h0(A), and since OC(M) ≥ A by Lemma 2.4, we must have
OC(M) = A, whence M.L = degA = 6, a contradiction.

Case (1B): We have D2 ≤ 0 and D.L ≥ 3 since D ≥ E. At the same time (25) gives
D2 = D.L − D.M ≥ −1, whence D2 = h1(D) = h1(D + KS) = 0, the latter vanishings
from Riemann-Roch. From (27) we find that (28) and (29) are still valid. Moreover

(30) D.M = D.L ≥ 3.

By (24) we get

χ(F ⊗ F∗) = c1(F)2 − 4c2(F) + 4 = M2 − 4(6−D.M − l) + 4 =(31)
= (L−D)2 + 4D.M + 4l − 20 = 2D.L+ 4l − 6 ≥ 0

where we have used (30). Hence we have the following two possibilities:

(α) χ(F ⊗ F∗) = 0,
(β) χ(F ⊗ F∗) ≥ 2.

We will treat these two cases separately.
Case (1B)(α): By (31) and (30) we must have

(32) D.M = D.L = 3 and l = 0,

and it follows that

(33) M2 = L2 − 2D.L = 8 and φ(M) = 2.
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Indeed, the latter follows as above, because if φ(M) = 1, by [KL1, Lemma2.4] we can write
M ∼ 4M1 +M2 with Mi > 0, M2

i = 0 and M1.M2 = 1, but then M.L ≥ 5φ(L) = 15 > L2,
a contradiction. From (24) we find

(34) c2(F) = 3.

As in (23) we find h0(E(−D+KS)) ≥ 1 and from (4) with τ = ∅ we find h0(F(−D+KS)) =
h0(E(−D+KS)), that is there is s′ ∈ H0(F) vanishing on D+KS > 0. Saturating we get

0 −→ OS(D1) −→ F −→ JX ⊗M1 −→ 0,

for an effective divisor D1 ≥ D + KS > 0, M1 a line bundle on S and X a 0-dimensional
subscheme of S. Moreover, as M1 is a quotient of E off a finite set and h2(M1 + KS) ≤
h2(F ⊗ ωS) ≤ h2(E ⊗ ωS) = 0 we have

M1 is effective, nontrivial, base-component free and(35)
M = D1 +M1, Bs |M1| ⊆ X ∪ Bs |NC/S −A| ⊆ X ∪ C.

Moreover, from (34) we get

(36) 3 = c2(F) = D1.M1 + length(X) ≥ D1.M1.

If M2
1 = 0, then M1.D1 = M1.M ≥ 2φ(M) = 4 from (33), contradicting (36). Hence, by

the nefness of M1, we have M2
1 ≥ 2, h1(M1) = h1(M1 +KS) = 0. Since D1 ≥ D+KS and

M is nef we have, using (36), 3 = D.M ≤ D1.M = D2
1 +D1.M1 ≤ D2

1 + 3, whence D2
1 ≥ 0.

If φ(M1) = 1, then |M1| has two base points and since C is general in its linear system,
it cannot contain any of these two points, whence length(X) ≥ 2 by (35). Then D1.M1 ≤
1 by (36), whence D1.M1 = 1 and D2

1 = 0 by the Hodge index theorem. But then
D1.M = D1.M1 = 1, contradicting (33). Hence φ(M1) ≥ 2, so that M2

1 ≥ 4 and D1.M1 ≥
φ(M1) ≥ 2. But then (33) implies D2

1 = 0, M2
1 = 4 and D1.M1 = 2, which implies

D1.M = D1.M1 = 2, a contradiction since D1 ≥ D+KS and (32) imply D1.M ≥ D.M = 3.
Case (1B)(β): By (31) we have that c1(F)2 − 4c2(F) ≥ −2, whence, as in the proof of

[KL1, Prop.3.1], there are two line bundles N and N ′ and a zero-dimensional subscheme
X ⊂ S fitting in an exact sequence

(37) 0 −→ N −→ F −→ JX ⊗N ′ −→ 0

with M ∼ N + N ′ and N ′ is base-component free and nontrivial. Moreover, again as
in the proof of [KL1, Prop.3.1], it can be easily deduced that two cases are possible: (i)
c1(F)2−4c2(F) ≥ 0 and either N ≥ N ′ or X = ∅, (37) splits and also N is base-component
free and nontrivial; (ii) c1(F)2 − 4c2(F) = −2 and N ′.N = c2(F), X = ∅ and for every
∆ ≥ 0 such that h0(F(−∆)) > 0 we can choose N ≥ ∆.

If we are in case (ii) then, by (31) and (30), we must have D.M = D.L = 4 and l = 0
and it follows that

(38) M2 = L2 − 2D.L = 6, c2(F) = 2, M.L = M.D +M2 = 10 and φ(M) = 2,

for if φ(M) = 1, then, by [KL1, Lemma2.4], we can write M ∼ 3F1 + F2 with Fi > 0,
F 2
i = 0 and F1.F2 = 1, so that M.L ≥ 4φ(L) = 12, a contradiction.

Claim 3.6. There exists a divisor F > 0 such that F 2 = 0, F.M = 2 and h0(F(−F )) > 0.

Proof. By [KL1, Lemma2.4] we can write L ∼ 2E +E1 +E2 with Ei > 0, E2
i = 0, i = 1, 2

and E.E1 = 2, E.E2 = E1.E2 = 1. Moreover for any E′ > 0 such that E′.L = 3 we have
that either E′ ≡ E or E′ ≡ E2. Now M2 = 6, φ(M) = 2 hence by [KL1, Lemma2.4] we
can write M ∼ F1 + F2 + F3 with Fi > 0, F 2

i = 0, and Fi.Fj = 1 for 1 ≤ i < j ≤ 3. Since
10 = L.M = L.F1 + L.F2 + L.F3 ≥ 3φ(L) = 9 we can assume that L.F1 = L.F2 = 3 hence
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that F1 ≡ E, F2 ≡ E2. For any F ′ ≡ F2 we have that F ′ > 0, (F ′)2 = 0, F ′.M = 2,
F ′.L = 3. Now 3 = (F ′ + KS).L < 2φ(L), whence h1(OS(F ′ + KS)) = h1(OS(−F ′)) = 0
and, as in (23), we deduce that h0(E(−F ′)) > 0. Moreover (4) with τ = ∅ gives

0 −→ OS(D − F ′) −→ E(C,A)(−F ′) −→ F(−F ′) −→ 0.

Hence we will be done if we prove that either h0(D − F2) = 0 or h0(D − F2 + KS) = 0.
Suppose therefore that h0(D − F2) > 0, so that we just need to prove that Γ := D − F2 is
a nodal cycle. Note that L.Γ = L.D − L.F2 = L.(L−M)− 3 = 1. Now if Γ ∼ A+ ∆ with
A > 0, ∆ ≥ 0 and A2 ≥ 0 then 1 = L.Γ = L.A+ L.∆ ≥ φ(L) = 3, a contradiction. �

Continuation of the proof of Proposition 3.5. By Claim 3.6 and (38) we have that N ≥ F ,
X = ∅ and N ′.N = 2. Since τ = X = ∅, we see from (3) and (4) that Bs |N ′| ⊆ C. If
φ(N ′) = 1, then Bs |N ′| = {x, y}, and since C is general in its linear system, x, y 6∈ C.
Hence φ(N ′) ≥ 2. In particular (N ′)2 ≥ 4 so that M2 = N2 + (N ′)2 + 2N.N ′ ≥ N2 + 8,
which combined with (38) yields N2 ≤ −2, whence the contradiction 2 = F.M ≤ N.M =
N2 + N.N ′ ≤ 0. Therefore, we must be in case (i). Since N ′ is base-component free
and nontrivial we must have N ′.L ≥ 2φ(L) = 6. Since either N ≥ N ′ or N is base-
component free and nontrivial, we have N.L ≥ 6 as well. But L ∼ D+N +N ′ then implies
14 = L2 = L.D + L.N + L.N ′ ≥ L.E + 12 = 15, a contradiction.

This concludes case (1B)(β) and the proof of Proposition 3.5 when (L2, φ(L)) = (14, 3).
Case 2: (L2, φ(L)) = (16, 2).
Take a nef E > 0 with E.L = 2 and E2 = 0. Then from (3), using h1(−2E) = 0, we get

h0(E(−2E)) = h0(ωC −A− (2E +KS)|C) ≥ h1(A)− 4 = 1,

so that there is a nonzero section in H0(E) which vanishes along an element in |2E|. By
Lemma 2.4 we get a sequence as in (4) with D ≥ 2E, whence with L.D ≥ 4. Using the
same notation as in that lemma, we have

(39) 6 = c2(E) = D.M + c2(F) + l,

where l := length(τ). Moreover we have

(40) Bs |M | ⊆ Supp(τ) ∪ Bs |NC/S −A| ⊆ Supp(τ) ∪ C.

Claim 3.7. If M2 = 0, then M ∼ P for an elliptic pencil P and c2(F) = 2.

Proof. We have M ∼ mP for an elliptic pencil P and an integer m ≥ 1. We have P.D =
P.L ≥ 2φ(L) = 4, whence from (39) and [Kn2, Prop.3.2] we get 6 = D.M + c2(F) + l ≥
mP.D − 2m+ 4 ≥ 2m+ 4, which implies m = 1 and c2(F) = 2, as stated. �

Continuation of the proof of Proposition 3.5. Combining Claim 3.7 with [Kn2, Prop.3.2]
for M2 > 0 we get, in any case,

(41) c2(F) ≥ 2.

Combining with (39) we get

(42) D.M ≤ 4− l ≤ 4 and D2 = D.(L−M) ≥ 0.

Claim 3.8. If D2 = 0, then D ∼ 2E.

Proof. We have D ≥ 2E. Assume that D2 = 0 and D ∼ 2E + ∆ for some ∆ > 0. Then
∆2 = −4E.∆. Moreover we have 4 = 2E.L = D.L−∆.L = D.M −∆.L ≤ 4−∆.L by (42).
Therefore D.M = 4 and ∆.L = 0, in particular ∆2 < 0, so that E.∆ > 0. By (42) again
we must have τ = ∅. Therefore Bs |M | ⊆ C, but since C is general in its linear system,
it cannot contain any of the possible base points of M , whence φ(M) ≥ 2. Therefore
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∆.M = D.M − 2E.M ≤ 0, which means that E.M = 2 and ∆.M = 0. But then we get
the contradiction ∆.L = 2E.∆ + ∆2 + ∆.M = −2E.∆ < 0. �

Claim 3.9. We have h1(−D) = 0.

Proof. By Claim 3.8 we can assume D2 > 0. By [KL3, Cor.2.5], if h1(−D) = h1(D+KS) >
0, there exists a ∆ > 0 with ∆2 = −2 and ∆.D ≤ −2. Since L is nef we must have ∆.M ≥ 2,
whence (M + ∆)2 ≥ 2 and 0 ≤ (M + ∆).D ≤ 2 by [KL3, Lemma2.1] and (42). By the
Hodge index theorem we have 4 ≤ (M + ∆)2D2 ≤ ((M + ∆).D)2 ≤ 4, whence we must
have ∆.D = −2, ∆.M = 2, M2 = 0, D.M = 4, D2 = 2, and D ≡ M + ∆. But then
∆.D = ∆.M + ∆2 = 0, a contradiction. �

Conclusion of the proof of Proposition 3.5. From (27) and Claim 3.9 we find h0(OC(M)) =
h0(M) and since OC(M) ≥ A by Lemma 2.4, we must have h0(M) ≥ 3. Hence, using Claim
3.7, we find that M2 ≥ 4.

If D2 > 0 we have E.D ≥ 1, and since 2 = E.L = E.D + E.M we must have E.D =
E.M = 1, whence |M | has two base points. Since C is general in its linear system it cannot
contain any of these, whence l ≥ 2, and from (42) we get D.M ≤ 2. But this is impossible
by the Hodge index theorem.

Hence D2 = 0 and by Claim 3.8 we have D ∼ 2E, whence D.L = D.M = 4, so that by
(39) and (41), we have τ = ∅ and c2(F) = 2. Moreover we have M2 = L2 − 2L.D = 8,
whence c1(F)2 − 4c2(F) = 0. Therefore we have an exact sequence

(43) 0 −→ N −→ F −→ JX ⊗N ′ −→ 0,

as in the proof of [KL1, Prop.3.1], with M ∼ N + N ′, N ′ is base-component free and
nontrivial and either N ≥ N ′ or N is base-component free and nontrivial. Therefore, in
any case, M.N ≥ 2φ(M). Moreover, from (43), we find that

(44) 2 = c2(F) = N.N ′ + length(X) ≥ N.N ′.

Now we claim that φ(M) = 2. Indeed 1 ≤ φ(M) ≤ b
√

8c = 2. If φ(M) = 1 then |M | has
two base points, and since τ = ∅ we get by (40) that C contains these two base points, a
contradiction on the generality of C in its linear system.

As h0(N ′) ≥ 2 we must have 8 = M2 = M.N + M.N ′ ≥ 4φ(M) = 8, which implies
M.N = M.N ′ = 4. Combined with (44) and the Hodge index theorem we find that
N ≡ N ′ and N2 = 2. In particular, by (44) again X = ∅. But then |N ′| has two base
points, which have to be contained in Bs |NC/S −A| ⊆ C, again a contradiction.

This concludes the the proof of Proposition 3.5 when (L2, φ(L)) = (16, 2). �

4. Complete intersections of two cubics

In this section we will prove that there are no exceptional curves of Clifford dimension 3
on an Enriques surface.

Assume, to get a contradiction, that C is an exceptional curve of Clifford dimension 3
lying on an Enriques surface S. By [Mar, Satz1] C is isomorphic to a complete intersection
of two cubics, has genus 10, Clifford index 3 and possesses a unique line bundle A computing
its Clifford dimension, that is with dim |A| = 3 and degA = 9. Also A is very ample, it
satisfies ωC ∼ 2A, and embeds C into P3 as a complete intersection of two cubics. Moreover
C has gonality 6, it has a 1-dimensional family of g1

6’s, and every g1
6 is of the form A−Z3,

with Z3 effective and degZ3 = 3 [ELMS, Thm.3.7].
Set L = OS(C). Then L2 = 18. As gonC = 6 and φ(L) ≤

√
L2, we have φ(L) = 3 or 4.
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4.1. The case L ∼ 3B with B2 = 2. Set E = E(C,A).

Claim 4.1. We have h0(E(−B)) > 0 and h0(E(−B −KS)) > 0.

Proof. Since B.L = 6, we have that |OC(B)| is a g1
6 on C, whence we have OC(B) ∼ A−Z3,

for some effective Z3 ⊂ C of degree 3. Therefore

NC/S −A−OC(B +KS) ∼ ωC −A−OC(B) ∼ A− (A− Z3) = OC(Z3) > 0.

Tensoring (3) byOS(−B+KS), and using the fact that h1(−B+KS) = 0 we find h0(E(−B−
KS)) = h0(NC/S −A−OC(B +KS)) > 0. Similarly, h0(E(−B)) > 0. �

Pick a section s ∈ H0(E) vanishing along some element of |B| and denote by D the largest
effective divisor on which it vanishes. Then by Lemma 2.4 we have an exact sequence

(45) 0 −→ OS(D) −→ E −→ F −→ τ −→ 0,

where F is a locally free rank 3 sheaf which is globally generated off a finite set contained
in C ∪ Supp τ , τ is a torsion sheaf supported on a finite set and M := detF is nontrivial,
base-component free and L ∼M +D.

Claim 4.2. We have D ∼ B, M ∼ 2B and (c2(F), length(τ)) = (5, 0) or (4, 1).

Proof. By Lemma 2.5 we also have

(46) D2 > 0, M2 > 0, D.M ≤ 5 and 4 ≤ c2(F) ≤ 6.

We now observe that h1(D+KS) = 0. Indeed, if not, by [KL3, Cor.2.5], there would exist
a ∆ > 0 satisfying ∆2 = −2 and ∆.D ≤ −2. Since L is nef we must have ∆.M ≥ 2. Hence
(D−∆)2 ≥ 4 and (D−∆).M ≤ 3 using (46). Now if h0(D−∆) = 0 then, by Riemann-Roch,
KS−D+∆ ≥ 0 and [KL3, Lemma2.1] implies that 0 ≤ D.(KS−D+∆) = −D2+D.∆ ≤ −4,
a contradiction. Therefore D−∆ ≥ 0, M.(D−∆) ≥ 0 and the Hodge index theorem implies
(D −∆)2 = 4, M2 = 2 and (D −∆).M = 3, whence D2 = M2 = 2 and D.M = 5, yielding
the contradiction 18 = L2 = (D +M)2 = 14. From

0 −→ OS(−D) −→ OS(M) −→ OC(M) −→ 0

we therefore find h0(OC(M)) = h0(M) and since OC(M) ≥ A by Lemma 2.4, we must
have h0(M) ≥ 4, whence M2 ≥ 6 by Riemann-Roch and the nefness of M . The Hodge
index theorem, (46) and the fact that D2 +M2 + 2D.M = 18 now imply that D2 = 2.

If M2 = 6, then M.L = 11 and since OC(M) ≥ A with h0(OC(M)) = h0(A), this means
that |M | has two base points, whence φ(M) = 1 and by [KL1, Lemma2.4] we can write
M ∼ 3E1 + E2 with Ei > 0, E2

i = 0 and E1.E2 = 1. But then M.L ≥ 4φ(L) ≥ 12, a
contradiction. Hence M2 ≥ 8, which implies D.M = 4, so that M ≡ 2D by the Hodge
index theorem. Therefore L ≡ 3D, so that M ∼ 2B. By (5) in Lemma 2.4 we get
length(τ) + c2(F) = 5, and (46) yields the two stated possibilities. �

From (45) tensored by OS(−B +KS) we find, using Claim 4.1,

h0(F(−B +KS)) ≥ h0(E(−B +KS))− h0(KS) = h0(E(−B +KS)) > 0.

Hence there is a section t ∈ H0(F) vanishing along some element of |B + KS |. Denoting
by D1 the largest effective divisor on which it vanishes, we get as above an exact sequence

(47) 0 −→ OS(D1) −→ F −→ G −→ τ1 −→ 0,

where G is a locally free rank 2 sheaf which is globally generated off a finite set contained
in C ∪ Supp τ ∪ Supp τ1, τ1 is a torsion sheaf supported on a finite set and M1 := detG
is nontrivial and base-component free and M ∼ 2B ∼ M1 + D1 (look at the proof of
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Lemma 2.4; the fact that M1 is nontrivial follows by Porteous (see for example [Par, proof
of Lemma 1.12] since G is nontrivial because, as is well-known, H2(E(KS)) = 0, whence
also H2(G(KS)) = 0). Taking c2 in (47) and combining with Claim 4.2 we find

(48) 5 = D1.M1 + length(τ) + length(τ1) + c2(G).

If M2
1 = 0 then M1 ∼ kP for an integer k ≥ 1 and an elliptic pencil P , and c2(G) ≥ 4−2k

by [Kn2, Prop.3.2]. By (48) we have, using φ(M) = 2, the contradiction

5 ≥ kP.D1 + c2(G) = kP.M + c2(G) ≥ 4k + 4− 2k = 2k + 4 ≥ 6.

Hence M2
1 > 0, so that c2(G) ≥ 2 by [Kn2, Prop.3.2]. Therefore D1.M1 ≤ 3 by (48).

Moreover we have D1.M ≥ B.M = 4, and since D1.M = D2
1 + D1.M1 ≤ D2

1 + 3, we have
D2

1 ≥ 2. Now the Hodge index theorem and the fact that D2
1 +M2

1 +2D1.M1 = 8 imply that
D1 ≡M1 and D2

1 = 2. Therefore M ∼ 2B ≡ 2D1 and it follows that D1 ∼M1 ∼ B +KS .
Now |M1| has two base points, and by the above they must lie in C ∪ Supp τ ∪ Supp τ1.
From (48) we get length(τ)+ length(τ1) ≤ 1, so that at least one of the base points of |M1|,
say x, lies on C. As H1(M1 − L) = 0, |OC(M1)− x| is a g1

5, a contradiction.

4.2. The case L not divisible by 3 in PicS. Let Z ∈ |A|. Recall that OC(2Z) ∼ ωC .
From

0 −→ KS −→ JZ(L+KS) −→ A −→ 0
we get

(49) h0(JZ(L+KS)) = h0(A) = 4

and

(50) Bs |JZ(L+KS)| ∩ C ⊆ Z.
We can write

(51) |JZ(L+KS)| = {M}+ ∆,

where {M} is the moving part which is a sublinear system {M} ⊆ |M | for some M which
is without fixed components (whence nef) and ∆ is the fixed divisor. Clearly

(52) h0(M) ≥ dim{M}+ 1 = h0(JZ(L+KS)) = 4.

We will now use the set Π in (19) (see also (18)).

Lemma 4.3. If Z does not intersect Π then ∆.L = 0.

Proof. Assume to get a contradiction that ∆.L > 0. By (50) we have ∆ ∩ C ⊆ Z, so that,
by definition of Π, h0(∆) ≥ 2, and in particular

(53) 6 ≤ 2φ(L) ≤ ∆.L ≤ degZ = 9.

If M2 = 0 then M ∼ mP for an elliptic pencil |P | and an integer m ≥ 3, by (52). But
then we get the contradiction L2 = ∆.L+M.L ≥ 2φ(L) + 2mφ(L) ≥ 8φ(L) ≥ 24.

Hence M2 > 0 and from (52) we must even have M2 ≥ 6. Consequently M.L ≥ 3φ(L)
and as above 18 = L2 = ∆.L+M.L ≥ 2φ(L) + 3φ(L) = 5φ(L) implies φ(L) = 3.

We now claim that ∆2 ≥ 2. Indeed if ∆2 ≤ 0, then (53) yields ∆.M = ∆.L −∆2 ≥ 6
and since M2 ≥ 6 we then get L2 = 18 = M.L + ∆.L = M2 + M.∆ + ∆.L ≥ 18, whence
we must have equalities all the way, that is M2 = M.∆ = ∆.L = 6 and ∆2 = 0. Then we
can write Z = (C ∩∆) ∪ Z3 with degZ3 = 3. It follows that {M} ⊆ |JZ3 ⊗M | ⊆ |M | and
3 = dim{M} = dim |M |, whence |M | has a base scheme of length three, a contradiction.
This shows that ∆2 ≥ 2. The case ∆2 ≥ 4 is easily ruled out by the Hodge index theorem,
whence ∆2 = 2. The Hodge index theorem yields M.∆ ≥ 4 and one easily sees that L2 = 18
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yields only the two possibilities (∆2,M2,M.∆) = (2, 6, 5) or (2, 8, 4). In the first case we
can write Z = (C ∩∆) ∪ Z2 with degZ2 = 2. It follows that {M} ⊆ |JZ2 ⊗M | ⊆ |M | and
3 = dim{M} = dim |M |, whence Z2 consists of the two base points of |M |. It is well-known
that such base points are contained in halfpencils, contradicting our choice of Z. Hence
we must be in the second case, where the Hodge index theorem yields M ≡ 2∆ so that
L ≡ 3∆, contradicting our assumptions. �

We will from now on fix once and for all a Z ∈ |A| subject to the following four conditions:
(C1) Z consists of nine distinct points outside of Π.
(C2) No six of the nine points in Z form a g1

6 on C.
(C3) If |P | is a complete base-component free pencil on S, then for any P0 ∈ |P | we have

length(P0 ∩ Z) ≤ 1 and for any singular or reducible P0 ∈ |P | we have P0 ∩ Z = ∅.
(C4) If |B| is a complete base-component free net on S, then length(B0 ∩Z) ≤ 1 for any

singular B0 ∈ |B|, and if furthermore |B| is nonhyperelliptic, then length(B0∩Z) ≤
1 for any smooth hyperelliptic curve B0 ∈ |B|.

Clearly, since A is base-point free and the curves in Π are finite, the general Z ∈ |A|
satisfies (C1). Moreover, since the family of g1

6’s on C has dimension one, we see that the
dimension of the family consisting of Z ∈ |A| such that a length six subscheme forms a g1

6

is at most 2 < dim |A| = 3, whence the general Z ∈ |A| satsifies (C2).
To see that the general Z ∈ |A| satisfies (C3), consider a base-component free pencil

|P | on S and let P0 ∈ |P |. Note that P0 ∩ Z consists of distinct points, so that it has
only finitely many subschemes. If Z2 ⊆ P0 ∩ Z is any subscheme of length two, then
dim |A− Z2| = dimA− 2 = 1, as |A| is very ample. Consider J ⊆ |P | × |A| given by

J := {(P0, Z) | P0 ∈ |P |, Z ∈ |A| and length(P0 ∩ Z) ≥ 2}

and denote by π1 its projection to |P | and π2 its projection to |A|. Then, by what we
saw right above, dimπ−1

1 (P0) = dim |A| − 2 = 1 for any P0 ∈ |P |, so that dimπ2(J) ≤
1 + dim |P | = 2 = dim |A| − 1, so that π2 is not surjective and the general Z ∈ |A| satisfies
length(P0 ∩ Z) ≤ 1 for any P0 ∈ |P |. Moreover, since the singular and reducible members
of |P | are a finite number, the general Z ∈ |A| also satisfies P0∩Z = ∅ for every singular or
reducible P0 ∈ |P |. Therefore, as the possible P ’s are countably many, the general Z ∈ |A|
satisfies (C3). Similarly, since the family of singular curves in a complete base-component
free net on S, and the family of smooth hyperelliptic curves in a complete base-component
free nonhyperelliptic net on S, both have dimension one, we can argue as above, substituting
|P | with any irreducible family of dimension one of hyperelliptic smooth curves or singular
curves in the net |B|, and prove that the general Z ∈ |A| satisfies (C4).

This shows that we can indeed choose a Z ∈ |A| satisfying (C1)-(C4).
From Lemma 4.3 and property (C1) we get that we can write (51) as

|JZ(L+KS)| = |JZ ⊗M |+ ∆, ∆ ∩ C = ∅.

Moreover, using that ∆2 ≤ −2 by Lemma 4.3, we have M2 = L2+∆2 = 18+∆2 ≤ 18. Since
M|C−A ∼ (L+KS−∆)|C−A ∼ ωC−A ∼ A and h0(JZ⊗M) = h0(JZ(L+KS)) = h0(A) = 4
from (49), we get that the natural restriction map arising from

0 −→ KS −∆ −→ JZ ⊗M −→ A −→ 0

is an isomorphism: H0(JZ ⊗M)
∼= // H0(A) . Moreover, from (50), we have

(54) Bs |JZ ⊗M | ∩ C = Z.
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Set Z = Bs |JZ ⊗M | ⊇ Z and denote by f : S̃ −→ S the resolution of Z. Let H̃ be the
strict transform of the general element in |JZ ⊗M | and let C̃ be the strict transform of C.
Then |H̃| is base-point free with h0(H̃) = 4 and since degZ ≥ 9 we must have

(55) H̃2 = 9− k, 0 ≤ k ≤ 9.

Lemma 4.4. If the general curve in |JZ ⊗M | is singular, then k ≥ 4.

Proof. If the general curve in |JZ ⊗M | has a point x of multiplicity ≥ 2 then, by Bertini’s
theorem, x is a base point of |JZ ⊗M |. Now one easily sees that resolving the base scheme
located at x makes the self-intersection drop at least by 4. �

Now let ϕ = ϕH̃ be the morphism to P3 defined by H̃ and denote by S0 the image of S̃
and C0 the image of C̃. Then by construction C0 is the Clifford embedding of C, that is
letting ϕA be the morphism defined by A we have a commutative diagram

C̃

ϕ|C̃   A
AA

AA
AA

A

f|C̃ // C

ϕA

��
C0.

In particular C0 is smooth and nondegenerate in P3 of degree 9 and is the complete
intersection of two cubics.

If dimS0 = 1 then ϕ is composed with a rational pencil (since h1(OS̃) = h1(OS) = 0),
so that ϕ factorizes as S̃ → P1 → P3 and C0 is the twisted cubic in P3, a contradiction.

Hence S0 is a surface and, since degC0 = 9, we have C̃.H̃ = 9.
Moreover, by (54) we have C̃2 = C̃.KS̃ = 9. Set d = degϕ and d0 = degS0. Then

(56) dd0 = 9− k, d0 ≥ 3, 0 ≤ k ≤ 6,

where we have used (55) and the fact that C0 is neither contained in any hyperplane nor
in any quadric to conclude that d0 ≥ 3.

Now S0 is Cartier in P3 whence it is Cohen-Macaulay and by adjunction

(57) ωS0
∼= ωP3(S0)⊗OS0

∼= OS0(d0 − 4).

Let Θ = |JC0/P3(3)|, which has dimension one. Since C0 is the complete intersection of two
cubics, Θ is base-point free off C0, and, since C0 is smooth and Cartier on any member of
Θ, the general member of Θ is smooth by Bertini’s theorem.

Now we choose once and for all a smooth irreducible surface T ∈ Θ such that

T ∩ S0 = C0 ∪ C1,

where C1, if not empty, is an irreducible curve such that

C0 and C1 intersect transversally and outside of SingS0 and the(58)
finitely many points on S0 coming from the curves contracted by ϕ,

C1 does not meet the isolated singularities of S0, and SingC1 ⊆ SingS0.

Also note that since 3d0 = OS0(1).OS0(3) = degC0 + degC1 we have

(59) degC1 = 3(d0 − 3).
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Now the surface T ⊂ P3 satisfies KT = OT (−1) and K2
T = 3. On T we have T ∩ S0 ∈

|OT (d0)| whence C0 +C1 ∈ |OT (d0)|. Furthermore, since C0 ∈ |OT (3)| (being the complete
intersection of two cubics) we have

C1 ∼ OT (d0 − 3) ∼ −(d0 − 3)KT ,

whence on T we have C0.C1 = 3(d0 − 3)K2
T = 9(d0 − 3). Since C0 and C1 intersect

transversally and outside SingS0 we have

(60) #(C0 ∩ C1) = 9(d0 − 3).

We note that if d ≥ 2, then from (56) the only possibilities are (d, d0, k) = (3, 3, 0),
(2, 3, 3) or (2, 4, 1). We will now divide the rest of the proof into the three cases d = 1,
(d, d0, k) = (2, 4, 1) and (d, d0, k) = (3, 3, 0) or (2, 3, 3).

4.2.1. The case d = 1. We have

3H̃ ∼ ϕ∗(C0 + C1) ∼ C̃ + C̃1 +
∑

riRi,

where C̃1 is the strict transform of C1 and the Ri are the exceptional divisors of ϕ. Define
C̃2 = C̃1 +

∑
riRi, then 3H̃ ∼ C̃ + C̃2 and 27 = 3H̃.C̃ = C̃2 + C̃.C̃2 implies 18 = C̃.C̃2 =∑

riRi.C̃ + C̃1.C̃, whence C̃1.C̃ ≤ 18, and it follows from (58) that #(C0 ∩ C1) ≤ 18.
Comparing with (60) we see that

(61) H̃2 = d0 = 9− k ≤ 5, whence k ≥ 4.

Now consider the Stein factorization of ϕ:

S̃
π1 // S0

π2 // S0.

Then S0 is normal and, as d = degϕ = 1, π2 is an isomorphism, so that S0 is normal and
we can assume that π1 = ϕ. Using (57) we get

(62) KS̃ ≡ ϕ
∗(KS0) +

∑
ciRi ≡ (d0 − 4)H̃ +

∑
ciRi,

for some ci ∈ Q. Also note that since H̃ is nef and

KS̃ ∼ f
∗KS +

∑
aiei, ai ≥ 0,

where the ei are the exceptional divisors of f , we have H̃.KS̃ ≥ 0.
Since h2(H̃) = h0(KS̃ − H̃) = 0, we have h1(H̃) = h0(H̃)− 1

2H̃.(H̃ −KS̃)− 1 ≥ 1.
Let H ∈ |H̃| be a general smooth curve. From the short exact sequence

0 −→ OS̃ −→ OS̃(H̃) −→ OH(H̃) −→ 0,

we see that h0(OH(H̃)) = 3 and h1(OH(H̃)) = h1(H̃) ≥ 1. As |OH(H̃)| is birational, it
cannot be a multiple of a g1

2 on H. If OH(H̃) ∼= ωH we get H̃.KS̃ = 0 whence H̃.e = 0
for every exceptional divisor e, so that H̃ = f∗(M0) for some M0, a contradiction. Now
Clifford’s theorem gives 0 < Cliff OH(H̃) = H̃2 − 4 = d0 − 4. Combining with (61) we get

(63) H̃2 = d0 = 5 and k = 4.

It follows from the proof of Lemma 4.4 that the general curve in |JZ ⊗M | has at most one
singular point, and if so, it is of multiplicity two.

Using Lemma 4.3 and (63) we get 5 = H̃2 ≤ (L−∆)2 − 9 = 9 + ∆2, whence ∆2 ≥ −4.
We also have

M2 = 18 + ∆2 = 2pa(M)− 2 ≤ 2pa(H̃)− 2 + 2 = H̃.(H̃ +KS̃) + 2 = 7 + H̃.KS̃ ,
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which yields H̃.KS̃ ≥ 11 + ∆2 ≥ 7. Combined with (62) we get the contradiction

7 ≤ H̃.KS̃ = H̃.
(
H̃ +

∑
ciRi

)
= 5.

4.2.2. The case (d, d0, k) = (2, 4, 1). First of all note that we have H̃2 = 8, whence, using
Lemma 4.3, we get 8 = H̃2 ≤ (L−∆)2 − 9 = 9 + ∆2 so that ∆2 ≥ −1, whence ∆ = 0 and
M ∼ L+KS . Moreover the general curve in |JZ ⊗M | is smooth by Lemma 4.4.

We now show that S0 is normal.
Assume, to get a contradiction, that S0 is not normal. Since it is Cohen-Macaulay, it

is singular in codimension one, so that the general smooth curve in |H̃| is mapped 2 : 1
to a hyperplane section of S0, which is a singular curve of arithmetic genus 3. This map
factors through the normalisation of the hyperplane section, whence the general smooth
curve in |H̃| can be mapped 2 : 1 to a smooth curve of genus ≤ 2. It follows that the
general smooth curve in |H̃| has gonality ≤ 4. Since the elements in an open dense subset
of the smooth curves in |H̃| are in one-to-one correspondence with the smooth curves in
|JZ⊗M |, it follows by [GLM1, Thm.1.4] that the gonality is 4 for the general smooth curve
in |JZ ⊗M | ⊆ |M |. By Lemma 4.5 right below, we have M ∼ L+KS ≡ 3D with D2 = 2,
contradicting our assumptions. Therefore we have shown that S0 is normal.

We now prove the needed lemma, which will be useful later as well:

Lemma 4.5. Let N be a nef line bundle with N2 = 18 and φ(N) ≥ 3 on an Enriques
surface S. Assume Y ∈ |N | is a smooth curve of gonality 4. Then N ≡ 3D with D2 = 2.

Proof. By [KL1, Prop.3.1] there is a base-component free linear system |D| such that 2D2 ≤
N.D ≤ D2 + 4 ≤ 8. Since φ(N) ≥ 3, we must have N.D ≥ 2φ(N) ≥ 6, whence D2 ≥ 2.
The Hodge index theorem yields D2 = 2 and N ≡ 3D. �

Let σ : S̃0 → S0 be a minimal desingularisation. After taking a succession of monoidal
transformations f ′ : ˜̃S → S̃ we get a commutative diagram

˜̃S
f ′ //

Φ

��

S̃

ϕ

��

f // S

S̃0
σ // S0

with Φ a degree two morphism of smooth surfaces.
We now claim that h1(OS̃0

) = 0. Indeed consider the Stein factorization of Φ:

˜̃S
Φ1 // S̃′0

Φ2 // S̃0.

Then (Φ1)∗O ˜̃S
∼= OS̃′0 , so that S̃′0 is normal (see for example [Mat, Prop.1.2.16]). By

the lemma of Enriques-Severi-Zariski [Ha, III, Thm. 7.8] and the criterion of [Ha, III,
Thm. 7.6(b)], we have that S̃′0 is Cohen-Macaulay. Now the double cover Φ2 satisfies
(Φ2)∗OS̃′0

∼= OS̃0
⊕L, for some L ∈ Pic S̃0 [CD, Chp. 0, section 1]. Hence Φ∗O ˜̃S

∼= OS̃0
⊕L.

By Leray we get h1(Φ∗O ˜̃S
) ≤ h1(O ˜̃S

) = h1(OS) = 0. Hence h1(OS̃0
) = 0, as claimed.

As an immediate consequence, we get from combining [Lau, Prop.3.7], [Um2, Prop.8 and
Thm.1 on p. 345] and the fact that ωS0

∼= OS0 by (57), that S̃0 must be a K3 surface.
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Now Φ is ramified along an effective divisor R (possibly zero) and we have K ˜̃S
∼ Φ∗KS̃0

+
R ∼ R. Therefore h0(K ˜̃S

) = h0(R) > 0, which is impossible, since h0(K ˜̃S
) = h2(O ˜̃S

) =
h2(OS) = 0. Hence we have a contradiction, which rules out this case.

4.2.3. The cases (d, d0, k) = (3, 3, 0) or (2, 3, 3). By Lemma 4.3 and (63) we have H̃2 ≤
(L−∆)2 − 9 = 9 + ∆2, whence the three options

(a) H̃2 = 9, ∆ = 0, d = 3.
(b) H̃2 = 6, ∆ = 0, d = 2.
(c) H̃2 = 6, M2 = 16, ∆2 = −2, d = 2.

Moreover, in this case C1 = 0 by (59), whence C0 ∈ |OS0(3)| is Cartier and S0 has only
isolated singularities, in particular it is normal. From (57) we find that ωS0

∼= OS0(−1).
Also note that, in all cases, the general curve in |JZ ⊗M | is smooth by Lemma 4.4.

By [CD, Prop.0.3.3] S0 is either an anticanonical del Pezzo surface or a projection of a
scroll or an elliptic cone. In the two latter cases the pullback by ϕ of the ruling is a moving
complete linear system |R| on S̃ such that R.H̃ = d, that is all the smooth curves in |H̃| have
gonalities ≤ d ≤ 3. As the general element in |JZ ⊗M | is smooth, the curves in an open,
dense subset of the smooth curves in |JZ ⊗M | are in one-to-one correspondence with the
smooth curves in |H̃| and they all have gonalities ≤ d ≤ 3. Since g(M) = 9 or 10 it follows
from [GLM1, Thm.1.4] that they must all have gonality two, that is they are hyperelliptic.
Therefore φ(M) = 1, so that |M | has base points and we must be in case (c), since L is
base-point free. One easily sees that one can write M ∼ 8E1 + E2 with both Ei > 0 and
E2
i = 0, such that E1.E2 = 1. Since φ(L) ≥ 3 we must have E1.∆ ≥ 2 and since ∆.M = 2

it follows that ∆.E2 ≤ −14, whence the contradiction E2.L = E2.M + E2.∆ ≤ −6.
Note that we have also just proved that φ(M) ≥ 2, which will be useful later.
Hence S0 is an anticanonical del Pezzo surface.
We now rule out the cases (b) and (c).
In these two cases we have d = 2, so that the general smooth curve in |H̃| is mapped

generically 2 : 1 to a plane cubic. Therefore the general smooth curve in |H̃| possesses a
one dimensional family of complete g1

4’s. In case (b), the smooth curves in an open, dense
subset of the smooth curves in |JZ ⊗M | are in one-to-one correspondence with the smooth
curves in |H̃|, and by Lemma 4.5 we have that L is 3-divisible, a contradiction. As for case
(c), we first need the following result:

Lemma 4.6. Let N be a nef line bundle with N2 = 16 and φ(N) ≥ 2 on an Enriques
surface S. Assume Y ∈ |N | is a smooth curve of gonality 4. Then any g1

4 on Y is of one
of the following types:

(i) OY (P ) for an elliptic pencil P with P.N = 4 (in particular φ(N) = 2);
(ii) OY (D) − x − y, for a base-component free linear system |D| with D2 = 2 and two

distinct base points x and y;
(iii) OY (D) − Z4, for a base-component free linear system |D| with D2 = 4, N ≡ 2D

and Z4 a 0-dimensional scheme of length 4 imposing only one condition on |D|.

Proof. Let |B| be a base-point free complete g1
4 on Y . By [KL1, Prop.3.1] we can write

N ∼ D+N1 with N1 > 0, |D| base-component free and such that 2D2 ≤ N.D ≤ D2 +4 ≤ 8
and OY (D) ≥ B. If D2 = 0, then D.N = 4 and |D| is an elliptic pencil, since φ(N) ≥ 2,
and we are in case (i). If D2 = 2 then D.N = 6 by the Hodge index theorem, and we claim
that H1(−N1) = 0. As N2

1 = 6 if H1(−N1) 6= 0 by [KL3, Cor.2.5] there exists a ∆ > 0
such that ∆2 = −2 and k := −∆.N1 ≥ 2. By [KL1, Lemma2.3] we can write N1 ∼ A1 +k∆
with A1 > 0, A2

1 = 6. Now D.A1 ≥ 4 by the Hodge index theorem and 4 = D.N1 =
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D.A1 + kD.∆ ≥ 4 gives D.∆ = 0 whence the contradiction 0 ≤ N.∆ = D.∆ +N1.∆ = −k.
Therefore H1(−N1) = 0 and h0(OY (D)) = h0(D) = 2. Hence B ∼ OY (D)− x− y, where
x and y are the two distinct base points of |D|. This is case (ii). Finally, if D2 = 4, then
N ≡ 2D by the Hodge index theorem and for reasons of degree B ∼ OY (D)− Z4 for a 0-
dimensional scheme Z4 of length 4 on Y . As h1(D) = h1(D+KS) = 0 by the nefness of D,
we must have h0(OY (D)) = h0(D) = 3 and h0(B) = h0(OY (D) − Z4) = h0(JZ4(D)) = 2,
we see that the scheme Z4 poses only one condition on H0(D). This is case (iii). �

Returning to case (c), the curves in an open, dense subset of the smooth curves in |H̃|
are in one-to-one correspondence with the smooth curves in |JZ ⊗M | ⊆ |M | and their
g1

4’s are therefore given by Lemma 4.6. Since the general smooth curve in |JZ ⊗M | has
infinitely many g1

4’s, they cannot all be of type (i), that is cut out by an elliptic pencil,
nor can they all be of type (ii), since there are only finitely many linear equivalence classes
of divisors D. Hence the general smooth curve Y ∈ |JZ ⊗M | has infinitely many g1

4’s of
type (iii) in Lemma 4.6, that is M ≡ 2D for a base-component free linear system |D| with
D2 = 4 and these g1

4’s are of type OY (D) − Z4 with Z4 a 0-dimensional scheme of length
4 imposing only one condition on |D|. Since D2 = 4, and h0(JZ4(D)) = 2, in general the
scheme Z4 is uniquely determined by any of the four points in Z4, and for general x ∈ S
the Z4 corresponding to x is nothing but

Z4(x) := Bs |Jx(D)|.

Since the general smooth curve in |JZ⊗M | has a one dimensional family of g1
4’s of this type,

we must have that the general element in |JZ ⊗M | passing through x also passes through
the whole of Z4(x). But this implies that the map given by |H̃| is 4 : 1, a contradiction.

We have therefore shown that we are in case (a), that is H̃2 = 9, ∆ = 0 and d = 3.
We now treat this case. Note that Z = Z and f is the blow-up at nine distinct points.

Claim 4.7. Let |P | be a base-component free pencil with (f∗P ).H̃ = 6 or 8. Then |f∗P |
is base-component free and its general element is mapped generically one-to-one to S0.

Proof. If P 2 = 0 then |P | is base-point free, whence |f∗P | is base-point free as well. If
P 2 = 2 then |P | has two distinct base points which lie outside of Z by property (C1),
whence |f∗P | has still only two base points. Choose any x ∈ Z and denote by ex the
exceptional curve of f over x. Choose the unique P0 ∈ |P | passing through x. Then by
property (C3) we have that P0 is smooth and irreducible and P0 ∩ Z = {x}. It follows
that f∗P ∼ f∗P0 = P̃0 + ex, with P̃0 irreducible satisfying H̃.P̃0 = 5 or 7, which is neither
divisible by 2 nor 3. Therefore ϕ maps P̃0 generically one-to-one to a curve of degree five
or seven on S0, whence different from the line ϕ(ex). We conclude that ϕ is generically
one-to-one on P̃0 + ex, whence on the general element of |f∗P |. �

Now recall that, by [CD, Prop.0.3.4] and [Ko, Thm.1] (or [Gr]), any anticanonical del
Pezzo cubic surface in P3 is Q-factorial and it contains at least one line and one pencil of
conics (which is complete). For such a pencil |D| we define its strict transform to be the
moving part of the pencil {ϕ∗D0}D0∈|D|. Note that it is complete.

Corollary 4.8. Let |D̃| be the strict transform of a pencil of conics on S0. Then

D̃ ∼ f∗D −
∑

αiei, αi ≥ 0

for some nef D ∈ PicS with D2 ≥ 4 and
∑
αi ≥ 3.



24 A.L. KNUTSEN AND A.F. LOPEZ

Proof. We have D̃.H̃ = 6 and any member of |D̃| is mapped generically 3 : 1 by ϕ to a conic
on S0. Therefore D̃ ∼ f∗D −

∑
αiei for some D ∈ PicS such that |D| is base-component

free. Moreover if dim |D| = 1 then the blown-up points in S are base-points of |D| with
multiplicity αi. If D2 = 0 this can happen only if αi = 0 for every i and |D| is a pencil
on S such that (f∗D).H̃ = 6, contradicting Claim 4.7. If D2 = 2 this can happen only if
αi = 0 for every i except two of them, say αj = αk = 1 and |D| is a pencil on S such that
(f∗D).H̃ = 8, again contradicting Claim 4.7. Hence D2 ≥ 4 and the Hodge index theorem
yields D.L ≥ 9, whence 6 = D̃.H̃ = D.L−

∑
αi implies

∑
αi ≥ 3. �

Claim 4.9. For any distinct i, j, k ∈ {1, . . . , 9} we have

h0(H̃ − ei − ej − ek) ≤ 1.

Proof. Assume, to get a contradiction, that h0(H̃ − e1 − e2 − e3) ≥ 2. Then, from

0 −→ f∗KS − e1 − e2 − e3 −→ H̃ − e1 − e2 − e3 −→ OC̃(H̃ − e1 − e2 − e3) −→ 0,

we find h0(OC̃(H̃ − e1 − e2 − e3)) ≥ 2. But OC̃(H̃ − e1 − e2 − e3) ∼= OC(A − x1 − x2 −
x3) ∼= OC(x4 + · · · + x9), where the xi’s are the nine points of Z. But this means that
|OC(x4 + · · ·+ x9)| is a g1

6, contradicting property (C2). �

Claim 4.10. Let G̃ be an irreducible curve on S̃ different from the ei’s such that ϕ maps
G̃ generically 1 : 1 or 2 : 1 to a line or to a point.

Then G̃ ∼ f∗G for some effective irreducible G ∈ PicS.

Proof. Assume, to get a contradiction, that G̃ ∼ f∗G −
∑
βiei, with at least one βi > 0.

This means that G ∩ Z 6= ∅, so that by property (C1) we must have h0(G) ≥ 2 and
consequently G.L ≥ 2φ(L) ≥ 6. By assumption we have 2 ≥ G̃.H̃ = G.L −

∑
βi, whence∑

βi ≥ 4. Now we cannot have length(G∩Z) = 1, for then G̃ ∼ f∗G−βex with β ≥ 4 and
one exceptional curve ex lying over the only intersection point x between G and Z. Hence

2pa(G̃)− 2 = G̃.(G̃+KS̃) = G2 − β2 + β = 4− β(β − 1) ≤ −8,

an absurdity. Therefore length(G ∩ Z) ≥ 2 and from property (C3), by [CD, Prop.3.1.6
and 3.1.4], we deduce that G2 ≥ 4.

By assumption we have H̃ ≥ G̃ + D̃, where |D̃| is the strict transform of a pencil of
conics on S0. It follows that L+KS ≥ G+D. Moreover D̃ ∼ f∗D −

∑
αiei, with D2 ≥ 4

and
∑
αi ≥ 3 by Corollary 4.8. The Hodge index theorem yields G.L ≥ 9 and D.L ≥ 9.

Now both G and D are nef, whence 18 = L2 ≥ L.(G+D) ≥ D2 +G2 + 2D.G and we get
that there exists D′ ≥ D such that

G2 = (D′)2 = 4, G.D′ = 5, L.G = 9 and L+KS ∼ D′ +G.(64)

Again from length(G ∩ Z) ≥ 2 and property (C4) it follows that G is smooth and that if
furthermore φ(G) = 2, then G is nonhyperelliptic. Now pa(G) = 3, whence ϕ cannot map
G̃ generically 1 : 1 to a line, and if ϕ maps G̃ generically 2 : 1 to a line, then we must have
φ(G) = 1. Using [KL1, Lemma2.4] we can write G ∼ 2E1 + E2, with Ei > 0, E2

i = 0 and
E1.E2 = 1. Now 5 = (2E1 + E2).D′ together with 3 ≤ φ(L) ≤ E1.L = E1.G + E1.D

′ =
1 + E1.D

′ and 3 ≤ φ(L) ≤ E2.L = E2.G + E2.D
′ = 2 + E2.D

′ imply E1.D
′ = 2 and

E2.D
′ = 1, and one easily sees that this implies D′ ≡ E1 + 2E2, so that L ≡ 3(E1 + E2),

contrary to our assumptions.
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We are left with the case of ϕ contracting G̃ to a point, that is H̃.G̃ = 0. This implies∑
βi = 9 and since G is smooth, we must have

(65) G̃ = f∗G−
9∑
i=1

ei.

Moreover, as 0 ≤ D̃2 = D2 −
∑
α2
i = 4 −

∑
α2
i and

∑
αi ≥ 3, we must have αi = 1 for

exactly three or four distinct i’s and αi = 0 for the rest. Possibly after rearranging indices
we can therefore write

(66) D̃ = f∗D − e1 − e2 − e3 − εe4, with ε = 0 or 1.

Now for some G̃1 ≥ 0 we have H̃ ∼ G̃1 + D̃ + G̃ and combining with (64)-(66) we get

G̃1 ∼ f∗(L+KS −G−D) + e1 + e2 + e3 + εe4,

whence ei.G̃1 = −1 for 1 ≤ i ≤ 3. Therefore G̃1 ≥ e1 + e2 + e3, whence

h0(H̃ − e1 − e2 − e3) = h0(G̃1 − e1 − e2 − e3 + D̃ + G̃) ≥ h0(D̃) = 2,

contradicting Claim 4.9. �

We will now denote by Lj the line ϕ(ej), for j = 1, . . . , 9 (note that these lines may
coincide), and by Dj the pencil of conics on S0 given by the hyperplanes through Lj (in
other words OS0(1) ∼ Lj + Dj). We denote the strict transform of this pencil by |D̃j |. In
particular H̃.D̃j = 6 and by Corollary 4.8 we have

(67) D̃j ∼ f∗Dj −
9∑
i=1

αjiei, with D2
j ≥ 4 and

∑
αji ≥ 3.

We have H̃ ∼ ϕ∗(Lj + Dj), which yields, for each j = 1, . . . , 9,

(68) H̃ ∼ ∆̃0j + ∆̃1j + D̃j ,

where ∆̃1j > 0 such that none of its components are contracted by ϕ and ϕ(∆̃1j) = Lj, and
∆̃0j ≥ 0 is contracted by ϕ, that is H̃.∆̃0j = 0.

Clearly ej ⊆ ∆̃1j by construction, so that three cases may occur:

(69) ∆̃1j = ej + ea + eb, for some a, b ∈ {1, . . . , 9}, a 6= b;

or

(70) ∆̃1j = ej + ea + Γ̃j , for some a ∈ {1, . . . , 9},

with Γ̃j irreducible being mapped generically 1 : 1 to Lj by ϕ, Γ̃j 6= ei for all i; or

(71) ∆̃1j = ej + Γ̃j ,

with Γ̃j either irreducible and being mapped generically 2 : 1 to Lj by ϕ or consisting of
two irreducible components 6= ei for all i.
By Claim 4.10 we have, in all cases, that

(72) Γ̃j = f∗Γj and ∆̃0j = f∗∆0j

From H̃ ∼ f∗(L+KS)−
∑9

i=1 ei, (68), (72) and (67) we get, for each p ∈ {1, . . . , 9},

1 = H̃.ep = (∆̃0j+∆̃1j+D̃j).ep = (f∗∆0j).ep+∆̃1j .ep+(f∗Dj−
9∑
i=1

αjiei).ep = ∆̃1j .ep+αjp.



26 A.L. KNUTSEN AND A.F. LOPEZ

Using (69)-(72) we deduce that

αjp =

{
1 if p 6∈ {j, a, b}
2 if p ∈ {j, a, b}

in case (69) and αjp =

{
1 if p 6∈ {j, a}
2 if p ∈ {j, a}

in case (70).

Moreover, we have

(73) L+KS ∼ Dj + Γj + ∆0j (with Γj = 0 in case (69)).

If we are in case (69), from (67) and (73) we have

0 ≤ D̃j
2

= D2
j −

9∑
i=1

α2
ji ≤ 18 + ∆2

0j − 18 = ∆2
0j ,

which implies ∆0j = 0. Reordering indices we can from (68) assume that H̃ ∼ e1 + e2 +
e3 + D̃j , whence h0(H̃ − e1 − e2 − e3) = 2, contradicting Claim 4.9.

If we are in case (70), then Γj .L = 1,Γ2
j = −2 and we claim that D2

j ≤ (L − Γj)2.
The latter being obvious if ∆0j = 0 (using (73)), we assume ∆0j > 0. By (72) we have
0 = ∆̃0j .H̃ = ∆̃0j .(f∗L−

∑
ei) = f∗(∆0j).(f∗L−

∑
ei) = ∆0j .L. Now write ∆̃0j =

∑
q G̃qj

with G̃qj > 0, Supp(G̃qj) connected and G̃qj .G̃pj = 0 for q 6= p. Then H̃.G̃qj = 0 for every
q and, as in (72), G̃qj = f∗Gqj . Therefore L.Gqj = 0 for every q and the Hodge index
theorem and (72) imply that G̃2

qj = G2
qj ≤ −2. Moreover, as ϕ maps Γ̃j to a line and G̃qj

to a point, we have that Γ̃j .G̃qj ≤ 1, whence

2Γj .∆0j + ∆2
0j = ∆̃0j .(2Γ̃j + ∆̃0j) =

∑
q

G̃qj .(2Γ̃j +
∑
q

G̃qj) =
∑
q

(2G̃qj .Γ̃j + G̃2
qj) ≤ 0.

Therefore

D2
j = (L−Γj−∆0j)2 = (L−Γj)2−2(L−Γj).∆0j+∆2

0j = (L−Γj)2+2Γj .∆0j+∆2
0j ≤ (L−Γj)2.

But this yields the contradiction D̃j
2

= D2
j −

∑9
i=1 α

2
ji ≤ (L− Γj)2 − 15 = −1. Therefore

we must be in case (71) for all j. In particular, using (72),

(74) ϕ∗(Lj) ≤ ej + Γ̃j + ∆̃0j ∼ ej + f∗(Γj + ∆0j), for all j.

This implies that all the Lj are distinct lines. As S0 cannot contain more than 6 mutually
disjoint lines (since otherwise its minimal desingularization S̃0 would contain at least 7
disjoint (−1)-curves, which is impossible, since it is obtained by blowing up P2 in 6 points),
we must have Li ∩ Lj 6= ∅ for some i 6= j. But then |Li + Lj| is a pencil of conics on S0,
whence by (74) and (72) we have

dim |ei + ej + f∗(Γi + ∆0i + Γj + ∆0j)| ≥ 1.

But since ei.(ei + ej + f∗(Γi + ∆0i + Γj + ∆0j)) = −1 we see that ei, and similarly ej , are
both fixed in |ei + ej + f∗(Γi + ∆0i + Γj + ∆0j)|. Therefore

dim |f∗(Γi + ∆0i + Γj + ∆0j)| ≥ 1,

but since f∗(Γi + ∆0i + Γj + ∆0j).C̃ = (Γi + ∆0i + Γj + ∆0j).L = 4 we obtain a g1
4 on C, a

contradiction.
This concludes the proof of the case r = 3.
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5. Curves of Clifford dimensions from 4 to 9

In this section we will show that there is no exceptional curve C of Clifford dimension
r, with 4 ≤ r ≤ 9, on an Enriques surface S. Set L = OS(C) and let A be a line bundle on
C computing the Clifford dimension. We start with the following result

Lemma 5.1. Assume C is an exceptional curve of Clifford dimension r with 4 ≤ r ≤ 9 on
an Enriques surface S. Then r ≤ 6 and

C2 = 8r − 6, φ(C) = r, Cliff C = 2r − 3, gonC = 2r.

Moreover there is a unique line bundle A computing the Clifford dimension and it satisfies
ωC ∼ 2A and degA = 4r − 3.

Proof. Since r ≤ 9 then from [ELMS, End of §5, Thm. 3.6 and Thm. 3.7] it follows that A
is unique, ωC ∼ 2A, h0(A) = h1(A) = r + 1, Cliff C = 2r − 3 and g(C) = 4r − 2, whence
C2 = 8r − 6 and gonC = 2r. From (1) we have 8φ(C) ≥ 8r = C2 + 6 ≥ φ(C)2 + 6, which
yields φ(C) ≤ 7, whence r ≤ 7 by (1). By [KL1, Proposition1.4], we get r = φ(C) ≤ 6. �

Lemma 5.2. Let N be a nef line bundle on an Enriques surface S with (N2, φ(N)) = (42, 6)
or (34, 5). Then there is an effective divisor B on S satisfying B2 = 2 and B.N = 2φ(N).

Proof. Choose an E > 0 such that E2 = 0 and E.N = φ(N). Set N1 = N − E, which is
effective by [KL1, Lemma2.4], and choose an E1 > 0 such that E2

1 = 0 and E1.N1 = φ(N1).
We first treat the case (N2, φ(N)) = (42, 6). Then N2

1 = 30, whence E1.N1 = φ(N1) ≤ 5.
If φ(N1) ≤ 4, then (N1 − 3E1)2 ≥ 6 and N1 − 3E1 > 0 by [KL1, Lemma2.4]. Now

6 = φ(N) ≤ E1.N = E1.N1 + E1.E ≤ 4 + E1.E implies E1.E ≥ 2, whence 6 = E.N =
E.N1 = 3E.E1 + E.(N1 − 3E1) ≥ 7, a contradiction. Therefore φ(N1) = 5, so that
(N1 − 3E1)2 = 0. If E.E1 ≥ 2 then 6 = E.N = E.N1 = 3E.E1 + E.(N1 − 3E1) implies
N1−3E1 ≡ kE for some k ≥ 1 by [KL3, Lemma2.1]. Now 5 = E1.(N1−3E1) = 5kE.E1 ≥ 10
gives a contradiction. Hence E.E1 = 1, so that E1.N = E.N = 6 and E+E1 is the desired
divisor. The case (N2, φ(N)) = (34, 5) follows in the same manner. �

We now choose B as in Lemma 5.2 in the cases r = 5 and 6. If there is a divisor satisfying
B2 = 2 and B.L = 2r = 8 in the case r = 4, we pick such a divisor in that case as well,
if not we choose an elliptic pencil |2E| with E.L = 4 and set B = 2E in this case. To
summarize, we fix an effective divisor B from now on with the following properties:

B.L = 2φ(L) = 2r and either(75)
(i) B2 = 2 or
(ii) (L2, r) = (26, 4), B is an elliptic pencil and there is no

B0 > 0 satisfying B2
0 = 2 and B0.L = 8.

By Lemma 5.1, we must have h0(B) = h0(OC(B)) = 2 and |B|C | is a base-point free
pencil, whence

(76) h1(B) = 0 if B2 = 2.

By [ELMS, Lemma3.1] there is an effective divisor Z on C of degree 2r − 3 such that
OC(B) ∼ A− Z. Since ωC ∼ 2A, by Lemma 5.1, setting D = L+KS −B, this yields

A ∼ OC(D)− Z.
From the cohomology of

0 −→ KS −B −→ JZ(D) −→ A −→ 0
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we find
H0(JZ(D)) ⊆ H0(A),

with strict inclusion implying codimH0(A)H
0(JZ(D)) = 1 and B2 = 0 by (76).

To simplify our treatment we will refer to the two different cases as (I) and (II), that is:

Case (I): H0(JZ(D)) = H0(A),(77)
Case (II): codimH0(A)H

0(JZ(D)) = 1, in which case B2 = 0.

Now let F be the base-component of |JZ(D)|,M = D−F and Z0 = Z∩F be the scheme-
theoretic intersection. Then it follows that there is an effective decomposition Z = ZM+Z0,
as divisors on C, such that

(78) |JZ(D)| = |JZM
⊗M |+ F, M is base-component free

and

(79) OC(M)− ZM ∼ A− (F ∩ C − Z0).

From

(80) 0 −→M − L −→ JZM
⊗M −→ OC(M)− ZM −→ 0

we get

(81) h0(OC(M)− ZM ) ≥ h0(JZM
⊗M) = h0(JZ(D)) =

{
r + 1 in Case (I),
r in Case (II).

Moreover, h1(OC(M) − ZM ) ≥ h2(M − L) = h0(L − M + KS) ≥ h0(B) = 2, whence
OC(M)− ZM contributes to the Clifford index of C.

If h0(OC(M)− ZM ) ≥ r + 1 we therefore have, by (79) and Lemma 5.1,

Cliff C ≤ Cliff OC(M)(−ZM ) ≤ deg(OC(M)− ZM )− 2r =
= degA− 2r − deg(F ∩ C − Z0) = Cliff C − deg(F ∩ C − Z0),

whence Z0 = F ∩ C and OC(M)− ZM ∼ A.
If h0(OC(M)− ZM ) = r, then, since r is the Clifford dimension of C, we have

Cliff C < Cliff OC(M)(−ZM ) = Cliff C + 2− deg(F ∩ C − Z0),

whence deg(F ∩ C − Z0) ≤ 1. However, as h0(OC(M) − ZM ) < h0(A), we must have
deg(F ∩ C − Z0) = 1. We therefore conclude that

Either OC(M)− ZM ∼ A, or(82)
OC(M)− ZM ∼ A− x, for some x ∈ C, in which case
h0(OC(M)− ZM ) = h0(JZM

⊗M) = r and we are in Case (II).

Now take cohomology of (80) and set

V = Im
{
H0(JZM

⊗M) −→ H0(OC(M)− ZM )
}
.

Clearly

(83) dimV = h0(JZM
⊗M) =

{
r + 1 in Case (I),
r in Case (II).

The evaluation map ev(JZM
⊗M) : H0(JZM

⊗ M) ⊗ OS → JZM
⊗ M is surjective off a

finite set since |JZM
⊗M | is without fixed components and its kernel is a vector bundle

whose dual we denote by F , while its cokernel is a torsion sheaf with finite support that
will be denoted by τM . Similarly, the evaluation map evV : V ⊗ OS −→ OC(M) − ZM
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is surjective off a finite set and its kernel is a vector bundle whose dual we denote by E0,
while its cokernel is a torsion sheaf with finite support that will be denoted by τV . Set
lV = length(τV ) and lM = length(τM ). Note that

(84) if lV = 0 then h0(E0(KS)) = h2(E∗0 ) = h1(OC(M)(−ZM )).

Taking evaluation maps in (80), applying the snake lemma and dualizing yields

(85) 0 −→ OS(L−M) −→ E0 −→ F −→ τ −→ 0,

where τ is a torsion sheaf of finite support of length l := lM − lV ≥ 0.
Now note that we have c1(E0) ∼ L and c1(F) ∼M and, from (83) and (85),

(86) rk E0 = dimV =
{
r + 1 in Case (I),
r in Case (II), and rkF = rk E0 − 1

(note that it follows that E0
∼= E(C,A) in case (I)) and

(87) c2(E0) = deg(OC(M)− ZM )− lV .
Moreover we have

(88) h0(E∗0 ) = h0(F∗) = 0 and h1(E∗0 ) ≤ h0(OC(M)(−ZM ))− h0(JZM
⊗M).

Taking c2 in (85) and combining with (82) and (87) we obtain

(89) 4r − 3 ≥ deg(OC(M)− ZM ) = M.(L−M) + c2(F) + lM .

We also note that by dualizing the evaluation sequence of JZM
⊗M , we see that

(90) F is globally generated off a finite set and, if lM = 0 and M2 > 0, then F is good.

(Indeed, the latter is an immediate consequence of Lemma 2.7, since ZM ⊂ C is curvilinear.)
Now if M2 = 0, then M ∼ mP0 for an elliptic pencil |P0| and m ≥ 1 and c2(F) ≥

2 rkF − 2m ≥ 2(r − 1 − m) by [Kn2, Prop.3.2(b)] and (86), whence inserting into (89)
we get 4r − 3 ≥ mP0.L + 2(r − 1 − m) ≥ 2(mr + r − 1 − m). Therefore m = 1 and
h0(M) = 2. But from (81) we must have h0(M) ≥ h0(JZM

⊗M) ≥ r ≥ 4, a contradiction.
Therefore M2 > 0, and again from (81) together with the fact that h1(M) = 0 as M is
base-component free, we must have

M2 ≥ 2r − 2 with equality only in case (II) with(91)
h0(M) = h0(JZM

⊗M) = r.

Now note that (L−M).L ≥ (L−D).L = B.L = 2r, and since L2 = 8r − 6, also

(92) L.M ≤ 6r − 6.

Next we claim that

(93) φ(M) ≥ 2.

Indeed, if φ(M) = 1, one easily sees, by [KL1, Lemma2.4] that one can write M ∼ kE1 +E2

for Ei > 0, E2
i = 0, E1.E2 = 1 and k := 1

2M
2 ≥ r − 1 by (91). Therefore M.L ≥

(k + 1)φ(L) ≥ r2 and combining with (92) we find that r = 4, and again by (91) we find
M2 = 6 and h0(M) = h0(JZM

⊗M) = 4. Therefore ZM is contained in the base locus of
|M |, so that degZM ≤ 2, whence M.L = M.C ≤ degA+ 2 = 15 by (82), a contradiction.

Therefore (93) holds. We now claim that we have

(94) M.(L−M) ≥ 2r − 2 and M.(L−M) ≥ 2r if h1(M − L) ≥ 1 or (L−M)2 ≤ 0.

Indeed, if (L−M)2 ≤ 0 this simply follows since (L−M).L ≥ (L−D).L = B.L = 2r.
For the rest we note that L + KS ∼ M + (L −M + KS) is an effective decomposition
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with h0(L −M + KS) ≥ h0(B) = 2, so that M.(L −M) ≥ Cliff C + 2h1(L −M + KS) =
2r − 3 + 2h1(L−M +KS) by Lemma 2.3.

If M.(L−M) = 2r−3, then h1(L−M+KS) = 0 and both OC(M) and OC(L−M+KS)
compute the Clifford index of C by Lemma 2.3 and therefore h0(OC(M)) = h0(M) ≥ r+ 1
and h0(OC(L−M+KS)) = h0(L−M+KS) ≥ r+1, whence M2 ≥ 2r and (L−M)2 ≥ 2r,
but this is easily seen to contradict the Hodge index theorem.

If h1(L−M+KS) > 0 and M.(L−M) ≤ 2r−1, then we must have h1(L−M+KS) = 1
and M.(L−M) = 2r−1, so that h0(OC(M)) ≤ h0(M)+1. Moreover h0(OC(L−M+KS)) =
h0(L−M +KS) as h1(M) = 0. Again by Lemma 2.3, both OC(M) and OC(L−M +KS)
compute the Clifford index of C, whence M2 ≥ 2r − 2 and (L−M)2 ≥ 2r − 2. Now

8r − 6 = L2 = M2 + (L−M)2 + 2M.(L−M) ≥ 8r − 6

implies that M2 = 2r − 2, so that we must be in Case (II) by (91) and r = φ(L) = 4.
Therefore M2 = 6 and M.L = 13. By (93), φ(M) = 2 and again by [KL1, Lemma2.4], we
can write M ∼ F1 +F2 +F3 for Fi > 0, F 2

i = 0 and Fi.Fj = 1 if i 6= j. But now M.L = 13
implies that at least two of the Fi’s satisfy Fi.L = 4, contradicting (75). This settles (94).

5.1. Case (I). Recall that OC(M)−ZM = A by (82) whence deg(OC(M)−ZM ) = 4r− 3
by Lemma 5.1. By (86) we have rkF = r. Setting c(F) = c2(F)− 2(rkF − 1) = c2(F)−
2(r − 1) ≥ 0 by Proposition 2.8, we may rewrite (89) as

M.(L−M) + lM + c(F) = 2r − 1

Comparing with (94) we see that (L−M)2 > 0 and that the only possibilities are

(M.(L−M), lM , c(F)) = (2r − 2, 1, 0), (2r − 2, 0, 1), (2r − 1, 0, 0).

In the two cases with c(F) = 0 we must have M2 ≤ 8 by Proposition 2.8(i) and (93).
Since M2 ≥ 2r ≥ 8 by (91), we must have r = 4 and M2 = 8, whence M ≡ 2M0 with
M2

0 = 2 by Proposition 2.8(i). Therefore M.(L −M) is even, so that we must be in the
case with M.(L−M) = 6 and lM = 1. But L2 = 26 implies (L−M)2 = 6 and the Hodge
index theorem yields the contradiction 48 = M2(L−M)2 ≤ 36.

Therefore, the only case remaining is the one with M.(L −M) = 2r − 2, lM = 0 and
c(F) = 1. By (90) F is good. It is also clear that we must have l = lV = 0, whence twisting
(85) by KS and using (82), (84) and that h1(E0(KS)) = 0 by (88), we find

h0(F(KS)) = h0(E0(KS))− χ(L−M) = h1(A)− χ(L−M) = r − 1
2

(L−M)2.

Therefore, if h0(F(KS)) ≤ 1, we have (L−M)2 ≥ 2r − 2, whence the contradiction

4r(r − 1) ≤M2(L−M)2 ≤
(
M.(L−M)

)2
= 4(r − 1)2

by (91) and the Hodge index theorem. Hence h0(F(KS)) ≥ 2 and we are in one of the four
cases in Proposition 2.8(ii). Recall that r ≤ 6 by Lemma 5.1.

If we are in case (ii-a) then M.L ≥ 5φ(L) = 5r and (92) yields r = 6 and M.L = 30.
But M.L = M2 +M.(L−M) = 22, a contradiction.

If we are in one of the cases (ii-b) or (ii-c) then M2 = 10, whence (L−M)2 = 4(r − 3),
contradicting the Hodge index theorem, as r ≤ 6.

If we are in case (ii-d) then M2 ≤ 8. Comparing with (91) we get r = 4 and M2 = 8, so
that M.(L−M) = 6. From L2 = 26 = M2 + (L−M)2 + 2M.(L−M) = 20 + (L−M)2 we
find (L−M)2 = 6 and the Hodge index theorem yields the same contradiction as above.
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5.2. Case (II). By (77) and (75) we have r = 4 and by (86) we have rkF = 3. Setting
c(F) = c2(F)− 2(rkF − 1) = c2(F)− 4 ≥ 0 as in Proposition 2.8, we rewrite (89) as

(95) M.(L−M) + lM + c(F) = deg(OC(M)(−ZM ))− 4.

We now divide the treatment into the two cases occurring in (82).

5.2.1. The case OC(M)(−ZM ) ∼ A. In this case (95) reads

(96) M.(L−M) + lM + c(F) = 9.

Moreover, from (77) and (80) we must have h1(M −L) ≥ 1. Therefore (94) yields M.(L−
M) ≥ 8. Comparing with (96) we see that the only options are

(M.(L−M), lM , c(F)) = (8, 1, 0), (8, 0, 1), (9, 0, 0).

In the two cases with c(F) = 0 we must have M2 ≤ 8 by Proposition 2.8(i) and (93). Since
M2 ≥ 6 by (91), we must have M2 = 6 or 8. If M2 = 8 then M ≡ 2M0 with M2

0 = 2
by Proposition 2.8(i). Therefore M.(L −M) is even, so that we must be in the case with
M.(L−M) = 8 and lM = 1. Now L2 = 26 = M2 +(L−M)2 +2M.(L−M) = 24+(L−M)2

implies (L −M)2 = 2. Since h1(L −M + KS) 6= 0 there is a ∆ > 0 with ∆2 = −2 and
∆.(L − M) ≤ −2, by [KL3, Cor.2.5]. Obviously ∆.M ≥ 2, whence (M + ∆)2 ≥ 10,
(L −M −∆)2 ≥ 4 and (M + ∆).(L −M −∆) ≤ 6, which is easily seen to contradict the
Hodge index theorem. If M2 = 6 we have h0(M) = h0(JZM

⊗M) by (91), whence ZM = ∅
since M is base-point free by (93). It follows that OC(M) ∼ A, so that M.L = degA = 13,
whence M.(L−M) = 7, a contradiction.

Therefore, the only case remaining is the one with M.(L−M) = 8, lM = 0 and c(F) = 1.
By (90) F is good. Also we must have l = lV = 0, whence twisting (85) by KS and using
(82), (84), h1(F(KS)) = 0 by Proposition 2.8 and that h1(E0(KS)) ≤ 1 by (88) we find

h0(F(KS)) ≥ h0(E0(KS))− χ(L−M)− 1 = h1(A)− χ(L−M)− 1 = 3− 1
2

(L−M)2.

Therefore, if h0(F(KS)) ≤ 1, we have (L −M)2 ≥ 4. Hence by (91) and L2 = 26 we
get M2 = 6 and, as above, ZM = ∅ since M is base-point free and OC(M) ∼ A, so that
M.L = degA = 13, whence M.(L−M) = 7, a contradiction.

Hence h0(F(KS)) ≥ 2 and we are in one of the four cases in Proposition 2.8(ii).
If we are in case (ii-a) then M.L ≥ 5φ(L) = 20 which contradicts (92).
We cannot be in case (ii-b), as rkF = 3.
If we are in case (ii-c) then M2 = 10 and φ(M) = 2. Picking any E1 > 0 with E2

1 = 0
and E1.M = 2 with E1 nef, one easily sees that one can write M ∼ 2E1 + E2 + E3,
with Ei > 0, E2

i = 0 and Ei.Ej = 1 for i 6= j. Since M.L = 18 and Ei.L ≥ 5 for at
least two of the Ei’s, by (75), we must have E1.L = 4 and E2.L = E3.L = 5. Therefore
Ei.(L − M) = 2 for all i = 1, 2, 3. Now (L − M)2 = 0 and we have that (see (78))
L −M ∼ L − D + F ∼ B + KS + F , where B ∼ 2E is an elliptic pencil with E.L = 4.
Since E1 is nef, we can only have (E1.E,E1.F ) = (0, 2) or (1, 0). The latter contradicts
(75), since then we would have (E + E1)2 = 2 and (E + E1).L = 8. Hence we must be in
the first case with E1 ≡ E. From 8 = L.(L−M) = L.(2E1 + F ) = 8 + L.F it follows that
L.F = 0 and F 2 < 0. Now there has to be a nodal curve R < F such that R.E1 ≥ 1. Then
(2E1 + R)2 ≥ 2 and (2E1 + R).L = 8. The Hodge index theorem yields (2E1 + R)2 = 2,
but this again contradicts (75).

If we are in case (ii-d) then M2 ≤ 8. Now M2 = 6 gives, by (91), the same contradiction
as above, whence M2 = 8, and consequently (L −M)2 = 2. But this is the same case
treated above, where we derived a contradiction from the fact that h1(L−M +KS) 6= 0.
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5.2.2. The case OC(M)(−ZM ) ∼ A− x. In this case (95) reads

(97) M.(L−M) + lM + c(F) = 8.

We now claim that

(98) M2 ≥ 8 and M.(L−M) ≥ 7.

Indeed, we have M2 ≥ 6 by (91). If M2 = 6 then h0(M) = h0(JZM
⊗ M) which

means that ZM = ∅, since M is base-point free by (93). Hence M.L = degA − 1 = 12,
whence M.(L −M) = 6 and (L −M)2 = 8, which is incompatible with the Hodge index
theorem. Therefore M2 ≥ 8. Moreover, by (94) we have M.(L −M) ≥ 6, and equality
implies (L − M)2 > 0, and since M2 + (L − M)2 = 14, we get the three possibilities
(M2, (L −M)2) = (12, 2), (10, 4), (8, 6). The last two cases are easily ruled out using the
Hodge index theorem. In the first case we get (L−M).L = 8 = 2φ(L), contradicting (75).

Therefore we have shown (98). By (97) and (98) we see that the only options are

(M.(L−M), lM , c(F)) = (7, 1, 0), (7, 0, 1), (8, 0, 0).

In the two cases with c(F) = 0 we must have M ≡ 2M0 with M2
0 = 2 by Proposition

2.8(i), (93) and (98). Therefore M.(L −M) is even, so that we must be in the case with
M.(L−M) = 8. But then M0.L = 8 = 2φ(L), contradicting (75).

Therefore, the only case remaining is the one with M.(L−M) = 7, lM = 0 and c(F) = 1.
By (90) F is good. Since M2 ≥ 8 by (98) we must have (L−M)2 ≤ 4 by the Hodge index
theorem. It is also clear that we must have l = lV = 0, whence twisting (85) by KS and
using (82), (84) and that h1(E0(KS)) = 0 by (88) we find

h0(F(KS)) = h0(E0(KS))− χ(L−M) = h1(A− x)− χ(L−M) = 4− 1
2

(L−M)2 ≥ 2.

Therefore we are in one of the four cases in Proposition 2.8(ii).
If we are in case (ii-a) then M.L ≥ 5φ(L) = 20 which contradicts (92).
We cannot be in case (ii-b), as rkF = 3.
If we are in case (ii-c) then M2 = 10 and φ(M) = 2. As above we can write M ∼

2E1 + E2 + E3, with Ei > 0, E2
i = 0 and Ei.Ej = 1 for i 6= j. Since M.L = 17 we must

have Ei.L = 4 for at least two of the Ei’s, contradicting (75).
If we are in case (ii-d) then M2 ≤ 8, whence (98) implies M2 = 8 and (93) implies that

φ(M) = 2. Also (L −M)2 = 4, (L −M).L = 11 and we claim that h1(L −M + KS) = 0.
Indeed, if not, by [KL3, Cor.2.5], there exists a ∆ > 0 such that ∆2 = −2 and k := −∆.(L−
M) ≥ 2. Also ∆.M ≥ 2 + ∆.L ≥ 2. By [KL1, Lemma2.3] there exists G > 0 such that
G2 = 4 and L−M ∼ G+k∆. Now 11 = (L−M).L = L.G+kL.∆ ≥ L.G implies φ(G) = 2,
for, otherwise, we can write G = 2E′ + E′′ with E′ > 0, E′′ > 0, (E′)2 = (E′′)2 = 0, giving
the contradiction 11 ≥ L.G ≥ 3φ(L) = 12. Hence, as φ(G) = 2, we find the contradiction
7 = M.(L −M) = M.G + kM.∆ ≥ 2φ(G) + 4 = 8. Therefore h1(L −M + KS) = 0 and,
by (80), we have h0(JZM

⊗M) = h0(A − x) = 4. Now deg(A − x) = 12, M.L = 15 and
h0(M) = 5, so that ZM is a scheme of length three imposing only one condition on |M |.
Since |M | is base-point free, any subscheme of length one of ZM poses one condition. Pick
a subscheme X ⊂ ZM of length two. By the Reider-like results in [Kn1, Prop.3.7] there is
a ∆ > 0 such that X ⊆ ∆ and 2∆2 ≤ M.∆ ≤ ∆2 + 2 ≤ 4. Also note that, since lM = 0,
we have that ZM = Bs |JZM

⊗M |. As ZM is curvilinear of length 3, as in the proof of
Proposition 2.8, the general divisor M0 ∈ |JZM

⊗M | is irreducible.
Now ∆2 ≤ −2 implies M.∆ = 0, a contradiction, since X is contained in an irreducible

member M0 of |M |. Moreover ∆2 = 2 implies M ≡ 2∆ by the Hodge index theorem, which
is impossible since M.(L −M) = 7. Therefore ∆2 = 0 and ∆.M = 2. It follows that
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∆ ∩M0 = X and therefore ZM 6⊂ ∆. By [CD, Thm.3.2.1] we can write ∆ = Γ + ∆′ with
Γ ≥ 0 and ∆′ of canonical type, in particular nef. But then, as φ(M) = 2, we must have
Γ.M = 0,∆′.M = 2, ∆′ is primitive, Γ ∩M0 = ∅ and again ∆′ ∩M0 = X and ZM 6⊂ ∆′.

Set N = M −∆′ and y = ZM −X (as divisors on C). Since any member of |M | passing
through a point in SuppZM contains the whole ZM and ZM 6⊂ ∆′, we have that y is a
base-point of |N |. Now let |N | = |N0|+F ′ be the decomposition into the moving and fixed
part. We claim that N2

0 = 4 and φ(N0) = 2. In fact N2 = 4 gives h0(N0) = h0(N) ≥ 3
whence either N2

0 = 0 and N0 = kP0 for some k ≥ 2 and some elliptic pencil P0 or N2
0 > 0.

Since N0.L = N.L − F ′.L ≤ M.L − ∆′.L ≤ 15 − φ(L) = 11 < 3φ(L) = 12, the first case
cannot hold, therefore N2

0 > 0, h1(N0) = 0 and Riemann-Roch implies that N2
0 ≥ 4. But

0 ≤ M.N0 ≤ M.(M −∆′) ≤ 8 − φ(M) = 6 and the Hodge index theorem yields N2
0 = 4.

Also N0.L < 3φ(L) gives φ(N0) = 2. Therefore |N0| is base-point free and y ∈ SuppF ′.
Next note that M − F ′ ∼ ∆′ + N0 is nef and (∆′ + N0)2 ≥ 8, φ(∆′ + N0) ≥ 2 and

therefore |M − F ′| is base-point free. Pick any M ′ ∈ |M − F ′| not intersecting ZM . Then
M ′ + F ′ ∈ |M | passes through y and therefore it contains the whole ZM . It follows that
ZM ⊂ F ′ and M.F ′ = M0.F

′ ≥ 3. But then we get the contradiction

8 = M2 = M.(M − F ′) +M.F ′ = M.(∆′ +N0) +M.F ′ ≥ 5 + 2φ(M) = 9.

This concludes the proof of the case 4 ≤ r ≤ 9.

6. Curves of higher Clifford dimensions

In this section we will show that there is no exceptional curve of Clifford dimension
r ≥ 10 on an Enriques surface.

Assume to get a contradiction that, on an Enriques surface S, there is an exceptional
curve C of Clifford index c and Clifford dimension r ≥ 10 . Set L = OS(C) and let A
be a line bundle on C computing the Clifford dimension. Then h0(A) = r + 1 and, as A
computes the Clifford index of C, A is base-point free and the vector bundle E := E(C,A)
is defined. Note that by (1) we have φ(L) ≥ 10 and L2 ≥ 100. We need the following

Lemma 6.1. Let E be any effective divisor satisfying E2 = 0 and E.L = φ(L). Then
h0(E(−2E)) ≥ 4. In particular, E is generated by its global sections off the (possibly zero)
base divisor of |NC/S −A|.

Proof. Since h1(OS(−2E)) = 0, tensoring (3) by OS(−2E), we see that h0(E(−2E)) ≥
h0((NC/S −A)(−2E)). Now

h0((NC/S−A)(−2E)) = h0((ωC−A)(−E−(E+KS)) ≥ h0(ωC−A)−2φ(L) = h1(A)−2φ(L).

From (1), (2) and Riemann-Roch we find

h1(A)−2φ(L) = g(C)+1−c−h0(A)−2φ(L) ≥ 1
2
L2 +4−5φ(L) ≥ 1

2
φ(L)2−5φ(L)+4 ≥ 4.

Then h0(E(−2E)) ≥ 4 and h0(NC/S −A) ≥ 4, that implies the last assertion by (3). �

By Lemma 6.1 there is a nonzero section s ∈ H0(E) vanishing along some member of
|2E|, so that we can apply Lemma 2.4 and we get a sequence (4) with F locally free of
rank r, τ a torsion sheaf supported on a finite set and with D ≥ 2E. In particular Lemma
2.5 applies. Set M = detF . Since h1(D +KS) ≤ 1 by Lemma 2.5, it follows from the fact
that M|C ≥ A that h0(M) ≥ r, that is

(99) M2 ≥ 2r − 2 ≥ 18.
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Now let P be an elliptic pencil such that P.M = 2φ(M), then (M−P )2 ≥ 2 and P.(M−P ) =
2φ(M) > 0, whence there is a nontrivial effective decomposition M ∼ P +N , with N2 ≥ 2.
We must have

(100) P.(M +D) = P.(N +D) = P.L ≥ 2φ(L) ≥ c+ 3

by (2). Moreover we claim that

(101) N.(P +D) ≥ c+ 1.

Indeed, by Lemma 2.3 we must have N.(P + D) ≥ c, and if equality occurs then c =
Cliff(N + KS)|C = Cliff(P + D)|C and h1(N + KS) = h1(P + D) = 0. Since A computes
the Clifford dimension of C we must have h0(N +KS) = h0((N +KS)|C) ≥ h0(A) = r+ 1,
and similarly for h0(P + D). Thus both N2 ≥ 2r and (P + D)2 ≥ 2r. Letting E1 > 0 be
any effective divisor such that E2

1 = 0 and E1.N = φ(N) and setting P1 = 2E1 we find as
above that there is an effective decomposition N ∼ P1 +N1 with N2

1 ≥ 4. This yields, by
(2) and Lemma 2.3, that

c = (P +D).N = P1.(P +D) +N1.(P +D) ≥ (c+ 3− P1.N1) + (c− P1.N1)
= 2c+ 3− 2P1.N1 = 2c+ 3− 4φ(N),

whence 4φ(N) ≥ c+ 3. By the Hodge index theorem

20φ(N)2 ≤ 20N2 ≤ (P +D)2N2 ≤ ((P +D).N)2 = c2 ≤ (4φ(N)− 3)2 < 16φ(N)2,

a contradiction. This proves (101).

Lemma 6.2. The divisor D has no decomposition D ∼ D1 +D2 such that h0(D1) ≥ 2 and
h0(D2) ≥ 2. In particular −2 ≤ c2(F)− 2 rkF ≤ −1.

Proof. From Lemma 2.5, (100) and (101) we get

c+ 2 ≥ D.M = P.D +N.D ≥ (c+ 3− P.N) + (c+ 1− P.N) = 2c+ 4− 2P.N
= 2c+ 4− 4φ(M),

whence

4φ(M) ≥ c+ 2, and if equality holds, then(102)
P.(N +D) = 2φ(L) = c+ 3 and N.(P +D) = c+ 1.

Now if D ∼ D1 + D2 with h0(D1) ≥ 2 and h0(D2) ≥ 2 we have Di.M ≥ 2φ(M), whence
D.M ≥ 4φ(M) ≥ c+ 2. By Lemma 2.5 we must have equalities in both places, whence by
(102) we have P.(N + D) = 2φ(L) = c + 3 and N.(P + D) = c + 1. But 2φ(L) = c + 3
implies that c is odd and 4φ(M) = c+ 2 implies that c is even, a contradiction.

Finally, in view of Lemma 2.5, assume to get a contradiction that c2(F) − 2 rkF = 0.
Then, by Lemmas 2.3 and 2.4, c = Cliff D|C and h0(D|C) = h0(D), h1(D) = 0, and, since
A computes the Clifford dimension, we must have h0(D) ≥ r + 1, whence D2 ≥ 2r ≥ 20,
and D would have a decomposition into two moving classes. �

By Lemma 6.2 we get h0(D − 2E) = 1, whence from (4) and Lemma 6.1 we find
h0(F(−2E)) ≥ h0(E(−2E))− h0(D− 2E) ≥ 3. After saturating we find an exact sequence

0 −→ OS(D1) −→ F −→ F1 −→ τ1 −→ 0,

whereD1 ≥ 2E, F1 is locally free of rank r−1 ≥ 9, is globally generated off a finite set and τ1

is a torsion sheaf supported on a finite set. From Lemma 2.4 we find h0(F∗1 ) = h1(F∗1 ) = 0.
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As in section 4 page 17, M1 := detF1 is nontrivial and base-component free (in particular
it is nef and h0(M1) ≥ 2) and M ∼M1 +D1. We have

−1 ≥ c2(F)− 2 rkF = D1.M1 − 2 + c2(F1)− 2 rkF1 + length(τ1),

whence D1.M1 + c2(F1)− 2 rkF1 ≤ 1.
If M2

1 = 0 then M1 ∼ mP1 for an elliptic pencil |P1| and an integer m ≥ 1. By [Kn2,
Prop.3.2] we have c2(F1) − 2 rkF1 ≥ −2m, whence m(P1.D1 − 2) ≤ 1 so that we must
have P1.D1 = 0 or 2 (recalling that P1.D1 is even). Since P1.D1 = P1.M and M2 > 0
we must have P1.D1 = 2. It easily follows that, as P1 = 2G for some G, we can write
M ∼ (1

4M
2)P1 + E1 for some E1 > 0 satisfying E2

1 = 0. Since D2 > 0 by Lemma 2.5, we
have E1.D ≥ 1 and, by (2), P1.D = P1.L− P1.M ≥ 2φ(L)− 2 ≥ c+ 1, whence by (99)

M.D = (
1
4
M2)P1.D + E1.D ≥

9
2

(c+ 1) + 1 > 4c+ 5,

contradicting the fact that M.D ≤ c+ 2 by Lemma 2.5.
Hence M2

1 > 0, so that by [Kn2, Prop.3.2] we have c2(F1)− 2 rkF1 ≥ −2, whence

(103) D1.M1 ≤ 3

and, by the Hodge index theorem, D2
1M

2
1 ≤ 9. This gives D2

1 ≤ 4 whence, by (99) and
(103), 18 ≤M2 = M2

1 +D2
1 + 2M1.D1 ≤M2

1 + 10, giving M2
1 ≥ 8. As D1 ≥ 2E and M1 is

nef, we deduce from (103) that E.M1 = 1 and we can write M1 = (1
2M

2
1 )E + F for some

F > 0 with F 2 = 0, E.F = 1. By Lemma 2.3 we have D1.(M1 +D) ≥ c, whence by (103),
D1.D ≥ c− 3. Now, using M1 = (1

2M
2
1 )E + F , M2

1 ≥ 8 and φ(L) ≥ 10, we get

M1.D = M1.L−M1.M = M1.L−M2
1 −M1.D1 ≥

1
2
M2

1 (φ(L)− 2) + φ(L)− 3 ≥ 39

whence Lemma 2.5 gives the contradiction

c+ 2 ≥ D.M = D.M1 +D.D1 ≥ 36 + c.

This concludes the proof of the case r ≥ 10 and therefore also the proof of Theorem 1.1.

7. W 1
4 on curves of genus 9

In this section we extend to the case L2 = 16 the result in [KL1, Prop.4.15].

Proposition 7.1. Let L be a base-point free line bundle on an Enriques surface with
L2 = 16 and φ(L) = 2. Let C be a general smooth curve in |L|. Then W 1

4 (C) is smooth.

Proof. By [KL1, Prop.4.15] there is a unique genus one pencil |2E| on S such that E.L = 2
and there is a unique g1

4 on C, namely A = (2E)|C . As in the proof of [KL1, Prop.4.15]
we need to prove that the multiplication map µ0,A : H0(A) ⊗H0(KC − A) → H0(KC) is
surjective. If not, by the base-point-free pencil trick, we have h0(KC − 2A) ≥ 4. Since
deg(KC − 2A) = 8 and Cliff(C) = 2 by Corollary 1.2 we see that |KC − 2A| is a base-point
free g3

8 on C. If |KC − 2A| is not very ample, there are two points P,Q ∈ C such that
|KC − 2A−P −Q| is a g2

6, that must be base-point free (since Cliff(C) = 2), contradicting
Proposition 3.5. Therefore |KC − 2A| is very ample and C is isomorphic to a smooth curve
of degree 8 and genus 9 in P3, hence to a smooth complete intersection of an irreducible
quadric and a quartic surface in P3. Hence C, in its canonical embedding, is isomorphic to
a quadric section of a Del Pezzo surface, contradicting [KL2, Prop.5.14]. �
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