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Abstract

We study the positivity properties of Ulrich bundles defined with respect to an ample and
globally generated polarization. First we prove a generalization of a theorem by Lopez on
the first Chern class. Then, under some additional assumptions on the polarization, we give
a description of its augmented base locus, which consequently leads to a characterization of
the V-bigness and of the ampleness of an Ulrich bundle in this setting. Finally we study the
normal generation of an Ulrich bundle focusing on curves, on surfaces with ¢ = p, = 0 and
on hypersurfaces of dimension 2 and 3.
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Introduction

A nowadays classical way to describe the geometry of a given smooth projective variety
X is to study the class of vector bundles supported on it. The essential motivation is the fact
that vector bundles enjoy some of those fundamental properties which gave line bundles
a prominent role in the field of algebraic geometry. For example, as for line bundles and
maps towards projective spaces, a (generically) globally generated vector bundle induces
a (rational) map, called Kodaira map, from X towards a Grassmannian; or, similarly to
the bijection between divisors and line bundles, the celebrated Hartshorne-Serre corre-
spondence states that a closed Cohen-Macaulay subscheme Z ¢ X of pure codimension
2 can be obtained as the degeneracy locus of r — 1 global sections of a rank r > 2 vector
bundle on X with a fixed determinant L if (and only if) wz(—Kx — L) is generated by r — 1
global sections, provided that H*(X,-L) = 0 (and H'(X,-L) = 0), see [Mae90; Arr07].
Furthermore, completing the parallel with line bundles, it is well-known that we get more
properties once we add some positivity assumptions on the vector bundles. For instance,
the Kodaira map induced by a globally generated vector bundle & is finite if and only if
det & is ample, see [LN10]; or, all degeneracy loci D(¢p) of a sheaf morphism ¢: & — F
between locally free sheaves are connected as soon as dim X > (rk(&) — k)(rk(F) — k) (resp.
dim X > (tk(&) — k)(k(F) — k) + g) provided that & ® ¥ is ample (resp. g-ample), see
[FL81; Tu90]. Conversely, again just like for line bundles, the positivity properties of a given
vector bundle are ruled by certain subschemes associated to it: the so-called asymptotic base
loci, see [Bau+15]. It is therefore a common strategy to produce and to study vector bundles
with some positivity properties in order to shed light on the geometry of a given smooth
projective variety. A very special class of vector bundles which both strongly determine the
geometry of the underlying variety and also possess some, very often much, positivity is the
one of Ulrich bundles.

Given an embedded smooth projective variety X € PV, a vector bundle & on X is Ulrich
if H(X,E(-p)) = Oforalli > 0and 1 < p < dimX. Ulrich bundles were originally
introduced in the framework of commutative algebra by Ulrich in [Ulr84] and started to
be studied from an algebro-geometric point of view with Eisenbud and Schreyer after their
extraordinary papers [ESO3; ES11]. Besides the several nice properties enjoyed by these
bundles (such as being globally generated, aCM and semistable), the existence of an Ulrich
bundle has profound consequences on the geometry of the underlying variety, above all
the determinantal representation of the Chow form (see [ESO3, Theorem 0.3]) and having
the same cone of cohomology tables of vector bundles as the projective space (see [ES11,
Theorem 4.2]). Regardless of all these constraints, Eisenbud and Schreyer raised the question
in [ES11], and later the conjecture in [ES11], on the existence of Ulrich bundles on any
smooth embedded variety. (We refer to Appendix C for a short note on the history of Ulrich
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bundles). Despite all the attention received afterwards, this conjecture is still widely open.

In this work we are going to focus on Ulrich bundles on smooth projective varieties, but
in a slightly more general setting: we allow the polarization to be just ample and globally
generated. (We refer to [Vac25] for a study of Ulrich sheaves on projective schemes endowed
with a globally generated ample line bundle).

Definition A (Definition-Theorem 1.1.2). Let X be a complex smooth projective variety
of dimension n > 1 and let B be a globally generated ample line bundle on X with B" = d.
A vector bundle & of rank r on X is B-Ulrich, or Ulrich for (X, B), if it satisfies one of the
following equivalent conditions:

1. There exists a linear resolution
0 — Opv(=0)™ — Opw(—c+ D1 — . — O — (9p).& — 0

where ¢p: X — PV is the morphism associated to |B| and ¢ = N — n.
2. H(X,&(-pB))=0foralli>0and 1 < p <n.
3. For all finite morphisms 7: X — P” such that 7*Opx(1) = B we have 7,E = (’);‘fn’d.

Clearly we recover the usual definition of Ulrich bundles as soon as B is very ample.
(In addition to this, observe that, letting ¢ = i 0 ¢: X — X C PN be the factorization onto
the schematic image of ¢p, as I'.(X, &) = I, X, ©.E), by taking the associated modules in
the resolution in Definition A.1 and invoking Proposition C.3.2, we see that & is Ulrich for
(X, B) if and only if ¢.& is an Ulrich sheaf on X c PV in the sense of Definition C.3.1.)
Furthermore, despite [ES03, Theorem 0.3] (Theorem C.3.3) no longer makes sense because
one can’t properly define a Chow form without an embedding, it is still easy to prove
[ES11, Theorem 4.2] (Theorem C.3.4) in this setting (namely C,,(X, B) = C,,(P", Opn(1))
if and only if there exists an Ulrich bundle for (X, B)). Therefore it is worth to extend
Eisenbud-Schreyer conjecture (Conjecture C.3.5) to Ulrich bundles defined with respect to a
non-necessarily very ample globally generated polarization.

The choice of this setting has the following main motivations. First of all, globally
generated polarizations, unlike very ample ones, are preserved under finite pullbacks and all
the properties of the “usual Ulrich bundles” continue to hold even in this setting (see Section
1.1). Secondly, many smooth projective varieties, such as Del Pezzo manifolds of degree 2
and cyclic coverings of projective spaces, come with a natural base-point-free polarization
which is not very ample. For example, in this direction it has been proved that all smooth
double and triple covers of P" support an Ulrich bundle [ST22; MNP25; Vac25]. Finally,
as we are going to see, the theory obtained by relaxing this hypothesis on the polarization
is different from the one of Ulrich bundles defined with respect to a hyperplane section.
For example, we will find two Ulrich bundles respectively on a surface and on a threefold
defined with respect to a non-very ample base-point-free polarization which are non-big
(Eaxmples 3.0.27 - 3.0.28) but not ascribable to the classification of non-big Ulrich bundles
on embedded surfaces and threefolds in [LM21].

The central theme of this thesis is the study of the positivity of Ulrich bundles defined
with respect to a globally generated ample line bundle B. The first result is a generalization
to this setting of a result by Lopez on the first Chern class [Lop22, Theorem 1]. The strategy
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is trying to follow the same arguments. In this way one gets aware of the differences
with the usual setting. The first issue we face is the loss of the separation properties of a
hyperplane section. In order to get the analogous features, it becomes necessary to study
the local positivity of the polarization. To this end, we will consider Seshadri constants
&(B; —) of B along certain sets of points (Definition B.2.1) which will help to understand
what are the obstructions arising in this setting. It turns out that these obstructions are certain
curves associated to B which are known as Seshadri curves (see Lemmas 3.0.4 - 3.0.5 and
Definition B.2.1). At the end we will show that if the variety is not (generically) covered by
such curves, then the first Chern class is positive and the B-Ulrich bundle is (V-)big.

Theorem B (Theorem 3.0.16). Let X be a smooth projective variety of dimension n > 1 and
let B be a globally generated ample line bundle on X with B" = d. Let pg: X — PV be the
finite morphism induced by |B| and denote by Ram(yp) its ramification locus. Let & be a
vector bundle of rank r which is O-regular with respect to B. Then

c1(&)F - Z > Fmult(Z)

holds for every x € X and for every subvariety Z C X of dimension k > 1 passing through x
provided that the following conditions are satisfied:

(a) x ¢ Ram(pp),
(b) &(B; @y (py(x))) > 1.

In particular, if X is not generically covered by 1-Seshadri curves for ¢p, then & is V-big and
ca(&" >
Moreover, if & is B-Ulrich of rank r > 2, then
c1(&"=rd-1).

The second main result of this work is the characterization of one of the asymptotic base
loci (Definition A.3.3) of an Ulrich bundle . Thanks to the global generation, the stable
base locus B(E) and the restricted base locus B_(&) of &, which respectively measure the
semiampleness and the nefness of &, are always empty. Under some additional assumptions
on the polarization B, which still (strictly) include all very ample line bundles, we can
completely describe the augmented base locus B (&) of & in terms of B-lines, which are
nothing but curves I" ¢ X with B-I" = 1 (Definition 3.0.9): provided the existence of a linear
series |V| C |B| inducing a morphism which is étale onto its schematic image, B, (&) is the
union of all B-lines on which & is not ample. As soon as we weaken this hypothesis on B,
specifically if we do not suppose the morphism to be unramified, this characterization may
no longer hold (see Remarks 4.0.17 - 4.0.18). The main tool to get this result will be the
Seshadri constants &(&; x) of & at a point x (Definition B.2.15), systematically formalized in
the maximum generality for the first time in [FM21], and the consequent characterization of
the augmented base locus B () of a nef vector bundle ¥ as the set of points y € X where
&(F;y) = 0 (see Remark B.2.17).

Theorem C (Theorem 4.0.11). Let X be a smooth projective variety and let B be a globally
generated ample line bundle such that there is a linear series |V| C |B| inducing a morphism
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which is étale onto its schematic image. Let & be a B-Ulrich bundle on X and let x € X be a
point. Then &(&E; x) = 0 if and only if there exists a B-line I' C X passing through x such that
&ir is not ample on I'. In particular,

B.(E) = U r

rex

where I’ ranges over all B-lines in X such that Er is not ample on I'.

Since the augmented base locus of a vector bundle rules V-bigness (Definition A.3.6) and
ampleness, a simple consequence of Theorem C is the characterization of these properties
for a B-Ulrich bundle in this setting.

Corollary D (Corollary 4.0.12). Let X be a smooth projective variety and let B be a globally
generated ample line bundle such that there is a linear series |V| C |B| inducing a morphism
which is étale onto its schematic image. Let & be a B-Ulrich bundle. Then:

(a) & is V-big if and only if X is not covered by B-lines I' C X on which Er is not ample.

(b) &is ample if and only if either X contains no B-lines or Er is ample on every B-line
I'cX.

Theorem C and Corollary D match the expectations. Indeed, as suggested by [Lop22,
Theorem 1] and by [LLS23, Theorem 1] for Ulrich bundles on embedded smooth projective
varieties, by Remark 3.0.18 already Theorem B tells that the main obstructions to V-bigness,
hence parts of the augmented base locus, are represented by B-lines.

Regarding the ampleness of an Ulrich bundle defined with respect to a polarization as
above, we can be more precise. All the technical results about the “separation properties”
of the bundle, needed for Theorem 4.0.11, lead to a (very slight) generalization of [LS23,
Theorem 1] in this setting. We point out that also the following result may fail without the
aforementioned assumption on B (see Remark 4.0.19).

Theorem E (Theorem 4.0.20). Let X be a smooth projective variety and let B be a globally
generated ample line bundle such that there is a linear series |V| C |B| inducing a morphism
which is étale onto its schematic image. Let & be a B-Ulrich bundle on X. Then the following
are equivalent:

(1) &is 1-very ample.

(2) Eisvery ample.

(3) & is ample.

(4) Either X contains no B-lines or Er is ample on every B-line I' C X.

Theorem E as well as already Lopez-Sierra theorem [L.S23, Theorem 1] tell that an
Ulrich bundle is likely to be very ample. Then it is natural to understand the embedding of
the corresponding projective bundle through the (complete) linear system of the tautological
line bundle. As is already a very classical and relevant question to determine when a very
ample linear system embeds a variety as a projectively normal scheme in some projective
space, the last part of this thesis is devoted to the study of the projective normality of an
Ulrich bundle, that is, by definition, the normal generation of its tautological line bundle
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(Definitions B.3.1 - 5.0.5). As we will see in Chapter 5, an unified result as Lopez-Sierra
theorem for very ampleness appears out of reach. Ulrich bundles on curves are projectively
normal if the degree of the polarization is big with respect to the genus, with an optimal
bound in some cases. However this is no longer true in higher dimension, for instance on
hypersurfaces where the behaviour of projective normality of Ulrich bundles suggests that it
is unlikely to get a general criterion. The main results, which will be on low-dimensional
varieties where at least Castelnuovo-Mumford regularity is well-behaved with respect to
tensor operations, are the following.

Theorem F (Theorem 5.0.1). Let C be a smooth projective curve of genus g and let B be a
globally generated ample line bundle of degree d on C. Let & be a B-Ulrich bundle on C.
Then:

(a) & is projectively normal if d > g + 1.

(b) & satisfies (N1) and Opg)(1) is Koszul if d > g + 2.

(c) & satisfies (N,) for p =2 ifd > %((g +p+ 1)+ g2 +2eBp+ 1)+ (p- 1)2).

(d) If there exists a linear series |V| C |B| which induces a morphism which is étale
onto the schematic image, the general B-Ulrich bundle of rank r on C is projectively
normal as soon as C supports a non-special normally generated line bundle of degree
d. This holds in particular if d > g + 2 — Cliff (C).

(e) If C is general of genus g > 3 and B is a general very ample line bundle of degree
3+ 4/8g+1
d> ————,
2
then the general B-Ulrich bundle of rank r is projectively normal. Moreover this
bound is sharp for r = 1.

Theorem G (Theorem 5.0.2). Let S ¢ PN be a smooth projective surface with q(S) =
po(S) = 0 and let & be an ample O-regular vector bundle of rank r > 2 on S such that

h=hS,8) > r+3. Let E = det(8) be the determinant bundle and let € = (h;r) —1.The

following are equivalent:
(1) eope): PE) C P(H(P(E), Op)(1))) is not aCM.
(2) & is not projectively normal.
(3) There exist a closed subscheme Z C S and a non-zero divisor D C S such that:

(a) Z is smooth of dimension 0.

(b) Z is the degeneracy locus of € general sections sy,...,S¢ € HO(S,AZM:QJ).
(c) [Z]=3(h—r=2)((h=r+ Der(EP - 2c2(8)).

(d) De|Kg +(h—r—1)E|.

(e) ZcC D.

(4) There exist a closed subscheme Z C S and a curve C C S such that:
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; ; 0 2 g%
(f) Z is the degeneracy locus of € general sections oy, ..., 0¢ € H'(S, A“Mp).

(g) C is the degeneracy locus of the (€ + 1) general sections oy,...,0¢,0¢+1 €
H(S, A*M).

(h) C €|(h—r—1)E|is smooth and irreducible.

(i) Z C C is a special (effective) divisor.

Theorem H (Theorem 5.0.3). Let X ¢ P™*! be a smooth hypersurface of degree d > 3 with
2 < n <3 andlet E be an Ulrich bundle of rank r on X. Let

ue: H(X, &) @ H'(X,8) — H'(X,E® &)
denote the multiplication of sections. Then:

(a) If n = 2 and det(&) = Ox(5(d - 1)), then ug cannot be surjective and & cannot be
projectively normal ifd > 5,ord =4 andr <5,ord =3 and r < 2.

(b) If n =3 and d > 4, then ug is never surjective and & cannot be projectively normal if
d+4
r>

3.

As mentioned above, the behavior of the projective normality on (low-dimensional)
hypersurfaces is the most unexpected: a general hypersurface contains no lines if its degree is
greater than the double of its dimension, therefore Ulrich bundles are expected to be always
very positive (at least in this situation). Theorem H and Remark 5.3.5 seem to suggest that
just low-rank Ulrich bundles are (potentially) projectively normal. However, by Buchweitz-
Greuel-Schreyer conjecture C.1.3 the rank of Ulrich bundles is expected to be very large (see
also [LR24b] for the non-existence of low-rank Ulrich bundles on hypersurfaces). Therefore,
against the expectations, it seems that Ulrich bundles on hypersurfaces are rarely projectively
normal.

Finally, despite the main goal of this work is not the construction of Ulrich bundles
on a given projective variety, we mention a result of existence in a very special case. As
mentioned at beginning, producing Ulrich bundles is a very challenging problem. However
rational homogeneous varieties offer a large test class of vector bundles: the equivariant
bundles. Irreducible equivariant Ulrich bundles on X = G/P with Pic(X) = Z - Ox(1)
have been fully classified in [CM15; Fon16; LP21] for any G. Except for Grassmannians,
ie. for G = A,, such bundles are very rarely Ulrich. Indeed, on most of the varieties
of type G = B,,C,, Dy, E, F4,G> such bundles are never Ulrich. However, equivariant
bundles are not necessarily irreducible, so there is still the chance that such varieties support
an equivariant Ulrich bundle. However, merely three such examples have been found,
specifically on G,/ Py, F4/ P4, Es/P1, and they are obtained in a non-constructive way as
restrictions to hyperplane sections [LP21, Remark 4.2 & §6.1 & Corollary 7.4]. Moreover
G, /P = Qs is well-known to support Ulrich bundles as it is a quadric, and Eg/P; already
has an irreducible equivariant Ulrich bundle [LP21, Proposition 5.1]. In this direction, we
prove the following existence result where we explicitly find reducible equivariant Ulrich
bundles on rational homogeneous varieties where there are no irreducible equivariant Ulrich
bundles (and known Ulrich bundles). This result will help to prove that almost all prime
Mukai varieties support an Ulrich bundle (Corollary 2.0.3).

Proposition I (Proposition 2.0.2). The spinor tenfold S19 ¢ P> and the Lagrangian
grassmannian LGr(3,6) ¢ P'3 support a p-stable reducible equivariant Ulrich bundle.
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This thesis is divided in two parts plus an appendix.

Part I contains facts of general interest on Ulrich bundles. Chapter 1 is a summary of the
main properties of Ulrich bundles defined with respect to an ample globally generated line
bundle. Chapter 2 deals with equivariant Ulrich bundles on rational homogeneous varieties.

Part II presents the main results of this thesis on the positivity of Ulrich bundles. In
Chapter 3 and in Chapter 4, both of them based on [But24b], we study respectively the
positivity of the first Chern class and the augmented base locus of an Ulrich bundle. In
Chapter 5, based on [But24a], we investigate the projective normality of Ulrich bundles.

The Appendix is dedicated to a recollection of background notions, in Appendix A, and
of technical results, in Appendix B, and to a short historical note about the origin of Ulrich
bundles, in Appendix C.



Notations and conventions

In the following we will mostly adopt the notations introduced in [Har77] and the following
more specific conventions:

All schemes are separated and of finite type over the field of complex numbers C.
A variety is an integral scheme and subvarieties are always closed.

Except for generic points of a scheme, points are exclusively closed.

We use C and C as synonyms.

A scheme X is smooth if it is regular. This is equivalent to saying that the structural
morphism X — Spec(C) is smooth ([Liu02, Example 3.2.3 & Corollary 4.3.33 &
Proposition 6.2.2] and [Sta23, Tag 04QN & Tag 056S]).

Divisors are always Cartier divisors. On irreducible varieties we identify every divisor
D with its associated line bundle Ox(D).

Given a line bundle L on a scheme X, the morphism induced by a linear system 6 = |V/|,
for a non-zero sub-vector space V ¢ H°(X, L), will be denoted by ¢y = ¢s5: X — PV,
If 6 = |L|, we will simply write ¢;.

Given a linear series |V| of a line bundle L on a variety X, its base locus Bs(|V]) is
the closed subset cut out by the base ideal b(|V]) = Im(V ® L* — Oyx). If we want to
emphasize the scheme structure, we will refer to Bs(|V/|) as the base scheme of |V|.

For a projective scheme X, the line bundle Ox (1) will always be associated to the
hyperplane section H of an embedding X c PV,

Given a line bundle A, we will write ¥ (pA) = ¥ ® A®P for every sheaf # and for
every p € Z.

A polarization is meant to be an ample line bundle.
A line bundle L is strictly nef if L - C > 0 for every irreducible curve C.
We write h'(X, —), ext/(—, —) to indicate respectively dim¢c H'(X, —), dimc Exti(—, -).

Given two schemes X, X, we will always write 7r;: X; X X, — X; for the projection
onto the i-th factor. If F; is a sheaf on X;, we will write ¥ ® %, = 7}F ® 3 %>.

The ideal sheaf of a (closed) point x in a scheme X will be denoted by m,. The ideal
sheaf of a closed subscheme Y C X will be denoted by Jy/x.


https://stacks.math.columbia.edu/tag/04QN
https://stacks.math.columbia.edu/tag/056S
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e Given a closed subscheme Y C X, by “blow-up of X along Y” we will mean the
blow-up of X along the ideal sheaf 7y,x.

e A generic property is a property of the generic point. A property is general if it holds
in the complement of a proper (Zariski) closed subset. A property is very general if it
is satisfied off a countable union of proper (Zariski) closed subsets.

e Let X c PV be an embedded projective scheme. We denote by

Ixpy = @ HOPY, Iypv (1))
teZ

the homogeneous saturated ideal of X in PV and by
Rx = Clxo, ..., xn]/Ix/pv
the homogeneous coordinate ring of X.

e For a vector bundle & on a scheme X we set P(E) = Proj(Sym(&)) for the projective
bundle of €& and we denote by 7: P(&) — X the natural projection.

e Given a globally generated vector bundle & on a scheme X, we call
Mg = ker (HO(X, E®0x — 8)
the syzygy bundle of & and we call the exact sequence
0— Mg — HX,E900x — & —0,

the syzygy exact sequence of &.
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Generalities on Ulrich bundles
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Chapter 1

Ulrich vector bundles

1.1 Definitions and first properties

This section contains a summary of the general properties of Ulrich bundles. All the follow-
ing results can be found in [ES03; Cas+12; CKM13; Cos17a; Beal8; CMP21; Vac25].

We will need the following technical lemma of general nature. It states some important
properties which will belong to Ulrich bundles. See Appendix B.1 for a brief introduction to
Castelnuovo-Mumford regularity.

Lemma 1.1.1. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle with B" = d. Let & be a coherent sheaf on X of
tk(8) = r satisfying H(X,E(—p)) =0 fori > 0and 1 < p < n. Then:

(i) & is O-regular with respect to B and is generated by global sections.

(ii) The Hilbert polynomial of & with respect to B is
rd
P(E,m) := x(X,E(mB)) = —(m +1)---(m +n),
n!

and h°(X,E) = rd.
In particular, if (X, B) = (P", Opn(1)), then & is isomorphic to a trivial vector bundle.

Proof. The cohomology groups H'(X, E(—i)) clearly vanish for i > n by Grothendieck’s
theorem, and also for O < i < n by assumption. Then & is O-regular, so globally generated
by Castelnuovo-Mumford theorem B.1.3. By the same theorem, we also know that & is
k-regular for any k > 0. Consequently, by Remark B.1.4, we have H'(X,&) = 0. For the
second part of the claim, recall that the Hilbert polynomial has degree less or equal than # in
m with

P(E,m) := x(X,E(mB)) = r’%m” +0(m"™ ),

see for instance [Laz04a, Theorem 1.1.24]. Our hypothesis implies that P(E, m) has exactly
nroots in m = —1,-2,...,—n, so that P(E, m) factors as the desired product. Finally,
evaluating P(E, m) in m = 0 immediately yields rd = P(&,0) = (X, E) = (X, E).
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For the last assertion, observe that, in this case, d = 1 and hO(P”, &) = r. Being globally
generated means that there is a short exact sequence

0— K =Msg— HP",EROp — & — 0.

If K is nonzero, then it is O-regular: tensoring the above sequence through by Opr(—i) for
any 0 < i < n and then taking the cohomology, we get

0=H"'(P",&(-i)) — H'P", K(-i)) — H'P", Ops(-i))* = 0,

which gives the claim. Therefore K is globally generated by Castelnuovo-Mumford theorem
B.1.3. However one has H'(P", K) = 0 given that H'(P", &) ® H'(P", Opn) — HO(P", &) is
an isomorphism by construction. Therefore K must be 0, so & is isomorphic to the trivial
vector bundle of rank r. O

We are now ready to introduce Ulrich bundles.

Definition - Theorem 1.1.2. Let X be a smooth projective variety of dimension n > 1 and
let B be a globally generated ample line bundle. Set d = B", and let & be a vector bundle of
rank r. The following conditions are equivalent:

1. There exists a linear resolution
0—L— Ly —-—Lo—¢.6E—0,
where ¢ = ¢p: X — @(X) = X ¢ PN, and L; = Opn(—i)® and ¢ = N — n.
2. The cohomology groups H'(X, E(—pB)) vanish fori > 0 and 1 < p < dim X.

3. For all finite surjective morphism w: X — P”" such that 7 Opn(1) = B, the sheaf n1.&
is isomorphic to O

A vector bundle satisfying these equivalent conditions is said to be Ulrich with respect to B,
or simply B-Ulrich, or Ulrich for (X, B).

Proof. Suppose condition 3 holds and take 7 as the composition of ¢ = gp: X — ¢(X) =
X c PV with a finite linear projection X — P" from a point in PV — X onto a linear subspace
of dimension n. Note that by the projection formula we have, for all k,

. (E(kB)) = 1.E ® Opn(k) = (m.E)(k).

Since 7 is affine, there is a natural isomorphism H'(X, &(—pB)) = H'(P", (1.E)(—p)) for
all i > 0 [Har77, Exercise I11.8.2]. Since x.& is trivial, the cohomology group on the left
vanishes fori > 0 and 1 < p < n, hence 2.

Conversely, assume 2 holds, and let 7 be a finite and surjective morphism from X onto
P". By the so-called miracle flatness [Har77, Exercise I11.9.3(a)], « is flat, hence 7.& is
a vector bundle of rank r - deg(m) = s. On the other hand, also the vector bundle 7.&
satisfies the vanishings in 2 due to the finiteness of n. Therefore x,.& is trivial (Lemma
1.1.1) of rank 5. On the other hand, part 2 of Lemma 1.1.1 gives that ho(X,8) = rd. Since
HO(P", n,8) = HO(X, &) are vector spaces of dimension s and rd respectively, we must have
s =rd.
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Now, suppose there exists a linear resolution as in 1. Write ¢.& = &. Then
0(E® B) = ¢, (E® ¢* Opn (k) = 0.E® Opn (k) = E(k)

for all k, and the finiteness of ¢, the coherent sheaves &(kB) and g(k) have the same
cohomology. To prove 2, we will use [LLazO4a, Proposition B.1.2]. So, fix 0 < i < n and
1 < p < n, twist the resolution by (the flat sheaf) Opv(—p). Then it is enough to show that
H™(PN,Li(-p)) = H*(PN, Opn(—j — p))® vanishes for each 0 < j < ¢. This is clearly
true for i + j # N; for i + j = N, noting that

j-N+p-1<c-N+p-l=-n+p-1<-p+p-1=-1,

we get the conclusion from the equality 2V (PN, Opx(—j — p)) = h%(PN, Opn(j— N + p — 1))
due to Serre duality.

Finally, let us prove the converse. We define inductively a sequence of O-regular coherent
sheaves K; on P for 0 < i < ¢ such that:

(A) Ko =&,
(B) Kis1(~1) = ker (ev: HOPN, %) ® Opy — %K;).
(C) H'PN,Ki(-1)) =0for1 <t <n+iandalls>0.

By hypothesis, the finiteness of ¢ and Lemma 1.1.1, the sheaf K, = & is O-regular and
satisfies (C). Suppose K; are defined for 0 < i < ¢, and set K, as in (B). Since K is
O-regular, it is globally generated by Castelnuovo-Mumford theorem B.1.3. Hence, by
construction, there is a short exact sequence

0 — K1 (=1) — H'PY, %) @ Opv — K; — 0. (1.1

We need to verify that K, is O-regular and satisfies (C). To thisend, take 1 <t <n+{+1
and tensor the above sequence by Opn(—t + 1). From the associated long exact sequence we
can extract, for s > 1,

0 — H'PY, Kpy1 (1) — H' PN, %K) @ HOPY, Opv(—1 + 1)) — H' PN, Ko(~1 + 1)),
(1.2)

H ' PN, Ko~ + 1) — H PN, K1 (=0) — H PV, Op (=1 + 1) T K0 (13)

Ift>2,sincel <t—1<n+fand—-t+1> -n—c+1=1-N > —-N—1, the terms on the left,
by induction, and on the right, by the cohomology of projective spaces, in (1.3) are both zero.
So H*(PN, K;41(~1)) = 0 for s > 1. The same holds for H(PY, K;(—¢ + 1)) if t > 2 because
Opn(—t + 1) has no global sections in these cases. Now consider ¢ = 1. The map on the
right in (1.2) becomes an isomorphism, thus HO®PN, Kpi1(-1) = H'PN, Kps1 (1) = 0. If
s > 2, using that HY(PV, Opn~) = 0 for g > 1, we deduce from the short exact sequence

0 — HS_I(PN,WK) — HS(PN,7C€+1(_1)) —0

that HS(PY, K1 (=1)) = H-'(PY, %K) for every s > 2. But K is O-regular by induction,
hence HY(X, K;) = 0 for all ¢ > 0 by Remark B.1.4. As a consequence H*(PN, Ky, 1(~1)) =
0 for s > 2, saying that % satisfies (C). To complete the inductive step, it remains to verify
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that K. is O-regular. To do this, consider 0 < ¢ < N and tensor (1.1) by Opn(—¢g + 1).
Using that K is O-regular, we see from the long exact sequence that H1(PY, K.1(—g)) = 0
for g > 2 since

0=H"'®Y, Ki(~g+1)) — HIPY, Kp11(~q)) — H' PN, K)@HIP, Opr(~g+1)) = 0.

Finally, if ¢ = 1, the morphism HO(P", K))@ H'(PV, Opv) — H°(PN, k) is an isomorphism
and H'(PY, Opy) = 0. This forces H' (P, %, 1(—1)) to be 0 thanks to the exactness of

HO®Y, K)oH PV, Opv) — H'®N, Ky) — H' PN, K1 (-1)) — H' PV, Op)® 70,

This shows that K. is O-regular ending the inductive step.
. IOV K .
Now, setting L; = Opn(=i)®" ®"%) for 0 < i < ¢ — 1, we get short exact sequences

0 = Kisr(=i = 1) = Li — Ki(~i) > 0
by construction. All together, they give a long exact sequence
0— K.(-c) > Leey — +++— Ly — & — 0.

Now, condition (C) on K, means that HI(PY, K.(—j)) =0for 1 < j<n+c¢ = N and all
q > 0 forcing K. to be a trivial vector bundle Ofﬁ” (Lemma 1.1.1). We have then constructed
the required linear resolution. O

Notation 1.1.3. Whenever we are dealing with an embedded smooth projective variety
X c PV, Ulrich bundles will always considered with respect to the line bundle Ox(1). In
this situation, we will simply say that & is an Ulrich bundle on X.

Remark 1.1.4. Henceforth we will use these equivalent definitions without explicit mention.

Before moving on to stating some properties, we show that Ulrich bundles are completely
characterized in the case of curves.

Proposition 1.1.5. Let C be a smooth projective curve of genus g, and let B be a globally
generated ample line bundle on C. A vector bundle & of rank r is B-Ulrich if and only if
& = F(B) for an acyclic vector bundle F . More precisely, & is B-Ulrich if and only if
h(C,E(-B)) = 0 and deg(E) = r(d + g — 1).

Proof. The first part is immediate from condition 2. For the second one, by Grothendieck-
Riemann-Roch theorem for curves, we have

H(C,E(-B)) — h'(C,E(-B)) = c1(E(-B)) + tk(E(-B))(1 — g) = deg(&) + r(1 — g — d),
and the conclusion follows. O

Definition - Proposition 1.1.6. Let X be a smooth projective variety of dimension n > 1
and let B be a globally generated ample line bundle on X. A vector bundle & is B-Ulrich on
X if and only if 8*((n + 1)B ® Kx) is. For this reason we call

E'((n+1)B® Ky)

the Ulrich dual of & (with respect to B).
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Proof. If 0 <i<mnand1 < p < n, applying Serre duality we get

H(X,E(—pB)) = i"'(X,E*(pB ® Kx))
=X, E((n+1-q9B®Ky)) j=n—-i,g=n+1-p
= h/(X,E ((n + 1)B ® Kx)(—¢B)).

Since j, g range respectively in 0 < j < n,1 < g < n as well, the conclusion follows. O

It is clear from the definition that Ulrich bundles are special cases of vector bundles
without intermediate cohomology. The next proposition shows the strict connection between
Ulrich bundles and aCM bundles. We refer to Appendix A.2 for the basic definitions and
properties about aCM bundles.

Proposition 1.1.7. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle with d = B". and let & be a vector bundle of rank r on
X. Then the following are equivalent:

(1) &is B-Ulrich.

(2) There exists a finite morphism n: X — P" of degree d with n*Opn(1) = B such that
m&= 0%,

(3) H(X,&(—iB)) = H™'(X,&8(=iB)) =0 for 1 <i<n.

(4) If n > 2, & is aCM with respect to B with Hilbert polynomial
d
PE.m) = "Sm+ 1) (m+ n).
n!

Proof. Let’s begin with the equivalence between (1) and (2). If & is B-Ulrich, then such
a morphism 7 is constructed as in the proof of Definition-Theorem 1.1.2: by taking the
composition between ¢ and a linear projection from X onto an n-linear subspace P". The
fact that 7 has degree d follows by observing that ,.E has rank r - deg(mr) = rd. Conversely,
since .(E(kB)) = O;‘f{d(k) and r is finite, & has the same cohomology of (’)i‘f,fd, that clearly
satisfies the required vanishings.

Next, (1) clearly implies (3). To show the converse, fix 7: X — P" a finite surjective
morphism such that 7*Opx (1) = B chosen as above. As observed so far, &(kB) and 7,.E(k)
have isomorphic cohomology, and, by miracle flatness, 7.& is a vector bundle of rank
r - deg(n) = s. In particular 7,.E is O-regular, as H'(P", n.8(—i)) = 0 for i > 0. Therefore
m.& is globally generated by Castelnuovo-Mumford theorem B.1.3, so we get a short exact
sequence

0— K =M,g— HP" 1.8 Op — 1,8 — 0.

By construction, the sheaf K has no global section. Tensoring by Op«(—i) for 1 < i < n, and
using the other hypothesis, we see from the exact sequence

0= H"'(P", m.E(=i)) — H'(P", K(=i)) — H'P", Opn(=i)® = 0

that K is O-regular as well. Castelnuovo-Mumford theorem B.1.3 says that K is globally
generated. However HO(P", K) = 0 since H'(P", n,.8) ® H(P", Op») — H(P", 7,E) is an
isomorphism by construction. Therefore we have K = 0, which yields that 7..& is trivial.
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Now assume & is B-Ulrich. Its Hilbert polynomial has been already shown in Lemma
1.1.1 to be of the desired form. On the other hand, if 7 is a morphism as in (2), then
& has the cohomology of a trivial vector bundle on P"* which is clearly aCM. By Leray
spectral sequence we get (4). Finally, suppose (4) holds and let f: X — P” be a finite
surjective morphism such that f*Op.(1) = B. Then f.& is an aCM vector bundle on P” of
rank 7 - deg(f) = s. Horrocks’ theorem A.2.3 implies that f.& splits as a sum of line bundles
@;:1 Opn (k). To conclude we need to show that k; = 0 forevery j = 1,...,s. Since E(mB)
and f.&(m) have isomorphic cohomologies for all m, Hilbert polynomials coincides:

rd 1
=+ DM +2) - (mtn) = ) —(m+kj+ 1) (m+k;+n).
n! ool

Top degree coeflicients % and Y’ =1 n, = -4 must be equal, so s = rd. Equating the

coefficients of m"~! yields

rth ZZ(k +h)—n2k +rd2h

j=1 h=1

forcing Z;‘i 1 k;j = 0. Equating the coefficients of m"~2 and using this, we have

d Y pg= Z[ D+ p)k +q)] ()Zk2+rd > e

1<p<g<n 1<p<qg<n 1<p<g<n
which implies Z’d k2 0. So all k;j are zero and f,.& = O;‘f"’d. i

In [ESO3] the authors originally defined the notion of Ulrich sheaf on a projective
variety.

Definition 1.1.8. Let Y be a projective variety and let B be a base-point-free ample line
bundle. A coherent sheaf & on Y is said to be Ulrich for B, or a B-Ulrich sheaf, if
H(Y,&=pB))=0fori>0and 1 < p <dimY.

Remark 1.1.9. Given a projective variety Y and a globally generated ample line bundle B,
it can be proved exactly as in Definition-Theorem 1.1.2 that a coherent sheaf & is B-Ulrich if
and only if for every finite morphism 7: ¥ — P4mY guch that 7*Opx(1) one has 7,.& (’)i‘fﬁ
for some ¢.

As a consequence, a B-Ulrich sheaf has no intermediate cohomology: H'(X, E(tB)) = 0
for 0 < i < dimY and ¢t € Z. Moreover, if Y is smooth, then a B-Ulrich sheaf & is
automatically locally free [ES11, §4, p.43]: if dim Y > 1, it follows from [AY08, Lemma
3.2]; if Y is a smooth curve, every coherent sheaf sits in an exact sequence of coherent
sheaves

0 > T > & > F > 0,
where 7 is a torsion sheaf and ¥ is torsion-free, hence locally free [Sta23, Tag 0CC4].
Twisting by Oy(—B) and taking the global sections, we immediately see that HO(Y, 7(-B)) =
0. This forces 7 = 0: if supp(7") = {y1,...,yq}, one has supp(7 (=B)) = {y1,...,yq} as well,
therefore

q q d
0=HXT(B) = DT B, = DT, ©On) = P T
i=1 i=1 i=1


https://stacks.math.columbia.edu/tag/0CC4
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giving the assertion. Then & = ¥, and the proof is complete.
We can now list some properties of Ulrich bundles.

Proposition 1.1.10. Let f: X — Y be a finite surjective morphism of smooth projective
varieties and let L be a globally generated ample line bundle on Y. A vector bundle & on X
is f*L-Ulrich if and only if f.& is L-Ulrich.

Proof. First, f*L is ample and globally generated, and f.& is locally free since f is also flat.
Then the projection formula gives

f(E® L) = fLEQ L
for all k. Since f is finite and surjective, dim X = dim Y and
H(X,E® f*L%) = H(Y, f.&® L®)
for all i > 0, the conclusion follows. O

Proposition 1.1.11. Let (X, B) and (Y, L) be smooth projective varieties of dimension n,m
respectively together with a globally generated ample line bundle. Let & be a B-Ulrich
bundle on X, and let ¥ be a L-Ulrich bundle on Y. Then the vector bundle & ® ¥ (nL) is
Bw L-Ulrichon X X Y.

More generally, if (X;, Bi)i.‘zo are smooth projective varieties of dimension n; together
with globally generated ample line bundles, and &; are B;-Ulrich bundles for each i, then

Eo R E(noB) R -+ - R E((ng + - - - + ng—1)By)
is Ulrich for (Xo X -+ X, B ® - -+ R By).
Proof. Leti>0and 1 < p <dim(X X Y) = n+ m. Then it’s immediate that
(ErF (nL))(-p) = E(-pB) R F ((n - p)L).
Recalling Kunneth’s formula

H'(X x Y,(E- F(nL)(-p) = (P H/(X, &(-pB) ® H*(Y, F ((n - p)L)),
Jk=i

we see that the first factor is O for 1 < p < n and the second one vanishes for n+1 < p < n+m.

The final assertion follows by combining the first part and the inductive hypothesis for
k > 2 applied to the pairs (X, B) = (Xo X -+ Xj-1,Bo R -+ R Bx_1) and (¥, L) = (X;,, By),
withE =& R E (B R --- R E;_1((ng + - -+ + ng_p)Br_1) and F = &;. O

Lemma 1.1.12. Let X be a smooth projective variety and let B be a globally generated
ample line bundle. Let
0—-&E—-F —-G—0

be a short exact sequence of coherent sheaves. If two of them are B-Ulrich, then so is the
third.
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Proof. The cohomology sequence associated to the exact sequence
0 — &-=pB) — F(-pB) — G(-pB) — 0,
for 1 < p < dim X yields the following short exact sequences:
0 — H(X.8(-pB)) — H'(X,F(~pB)) — H’(X,G(~pB)) — H'(X.&(-pB)),
H'™'(X,G(~pB)) — H'(X,&(~pB)) — H'(X. T (~pB)).
H'(X,&(-pB)) — H'(X, ¥ (-pB)) — H'(X,G(-pB)),
H'(X. 7 (-pB)) — H'(X.G(-pB)) — H'"'(X,E(~pB))
for i > 0. The conclusion easily follows from these by Definition-Theorem 1.1.2.2. O

Proposition 1.1.13. Let X be a smooth projective variety of dimension n > 2 and let B be a
base-point-free ample line bundle. Let Y be a smooth and irreducible member in |B| and let
& be a vector bundle on X. If & is B-Ulrich, then Ey is Byy-Ulrich on Y. Conversely, if n > 3
and &Eyy is By-Ulrich, then & is B-Ulrich.

Proof. Lett: Y — X be the inclusion, and set &y = (*E and By = (*B. By projection
formula we get

1.(Ey(kBy)) = 1. (Oy ® "(E ® B™)) = E(kB) ® 1.0y (1.4)
for all k. Consider the short exact sequence
0—-ERO0x(-Y)=&E(-B) - &E— ER1,O0y =1,Ey — 0. (1.5)

Suppose that & is B-Ulrich. Then, if i > 0 and 1 < p < dimY = n — 1, the conclusion easily
follows from the long exact exact sequence

0 = H'(X,&(-pB)) — H'(Y,Ey(-pBy)) — H'(X,&(-p - 1B) =0

induced by the short exact sequence obtained from the twist of (1.5) by B®P, where we have
used (1.4).

Now, assume that Ey is By-Ulrich and let 7: X — P” be a finite morphism such that
7*Opn(1) = B, for instance the composition of ¢p with a finite projection ¢g(X) — P”". Set
d = B" and r = rk(&). Observe that 7 maps Y onto a hyperplane, whence the restriction

ay:=mow: Y - na(Y)=H=P"!

is still finite, surjective and such that 73, Oy (1) = By. Therefore (ry).Ey = (1.E)y is trivial
of rank rd on H ~ P"~!. Since n > 3, Horrocks’ theorem for reflexive sheaves A.2.4 says
that 7.& splits as a sum of line bundles, namely 7.6 = ea;.i L Opn(k;). In particular, the first
cohomology group H!'(P", 1,E(-1)) = @;ilHl(P”, Opn(kj — 1)) vanishes since n > 3. Then,
by the virtue of [Har77, Proposition II1.6.3], we also deduce that

rd rd
Ext' (O, 7.8(-1)) = (P Ext! (Opn, m.E(-1) = (P H' (P, m.E(-1) = 0.

Since (7.E)y = (’);‘?,’d, we conclude from [AY08, Theorem 2.2] that & is trivial of rank
rd. In conclusion, & is B-Ulrich by Definition-Theorem 1.1.2.3. O
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The following characterization of Ulrich bundles is the original one coming from the
commutative algebra. First recall the following definition.

Definition 1.1.14. Let X be a projective variety and let B be an ample and globally generated
line bundle. A vector bundle & is B-initialized if H(X, &) # 0 and H*(X, &(-B)) = 0.

Proposition 1.1.15. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle with B" = d. A vector bundle & of rank r is B-Ulrich if
and only if & is aCM, B-initialized and has h°(X, &) = rd.

Proof. One direction is clear. If & is B-Ulrich, then it is aCM by Proposition 1.1.7 and

h°(X,E) = rd by Lemma 1.1.1. Eventually, Proposition 1.1.7(2) says that & has the

cohomology table of Oi‘f,fd. Therefore, using Serre duality, one gets that
H(X,E(=B)) = rd - °(P", Opn(~1)) = 0.

This implies that & is B-initialized.
Assume the converse. If n = 1, we only need to prove that H' (X, &(-B)) = 0. A general
member Y € |B| consists of d distinct smooth points. The exact sequence
0— &(t-1)B) — &(B) — E(B)y — 0 (1.6)

yields the cohomology exact sequence

0 — H(X,&((¢ - 1)B)) — H(X,&(tB)) — H(Y,E((B)y)
— H'(X,&(¢ - 1)B)) — H'(X,E(tB)) — 0.

If € = 0, then HO(X, & — HOY, &py) 1s an isomorphism, given that & is B-initialized and
(X, &) =rd = KOy, &yy). If £ > 0, we obtain the following commutative diagram:

H(X,&(( - 1)B)) ————— H(Y,&((t - )B)y)

1

re

H'(X,E((B)) > HO(Y,E(CB)y).

The map ry_; is surjective by induction, and so is 7, by commutativity. From the surjectivity
of r, for every ¢ > 0, we deduce the inclusions

H'(X,&-B) c H'(X,&) c H'(X,E2B)) c --- c HY(X,E(B)) C - - - .

On the other hand, Serre theorem implies that H 1(X,&8(¢B)) = 0 for every ¢ > 0. Hence
the conclusion follows. Now assume that n > 2. By hypothesis we have the vanishings
H(X,&(-pB)) = 0for0 <i <n—land 1 < p < n.Itremains to check that H"(X, &(—pB)) =
0 for 1 < p < n. Consider the short exact sequence (1.6), where Y is a general smooth
irreducible member in |B|. Taking again the cohomology, we immediately see that &y is
aCM, Bjy-initialized with h°(Y,&y) = rd. By induction, Eyy is Bjy-Ulrich on Y. Hence, if
n > 3, the conclusion follows by Proposition 1.1.13. If n = 2, then Y is a curve and we saw
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above that H!(Y, &E(CB)y) = 0 for € > —1. Therefore, if £ > —1, we obtain the following
exact sequence:

0= H'(Y,&(tB)y) — H*(X,E((¢ - 1)B)) — H*(X,&E(LB)) — 0.
In particular we have
H2(X, E(~2B)) = (X, E(~B)) = BX(X,&) = --- = K*(X,E((B)) = - -- .

Since these cohomology groups vanish for every £ > 0 by Serre theorem, we obtain the
claim. ]

We now study the stability of Ulrich bundles. For a short introduction to these concepts,
we refer to Appendix A.4. First of all we are going to compute the reduced Hilbert
polynomial, the degree (for this one, see also [Lop22, Lemma 3.2]) and the slope of an
Ulrich bundle.

Lemma 1.1.16. Let X be a smooth projective variety of dimension n > 1, and let B be an
ample and globally generated line bundle on X with B" = d. Let & be a B-Ulrich bundle of
rank r on X. Then:

(i) The reduced Hilbert polynomial of € is
1

p(E,m) = —'(m+ .- (m+n).
n!

In particular, all B-Ulrich bundles on X have same reduced Hilbert polynomial.

(ii) The degree and the slope of & are respectively
_Tr n n—1 _ 1 n n—1
deg(S)—E((n+l)B +Kx-B"), ,u(S)—E((n+1)B +Kx-B").

In particular,
1) = % ((n+ 1B + Ky)

for varieties having Pic(X) = Z.

Proof. Item (i) immediately follows from Lemma 1.1.1. For (ii), the case n = 1 is given
by Proposition 1.1.5. If n > 2, by Bertini’s theorem, see e.g. [Har77, Corollary 111.10.9
& Exercise 111.11.3], we can find a smooth irreducible divisor Y € |B|. It follows from
Proposition 1.1.13 that &y is Bjy-Ulrich. By induction on dimension we have

r

deg(Ey) = 3 (nBl"Y_1 + Ky - Bl"Y_Z).
On the other hand Ky satisfies Ky = (Kx + B)jy by adjunction formula. Therefore we obtain

1B =c1(&y) - By”
r -1 -2 -1
=5 (nBly' + (Kx)y - By + By )
r -
= 5((n+ B" + Kx - B"™").
The last assertion for varieties X of Picard rank 1 immediately follows from the above
equation by writing B, Kx, ¢1(E) in terms of an ample generator A for Pic(X). O
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Proposition 1.1.17. Let X be a smooth projective variety of dimension n > 1 together with
a globally generated ample line bundle B such that B* = d, and let & be a B-Ulrich bundle
of rank r. Then:

(1) & is semistable.

(2) If0 = F — & — G — 0is an exact sequence of coherent sheaves with G torsion-free

and u(F) = w(&E), then both F and G are B-Ulrich bundles.
(3) If & is stable, then & is also u-stable.
In particular, if & is not stable, then it is an extension of B-Ulrich bundles of smaller rank.

Proof. Letn: X — P”" be a finite surjective morphism of degree d such that 7*Opn(1) = B,
which exists by Proposition 1.1.7. The finiteness implies that & preserves the dimension
of the supports of sheaves and that x,, which keeps injectivity, also preserves Hilbert
polynomials. Since 7,.& = (’)ﬁ,,’d is (pure and) semistable, it is then clear that & is (pure and)
semistable as well, proving (1).

For (2), observe that supp(¥) = X, since & is pure, and that

0—>7r*7:—>7r*8E(’)§§d—>7r*Q—>0

remains exact because « is finite. Moreover 7..G is torsion-free [Gro60, Proposition 7.4.5,
p.163], and u(r,.F) = u(m.E) as well because

an—l(S) _ an—1(¢))
a@n(E) an(F)

_ . (a'n—l(a) _ a’n—l(q:))
- (&) an(F)

with d > 0, and, recalling that 7 preserves Hilbert polynomials and supports, we get

@i (E) an_lm) i (an_l(& i an_lm) L
a,(E) an(F) a,(E) an(F) '

0=wu& —u)= an((')x)(

u(m.8) — u(m F) = a,(Opn) (

Hence we may assume (X, B,&) = (P", Opx(1), (’)i‘f,f), andsou(F) =uE) =0.Iftn =1,
then G is locally free [Sta23, Tag 0CC4], and so is . Then ¥ is isomorphic to a sum of line
bundles eaf.‘:l(’)Pl (k;) for some k; € Z [GW20, Theorem 11.53], implying that each Op: (k;)
injects into Op,. Semistability yields k; > 0, and u(¥) = 0 gives Zle ki = deg(¥) =0,
whence k; = O for all i. Therefore ¥ is a trivial vector bundle, and so is G. Now, assume
n > 2, and take a general hyperplane H ~ P"~!. We get an exact sequence

0 > Fiu > (Opip =0 —— Gy —— 0

with G|y torsion-free and u(F i) = u(F) = (&) = u(E ) = 0. By induction F iy = ng and
G = (’)2}’ are Ulrich bundles on H ~ P"~!. Taking the cohomology of the exact sequence
in 2 we see that

WP, F (1) = F°P", Opn(r)) = 0, K (P", F (1)) = °P",G()) forallt<0. (1.7)
Similarly, twisting the exact sequence

0= F(-1) > F - Fu =05, -0
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we deduce that A'(P",F(q — 1)) = h(P",F(q)) fori > 1 and all ¢ > —n + 1. Since
h(P",F(q)) = 0 for sufficiently large g, we see that #/(P", F (g — 1)) = 0ifi > 1 and
q > —n + 1. In other words

0=hP",F(-n) =hP" . F(-n+1)=hP,F(-n+2)=--,

and the same holds for G. Finally, for £ < 0 we have that WP, G - 1)) = KO (P, G(0)).
However these vector spaces vanish for sufficiently negative ¢. Indeed, being torsion-free
implies that the natural morphism G — G** is injective. A sufficiently large twist G*(s) is
globally generated. Taking the dual of the twist by Opn(—s) of the surjection Oi‘fT -» G*(s),
we obtain an injection G** < Opn(5)®™. The injective morphism G < Opn(s5)®" implies the
vanishings HO(P", G(£)) = 0 for £ < 0. As observed above, this means that 2°(PY, G(£)) = 0
for all £ < 0. In turn, by (1.7), this yields 4! (PN, F(£)) = 0 for every ¢ < 0. In conclusion, we
have shown that ¥ is Ulrich for Opx(1), hence trivial. Therefore G is a trivial vector bundle
as well.

To prove (3), suppose & is stable and assume that there is a non-zero subsheaf ¥ c &
such that u(¥) = w(&). By Remark A 4.4, we can assume that &/F is torsion-free, so that
¥ is an Ulrich bundle by (2). Then Lemma 1.1.16 implies that p(#) = p(&) contradicting
the stability.

To complete the proof, suppose that & is not stable. Then, by (1) and by Remark A.4.4,
there is a non-zero subsheaf ¥ C & of smaller rank such that u(¥) = (&) and E/F is
torsion-free. The conclusion follows from (2). O

Proposition 1.1.18. Let X be a smooth projective variety of dimension and let B be a
base-point-free ample line bundle. Let & be a B-Ulrich bundle. In any Jordan-Holder
Sfiltration of &,

0= cE c---cé&E =6,

the &;’s for 1 <i < € are B-Ulrich bundles.

Proof. Consider a Jordan-Holder filtration of & as above. Then, &;/&;_ is stable, torsion-
free with p(&;/E;—1) = p(&;) = p(E) for each 1 < i < € (Proposition A.4.5). We claim that it
is enough to prove that &, is B-Ulrich. Indeed, if it so, ¥ = &/&; is B-Ulrich by Lemma
1.1.12. Then

0=%FoCF 282/81 C--CFe1=F

is a Jordan-Holder filtration of ¥ each factor F;/¥ ;-1 = &;/&E;-1 is stable, and, since
p(&1) = p(&) = p(E/E1) by Lemma 1.1.16(i), we have

p(Fi/Fj-1) = p&;/Ej-1) = p(E) = p(E1/0) = p(&E1) = p(F).

But ¥ is a B-Ulrich bundle with rk(7) < rk(&), hence by induction on the rank we deduce
that &;/&; is B-Ulrich for each i = 2,...,¢. Applying again Lemma 1.1.12, we get the
conclusion.

On the other hand, & is stable, torsion-free with same reduced Hilbert polynomial of &,
hence it the same slope of &. As E/&, is torsion-free, the assertion follows from Proposition
1.1.17(2). O

We conclude the section with some example.
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Example 1.1.19. Any smooth and irreducible hypersurface X in PV carries an Ulrich bundle
with respect to Ox(d). Indeed, if X has degree d, then X is a smooth irreducible member of
|Opn(d)|. The conclusion follows by combining [Beal8, Proposition 3.1] and Proposition
1.1.13.

Proposition 1.1.20. Let X be a smooth projective variety and let B be an ample and globally
generated line bundle. If X admits a B-Ulrich bundle of rank r, then X carries a B®*-Ulrich
bundle of rank r - n! for any k > 1.

Proof. Letn = dimX and d = B". Let & be a B-Ulrich bundle of rank r, 7: X — P" be a
finite surjective morphism such that 7*Op:(1) = B, and ¥ an Ulrich bundle of rank n! on
P”" for Opx(k) [Beal8, Proposition 3.1]. Then & ® 7*F has rank r - n! which is Ulrich for
(X, B®): indeed, if 1 < p < n, as 7°Opn(h) = B®" for all h, and 7.E = O, we have by
projection formula and being B-Ulrich, that

@rd

. (@ n*F)(-pB™)) = m.E @ F(-pk) = (F ® Op: ()* 7))

Since the pushforward by a finite morphism preserves cohomology, the conclusion follows
from the fact that (cohomology commutes with direct sums and that) ¥ is Ulrich for
Opn (k). O

Theorem 1.1.21 ([Kim16, Theorem 0.1]). Ler X be a smooth projective variety and let B
be an ample and globally generated line bundle. Let u: X — X be the blow-up of X at x
with the exceptional divisor E. Assume that B:= W'B — E is ample and globally generated.
Then a vector bundle F on X is B-Ulrich if and only if ¥ := u*F (—E) is B-Ulrich.

Proof. Recall the well known fact that Rlp*Og(( p—1E) =0fori > 0,and u.Oz((p—1E) =
Ox forevery 1 < p < dimX = dim X (see for instance [BEL91, Proof of Lemma 1.4]).
Hence, projection formula [Har77, Exercise II1.8.3] implies that

R (F(=pB)) = Riu. (x"(F (~pB)) ® Ox((p ~ DE))
= 1 (F(-pB) ® R'u.Ox((p ~ DE) = 0

for 1 < p <dim X and all i > 0. Therefore, by [Har77, Exercise II1.8.1] and by projection
formula, the cohomology groups of ¥ (—pB) coincides with those of

1(F(=pB)) = F(-pB) ® 1.0 ((p — 1)E) = F(~pB).

In other words, we have the isomorphisms H i()~( , F (- pE)) =~ H'(X, 7 (-pB)) forall i > 0
and 1 < p < dim X, which proves the theorem. O

Remark 1.1.22. Given a globally generated ample line bundle B on a smooth projective
variety X, and said u the blow-up morphism at x € X with exceptional divisor E, then
(B — E is ample and base-point-free if and only if &(B; x) > 1 (see Appendix B.2 for the
definition of Seshadri constant) and B ® my, is generated by global sections.

Indeed, since &(B; x) > 1 by Remark B.2.4, the claim on ampleness is Lemma 3.0.4
below. About the global generation, the assertion follows from [Laz04a, Lemma 4.3.16]
saying that H(X, B) = H(X, B® m,)
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1.2 Ulrich line bundles

In this section we present some example, taken from [Beal8], of smooth projective varieties
carrying Ulrich line bundles. These are fairly rare. For instance we have the following
restriction.

Remark 1.2.1. If X is a n-dimensional smooth variety and B is an ample globally generated
line bundle, then Ox(kB) is B-Ulrich if and only if (X, B) = (P*, Op») and k = 0.

Indeed, as one direction is clear (e.g. by Lemma 1.1.1), suppose Ox(kB) is B-Ulrich.
Then h°(X, Ox((k — 1)B)) = 0 and h°(X, Ox(kB)) = B" immediately yield k = 0. Hence
B" =1 and the claim follows by Lemma 3.0.1.

Another special case is that of curves.

Proposition 1.2.2. Smooth projective curves carry Ulrich line bundles with respect to any
ample and globally generated polarization.

Proof. Let C be a smooth projective curve and let g be its genus. According to Proposition
1.1.5, we need to find an acyclic line bundle £. By Riemann-Roch, we have

R(C, L) - h'(C, L) = deg(L) - g + 1,

so we reduced to find a line bundle of degree g — 1 with no global sections. If g = 0, then
C = P! and the only choice is £ = Opi(=1). If g = 1, the curve is not rational, so it is
enough to take £ = O¢(P — Q) for two distinct points P, Q by [Har77, Example 11.6.10.1 &
Lemma II1.1.2]. If g > 2, there exists a divisor @ C Pics~1(C) set-theoretically defined as

@ := (D € Pic*”1(C) | H'(C, D) # O}.
Therefore it is enough to pick £ € Pics~'(C) living outside 6. O

Proposition 1.2.3. Let n: P(8) — C be a n-projective bundle over a smooth projective
curve C, let A be a line bundle on C, and let F be a vector bundle on C. If B = n*A®Opg)(1)
is ample and globally generated, then n*F (B) is B-Ulrich if and only if F is acyclic. In
particular projective bundles over curves carry Ulrich line bundles.

Proof. Forany 1 < p <n, we have
7" F (B)(=pB) = (x*F)(—p + DB) = n°(F (1 = p)A)) ® Ope)(1 - p).
Then, by projection formula [Har77, Exercise II1.8.3],
Riz. (7" F (B)(=pB)) = F (1 - p)A) ® RIx*(Ope)(1 - p)) (1.8)
for all j > 0. However, we have:

(A) R-/ﬂ*(OP(g)(l -p) =0for0 < j<n, and R"m.(Opey(1 —p)) =0as—p+1 >
—-n+ 1> —n — 1, both following from [Har77, Exercise 111.8.4(a)];

(B) if j = 0 in (1.8), right-hand-side vanishes for 1 < p < n, and is ¥ for p = 1, both
given by [Har77, Proposition 11.7.11].
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In summary, (A) together with (1.8) tells us that R/, (m*F (B))(—pB)) = 0 for j > 0. Then,
combining this with (B), (1.8) with j = 0, and [Har77, Exercise I11.8.1], we obtain

H(C,¥) for p=1

H'(P(E),n"F (B)(-pB)) = { 0 for 1<p<n

for all i > 0. So the conclusion follows. O

Another example is given by Del Pezzo surfaces, namely smooth projective surfaces S
whose anticanonical divisor —Ky is ample. Recall that the anticanonical divisor of a Del
Pezzo surface is globally generated if and only if the degree K§ e {1,2,...,9} is greater
than or equal to 2, and is very ample if K2 > 3. The existence of Ulrich line bundles in the
case of very ample anticanonical divisor is treated in [Beal8, Proposition 4.1(i)]. So we
consider only the case of degree 2 following the same idea.

Proposition 1.2.4. Let S be a Del Pezzo surface of degree 2, and let L be a line bundle such
that [* = =2 and L- Kg = 0. Then & = L(=Ky) is a (—Ks)-Ulrich line bundle on S. Since S
is isomorphic to the blow-up of P? at seven points in general positions, we can take L as the
difference of two distinct exceptional divisors.

Proof. 1t’s clear that L has no nonzero global sections because it is not trivial, as [* #0,
and if it were effective, then we would have L - (-Kg) > 0. The same holds for K¢ — L
since —Ks - (Ks — L) < 0. Using Riemann-Roch theorem and Serre duality, we also see that
h'(S,L) = 0. Since (~L)*> = =2 and —L - K = 0, the same holds for L*. So L and L® K are
both acyclic. Applying Serre duality, we get 4'(S, L ® Ks) = h*7/(S,L*) = 0 for all i > 0.
As E(—(—K5s)) = L and E(-2(-Ks)) = L ® Ks, we obtain that & is Ulrich with respect to
—Ks. O

1.3 Special rank 2 Ulrich bundles on Del Pezzo threefolds of
degree 2

A Del Pezzo manifold of degree d is a polarized smooth projective variety (X, B) of dimension
n > 2 such that Ky = —(n — 1)B and B" = d. These varieties, that generalize Del Pezzo
surfaces, are classified in [IP99, Theorem 3.3.1]: if d > 3, the polarization B determines
an embedding in P**"~2; for d = 2, then ¢p: X — P" is a double cover branched over a
hypersurface of degree 4; finally, B has a single base point if d = 1 [IP99, Proposition 3.2.4].

Consider the case n = 3. It has been proved in [Beal8, Proposition 6.1] that any Del
Pezzo threefold (X, B) of degree d > 3 has a special B-Ulrich bundle of rank 2. In this
section we prove the analogous for Del Pezzo threefolds of degree 2.

Definition 1.3.1. A vector bundle & of rank 2 on a smooth projective variety X of dimension
n is special for B, with B a globally generated line bundle, if det(&) = Kx((n + 1)B).

The following lemma will play a central role.

Lemma 1.3.2. A Del Pezzo threefold (X, B) of degree 2 contains a smooth elliptic curve I’
of degree 4 with respect to B such that its ideal sheaf in X satisfies H*(X, Ir/x(B)) = 0.
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Proof. The following argument is taken from [Fael4, Proof of Theorem D, Step 1]. Fix
an embedding X c PV given by a very ample multiple Ox(rB) = Ox(1). Let Hilb*"(X)
be the Hilbert scheme of X parametrizing closed subschemes having Hilbert polynomial
P(m) = 4rm. Let H;‘(X) c Hilb*™(X) be the open subset parametrizing Cohen-Macaulay
curves in X ¢ PV of degree 4r and arithmetic genus 1, and let Vf (X) c H‘f(X ) be the open
subset of smooth irreducible curves of such degree and genus. Note that H‘l‘(X) contains
all curves C such that B - C = 4 having p,(C) = 1. Conversely, if [D] € H‘l‘(X), then
4r = deg(D) = (rB) - D forces B - D = 4. Finally, denote by Up C |B| ~ P3 the open dense
subset {S € |B|| S is smooth and irreducible} .

An element § € Up is a smooth Del Pezzo surface of degree (—Kj )2 = B|25 =2. We
may identify S with the blow-up of P? in 7 points Py, ..., P; in general positions, with
exceptional divisors E, ..., E7. Denote by Hg C P2 the class of a line and with ﬁg cS
its pullback, so that Big = 3Hg — E| — --- — E7. The linear series IZp,....psyp2(3)| has
no unassigned base points and has dimension 2 [Har77, Proposition V.4.3 & Corollary
V.4.4(a)]. Therefore the linear series |3Es — E; — .-+ — Ej5| is base-point-free. Moreover
(3ﬁs —E|—---—Es5)? =4 > 0, hence its linear series is not composite with a pencil. Then, a
general member 'y € |3H s — E1 —---— Es| is a smooth irreducible curve by Bertini theorem
[Har77, Corollary II1.10.9 & Exercise 1I1.11.3] with g(I's) = 1 [Har77, Corollary V.3.7].
The normal bundle Ny, /s in S has degree I § = 4, and by adjunction formula we see that
I'; =-Ks-I's =B -I's = B- I's. We deduce that [I's] lives in V}(X) ¢ H{(X).

For any pair ([I'],S) € V{(X) X Ug such that I C S, we have (-Ks) - "= Bs - I" = 4,
whence

deg(Npys) =T*=2g(IN-2—Ks -I'=4

by adjunction formula. Consider the exact sequences

0— Os — Os(I') — Or(I') = Nrys — 0, (1.9)
0— Or(I') = Nr/x — Or(B) = (Ns;x)ir — 0. (1.10)

Since I" is a smooth elliptic curve and deg(Or(I")) = 4 > 0, we have W, Op)) =
0. Then, Riemann-Roch theorem on " implies W, OpI)) = deg(Nr/s) = 4, and the
rationality of S says that H'(S, Os) = 0. By the cohomology sequence of (1.9) it follows
that 1°(S, Os(I")) = 5. Again, as B-I" = 4 > 0, it follows that A (I', Or(B)) = 0. By the
exact sequence in cohomology associated to (1.10), we conclude that H N r/x) = 0and
(T, Nrx) = 8. Therefore Hilb4’m(X) is smooth of dimension 8 at the point [I].

Now fix a pair ([Ig],So) € Vf'(X) x Up with I'y = I's,. We claim that a general
deformation I" of Iy in H‘l‘(X) satisfies HO(X, I’ r/x(B)) = 0, or in other words, there is an
open neighborhood V C Hf'(X) of [I'y] such that H(X, Ir/x(B)) =0forall [I'] € V. Once
proved the assertion, it is enough to take an element [/'] € V N V?(X) to conclude the proof.

To prove the claim, we proceed by contradiction. Consider the incidence correspondence

J ={(I.8) e HXO X |BI| T ¢ S} c H{(X) x|B,

and let 7;: J — Hf(X) and my: J — |B| =~ P3 be the two projections. Assuming the
contrary, we can suppose that 77 is dominant onto an open neighborhood V’ of [I] € Vf(X).
Up totake V' N Vf(X), assume V' C Vf'(X). Observe that the fibre of 711 over [Iy] consists
only of the divisor S¢: if § # S¢ is another divisor in |B| containing I, then (So);s C So is
a divisor in S ¢ containing /o, hence we must have

(So)s = Bjs =3Hs, — E| —---—E7 > Ty =3Hs, — E| —--- — Es,
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saying that —E¢ — E7 is effective, which is absurd. Let Jo C J be an irreducible component
which is dominant onto V’. Recalling that Hf(X) is smooth of dimension 8 in [/ ], we have
dim Jo > 8. Set Uy = Jo N 77 (V}(X)). Then ([T, S o) € Uy since 717 ([Io]) = {So}. For
any S € Usp, the fibre

m'(8)={r e H{(X)| T c 5}

can be identified with the Hilbert scheme of curves in § ¢ PV having degree 4r and
arithmetic genus 1.! Since H'(S, Os) = 0, Fogarty theorem [Fog68, Corollary 2.7] implies
that it is a finite disjoint union of projective spaces corresponding to the linear systems of
curves in § ¢ PV of such degree and such arithmetic genus. In particular n£|;lr-‘ v (X))(S )isa
finite disjoint union of open subsets of linear systems ||, with I" C § a smoloth 1irrf:ducible
elliptic curve of degree 4. We saw above that every such linear series has dimension 4,

hence we must have dim (ni;_, v (X))(S )) = 4. Applying [Har77, Exercise 11.3.22(b)] to
1 1

o, - Uo — |Bl, we get
8 < dim J = dim Up < dim (my;, (S0)) + dim |B| = 7,
which is a contradiction. O

The following result extends [Beal8, Proposition 6.1] to Del Pezzo threefolds of degree
2. See also [Vac25, §4.2.1].

Proposition 1.3.3. Every Del Pezzo threefold (X, B) of degree 2 carries a stable special
B-Ulrich bundle of rank 2.

Proof. The proof goes as in [Beal8, Proposition 6.1]. Let I' c X be as in Lemma
1.3.2. Using that Kr is trivial, det(Nr/x) = B‘lg;z [Har77, Proposition 11.8.20]. Since

H*(X, Ox(-2B)) = 0 and det(Nr/x) ® Ox(2B)r = Or, there exists by Hartshorne-Serre
correspondence [Arr07, Theorem 1.1] a rank 2 vector bundle & with det(E) = Ox(2B) and
fitting in the short exact sequence

0—0Ox—&— Irx(2B)— 0. (1.11)

Using that & = A>71&* ® det(E), we have that &(—2B) = Ky ® &(—2B)* and &(-3B) =
Kx ® &(—B)*. Hence, in order to show that & is Ulrich for B, we reduced to prove that
H{(X,&(-B)) = 0 fori > 0 and H'(X,E(-B)) = 0 for i = 0, 1 thanks to Serre duality. Since
H/(X,Ox) = 0 for j > 0, X being a Fano variety, it is clear from the usual exact sequence

0—TIrx—0Ox—Or—NO. (1.12)
that H'(X, I r/x) = 0 for i = 0, 1. Non-degeneracy means exactly that the restriction map
H(X, Ox(B)) — H(I, Or(B))
is injective. In addition to this, those vector spaces have dimension 4, so this map is

an isomorphism. Twisting (1.12) by Ox(B) and using that H/(X, Ox(B)) = H/(X,Kx ®
Ox(3B)) = 0 for j > 0 by Kodaira vanishing, we obtain from the associated long exact

'All divisors in a smooth variety are locally complete intersection, hence they are automatically Cohen-
Macaulay [Har77, Proposition 11.8.23(a)].
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sequence that H'(X, I /x(B)) = 0 for i > 0. Taking the long exact sequence associated to
the suitable twist of (1.11), we obtain the required vanishings. Finally, since Pic(X) =Z - B
[[P99, Remark 3.3.2(i)], X cannot support B-Ulrich line bundles (Remark 1.2.1). Therefore
& is stable by Proposition 1.1.17. O

As a corollary we obtain the following.

Corollary 1.3.4. All Del Pezzo threefolds (X, B) of degree d > 2 support a u-stable special
Ulrich bundle of rank 2.
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Chapter 2

On equivariant Ulrich bundles on
rational homogeneous varieties

Finding vector bundles which are also Ulrich is a quite difficult task. However, on rational
homogeneous varieties G/P there is a large class of vector bundles worth considering:
the one of equivariant vector bundles. Among them, the easiest ones to study from a
cohomological point of view are the irreducible ones thanks to Borel-Bott-Weil theorem
2.1.3. Exploiting this tool, irreducible equivariant Ulrich bundles (with respect to the
minimal ample class) have been fully classified on all rational homogeneous varieties of
Picard rank-1 in [CM15; Fonl6; LP21] (respectively for G of type A,, then for G of type
B,,C,, D,, and for G of exceptional type E¢, E7, Eg, F4,G>). For higher Picard ranks, again
in the irreducible case, several flag varieties of type A, are treated in [Cos17b], all isotropic
flags, i.e. of type B,, C, and D,, and all flag varieties of exceptional type Eg, F4, G5 are
studied respectively in [FN24] and in [Nak23].

As said above, in [CM15; Fonl6; LP21] the Ulrichness of irreducible equivariant bundle
is with respect to the generator of the Picard group. The first result of this chapter is the
extension of that classification with respect to all Veronese embeddings.

Proposition 2.0.1. Let X = G/ P be a rational homogeneous variety with Pic(X) = Z-Ox(1).
An irreducible equivariant bundle &, on (X, Ox(d)) is Ulrich if and only if A = di+ d-1)p
where A is a P—dominant weight such that &y is Ulrich on (X, Ox(1)). In particular, all
irreducible equivariant Ulrich bundles for (X, Ox(d)) are classified.

Except for grassmannians, where there are always (several) irreducible equivariant
Ulrich bundles (see [CM15]), as it is shown in [Fon16; FN24], irreducible equivariant
bundle are rarely Ulrich. Certainly this negative answer does not contradict Eisenbud-
Schreyer conjecture (simply because vector bundles on rational homogeneous varieties
are not necessarily equivariant), but also it does not prevent the existence of reducible
equivariant bundles which are, anyways, Ulrich. The only examples of such bundles can
be found on Gy/Py = Qs, F4/P4,E¢/Py (see [LP21, Remark 4.2 & §6.1 & Corollary
7.4]) with the last one already supporting an irreducible one (see [LP21, Proposition 5.1]).
However these examples are obtained as restriction to the hyperplane section of irreducible
equivariant Ulrich bundles on other rational homogeneous varieties. In this chapter we
construct in an explicit way (reducible) equivariant Ulrich bundles on S;o = Ds/P5 C ) 28
and on LGr(3, 6) = C3/P3 c P13, both of them not supporting irreducible equivariant Ulrich
bundles (see [Fon16, Propositions 3.3—6.6]).



2. On equivariant Ulrich bundles on rational homogeneous varieties 30

Proposition 2.0.2. The spinor tenfold Sig ¢ PV and the Lagrangian grassmannian
LGr(3,6) c P'3 support a u-stable equivariant Ulrich bundle.

Both of these varieties are of great importance since they are maximal Mukai manifolds
of genus g = 7,9 (see Theorem 2.3.3). As a consequence we get the following corollary.

Corollary 2.0.3. Prime Mukai manifolds of genus g € {4,5,7,8,9} and ordinary prime
Mukai manifolds of genus g = 6 support Ulrich bundles for the generator of the Picard

group.

We now set the notations which will be carried throughout the chapter. We denote by G
a simple algebraic groupand by Lie(G) = g its Lie algebra. Fix a Cartan subalgebra h C g
endowed with the Killing product (, ) and consider the corresponding Cartan decomposition

g=b®@ga

acd

with root system @. For @ € @ we denote by r, the reflection with respect to the hyperplane
H, which is orthogonal to a. Let 4 = {ay,...,a,} C @ be a basis of simple roots. This
choice determines a decomposition @ = @~ | | @+ where @* (resp. @) is the set of positive
(resp. negative) roots, i.e. roots which can be written as a non-negative (resp. non-positive)

integral linear combination of simple roots. Let {1y,..., 4,} be the fundamental weights
(corresponding to 4), i.e. the dual basis for {(021‘21), R (ai(f;n)} with respect to (, ), and let
A = Spang(4y,...,4,) C b* be the weight lattice. Once fixed an orthonormal basis {&;}’_,

for b*, for any weight 1 € A we write
A=(,...,6)

for its vector of coordinates with respect to {ey,.. ., £,)." We denote the sum of all funda-

mental weights by
1 n n
= 1=

The Weyl group ‘W is generated by the reflections r; = r,,, for @; € 4 and the fundamen-
tal Weyl chamber is

D = {Zn:xi/l,-

i=1

xiZOforalllgiSn}.

The affine action of the Weyl group on the weight lattice is defined as
w-Ad=w(d+p)-—p.

The weights living in D are called dominant and are in bijection with the finite dimensional
irreducible g—modules. For any dominant weight 1 = 37", p;4; € AN D we denote by

V/l:Vpl ----- Pn:V(p19'--apn)

the corresponding irreducible g—module of finite dimension. The dual of V7, is the irreducible
g—module V_,, 1) where wy is the longest element in the Weyl group ‘W.

"The coordinates ¢, ..., ¢, do not need to be integers.
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2.1 Preliminaries on rational homogeneous varieties and equiv-
ariant bundles

Here we review the main features of rational homogeneous varieties with Pic = Z and
equivariant vector bundles. The main references are [Ott95a; OR06].

Any rational homogeneous variety X with Pic(X) = Z is the quotient X = G/P where
P = P(ay) = Pr < G is the parabolic subgroup associated with the set 4\{ay}. More

precisely, if we set
n

Do) ={a e D" |a= Z kia; ¢,
i=1,i#k
we can define P = P(ay) as the subgroup of G such that

Lie(P) =he ) 0o s

acd(ay) aced™

In addition to this, we have a splitting Lie(P) = Lie(N) & Lie(R) where N < P,R < G are
subgroups such that

Lk = P o Le® =00 (D 0o P s

acDT\D(ay) aeD(ay) acD(ay)

In fact this provides the Levi decomposition P = N > R with R being the reductive part of P
and N being the unipotent radical of P. In this notation, we also have dim X = |¢+\@(ak)| .
The reductive part has its own fundamental Weyl chamber D’ > D defined as

D/ = {Zn: X,'/l,'

i=1

x,-ZOforalllsiSn,i;tk}.

Weights belonging to D’ are called P—dominant and correspond bijectively to the (finite
dimensional) irreducible representations of P. For all the rest of the paper, any parabolic
subgroup is of this form.

Definition 2.1.1. A (G-)equivariant vector bundle on a rational homogeneous variety
X = G/P is avector bundle E — X such that the diagram

GxE -ZESs E

Lo

GxX —X

commutes and the maps on fibres og(g, —): E(x) — E(g.x) are linear isomorphisms. A
morphism f: E — F between equivariant vector bundles on X is G-equivariant if the
following diagram commutes

An exact sequence of equivariant vector bundles 0 — E’ — E — E” — 0 is G—equivariant
if all morphisms are equivariant.



2. On equivariant Ulrich bundles on rational homogeneous varieties 32

By definition, a coherent locally free sheaf & on X is (G—)equivariant if its total space
E — X is an equivariant vector bundle. From now on we won’t distinguish between
equivariant vector bundles and its sheaf of local sections.

For an equivariant vector bundle & on X = G/P, the fibre &(z) over the lateral class
z = [P] € X is naturally a representation of P. Conversely, given a representation n7: P —
GL(V), the quotient G %, V = (G x V)/ ~ via the equivalence ~, where (g,v) ~ (g’,V") if
there exists p € P such that g = ¢’p and v = 7! (p)(v'), defines an equivariant bundle &y
such that &,(z) = V. It is well known that the correspondence

Er— &(2)

defines an equivalence of categories between the category of equivariant bundles on X and
P—-modules of finite dimension. For instance, the cotangent bundle Q; is associated with

the representation
LieM) = P g
a€dT\D(ay)

and —D*\D(ay) = {&}ITX are said the weights of Q).
Equivariant bundles corresponding to irreducible representations of P are called irre-

ducible. For every P—dominant weight A = }'" | p;A; € D’, we denote by

the corresponding irreducible bundle on X = G/P. In particular, &, = Ox(1) is the (very)
ample generator of Pic(X) = Z and the canonical bundle Ky = &, with

dim X
k== )@= )G
e\ D(a) i=1

as it is the determinant representation of n. Furthermore &40y, = &1(€) for every P—dominant
weight A.

Definition 2.1.2. A rational homogeneous variety X = G/P is called an irreducible Hermi-
tian symmetric variety if the cotangent bundle Q}l( is an irreducible equivariant bundle.”

Every G—equivariant bundle & on X = G/P admits a filtration of G-equivariant subbun-
dles
0= c& c---c& =6

such that each quotient &;/&;_; is irreducible. We define the graded bundle of & as

ar(&) = P&

i=1

This definition does not depend on the filtration. In fact it is given by taking the restriction
of the P—module defining & to the reductive part R < P.

Irreducible Hermitian symmetric varieties have been classified by Cartan (see also [OR06, Theorem 5.12]).
They are Grassmannians Gr(k, n) = SL(n)/P(a;), even and odd quadrics Q», = SO(2n + 2)/P(a,) and Q5,1 =
SOQ@2n + 1)/ P(a), spinor varieties S,, = SO(2n)/P(«a,), Lagrangian Grassmannian LGr(n, 2n) = Sp(2n)/P(a,),
the Cayley plane OP? = E¢/P(a,) and the exceptional 27-dimensional variety X,; = E;/P(a;).
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As G acts on equivariant bundles, then it acts on cohomology groups as well. In
particular, the morphisms in the cohomology sequence of an equivariant exact sequence are
morphisms of G—modules. The Borel-Bott-Weyl theorem provides a tool to compute the
cohomology of irreducible equivariant bundles. First recall that a weight yu is singular if
there exists a positive root @ € @* such that (u, @) = 0, otherwise it is called regular.

Theorem 2.1.3 (Borel-Bott-Weil). Let X = G/P be a rational homogeneous variety. Given
a P—dominant weight 1 € D', there exists a unique w € ‘W such that w(d + p) € D. If
w(Ad + p) belongs to the boundary of D, which amounts to say that A + p is singular, then

H(X,&,) =0 foralli> 0.
If w(d + p) lies in the interior of D, or equivalently if A + p is regular, then

Via ifi=~€(w)

H(X =
(%.82) {0 ifi # ((w)

where €(w) is the length of w in the Weyl group ‘W.

The next elementary observation shows that the singularity of a P—dominant weight can
be checked just on roots in @\ D(ay).

Remark 2.1.4. If 1 = 37" | x;4; is a P—dominant weight, then A + p is singular if and only
if there exists @ € @\ ®(ay) such that (1 + p — td, @) = 0.
Indeed, by definition of fundamental weights one has

n n n n

1
Wpa)= ) @k Dk(eap+ ) D) it Dk = ) S(ana)(i+ Dk

j=1,j#k i=Lizk j=1,j#k i=1,i#k

which is strictly positive because x; > O for i # k and at least one k; must be non-zero (as
0 ¢ @ by definition of root system).

Given a P—dominant weight A such that 1+p is regular, let w € ‘W be the unique element
such that w(1+p)—p € D. We define the inversion set ®,, of w € W as @,, = w™! (&7)N D™,
The following lemma coming from a result due to Dimitrov and Roth involving inversion
sets will play a fundamental role.

Lemma 2.1.5. Let & and F be equivariant bundles on a rational homogeneous variety
X = G/P such that

Ext'(&,7)° = H' (&) = C¢, H(X,E) = H'(X, &) = V,, HY'(X,F) = H*'(X,§,) = V,

for a non-zero dominant weight v € D and for some P—dominant weights 8,1, u € D’. Let
wg, wa, wy, € W be the elements such that wg - B,wy - A, wy, - u € D and let

d: H(X, &) — H' (X, F)

be the boundary map for the equivariant exact sequence defined by ¢. If u = A + 8 and
Dy, = Dy | | Dy, then 8 is an isomorphism. In particular, d is always an isomorphism for
i=0.
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Proof. This is just a consequence of [DR17, Theorem I & Corollaries 5.4.1-5.4.2]. O

We conclude this section stating Rohmfeld criterion for the stability of equivariant
bundles. For a proof we refer to [OR06, Theorem 7.2] and [Fai06, Theorem 1].

Theorem 2.1.6. Let X = G/P be a rational homogeneous variety and let & be an equivariant
homogeneous bundle. Then the following are equivalent:

(1) We have u(F) < u(E) for every G-equivariant subbundle ¥ C & (equivariant stabil-
ity).

(2) There exist an irreducible G—module V and a u-stable equivariant subbundle & C &
suchthatE=Ve&

Theorem 2.1.6 together with the Lemma 1.1.16 and Proposition 1.1.17 immediately
yields the following observation.

Remark 2.1.7. Let € be an equivariant Ulrich bundle on a rational homogeneous variety
X = G/P c PV. Then the following are equivalent:

(a) &is equivariantly stable.
(b) &is stable.
(c) &is u-stable.

(d) There are no G-invariant Ulrich subbundles ¥ C &.

2.2 Irreducible equivariant Ulrich bundles for Veronese embed-
dings of rational homogeneous varieties

This section is devoted to the proof of Proposition 2.0.1.
As in [Fon16], for any P—dominant weight A we are going to set

Irr(A) := {t € Z | 1+ p — A, is singular} . 2.1)
Analogously to [Fon16, Lemma 2.4], one can prove the following.

Lemma 2.2.1 (Fonarev criterion). An irreducible equivariant bundle &) on a m-dimensional
rational homogeneous variety X = G| Py, is Ulrich for the Veronese embedding (X, Ox(d)) if
and only if Trr(A) = {d, 2d, ... ,md} .

Proof. This is a straightforward modification of [Fonl16, Lemma 2.4] (see also [LP21,
Lemma 3.2]). Of course, if Irr() = {d, 2d, ..., md}, then &, is Ulrich for the d-Veronese
embedding by Borel-Bott-Weil theorem. Conversely, if &, is Ulrich for (X, Ox(d)), then
Hi(X,Ey(—td)) = 0 foralli > 0 foreach 1 < £ < m. So {d,2d,...,md} C Irr(2) by
definition. Since [Irr(2)| < |®*\&®(ax)| by Remark 2.1.4 and |@*\d(ey)| = m, the claim
follows. O
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Proof of Proposition 2.0.1. Let m = dimX > 1 and let P = Py for some 1 < k < n. As
irreducible equivariant Ulrich bundles on (X, Ox(1)) have been classified in [CM15; Fon16;
LP21], we just need to prove the first part. One direction is easy. Suppose A defines an
irreducible equivariant Ulrich bundle on (X, Ox(1)). By Remark 2.1.4 and Lemma 2.2.1 for
every 1 < ¢ < m there exists 8, € @\ P(a;) such that (Z +p — €A, Be) = 0. The weight
A=dl+ (d — 1)p is P—dominant and satisfies

(A+p—LCdAg, Be) = (dA+(d—Dp+p—LtdA, Be) = d(A+p—L€A, Br) = O foreach 1 < € < m.

Then &, is Ulrich on (X, Ox(d)) by Lemma 2.2.1.

Conversely, suppose A = 3", p;4; defines an irreducible equivariant Ulrich bundle for
(X, Ox(d)). We set
A+p = (al7~~‘7ak7b17"'7bn—k)

for the vector of coordinates of A + p € A with respect to the canonical basis of h*. Notice
that p; > O for all i, i.e. A is dominant, because &, is generated by global sections. As
above, by Remark 2.1.4 and Lemma 2.2.1 for each 1 < £ < m we can find a positive root
Be € DT\ D(qy) such that

(4 +p0 - fd/lk,ﬁ[) =0.

Claim 2.2.2. It suffices to prove that A + p = du for some weight u € A, which is equivalent
to prove that (p; + 1) = {;d for some integer {; or that a; = q;d,b; = q;.dfor some rational

numbers q;, q}.

Proof. If A+ p = dy for some weight u € A, then u will automatically be strictly dominant,

ie u= ", qd; with g; > 0 for all i, because p; > O for all i. The weight 1 = u — p is then
P—dominant and satisfies

1
A+p— A, Br) = (u— EA, Be) = 3(/1 +p = dA,Be) =0

for every 1 < £ < m. Therefore the irreducible equivariant bundle &5 is Ulrich on (X, Ox(1))
by Lemma 2.2.1 and A = A+d- 1)p by construction. O

In remaining part of the proof we will simply check that every coordinate of A + p either
with respect to the fundamental weights (for G of type A, E, F, G) or with respect to the
canonical basis (for G of type B, C, D) is a multiple of d.

Let G=B,, or G=C,,. As shown in [Fon16, §§3-4], we have

_ ai+aj
() = {a; + bj}lsisk,lstn—k U (Z n { 2 }lsigjsk)'

As Irr(1) = {d,2d, ..., md} and q; € Irr(1), we have a; = {;d for each 1 < i < k for some
1 < ¢; < m. Since a; — b; € Irr(1), we also have b; = €1d + {;d = ({; + {;)d for each
1 < j<n-kandforsome 1 <{; <m. By Claim 2.2.2, this concludes G = B, C,,.
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Let G=D,,. Here the weight lattice is identified with Z" U (% + Z”) . Then, as in [Fon16,
(18)]°, we have

Irr(4) = {ai + b/}lgisk,lsjs;z—k U (Z n {ai + aj}lsi<jsk) =1{d,2d,...,md}.

If k <n, thenforeach 1 <i<kand 1 < j<n—kwehavea; +b; = lijjd,a;—bj={;,d
for some 1 < &j,t’l’.j < m. Therefore a; = ({;; + flfj)d/Z, bj = (tij - {’lfj)d/2 and the claim
follows. For k = n, write a; + a; = El’; with 1 < f:; < m, foreach 1 <i < j < m. Then, for
1 <i< j<h<nwehave
a; —ay = (a,- + aj) - (Clj + ah) = (51’; - f;,h)d, a; +ap = fl’;,d

It follows a; = (5;}+£’;,;—5}'h)d/2 for 1 <i < n-2.Wesimilarly find thata; = (¢ +¢)—(},)d/2
also forn — 1 <i < n. By Claim 2.2.2 this concludes G = D,,.

Now we go back to the notation by fundamental weights.

Claim 2.2.3 (see also [LP21, Proposition 3.3]). We have

n

Irr(d) = {pk ey @0 @ ), D xai € Q')+\€Z5(ak)}. 22)

i=1i#k (@, @) xe i1

and pr+1=4d.

Proof. Givena = 3| xa; € &\ D(ay), namely x; > 0 for 1 <i < nand x; > 0, we have

n
A+p=th@) = (e + 1 = Dl )+ D (pi+ Dxi(di, @)
i=1,i#k

1 n
= > (e + 1= Dxelap @)+ Y (pi+ Dxas ) |
2 i=1,i#k

Hence

n
t=pp+ 1+ Z (al7al)xl (pi+ 1)
A (o @)Xy

is a singular value for A + p. Vice versa, by Remark 2.1.4 all singular values of A4 + p
have this form. Hence (2.2) is proved. Obviously the minimum is attained with ay, so
min Irr(1) = pg + 1. But min Irr(1) = d by Lemma 2.2.1, so py + 1 = d as claimed. O

Let G=A,. As is well-known &\ ®(ay) = {3/ e for 1 <i <k < j < n}, whence

by (2.2). Lemma 2.2.1 tells that for every pair 1 <i < k < j <n we have

pit - +pi+j+l—i={;d

3There is a typo in the displayed equation [Fon16, (18)] because we actually have (A+p—1Ay, &i+€;) = a;+a;—t
forl <i<j<k
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for some 1 < ¢;; < m. Since p; + 1 = d, we see that {;; = 1. We prove by induction on
0 <j<n-—kthat pryj+ 1 = (Cipsjliks+ j-1)d. As we already know that py + 1 = €4 d,
suppose j > 0. Using the inductive hypothesis we easily find that

j-1

Cksjd =pet -+ perjtj+t1=0Cpd—1+ Z [(Crjrn = Chprn-1)d = 1] + praj+ j+ 1
=1

= lijrjord + prej+ 1

proving the claim. In a similar way we can check that py_; + 1 = (k=i x — Ck-i+1.1)d for every
0 <i<k-1.ByClaim 2.2.2 this concludes G = A,.

Let G=G3, so that m = 5 in both cases, and write A = pA; + gd,. We can easily compute
the set Irr(2) (see also [LP21, Proofs of Propositions 4.1-4.2]): for k = 1 we have

(P+D.(p+ D+ (q+D.(p+1)+3(q+1), }

Tre(2) :{ (p+D+2q+D,(p+1)+3(g+1)

and for k£ = 2 we have

@+ D, 3p+D+(@+ D, 2(p+D+(g+1D), }
Ip+D+@+D,(p+D+(q+1) '

For k = 1 the equalities p+ 1 =d,(p+ 1)+ (g + 1) = 2d forces Irr(1) = {d,2d, 5d/2,3d, 4d}.
For k = 2, the equalities g+1 = d, (p+1)+(g+1) = Sd yield Irr(1) = {d,7d/3,3d, 11d/3, 5d}.
It’s clear that there cannot be any irreducible equivariant Ulrich bundle on (X, Ox(d)) as for
d =1 [LP21, Propositions 4.1-4.2].

Irr(Q) = {

In remaining cases G = F4, Eg, E7, Eg the strategy is to find roots 8; € &\ d(«;) for
1 <i# k < nwhose corresponding singular value is of the form #; = d+(p;,+1)+- - -+(pj,,+1).
As each ¢; has to be a multiple of d by Lemma 2.2.1, an elementary inductive argument as
for A, will show that each (p; + 1) is of the form ¢;d for some integer ¢;. Once done that,
Claim 2.2.2 will provide the conclusion.

Let G=F 4. The simple roots satisfy (a1, a1) = (@2, @2) = 2, (a3, @3) = (@4, a4) = 1.

Fy) e—ere—e
(F4) 1234

For X = F4/Py, the singular values corresponding to | + a2, @1 + a2 + 23, a1 + @2 +
2a3 + 24 € T\ D(a)) are

ld+(p2+Dyd+(p2+ D+ (p3+ D, d+(p2+ 1D+ (p3+ 1)+ (pa+ D} C Irr(2).

For X = F4/P;, by taking a1 + @, a1 + @3 + 2a3, a1 + a3 + 2a3 + 2a4 € P\ D(an) we
get

{d+(pr+D,d+(p1+D+(p3s+1),d+(p1+1)+(p3+1)+(ps+ 1)} C Irr(2).

For X = F4/P3, the roots a3 + a4, as + 2a3, a1 + az + 2a3 + 2a4 € O\ D(a3) give the
singular values

{d+ps+1,d+pr+1,d+(p1+ 1)+ (p2+ 1)+ (pg+ 1)} C Irr().
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For X = F4/P4, we get
{d+(p3+ D, d+(p2+ D+ (p3+ 1, d+(pr+ 1D+ (p2+ 1)+ (p3+ 1D} Clir(D)

from the roots a3 + a4, @ + 2a3 + 2a4, @1 + ap + 2a3 + 2a4 € €D+\¢(a4).

In each case it’s clear that (p; + 1) = {;d for some ¢;. So the conclusion follows by Claim
2.2.2. In particular there are no irreducible equivariant Ulrich bundles for (F4/Px, Or,/p,(d))
by [LP21, Propositions 6.1-6.3-6.4-6.5]. This concludes G = Fjy.

Let G=Eg. In this case we have (aj,a;) = 2forall 1 < j <6.

For X = E¢/P1 = E¢/Ps5 we get
{d+(p2+ 1)+ (pi + Dh<ice C Irr(2)

from the roots a; + - -+ + @; € @\ DP(ay).
For X = E¢/P> = E¢/ P4, the roots a + az, @y + @3, @1 + @ + @3 + @4, @2 + @3 + a4 +
as, a1 + @ + a3 + ag € DT\ D(ay) yield

{d+(p1+1),d+(p3+1),d+(p1+1)+(p3+1)+(p4+1),

d+(p3+ D+ (pa+ D+ (ps+1.d+(pr+D+(ps+ 1)+ (ps+ 1) }Cmu)'

For X = E¢/P3, the singular values

{ d+(pr+1),d+(ps+1),d+(pg+ 1),

d+(p1+ D+ (pa+1),d+(pa+1),d+(ps+1) }CIrr(/l)

are given by as + a3, @3 + @4, @3 + a6, @] + @3 + @3, @3 + @4 + @5 € P\ D(a3).
For X = E¢/Pg, we can take a3 + ag, ap + @3 + @g, @3 + @4 + g, @1 + ap + @3 + g, @3 +
a4 + as + ag € DY\ P(ap) to obtain

{d+(p3+1),d+(pz+1)+(p3+1),d+(p3+1)+(p4+1),

d+(pr+D+(pa+D+(p3+ D d+(ps+ D+ (pa+ D+ (ps+1) }Cmu)'

We conclude that (p; + 1) is a multiple of d. Claim 2.2.2 provides the conclusion for
G = Eg.

Let G=E;. Again we have (aj,a;) = 1forall1 < j<7.

For X = E7/Py (resp. X = E7/P>) we easily get
{d+(p2+ D+ +(pi+Dhsic7 € Irr(A) (resp. {d + (p1 + 1) + -+ - + (pi + Dhi<ic7.iz2 C Irr(2))

from the roots @1 + -+ - + @; € @Y\ P(aq) for2 <i <7 (resp. a1 + -+ + a; € D\ D(«,) for
2<i<).
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For X = E7/P3, by taking as + a3, a3 + a4, @3 + a7, + a2 + a3, @1 + a2 + @3 + @4 +
as, a1 + @y + a3 + aq + as + ag € P\ D(a3) we obtain the singular values

d+(p2+1),d+(ps+1),d+(p7+1),d+(p1+1D+(p2+1D)+(p3+1),
d+(pr+D+ P2+ D+(p3+D+(ps+1)+(ps+1), C Irr(A).
d+(p1+D+(pa+D+(p3+D+(ps+1)+(ps+1)+(pe+1)

For X = E7 /P4, the singular values associated with a3 + a4, @4 + a5, @4 + @5 + a6, @2 +
a3+ a4, a3 + @4 + @7, + -+ ag € PT\D(ay) are

{ d+(p3+1),d+(ps+1),d+(ps+1)+(ps+1),d+(pp+1)+(p3+1),

d+(p3+D+(pr+D),d+(p1+D+(p2+D+(p3+1) }CIrr(/l),

For X = E7/Ps take a4 + a5, a5 + g, @3 + @4 + @5,a3 + @4 + a5 + @7, a2 + @3 + a4 +
as, a1 + -+ as € P\ D(as) to get

d+(pa+1),d+(ps+1),d+(p3+ 1)+ (ps+1),
d+(p3+D+(ps+D+(p7+D,d+(p2+ 1)+ (p3+1)+(pgs+ 1), ¢ C Irr(Q).
d+(p1+D+(pa+D+(p3+D+(ps+1)

For X = E;/Pg¢ take as + ag, a4 + a5 + @g, @3 + @4 + @5 + g, @3 + @4 + @5 + @ + @7, @2 +
a3+ a4 +as+ag, )+ + ag € DT\D(ag) to get

d+(ps+1),d+(ps+1)+(ps+1,d+(p3+ D+ (ps+1)+(ps+1),
d+(p3+ 1D+ (pa+ D+(ps+ 1+ (p7+ 1),
d+(pr+D+(p3+D+(pa+1D)+(ps+1),
d+(pr+D+(p2+D+(p3+D+(pa+ D+ (ps+1)

C Irr(Q).

For X = E7/P7 we find

d+(pr+ D+ P2+ D+(p3+D.d+(p3+ D+ (pa+ D+ (ps+ 1), ¢ Clr()

{d+(p3+1),d+(pz+1)+(p3+1),d+(p3+1)+(p4+1),
d+(p3+ D+ (psa+1D)+(ps+1D)+(ps+1)

as singular values corresponding to @3 + a7, + @3 + 7,3 + @4 + @7, @] + @2 + @3 +
a7, a3 +a3+ag+as5s+a7, a3+ +a7 € ¢+\€D(a7).

In conclusion, d divides (p; + 1) in each case as required by Claim 2.2.2. This ends
G =E;.

Finally let G=Eg. We have (aj,a;) = 1 forall 1 < j <8.

For X = Eg/P, (resp. X = Eg/P;) we easily get
{d+(pa+ 1)+ +(pit Dhosics € Irr() (resp. {d + (p1 + 1) + -+ + (pi + Dhiciss.iza € Irr(2))

from the roots @y + -+ - + a; € @\ D(ay) (resp. aq + - - - + @; € DN\ DP(ar)).
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For X = Eg/P3, from ay + a3, a3 + a4, a3 +ag, @] + @2 + a3, @) + @y + @3 + @4 + as, ap +
@ tazt+agt+as+agar+ar+az+ag+as+ag+a; € Y\ P(a3) we obtain the singular
values

d+(p2+1),d+(ps+1),d+ (ps+ 1),

d+(p1+D+(p2+D+(p3+1),
d+(p1+D+(P2+D+(p3+D+(ps+1D)+(ps+1), C Irr(A).
d+(pi+D+(p2+ D+ 3+ D+(pa+ D+ (ps+1)+(ps+1)
d+(pi+D+(p2+D+(@3+D+(pa+D+(ps+ 1D+ (ps+1)+(p7+1).

For X = Eg/Py, take az + a4, a4 + a5, a4 + @5 + g, @2 + @3 + @4, @3 + @4 + ag, @ +
et ag, a3+ -+ a7 € DY\ D(ay) to get the singular values

d+(p3+1),d+(ps+1),d+(ps+ 1)+ (ps+1,d+(p2+1)+(p3+1),
d+(p3+D+(ps+D,d+(p1+D+(p2+ 1)+ (p3+1), C Irr(Q).
d+(p3+D+(ps+D+(ps+ D+ (p7+1)

For X = Eg/Ps, the roots a4 + as, a5 + ag, @3 + @4 + @5, @3 + @4 + a5 + ag, @2 + @3 +
a4+ as,as + ag + a7, a1 + - -+ + as € P\ D(as) provide the singular values

d+(ps+1),d+(pe+1),d+(p3+ 1)+ (ps+ 1),
d+(p3+ 1D+ (pa+ D+ (pg+1),d+(ps+1)+(p7+1),
d+(p2+1)+(p3+ 1D+ (ps+1),

d+(pr+ D+ (2+D+(p3+ D+ (pa+1)

C Irr(Q).

For X = Eg/Pg¢ the singular values associated to the roots ag + @7, as + ag, ¥4 + as +
@6, 3 + @4 + @5+ g, a3 + A4 + a5+ + @7 +ag, @2+ + g, @+ + g € DT\ D(ag)
are

d+(p7+1,d+(ps+1),d+(ps+1)+(ps+1),

d+(p3+ 1)+ (psa+t D+ (ps+1),

d+(p3+ D+ (pa+D+(ps+ 1D+ (p7+ 1)+ (pg+ 1), » CIrr().
d+(p2+ 1D+ (p3+ 1D+ (ps+1)+(ps+1),
d+(pr+D+(p2+D+(p3+ D+ (pa+ D+ (ps+ 1)

For X = Eg/P; we get
{d+(p7-i+ D+ +(ps+ Dh<iceUld+(p1 + D +(p2+ D+ -+ (ps+ 1) +(pg + 1)} C Irr(1)

as singular values associated to a7_; + - - + @7, @1 + a2 + - - - + ag € P\ D(a7).
For X = Eg/Pg we find

d+(p3+1),d+(p2+ D+ (p3+ D, d+(p3+ D+ (ps+ 1),
d+(pr+D+(P+D+(p3+1),d+(p3+ 1D+ (psa+ 1)+ (ps+1),
d+(p3+D+(psa+D+(ps+1)+(ps+ 1),
d+(ps+1D+(pa+D+(ps+ D+ (ps+1)+(p7+1)

C Irr(2)

as singular values corresponding to a3 + ag, @y + @3 + ag, @3 + @4 + ag, @] + @2 + @3 +
ag, a3 + a3 +aq4+as5+ag, 3 +a4+as+ag+ag, a3 +---+ag € Q)+\Q)(a/g).

We deduce that all (p; + 1) are multiple of d in each case. By Claim 2.2.2, this concludes
G = Ejg and the proof. O
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2.3 Equivariant Ulrich bundles on Spinor tenfold and on 6-
dimensional Lagrangian Grassmannian

In the rest of this section any rational homogeneous varieties X = G/ P C PY is embedded
through the generator of the Picard group &,, = Ox(1).

The content of Proposition 2.0.2 is just a recollection of the next two Propositions
2.3.1-2.3.2.

2.3.1 Spinor variety S,

Let (V, o) be a 2n-dimensional vector space endowed with a non-degenerate symmetric
form and let G = SO(V) = SO(2n) be the special orthogonal group of V. The dual of the
Cartan algebra of g of G naturally lives in R". Said {&;}]"_, the canonical basis of R", the root

system is @ = {i(si tegj)forl <i#j< n} , the simple roots are
ai=¢g —¢gpforl <i<n-1, a, =¢g,-1 + &y,

giving @ = {g; £ g; for 1 <i < j < n}, and the fundamental weights are

1 1
Ai=eg+--+gforl <i<n-2, 4,-1 = 5(814-’ tEpo1—&n), Ap = 5(814-’ co+Epo1+Ep).

The Spinor variety Sj, is one of the two connected components of the Orthogonal
grassmannian OGr(n, 2n), which is the set of all isotropic n-dimensional subspaces in V with
respect to the symmetric form o, and can be interpreted as the rational homogeneous variety
X = SO(V)/P with P = P(a,). Furthermore, the embedding defined by &,, = Os,, (1)
factors in the closed immersion S;,, € OGr(n,2n) C Gr(n, 2n) where OGr(n, 2n) C Gr(n, 2n)
is realized as the zero locus of o € H*(Gr(n, 2n), S2U*), with U being the rank-n universal
subbundle on Gr(n, 2n). Now, the set @\ ®(a,,) consists of the roots

gitegj=a;i+-+ai g +2+ -+ 202+t forl <i<j<n-—1,

gite,=ai+- - +20,0+a,forl <i<n-1.

Then dim S,,, = ”(” D , the cotangent bundle le is irreducible, as this is an irreducible
Hermitian symmetrlc variety, of highest weight ¢ = —a,, = 4,-» — 24,, and the canonical
bundle is Ks,, = Os, (=2n + 2). For n = 5 the spinor variety Sy is in fact a prime Fano
10-fold of index 8.

As is known from [Fon16, (18)], the set of singular values of a P—dominant weight A is

Irr(A) = {a,~ + aj} (2.3)

1<i<j<n
where A + p = (ay, ..., a,) is the vector of coordinates with respect to the canonical basis
{en,..., e}t

In [Fon16, Proposition 6.6] Fonarev proved in particular that there are no irreducible
equivariant Ulrich bundles on the Spinor variety S,, for n > 5. Nevertheless, we prove that
S10 support an equivariant Ulrich bundle which is extension of two irreducible equivariant

“There is a typo in the displayed equation [Fon16, (18)]. For our purposes, by Remark 2.1.4 it is enough to
note that (1 +p —td,,&; +¢&j) =a;+a;—tforl <i< j<n.
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bundles.

Proposition 2.3.1. There exists a u-stable SO(10)—equivariant Ulrich bundle of rank 120
on the Spinor variety Sig.

Proof. Consider the P—dominant weights 4 = 244 + Asand y = A+ & = A3 + 244 — As.
By Littlewood-Richardson rule the corresponding irreducible equivariant bundles satisfies
Ext! (&1, 8,010 = H'(S10, &) = C (see also [OR06, Theorem 4.3(i)]), which means that
there exists a non-split equivariant exact sequence

0—-8 —-&E—-=8 —0.

We claim that & is the desired Ulrich bundle. To see this, we can easily see that

11 975 1
11973 3
ﬂ+,0—(/11+/12+2/l3+3/14)—(7,5,5,5,—5)

giving Irr(1) = {2,3,...,9,10} and Irr(u) = {0,2,3,...,9,10} by (2.3). As immediate
consequence we get the vanishings H'(S1, &(=)) = 0 for all i > 0if 2 < ¢ < 10. Regarding
the cohomology of &(—1), first observe that 1 — A5 = 244 is already dominant and that
rs(u— As +p) = A1 + A2 + A3 + 344 + As. Therefore id - (4 — As) = A — A5, with inversion set
@jg=0,and rs - (u — As) = 244 € D. By Lemma 2.1.5 the boundary map

9: H(S10,82(=1)) = V0,020 — V00020 = H' (S10,Eu(=1))

is an isomorphism. Since H'(So,E(~1)) = 0 for i > 0 and Hj(Slo,Sﬂ(—l)) =0forj+#i
by Borel-Bott-Weyl theorem, we deduce that H'(S19, &(—1)) = 0 for all i > 0. We conclude
that & is Ulrich. Now, as

12(S10,8) = h°(S10,E)) = dim V; = 1440

and deg S1p = 12, by Proposition 1.1.15 we see that rk(E) = 120. Finally, the graded bundle
of &1is gr(&) = &, ® &, by construction. Therefore &, is the unique equivariant subbundle
of &. Since &, is not Ulrich, Remark 2.1.7 yields the slope-stability of & as desired. O

2.3.2 Lagrangian grassmannian LGr(3, 6)

Let (V, w) be a symplectic 2n-dimensional vector space let G = Sp(V) be the symplectic
group of V. The root system & C R" consists of the vectors +(g; + g;) for i # j and +(2¢;),
where {g;}"_, is the canonical basis. The simple roots are

A={a,=¢g—¢gy1forl <i<n-1, a, =2¢,},

so that @* = {(g; + ¢j) for 1 <i < j <n, 2g; for 1 <i < n}, and the fundamental weights
are{d; =1 +---+ gi};l:]_
The Lagrangian grassmannian LGr(n, 2n) is the Grassmannian of n-dimensional sub-

space in V which are isotropic with respect to the symplectic form w and can be interpreted
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as the rational homogeneous variety X = Sp(V)/P, where P = P(a,). The set &\ ®P(a;)
consists of the roots

gt+ej=ai+--+aj 1 +2j+-+2a 1 +a,forl <i<j<n,

2ei =2;+ -+ 2a,-1 ta,forl <i<n.

In particular dimX = "("T“), the cotangent bundle Q)l( = & is irreducible, X being an
irreducible Hermitian symmetric variety, of highest weight ¢ = —a,, = 24,—; — 24,, and the
canonical bundle is Kx = Ox(—n — 1). So for n = 3 the Lagrangian grassmannian LGr(3, 6)
is in fact a prime Mukai manifold.

By [Fon16, Proposition 3.1], for any P—dominant weight 1 we can write

ai+aj

Irr(2) = { 2.4)

}1Si§ j<n
where A + p = (ay,az,. .., a,) is the vector of coordinates with respect to the canonical basis
{e1,...,&n).

As we know from [Fonl16], there are no irreducible equivariant Ulrich bundle on
LGr(n,2n) for n > 3. We prove that there exists an equivariant Ulrich bundle on LGr(3, 6)
which is extension of two irreducible bundles.

Proposition 2.3.2. There exists a p-stable Sp(6)—equivariant Ulrich bundle of rank 32 on
the Lagrangian Grassmannian LGr(3, 6).

Proof. The proof proceeds as the one of Proposition 2.3.1 Consider the irreducible equiv-
ariant bundle &, for 4 = p = A; + A + A3. Then m = (6,4,2) immediately shows
that

Irr(1) = {2,3,4,5, 6}

by (2.4). Letting u = A+ ¢ with & = 24, — 213 being the highest weight of the cotangent bun-
dle, by Littlewood-Richardson rule we can see that Ext!(&), 8,1)59(6) = H'(LGr(3, 6), Ee) =
C (see also[OR06, Theorem 4.3(i)]). This means that there exists a non-split equivariant
exact sequence

0—-8 —-&—=8 —0.

We claim that & is our required Ulrich bundle. Indeed, u +p = (6,4,0) so that Irr(u) =
0,2,3,4,5,6 by (2.4). This immediately forces H(LGr(3,6),E(-1) =0foralli >0if 2 <
t <6.As A—1A3 = A1 + Ay is already dominant for G, we have HO%(LGr(3,6),8,(-1)) = Viio
and H/(LGr(3,6),E,(=1)) = 0 for all j > 0. On the other hand, r3(u—A3+p) = 21 +21,+ 1,
lies in the interior of the Weyl chamber. Therefore H Y(LGr(3, 6), Eu(=1) = Viputy) =
Vi.1,0 and H/(LGr(3, 6), &Eu(=1)) = 0 for j # 1. The boundary map

8: H'(LGr(3,6),E1(~1)) = Vi.10 — Vi1 = H' (LGr(3,6),E,(~1))

is an isomorphism by Lemma 2.1.5 and so H'(LGr(3, 6), &(—1)) vanishes for all i > 0 as
well. This proves that & is Ulrich. As

RY(LGr(3,6)) = i°(LGr(3,6),8) = dim Vy 1 = 512

and deg(LGr(3, 6)) = 16, Proposition 1.1.15 gives k(&) = 32. By construction the graded
bundle of & is just gr(&) = &, ® &, meaning that &, is its unique equivariant subbundle.
Since &, is not Ulrich, Remark 2.1.7 implies that & is u-stable. O
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2.3.3 Prime Mukai manifolds

A Mukai manifold is a Fano variety X of dimension # and index n — 2. We say that X is
also prime if Pic(X) = Z - H and Kx = —(n — 2)H. In that case, we say that g = %H” +11is
the genus of X.

Theorem 2.3.3. Let X be a prime Mukai manifold of dimension n > 4 and genus g. Then
2 < g <10 and X can be described as follows:

(1) If g =2, then X is a double cover of the projective space X — P" branched along a
sextic.

(2) If g = 3, then X is either a quartic hypersurface X ¢ P or X is a double cover
of a quadric X — Q, c P! branched along a complete intersection of Q, with a
quartic.

(3) If g = 4, then X C P"™2 is a complete intersection of type (2,3).
(4) If g = 5, then X C P"*3 is a complete intersection of type (2,2,2).
(5) Ifg=6,thend <n<6and X = X, is

e cither a linear section of a quadric section of Gr(2,5) c P! in the Pliicker
embedding, i.e. X, = Gr(2,5)N P4 N Qg c PO with Qg c P10 being a quadric,
and 4 < n <5 (ordinary case);

e ora double cover X,, — Gr(2,5) NP3 c P10 of a linear section of Gr(2,5) in
the Pliicker embedding branched along X, (special case).

(6) Foreach g >, X is a linear section of a maximal prime Mukai n(g)-fold X;;g_)z which
is one of the following:

(a) If g =77, then Xllg = S19 € PV is the Spinor 10-fold.

(b) If g = 8, then X§4 = Gr(2,6) c P is the Grassmannian of planes in a 6-
dimensional vector space in its Pliicker embedding.

(c) If g = 9, then X?6 = LGr(3,6) ¢ P is the Lagrangian grassmannian of
isotropic 3-planes in a 8-dimensional vector space.

(d) If g = 10, then X3, = G2/ P, C P'3 is the Gy-manifold.
Proof. See [1P99, Chapter 5] and [Deb20, Theorem 1.1] for the case g = 6. O
Now we can prove Corollary 2.0.3.

Proof of Corollary 2.0.3. Complete intersections support Ulrich bundles by [HUB91] (see
also [CMP21, Theorem 4.3.2]), so we get the cases 4 < g < 5. Since both Gr(2,4) c P'° and
Qg c P9 support an Ulrich bundle by [CM15; HUB91], then so does the proper intersection
Gr(2,4) N Q9 c P'0 by [Cas20, Theorem 1.3] (see also [CMP21, Proposition 4.3.1]). As
Ulrichness is preserved under hyperplane sections by Proposition 1.1.13, we get the ordinary
case for g = 6. Finally, all the maximal Mukai manifolds X;;g_)z for 7 < g < 9 support an
(equivariant) Ulrich bundle by [CM15] and by Proposition 2.0.2. The conclusion follows
again because restriction of Ulrich bundles to linear sections is still Ulrich (Proposition

1.1.13). =
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Chapter 3

Positivity of the first Chern class of an
Ulrich bundle

We study the positivity of the first Chern class of an Ulrich bundle on a smooth projective
variety. The goal is to extend [Lop22, Theorem 1] in the case of a globally generated
polarization. In the first part of the section we will see a characterization in terms of Seshadri
constants (see Appendix B.2 for a brief account) of the polarization revealing interesting
features about the geometry of the variety.

We will make use of the following technical lemmas of general nature.

Lemma 3.0.1. Let Y be a projective variety of dimension m > 1 and let L be a globally
generated ample line bundle such that L' = 1. Then (Y, L) = (P™, Opn(1)) via ¢y .

Proof. Set ¢ = ¢ and Y = ¢(Y) c PV, and let H c PN be a hyperplane. Factor ¢ as the
composition of g: ¥ — Y followed by the inclusion ¢: ¥ < PV, Projection formula gives
1 =L"=deg(p) - (H" -Y), forcing H™ Y = deg(p) = 1. Using Proposition B.2.6(2), we
see that Y is smooth of degree 1. This means that Y = P” is a m-linear subspace. Note
that @ is birational: it is surjective and finite of degree 1, which means that g" induces an
extension of degree 1 of the function fields, namely an isomorphism C(Y) = C(Y), which
gives the claim. Then @ is an open immersion by [Liu02, Exexrcise 3.3.17(a)] and Zariski
Main Theorem [Liu02, Corollary 4.4.6]. An open immersion which is also surjective is
actually an isomorphism. Hence ¢ is an isomorphism as required. O

Lemma 3.0.2. Let X be a projective variety of dimension and let B be an ample and globally
generated line bundle. Let x € X be a smooth point and let u: X — X be the blow-up at x
with exceptional divisor E. Then the line bundle u*B — E is semiample.

Proof. Write ¢ = pp and consider the linear series |B ® m,| of divisors in |B| containing x.
be the finite morphism determined by |B|. Its base scheme coincides with the (schematic)
fibre ¢! ((x)), which is a finite set by the finiteness of ¢. By [Laz04a, Lemma 4.3.16], we
have

HX, 1B - E) = H'(X, u.(* B - E)) = H(X, B® m,).

Hence the base locus of u*B — E is the union of the finite set of points

VAWHyEw“@@»y¢ﬂ
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with a subvarietiety V C E. The restriction of u*B — E to each of those points is trivially
ample, as well as the restriction to V because Og(—E) =~ Ops-1(1). Therefore the restriction
of "B — E to its base locus is ample by [Laz04a, Proposition 1.2.16(ii)]. The conclusion
follows from Zariski-Fujita theorem [Fuj83, Theorem 1.10]. O

Lemma 3.0.3. A line bundle L on a projective variety X is ample if and only if L is semiample
and strictly nef.

Proof. An ample line bundle is semiample because a sufficiently large multiple defines a
closed embedding, and it is strictly nef by Nakai-Moishezon Kleiman criterion [Laz04a,
Theorem 1.2.23]. Conversely, suppose that L is strictly nef and that L™ is globally generated
for some m > 0. Then for every irreducible curve C ¢ X we have (mL)-C =m(L-C) >0
by strictly nefness. Then L®™ is ample by [Laz04a, Corollary 1.2.15], hence so is L [Har77,
Proposition I1.7.5]. O

The following result, which is a generalization of [Lop22, Lemma 7.1], shows the
existence of a Seshadri curve at a point x for an ample globally generated line bundle B
when &(B; x) = 1.

Lemma 3.0.4. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle on X. Let x € X be a point and let u: X — X be the
blow-up at x with exceptional divisor E. Then the following conditions are equivalent:

(i) e(B;x) = 1.
(ii) u*B — E is not ample on X.

(iii) &(B; x) = 1 and there exists a Seshadri curve I' C X for B at x mapping finitely onto
a line L ¢ P through (gp)r: I' — L with x as point of maximum multiplicity for I
and being the only point in the fibre over (¢p)r(x).

Proof. Clearly (iii) implies (i). If &(B; x) = 1, then u*B — E cannot be ample by Lemma
B.2.13(i). Hence (i) implies (ii). To conclude the proof, suppose that B = u*B — E is not
ample. It follows from Lemmas 3.0.2 - 3.0.3 that B cannot be strictly nef on X. Therefore
there exists an irreducible curve I C X such that B - I = 0. Since —E|z is ample, I is not
contained in E. Moreover, the irreducible curve I' = u(I"’) must contain x, otherwise we
would have (u*B — E)-I" = B- I > 0. It follows from [Har77, Corollary 11.7.15] that I’ is
blow-up of I" at x. Therefore, by [Laz04a, Lemma 5.1.10], we get

O=WB-E)-I"=B-T'—mult(I),

which says, together with Remark B.2.4, that £(B; x) = 1 and that I" is a Seshadri curve for
B at x. Now, consider the restriction ¢’ = (¢g)r: I’ — ¢p(I’) =: L C PV and let H c PN be
a hyperplane. A consequence of Zariski’s formula for finite extensions [ABV?20, Equation
(2.2)], combined with Remark B.2.4 for H and projection formula, implies

mult, (") < max mult,(I") < deg(¢’) - max mult,(L) < deg(¢’) - (H-L) = B-T' = mult,(I').
Y€ i ZE

We deduce that all of these are equalities. In particular, one has H - L = mult,(L) for some
z € L, forcing L to be a line (Remark B.2.7), and

B-T'=mult,(I') = max mult,(I') = deg(¢’) = deg(¢”) - multy () (L). 3.1
ye
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This forces x to be the only point in the fibre over ¢’(x): the inverse image of an affine open
neighborhood of ¢’(x) is an affine open neighborhood of x due to the finiteness of ¢’, hence
the claim follows by [ABV20, () condition]. This proves (iii) and completes the proof. O

Lemma 3.0.5. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle on X. Let x € X be a point and let p: X' — X be
the blow-up of X along the schematic fibre go;l(goB(x)) with exceptional divisor E’. Then
&(B; go;l(goB(x))) > 1. Moreover, if(pgl(goB(x)) is smooth, the following are equivalent:

(i) &B;@p (gp(x0))) = 1.
(ii) p*B — E’ is not ample.

(iit) There exists an irreducible curve C C X such that B - C = Z‘;:l mult, (C), where

05 (@p(0) = {x1,..., ).

Proof. The line bundle p*B — E’ is generated by global sections because p is the blow-up
along the base scheme of |B ® m,| (see the proof of Lemma 3.0.2). In particular it is nef. As
the Seshadri constant is the supremum over all € > 0 such that p*B — E’ is nef, we deduce
that &(B; g3 (p4(x)) > 1.

We now turn to prove the second part of the statement. Henceforth we suppose that ¢p
is unramified at every point of 901_31 (¢(x)), which amounts to say that the schematic fibre
over @p(x) is smooth. If (iii) holds, we get (i) by combining the first part and Proposition
B.2.11(1). Moreover, (ii) directly follows from (i) by Lemma B.2.13(i). Now assume (ii).
Since p*B — E’ is base-point-free, to not get a contradiction, it cannot be strictly nef (Lemma
3.0.3). Therefore there is an irreducible curve C’ C X’ such that (0*B— E’) - C’ = 0. The
divisor —El’ o is ample (see, e.g., the proof of Lemma B.2.13) and every subvariety in E’
is contracted to a point, hence C’ ¢ E’. Moreover C = p(C’) passes through some x;, for
otherwise we would have (p*B — E’) - C’ = B - C > 0 by the ampleness of B. Writing
E' = Ey +--- + E,, by projection formula and [Laz04a, Lemma 5.1.10] we get

q q
0=@'B-E)-C :p*B'C’—ZE.,--C’ :B.C—Zmultxj(C).
J=1 j=1

Thus (ii1) holds. O

We point out that the condition (B, gogl(<p (X)) > 1 is open even without assuming the
smoothness of the fibre.

Proposition 3.0.6. Let B be an ample and globally generated line bundle on a smooth
projective variety X. If &(B; gog,l(go M) > 1 for a point y € X, then the locus

{x e X1 8B; g (pp(x)) > 1
contains a dense open subset.

Proof. The proof follows [EKL95, Lemma 1.4]. Write ¢ = ¢p: X — PV, and, for every
point x € X, let u,: X, — X be the blow-up along ¢~ !(¢(x)) and let E, be the exceptional
divisor. Denote by 4 the diagonal of PN x PN and let b: Z — X x X be the blow-up of X x X
along (¢ X ¢)~!(4) with exceptional divisor E. Let g = m; o b and h = m, o b be respectively
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the composition of b with the first and the second projection from X X X to X. Denoting
by Z, every schematic fibre g~!(x), we see that Z, = )?x and gz, = . In particular, the
restrictions (h*B)z, and E|z, are respectively y; B and E,. Recall that u}B — E is generated
by global sections, as p, is the blow-up of the base scheme of the linear series |B @ /. It
follows that &(B; ¢~ (¢(x))) > 1 (see Lemma 3.0.4).

If &(B; (,0‘1(<p(y))) > 1, we claim that ,uy*B — E, is ample. By Lemma 3.0.2, it is enough
to prove that uiB — Ey is strictly nef. Let C C X, be an irreducible curve. If E, - C < 0,
then C C E,, whence C is contracted to a point. Consequently Nakai-Moishezon-Kleiman
criterion for mapping [Laz04a, Corollary 1.7.9] gives

WB~-E))-C=~E,-C>0.

If Ey - C = 0, taking a real number & > 1 such that i B — ¢E), is ample (Lemma B.2.14), we
get
(uyB—Ey)-C = (u,B~-¢Ey)-C+(e-1E,-C>0.

This proves the claim. Applying [Laz04a, Theorem 1.2.17] to the pair (g: Z — X,h*B - E),
we can find an open dense subset U C X of points such that

("B - E)z, = uB - Ex

is ample whenever x € U. It follows by Lemma B.2.13(ii’) that £(B; ¢~ (¢(x))) > 1 for every
xeU. m|

Definition 3.0.7. Let X be a smooth projective variety and let B be a globally generated
ample line bundle.

A 1-Seshadri curve for B at a point x is an irreducible curve I' C X such that B- " =
mult,(I"). We say that X is covered by 1-Seshadri curves for B if for every point y there is a
1-Seshadri curve for B at y.

An irreducible curve C C X is a 1-Seshadri curve for ¢p at x if t,ol;] (¢p(x)) is smooth and
B-C= Z?:I mult, (C), where go;l(goB(x)) = {x = x1,...,x,}. We say that X is generically
covered by 1-Seshadri curves for ¢p if for a general point y € X there exists a 1-Seshadri
curve for pp at y.

Remark 3.0.8. Let X be a smooth projective variety and let B be a globally generated ample
line bundle on X. If X is not generically covered by 1-Seshadri curves for ¢p, then there
exists a point x € X such that gol;l (¢pp(x)) is smooth and &(B; gol;l (pg(x))) > 1. Actually, there
is a dense open subset V C X such that the schematic fibre over ¢p(y) is smooth and there is
no 1-Seshadri curve for ¢p at y, for every y € V.

To see this, let U = <p;31(<pB(X) — Ram(gp)) be the (dense) open subset where (,01‘91(4,0 5)
is smooth for every y € U, and suppose, by contradiction, that £(B; go;l (pp(»)) < 1 for every
y € U. Lemma 3.0.5 implies that &(B; go;l(go (")) = 1 and, furthermore, that there exists a
1-Seshadri for ¢p at y, for every y € U. On the other hand, as X is not generically covered
by 1-Seshadri curves for ¢p, every non-empty open subset W C X contains a point z € W
such that either (,0;31(90 5(2)) is singular, or does not admit a 1-Seshadri curve for ¢p at z. As
gol;l(<p 5(»)) is smooth for every y € U, by taking W = U we get a contradiction. Therefore
there must exist x € U such that &(B; go;l(go (X)) > 1 as claimed. The conclusion follows
by combining the first part with Proposition 3.0.6 and Lemma 3.0.5.
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In a sort of analogy with [Lop22, Lemma 7.1], we will see in Remark 3.0.11 that if ¢p
is unramified at x, then the 1-Seshadri curve is a B-line, as defined below.

Definition 3.0.9. Let X be a smooth projective variety and let B be a globally generated
ample line bundle. A curve C C X is said to be a B-lineif B- C = 1.

It’s easily shown by Lemma 3.0.1 that B-lines are irreducible smooth rational curves.

Remark 3.0.10. Let X be a smooth projective variety and let B be an ample and globally
generated line bundle. Let C c X be a B-line and let V ¢ H%(X, B) be any subspace such
that |V| is base-point-free. Then C is an irreducible smooth rational curve which is mapped
isomorphically onto P! by (¢v)c.

Indeed, irreducibility is immediate from Nakai-Moishezon-Kleiman criterion [Laz04a,
Theorem 1.2.23]: if Cy, ..., C}, are the irreducible components, then

h
1=B-C=>"B-C;j2h
=1

forces h = 1, saying that C = C is irreducible. Now, B¢ is a globally generated ample line
bundle on an irreducible curve having deg(B)c) = 1. Therefore ¢p . induces an isomorphism

with P! by Lemma 3.0.1. Consider the subspace V¢ = Im (V — HO(C, B|c)) determined
by the restriction of sections. We prove that (¢y)ic = ¢p.. It’s clear that |V is base-
point-free, for otherwise there would be a point x € C such that 0 = s;c(x) = s(x) for
every s € V yielding a contradiction. The morphism ¢y : X — PV is finite, for otherwise
Bz = (py,Opn(1));z would be trivial, hence non-ample, for every subvariety Z C X of
positive dimension which is contracted to a point. In particular dim Ve > 2. As V¢ C
H°(C, Bic) = H'(P!, Op1 (1)) = C?, we must have V¢ = H(C, Byc).

Remark 3.0.11. Let X be a smooth projective variety and let B be a base-point-free ample
divisor. Suppose there is a point x € X such that &(B; x) = 1 and let I' C X be a 1-Seshadri
curve for B at x (Lemma 3.0.4). If ¢p is unramified at x, then " is a B-line. However the
converse does not hold.

To prove this, first set ¢ = ¢p and ¢’ = (pp)r. If ¢ is unramified at x, then so is ¢’
(Remark A.1.3) as the inclusion ¢: I' < X is unramified [Sta23, Tag 02GC]. Therefore,
using (3.1), [Shal3, Theorem 2.28] and Lemma 3.0.4.3, we immediately get

B-T = deg(¢)) = #((¢) " (p(x))) = #{x} = 1.

A counterexample for the opposite implication is given by Del Pezzo threefolds of degree 2:
for every point there is a B-line passing through [Isk79, Proposition II1.1.4(ii)], but ¢ has
non-empty ramification locus (see Section 1.3).

The morphism induced by a very ample line bundle is unramified at all points. Therefore,
Remark 3.0.11 shows that Lemma 3.0.4 reduces to [Lop22, Lemma 7.1] when B is very
ample.

However, not all 1-Seshadri curves are B-lines.

Remark 3.0.12. A result due to Bogomolov and Mumford [MM&3], or see [Huy 16, Theorem
13.1.1], says that a general polarized K3 surface (S, B) of genus g > 2 contains a nodal
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integral rational curve I C § such that I" € |B|. This says in particular that |B| is base-point-
free [Huy16, Proposition 2.3.5]. Letting g = 2, then the polarization gives rise to a finite
double cover ¢p: S — P?. Now, note that I" contains 2 singular points: the genus formula
implies that p,(I") = 2, then, using that I is rational, we deduce that the number of nodes is
0 = pa(I') = pg(I') = 2. Taking a nodal point x € I', we have

mult,(l)=2=2¢-2=B>=B-T,

saying that £(B; x) = 1. Therefore I" is a 1-Seshadri curve for B at x having x as point of
maximum multiplicity, I” being nodal, which is mapped finitely onto a line (by construction),
just as said in Lemma 3.0.4(iii). However, if (S, B) is chosen very general, we can suppose
o(S) = 1, which means that Pic(S') = Z [Huy16, Proposition 1.2.4]. In particular there
cannot exist B-lines as 1-Seshadri curves.

It’s interesting to observe that, despite mult,(/") = 2 and x € Ram(g), the exceptional
divisor E of the blow-up u: S — S at x is not contained in the base scheme of w'B—E.
To see this, we need to check H0(§,,u*B —2E) ¢ H(S, B). We have h0(§,/1*3 —-2F) =
RS, Bom?2) and h°(S, B) = h%(S, B®m,) = 3—1 = 2 by [Laz04a, Lemma 4.3.16]. Clearly
hO(S, u*B—2E) > 1 as the strict transform I" of I" belongs to |* B — 2E| [Har77, Proposition
V.3.6]. On the other hand, if there was a different irreducible curve I'" € |u*B — 2E|, we
would have

2=@'B-2E=T-I"= Y (I'I["p20
Pelnl”

by [Har77, Proposition V.1.4], which is absurd. Alternatively, one can say thatif I € 7,
then _
I-I"'=WB-2E)7?=-2

forces I’ C f, whence I = T". In any case we must have hO(E,u*B —2E)=1.
To conclude this part, we see an example of 1-Seshadri curve at gol‘;l(go (X))

Remark 3.0.13. Let ¢: S — P? be a finite cover of degree g branched over a smooth
irreducible plane curve D c P? and let B = ¢*Op2(1). Fix a point x € S such that ¢(x) ¢ D
and set ¢~ (p(x)) = {x1,... , X4}. The pullback via ¢ of a line L C P? passing through
¢(x) yields a divisor C € |B| containing all x;’s. Combining Lemma 3.0.5 and Proposition
B.2.11(1) we immediately see

B-C B?
< — =

< < 1,
Zj:] mUIth(C) q

which says that C is a 1-Seshadri curve for B at ¢~!(¢(x)). Observe that C is smooth at
each x;: the morphism ¢ is unramified at x;, therefore the map d,¢ is injective (Definition-
Theorem A.1.1.5). This amounts to say that B separates 1-jets at x; [Laz04a, p. 273, lines
16-19], which means that the evaluation maps HO(S,B) — H(S,B®(Os/ mi)) is surjective.
Since h°(S, B) = h°(S, B® (O /m2)) = 3, it follows that H'(S, B@m?2) = 0, saying that
there are no divisors in |B| which are singular at x;.

To prove the main result of the chapter we will need a version of Castelnuovo-Mumford
regularity theorem which allows the polarization to have a non-empty base locus. Regularity
of a sheaf is typically defined with respect to a polarization which is at least globally
generated, so we are going to adopt the following definition of regularity with respect to
arbitrary ample line bundles for the rest of the chapter.
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Notation 3.0.14. Let X be a projective variety and let A be an ample line bundle on X. A
coherent sheaf 7 on X is m-regular with respect to A if H'(X, ¥ ((m — i)A)) = 0 for i > 0.

Proposition 3.0.15 (Castelnuovo-Mumford). Ler X be a projective variety of dimension
n > 1, and let A be an ample line bundle on X. Let Y = Bs(|A|) be the base scheme of |A|
with base ideal [J = b(|Al). Suppose that dimY = 0 and let u: X — X be the blow-up of X
along Y with exceptional divisor E. Let F be a vector bundle on X which is m-regular with
respect to A. Then for every k > € > 0:

(1) Assuming that u*A — E is ample on X, then F((m + k)A) is generated by global
sections.

(2) The multiplication map
i HO(X, F(mA)) ® H'(X, kA) — H(X, F((m + k)A) ® T
and the map
1, : HOXF(m+ bA) © T — HUX, F(m + bA) © T
are both surjective.

(3) FOI® and F @ J¢ are (m + k)-regular with respect to A.

Observe that if we suppose that A is base-point-free, then J = Oy and u*"A — E = A and
the assumption in (1) is just the ampleness of the polarization. Thus we recover the usual
Castelnuovo-Mumford theorem B.1.3.

Proof. Letting V = H°(X, A), the evaluation map Vx = V ® Oy — A is surjective off Y.
Moreover the image of Vx(—A) = V® A* — Oy is the base ideal J. Denote by U the open
subset X — Y. Following the construction in [Laz04a, §B.2], we can form the Koszul complex

0 — A"Vx(=rA) — -+ — A2Vx(=24) — Vx(-A) > T — 0

which is exact off ¥, where r = dim V and with £ being surjective. Tensoring through by
F(sA) ® J*, with r > 0, we obtain the following complex

0— AVx®@F(s—NABT™ — - = Vx®@F ((s— DA®T™ & F(s4)® T+ — 0.
(3.2)

This remains exact off ¥, since (F(sA) ® T*)uy = F(sA)y is locally free, and ¢ is still

surjective because tensor product is right exact. For every 1 < i < r, denote by k; the

dimension of A'V.

Step 1: we prove (3).

We first show the claim for 7 ® J®. Let’s proceed by induction on k > £ > 0. The base

case k = ¢ = 0 is the hypothesis. Consider separately the case £ = 0 with k > 1, and set

(s,0) =(m+k—1,0), for i > 0, in (3.2). By induction we know that ¥ is (m + k — 1)-regular.

Hence, we get the vanishing

HYX, AWy @ F((m+k—i— j—1DA) = HYX, F(m+k—1) - @i+ jHA)E+ =0
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for 0 < j < r — 1. Applying [Laz04a, Proposition B.1.2] we immediately deduce that
H(X,F(m+k—-i)A)®J) = 0fori > 0, which amounts to say that ¥ ® J is (m + k)-regular.
Twisting the short exact sequence

0-9 —>0x—0y—0

through by ¥ ((m + k)A) and then taking the associated long exact sequence in cohomology,
we obtain short exact sequences

0= H'XF((m+kA)®J) — H'X,F(m+ k)A)) — H'(Y,F((m+ k)A)y) = 0

for every i > 0. This says that ¥ is (m + k)-regular. Now, let k > € > 1, fix i > 0 and set
(s,) =(m+k—1i,{—1)in (3.2). Then for every 0 < j < r — 1 we have the vanishing

HY X, ANV @ F(m+k—i—j—1)A) @ JD)
= HH(X, F((m+ k= 1) = (i + j))A) @ FED)Dhsn
=0

due to the (m + k — 1)-regularity of ¥ ® J®¢~1 given by the inductive hypothesis. Then
[Laz04a, Proposition B.1.2] implies that H(X, F ((m + k — )A) ® J®°) = 0, completing the
inductive step.

To prove the claim for ¥ ® ¢ consider the short exact sequence

0—>‘](—>j®q—>jq—>0

for g > 1. For any x € U, the map Oy, = jf’q — g~ Oy is an isomorphism, therefore
supp(K) = Y has dimension 0. As a consequence, H'(X, K ® F(pA)) = 0 for every i > 0.
Then the conclusion follows from the (m + k)-regularity of ¥ ® J®’. In addition to this, the
map

HY(X,F(pA) ® T%) — H'(X,F (pA) ® T %) (3.3)

is surjective for every p € Z.

Step 2: ¥ ((m + k)A) is generated by global sections at every point of Y.
Set (s,1) = (m + k,0) in (3.2). The (m + k)-regularity of ¥ for k > 0 given by Step 1 implies
the vanishing

H™Y X, ATV @ F((m+ k— 1 = jA)) = H (X, F(m + k) — (1 + j)A)®+ =0

for each 0 < j < r. We deduce from [Laz04a, Proposition B.1.2] that H'(X, ¥ ((m + k)A) ®
J) = 0. Taking the cohomology of the short exact sequence

0—=F(m+kA)RT — F((m+kA) — F((m+kA) Oy — 0,
we see that this vanishing forces the restriction map
H(X, F((m + b)A)) — HY (X, F((m + k)A) ® Oy)

to be surjective, and hence the claim.
Step 3: we prove (2)
We proceed by induction on k > 0 with trivial base case k = 0. For the inductive step k > 1,
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set (s,1) = (m+k,k— 1) in (3.2). We know by Step 1 that ¥ ® T®* is (m + k — 1)-regular,
hence we have the vanishing

HX A Vy@F(m+k-1- HA) eI =0

for every j > 1. Applying again [Laz04a, Example B.1.3] we obtain the surjectivity of the
map

H'X, F((m +k - DA) @ T** V)@ HO(X, A) — H'(X, F(m + bA) ® T).
By the inductive hypothesis we get a surjective map
H(X, F(mA)) ® H(X, (k — DA) ® H'(X,A) — H (X, F((m + k)A) ® T5).

Factoring through the natural multiplication map H(X, (k— DA)® H'(X,A) — H(X, kA),
we obtain a commutative diagram

HO(X, F(mA)) ® H(X, (k — )A) @ H(X, A) S HOX, F((m + k)A) ® T°5)

HO(X, F(mA)) ® H*(X, kA)
giving the surjectivity of
i HOOX, F(mA)) @ HO(X, kA) — HO(X, F((m + k)A) ® T).

The claim for ,u}’mk in (2) is finally obtained using the surjectivity of (3.3).
Step 4: F (mA) is generated by global sections on X — Y assuming the hypothesis in (1).
The line bundle y*A — E is ample on X, therefore the vector bundle

W (F (m + k)A)) ® Ox(—kE) = p* (F (mA)) ® Oz(u*A — E)*
is generated by global sections for every k > (. This amounts to say that the morphism
evi: HOX, (" (F (mA)) ® Oz('A — E)®) @ O — ' (F(mA)) ® Oz(u*A — E)**
is surjective for every k > 0. Moreover, for k > 0 we also have the isomorphism
H(X, 1 (F ((m + k)A)) ® Ox(=kE)) = H'X, F((m + HA) ® T*)

obtained by combining [Laz04a, Lemma 5.4.24] and projection formula. Fix k£ > 0 such
that both properties hold. Since py = p-1) u~'(U) — U is an isomorphism, the functor
(uv)+ preserves surjectivity. Therefore, by taking the direct image of evy through by uy, we
can form the following commutative diagram on U:

HO(X, F(mA)) ® (kA)y > F(m+ A = (F((m+ bA) @ j")lU

HO(X, F(mA)) @ HO(X, kA) @ Oy ———2— HYX, F((m + kA @ 5 ® Op.
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The map « is surjective by Step 3, as well as 8 = (uy).(evy) by the above discussion. Then
the commutativity forces the map

HY(X, F (mA)) ® (kA)y — F((m + Ay

to be surjective. Twisting by the sheaf ((—k)A);y, we finally obtain the claim.

Step 5: we prove (1)
Combining Steps 2 and 4 we get the case k = 0. The remaining cases are obtained in the
same way using that F is (m + k)-regular for every k > 1. O

The following is a generalization of [Lop22, Theorem 1 & Theorem 7.2].

Theorem 3.0.16. Let X be a smooth projective variety of dimension n > 1 and let B be a
globally generated ample line bundle on X with B" = d. Let & be a vector bundle of rank r
which is O-regular with respect to B. Then

c1(&F - Z > Fmult(2) (3.4)

holds for every x € X and for every subvariety Z C X of dimension k > 1 passing through x
provided that the following conditions are satisfied:

(a) x ¢ Ram(ypp),
(b) &(B;¢p (gy(x))) > 1.

In particular, if X is not generically covered by 1-Seshadri curves for g, then E is V-big and
c(&" =r". 3.9

Moreover, if & is B-Ulrich of rank r > 2, then
c1(&)"=rd-1). (3.6)

Proof. Write ¢ = ¢p and let u: X — X be the blow-up at x with exceptional divisor E. Set
B= u'B—FEandletY C X be its base scheme.

Suppose x satisfies (a) and (b). We show that the pair ()~( , E) satisfies the hypotheses
in Proposition 3.0.15. First of all we observe that Bis ample on X: © is unramified at x,
so the schematic fibre over ¢(x) is the disjoint union 0 N(p(x)) = {x}| | F with x being a
smooth point for ¢~ (¢(x)) (Definition-Theorem A.1.1.2), whence Proposition B.2.11(3)
yields &(B; x) > &(B; ¢ '(¢(x))) > 1. Thus Lemma 3.0.4 gives the assertion. Moreover,
precisely by Definition-Theorem A.1.1.5, the base scheme Y is the strict transform of F'
under y, in particular it is O-dimensional by the finiteness of ¢. Now, consider the blow-up
p: X’ — X of X along Y with exceptional divisor Ey. Then the line bundle p*B — Ey is
base-point-free by construction. On the other hand, the composition 7 = pou: X" — X is
the blow-up of X along ¢~ (¢(x)) and its exceptional divisor is E = E' + Ey, where E’ is
the strict transform of E via p. If we show that p*B Ey = n*B - E is also strictly nef, then
it will be ample by Lemma 3.0.3, completing the claim. For, let C c X’ be an irreducible
curve. If E - C < 0, then C C E and it is contracted by 7 to a point. Therefore we have

(m"B-E)-C=-E-C > 0.
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Now suppose E-C > 0. As B is ample, by Lemma B.2.14 we can find & > 1 such that
m*B — o E is ample. Then we get

(m"B—E)-C=(#x*"B-CE)-C+(@@—-1E-C >0,

hence proving the strictly nefness.

Now, for every integer 0 < s < n — 1, we have R-’p*(?;((sE) = 0 for j > 0 and
u:Oz(sE) = Oy, see e.g. [BEL91, Proof of Lemma 4.1]. Combining O-regularity with
respect to B, projection formula [Har77, Exercise I11.8.3] and Leray spectral sequence
[Har77, Exercise I11.8.1], we obtain

H'(X, (& ® Ox(—E))(=iB)) = H'(X, 4" (&(=iB)) ® Oz((i — DE)) = H'(X,E(~iB)) = 0

for every i > 0. So E = 1E® O(=E) is O-regular with respect to the ample divisor B.
Since p*E — Ey is ample, it follows from Proposition 3.0.15(1) that Eis generated by global
sections. Then cl(g) = u*c1(&) — rE is base-point-free, so nef. By Kleiman’s theorem
[Laz0O4a, Theorem 1.4.9] and [Laz04a, Lemma 5.1.10], we deduce that

0< W ®)-rE)-Z=c1(&" Z+ DD "multy(2) = (&) - Z - *Fmulty(2),

where Z C X is the strict transform of a subvariety Z C X of dimension k > 1 passing
through x. This proves (3.4).

To prove the last part of the statement, suppose X is not generically covered by 1-Seshadri
curves for ¢. By Remark 3.0.8, we can find a point x € X such that ¢~ !(¢(x)) is smooth,
which means that x ¢ Ram(y) (Definition-Theorem A.1.1.2), having &(B; go;l (e(x))) > 1.
Then, choosing Z = X in (3.4), we immediately get (3.5). The vector bundle & = (u*E)(—E)
is generated by global sections, hence nef. Then Remark B.2.16(b) tells that &(&; x) > 1,
which means x ¢ B (&) by Remark B.2.17. By Theorem A.3.8, & is V-big as required. To
conclude, suppose that & is B-Ulrich of rank r > 2. Note that under the assumption (b),
it cannot be that Oy is B-Ulrich: if this was true, then we would have d = h°(X, Ox) = 1
by Lemma 1.1.1, yielding that (X, B) = (P", Op«(1)) (Lemma 3.0.1). However this is a
contradiction since (P, Opx(1), 1) = 1. Consequently, a decomposition as & = O;‘?Oil) ®
det(E) is not admissible. Therefore [Sie09, Theorem 1] and Lemma 1.1.1 imply that
c1(&)" > (X, &) — r = r(d — 1), completing the proof. O

The hypothesis of Theorem 3.0.16 can be equivalently stated as follows.

Remark 3.0.17. Let x € X be a point in a smooth projective variety and let B be a globally
generated ample line bundle on X. Consider the following conditions:

(@) x ¢ Ram(pp).
(b) &(X, B; ¢ (9p(x))) > 1.
(¢) eX,B;x) > 1.

(d) g()?,p*B—E; Bs(lju*B-E|)) > 1, where u: X — Xis the blow-up at x with exceptional
divisor E.
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Then (a)+(b) is equivalent to (a)+(c)+(d).

In order to see this, let’s first set ¢ = ¢p, B = WB—-—FEandY = Bs(lEl). Henceforth
we suppose that (a) holds. This says that Y is the strict transform under u of the closed
subscheme Z C (,0‘1(<p(x)) C X, which does not contain x and such that (,0‘1(<p(x)) ={x}| |Z
Letp: X' — X be the blow-up of X along Y with exceptional divisor Ey. Set E’ to be
the strict transform of E via p. Then the composition 7 = p o u: X’ — X is the blow-
up of X along go‘l(go(x)) with exceptional divisor E = E’ + Ey. In particular we have
p*B Ey = n*B — E. Recall that O (- E) is ample since the centre of the blow-up 7« is
0-dimensional (see the proof of Lemma B.2.13).

Suppose (c) and (d) hold. Then (c) says that Bis ample (Lemma 3.0.4). We claim that
p*E— Ey is strictly nef. Let C’ € X’ be an irreducible curve. If Ey - C’ < 0, then C’ C Ey,
in particular it is contracted by p to a point, whence

(0'B-Ey)-C' =—Ey-C' >0.

Suppose Ey - C” > 0. Since eX,B;Y) > 1, by Lemma B.2.14 we can find o > 1 such that
Jol *B— oEy is ample. (Here we are using the ampleness of B.) Then we get

(0'B—Ey)-C' = ('B-0Ey)-C +(oc—1)Ey-C > 0.

This proves the claim. Then it follows by Lemma 3.0.3 that p*E — Ey = m*B—E is ample.
This implies that (X, B; ¢~ !(¢(x))) > 1 (Lemma B.2.13(ii’)), which is (b).

Conversely, assume that (b) holds. Then (c) follows from (b) (and (a)) by Proposition
B.2.11(3). If we show that 7*B—E = p *B— Ey is ample, then &X,B;Y) > 1 and is actually
strictly greater than 1 because p*B - s(X B Y)Ey cannot be ample (Lemma B.2.13(1)).
Therefore (d) will follow once we have proved the ampleness of 7*B — E = p*B Ey. As it
is globally generated, by Lemma 3.0.3 we only need to show it is strictly nef. Let C ¢ X’ be
an irreducible curve. If E - C < 0, then C C E and it is contracted to a point via 7. Therefore
we have

(n*B-E)-C=-E-C>0.

Now suppose E-C > 0. As B is ample, by Lemma B.2.14 we can find & > 1 such that
m*B — o E is ample. Then we get

(*B-E)-C=(@#"B-TE)-C+(@—-1E-C >0,
completing the proof.
This observation leads to the following geometrical interpretation.

Remark 3.0.18. Let x € X be a point in a smooth projective variety and let B be a globally
generated ample line bundle on X. Consider conditions (a)-(b)-(c)-(d) in Theorem 3.0.16 and
Remark 3.0.17. In light of Lemmas 3.0.4 - 3.0.5 and of Remark 3.0.11, (a)+(c) is equivalent
to say that there is no B-line passing through x.

Remark 3.0.19. Let H be a very ample line bundle on a smooth projective variety X. The
morphism ¢ = ¢ is an embedding, hence ¢~ '(p(x)) = {x} is smooth. Then, regarding
Theorem 3.0.16: (a) is always satisfied and (b) is equivalent to say that there is no line
passing through x (Lemmas 3.0.4 - 3.0.5 and Remark B.2.7). Thus the statement of Theorem
3.0.16 reduces to [Lop22, Theorem 7.2 & Theorem 1].
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Remark 3.0.20. Let X be a smooth projective variety of dimension n > 1 and let B be an
ample line bundle which is generated by global sections. In order to satisfy (b) in Theorem
3.0.16, the linear series |B| cannot induce a finite morphism ¢ = ¢g: X — P”" onto the
projective space.

Indeed, if this happens, projection formula implies d := B" = deg(yp) - deg(P") = deg(y).
Then, if ¢(x) is not a branch point, the fibre over ¢(x) consists of deg(¢) = d distinct smooth
points, as P" is smooth (Lemma A.1.4). Then (B.2) says that

1

B\s
e(X, B; o~ (p(x))) < (7) =1,

forcing (X, B; ¢ ' (p(x))) = 1 (Lemma 3.0.5).
Let’s see an example.

Example 3.0.21. Let (S, B) be a polarized abelian surface of type (2,2) which we assume
to be non-isomorphic to the product of two elliptic curves. In virtue of [BL0O4, Exercise
8.11(1)], this is the general case. According to [BL0O4, §10.1, p. 282], the line bundle B is
globally generated and B = L®? for an ample line bundle L. As S does not split, B induces a
morphism gp: § — K c P3 of degree 2 onto its image K, which is a Kummer surface.

Once clarified the setting, we can observe that the argument in [Beal6, Theorem 1]
works also in the case of an ample and globally generated polarization. Therefore S supports
a B-Ulrich vector bundle & of rank 2. Since &(L) > 4/3 [Bau+09, Theorem 6.4.4(a)], by
[Bau+09, (6.4.7)] and Proposition B.2.6(1) we obtain

1 4
&(B; x1, x2) > ES(B) =&(l) > 3> 1

for every pair of distinct points x1, x, € S. This holds in particular for all pairs of points
lying on the fibre over ¢p(x) with x ¢ Ram(gp). Therefore & is V-big by Theorem 3.0.16.

The conditions in Theorem 3.0.16 are easy to handle when the polarization defines a
birational morphism.

Remark 3.0.22. Let (X, B) is a smooth polarized projective variety with B generated by
global sections such that ¢z: X — PV is birational onto its image. If X is not covered by
1-Seshadri curves for B, then every vector bundle which is O-regular with respect to B is
V-big.

Indeed, given a point x € X not belonging to any 1-Seshadri curve for B at x, that is
&(B; x) > 1 (Lemma 3.0.4), by [EKL95, Lemma 1.4] we can find a dense open subset U C X
where ¢p is an isomorphism and £(B;y) > 1 for every y € U. Then the assertion follows
from Theorem 3.0.16.

Example 3.0.23. Let (S, B) be polarized abelian surface of type (1, 4) which does not split
as the product of two elliptic curves. Then [BL04, Exercise 8.11(1)] says that this is the
general case. Then ¢p: S — S < P3 is a morphism which is birational onto a singular octic
surface S [BLO04, §10.5, p. 302, lines 19-24]. We also know that S supports a B-Ulrich
vector bundle & (see Example 3.0.21). As &(B; 1) = &(B) > 4/3 by [Bau+09, Theorem
6.4.4(a)], & is V-big by the above Remark.
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The conditions in Theorem 3.0.16 are not necessary for the bigness of an Ulrich bundle.
Combining [LM21, Proof of Theorem 1 & Remark 2.2], we get the following characteriza-
tion of big B-Ulrich bundles on surfaces.

Remark 3.0.24. Let (S, B) a smooth projective surface together with a base-point-free ample
divisor and let & be a B-Ulrich bundle of rank . Then & is big if and only if ¢;(E)*> > 0.

To see this, we can suppose that r > 2 because the claim is clear if & is a line bundle,
& being nef. Necessity follows by [LM21, Remark 2.2]. For sufficiency, we know by
hypothesis that ¢{(E) is big and nef. Hence B> > 1, for otherwise Lemma 3.0.1 would imply
(S,B,&) = (P?, Op(1), (9;‘32’ ) giving a contradiction as the ¢; would not be big. In particular,
by Lemma 1.1.1, i%(X,8) = r- B> > r + 2, and H'(X, det(8)*) = 0 by [Laz04a, Theorem
4.3.1]. Then [BF20, Theorem 3.2] implies that & is big.

Example 3.0.25. Let ¢ = ¢3: S — P? be a finite double cover branched along a general
smooth sextic with Og(B) = ¢*Op2(1). Then (S, B) is a smooth polarized K3 surface of
genus 2 which does not satisfies the hypothesis in Theorem 3.0.16 by Remark 3.0.20. On the
other hand, S supports a special B-Ulrich bundle & of rank 2 [ST22, Theorem 1.2]. Since
c1(&)? = (3B)? > 0, then & is big by Remark 3.0.24.

More generally, for minimal surfaces of non-negative Kodaira dimension we have the
following.

Remark 3.0.26. Let S be a minimal smooth projective surface of Kodaira dimension
k(S) > 0 and let B be a globally generated ample line bundle on S. Then every special
B-Ulrich bundle of rank 2 is big. In particular, if Pic(S') = Z, every B-Ulrich bundle of rank
2 is big.

Let’s prove this. In case Pic(S) = Z, Lemma 1.1.16(ii) tells that every B-Ulrich bundle
F of rank 2 has ¢ () = Ks + 3B, saying that it is special for B. Thus we only need to show
the first part. Since Ky is nef by hypothesis, the Chern class ¢ (&) = Ks(3B) is ample for
every special B-Ulrich bundle & of rank 2. Hence ¢;(E)*> > 0 by Nakai-Moishezon-Kleiman
criterion [Laz04a, Theorem 1.4.9], and the conclusion follows by Remark 3.0.24.

In this slightly wider setting in which we consider Ulrich bundles with respect to ample
and globally generated line bundles, there are more non-big Ulrich bundles. In fact, the
following examples are not ascribable to the list of non-big Ulrich bundles (with respect to a
very ample divisor) on surfaces and threefolds in [LM21, Theorems 1 & 2].

Example 3.0.27. Let (S, —Ky) be a Del Pezzo surface of degree d = 2 and let & = L(—Ky)
be the —K -Ulrich line bundle of Proposition 1.2.4. Despite e(—Ks; x) = 4/3 for a general
point x € § [Bau+09, Theorem 6.3.4], we cannot apply Theorem 3.0.16 because we are in
the situation of Remark 3.0.20. Indeed, we have ¢;(E)% = 0 by construction. Thus &, which
is already nef, is not big.

Example 3.0.28. Consider the Del Pezzo threefold (X, B) of degree d = 2 and let & be the
special B-Ulrich bundle of rank 2 constructed in Proposition 1.3.3. We are in the situation
of Remark 3.0.20, hence we cannot apply Theorem 3.0.16. Due to & is globally generated,
to show that & is non-big, it is enough to check that s3(E*) = 0 [LM21, Remark 2.2]. Using
[Laz04b, Examples 8.3.4 & 8.3.5] and the fact that & is special of rank 2, we get

53(E") = 51.1.1)(©E) = ¢1(E)’ =2¢1(E)-c2(E) +¢3(E) = (2B)’ =2(2B)-¢2(E) = 16—4c2(E)-B.
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To compute the last intersection product, we are going to use [LR24a, Lemma 3.2(ii)] (which
actually does not require the polarization to be very ample):

1 2
e2(8) B = |16 - c1(&) - Kx|- B+ o

44
K2+ ca(X) - 732} ‘B

1 1
=3 |2B)* - B—(2B)- (-2B) - B| + < [(=2B)* - B+ ca(X) - B-22(B)’|

:8+é[—36+cz(X)-B].

It remains to determine c>(X) - B. To this end, we apply Hirzebruch-Riemann-Roch theorem
(see, e.g., [Har77, Theorem A.4.1]) on Ox: since X is Fano, for every i > 0 we have
H(X,Ox) = P (X,Kx) =0 by Kodaira vanishing theorem, therefore

aX)-eX) _ c1(Ky) - c2(X) _aX)-B

I =x(X, 00 = 24 24 2

ch;(Ox)-td3_i(X) = rk(Ox)-

3
i=0

which gives ¢(X) - B = 12. In conclusion, we obtain

s3(E) =16 -4

1
8+6(12—36)]:16—4-4:O,

giving the assertion.
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Chapter 4

Augmented base locus of an Ulrich
bundle

The main goal of this chapter is characterizing the augmented base locus of a B-Ulrich
bundle (Theorem 4.0.11). To do this, we will make use of the characterization of the
augmented base locus of a vector bundle in terms of Seshadri constants (see Definition
B.2.15). Here we will need an additional hypothesis on B: we will suppose that |B| admits a
linear subsystem |V| C |B| inducing a morphism which is étale onto the schematic image.
In light of the previous section the assumption of being unramified is reasonable, in fact it
turns out to be fundamental: in Remarks 4.0.17 - 4.0.18 we show that Theorem 4.0.11 and
Corollary 4.0.12 no longer apply when ¢y is flat but not unramified (on the schematic image).

A B-Ulrich bundle is globally generated. Hence the stable base locus is clearly empty,
as well as the restricted base locus by Proposition A.3.5(1). In view of Remark B.2.17, to
determine its augmented base locus, it suffices to characterize the points where the Seshadri
constant vanishes.

We begin with a result of general nature.

Lemma 4.0.1. Let X be a smooth projective variety and let & be a globally generated vector
bundle on X. Suppose there is an integral rational curve C C X such that Ec is not ample.
Then &(&; x) = 0 for every x € C.

Proof. Let v: C' — C be the normalization of C and let f = tov: C’ — X be the
composition of v with the inclusion¢: C < X. Since C’ =~ P!, the vector bundle ffE=v&c
has rank r = rk(&) and splits as

f*g = OPI (611) D---D OPI (ar),

where a; > --- > a, > 0 since f*& is globally generated. However, f*& = v*& ¢ cannot
be ample for otherwise &c would be so [Laz04b, Proposition 6.1.8(iii)]. In particular, we
have (at least) a, = 0 [Laz04b, Example 6.1.3]. Then [FM21, Lemma 3.31] implies that
&(f*&;y) = 0 for every y € C’. Consequently

e(V'Eiciy)

5(8|C2X) = m =

0



4. Augmented base locus of an Ulrich bundle 62

for any y € C’ and every x € C (see [FM21, p. 12, lines 5-6]). For any z € X, we have
&2 = . elggx &(&F;2)

where F' ranges over all irreducible curves in X passing through z (see, e.g., the proof of
[FM21, Corollary 3.21]). Therefore, we obtain 0 < &(&; x) < &(Eic; x) = 0 for every x € C,
which gives the assertion. O

In this section we will use the following convention.

Notation 4.0.2. Given a projective scheme X and a base-point-free linear series |V| C |L|,
let X be the schematic image of ¢y: X — PV, that is just the reduced induced subscheme
structure on ¢y (X) c PV, Let ¢: X — PV denote the inclusion. By construction there is a
morphism gy : X — X such that

Q0v=LOWZX—>)_(‘—>PN,

which then satisfies py O(1) = L. Furthermore @y is finite when L is ample: in this case ¢y
is finite (see, e.g., Remark 3.0.10), hence @y must be finite as well being proper and quasi
finite. Henceforth we will make no distinction between ¢y and py, and we will use this fact
without further reference.

Remark 4.0.3. The hypotheses of Theorems 4.0.11 - 4.0.20 and Corollary 4.0.12 are
obviously satisfied by very ample linear series. However these are not the only ones:
certainly such line bundles must separate tangents at all point, or equivalently must give rise
a local isomorphism, but one can construct several examples of globally generated ample
line bundles with a linear system inducing an étale morphism (onto the schematic image)
which is not a global isomorphism. Let’s proceed as follows. Take a smooth projective
variety Y with either b;(Y) # O or with H{(Y,Z) containing k-torsion. In both cases we
can find a smooth projective variety X and a finite unramified morphism n: X — Y which
is not an isomorphism [BPV 84, Proposition 18.1], but which is étale by [Har77, Exercise
[11.9.3(a)]. Then the triple (X, B, V), where B = n*H for any very ample line bundle H on
Y,and V = Im (ﬂ*: H(Y,H) — H(X, ﬂ*H)) ~ HO(Y, H) [Gro65, Corollaire 2.2.8] satisfies
those hypotheses since ¢y = ¢p o 7. However it may happens that B remains very ample,
as in the case of the canonical double cover 7: X — Y of any Enriques surface Y ¢ P¥
embedded through any very ample H [GGP08, Lemma 3.4].

Examples (in any dimension) in which such a B is not very ample can be constructed as
follows. Let C ¢ P? be a smooth plane curve of degree 2d + 3, with d > 1, and take a line
bundle ¢ on C such that 29 = K& and ho(C, ) = 0 (see [Beal0, (4.1) & Remark 4.4]). The
canonical bundle is Kz = O&(2d), hence L = ¥(—d) is a 2-torsion element in Pic(C). Then
L gives rise to an étale double cover p: C — C satisfying p,O¢ = Oz @ L [BPV84, Lemma
17.2]. Setting B' = p*Ox(d) and V' = p*HO(C, O&(d)), by projection formula we have

H(C,B") = H'(C, p.p*Ox(d)) = H'(C, Ox(d)) ® H'(C, Ox(d) ® L) = H'(C, O(d)),

saying that |V’| = |B’|. Therefore B’ is non-very ample such that g = po_@) © p is étale
(onto the schematic image). This pair (C, B") gives the desired example in dimension 1. For
higher dimensions, take any smooth projective variety Z c PV and set

Y =CxZ H=n}(0z(d) @ (O(1), M =r} #(-d)) ® 7 (T)



4. Augmented base locus of an Ulrich bundle 63

where 71 : Y — C,m: Y — Z are the projections and T is a (possibly trivial) line bundle on
Z such that 7®% = 0. Clearly H is very ample and M is of 2-torsion. Therefore we obtain a
smooth projective variety X and an étale double cover 7: X — Y such that 7.0x = Oy ® M
[BPV84, Lemma 17.2]. Setting B = 7*H and V = 7" (H(Y, H)), then, by observing that
Kunneth formula yields

H(Y, H® M) = H(Y, () ® m3(T(1))) = H(C,9) ® H*(Z,T(1)) = 0,
we have
H(X,B) = H'(Y,r.n"H) = HO(Y, H) ® H*(Y, H ® M) = H(Y, H).

We conclude that |V| = |B|, so that B is ample globally generated but non-very ample and
such that ¢p = ¢y o m is étale. This is the desired example. As a final remark, observe that
these provides examples of 1-jet spanned line bundles, i.e. separating 1-jets at every point
(see [Laz04a, p. 273, lines 16-19]), which are not very ample.

To prove the main result, we will study the “separation properties” of a B-Ulrich bundle
&. More precisely we will consider the restriction map H(X,8) — H'(Z, 8Eiz), where Z
is a 0-dimensional closed subscheme of length 2. There are two possibilities: either Z is
contained in a B-line or not. Therefore it comes necessary to study also the restriction map
to a B-line. To do this, we will use the separation lemmas in [L.S23, §3].

Lemma 4.0.4. Let X be a smooth projective variety and let B be a globally generated
ample line bundle on X. Suppose there is a subspace V. H°(X, B) such that ¢ = py: X —
ev(X) = X c PV is étale. Let & be a B-Ulrich bundle on X. Let L C X be a line and let
L = ¢ (L) € X be the scheme-theoretic inverse image of L. Then the restriction map

H(X,8) — H(L,&p)
is surjective. In particular, the restriction map

H'(X.8) — H(I &)
is surjective for every B-line I’ C X.

Proof. Since L=L X% X [GW20, (4.11)], we have the cartesian diagram

X
\[np 4.1
J

— X,

ol

%‘)

~

where ¢ and j are the inclusions and f is the restriction of ¢. The base change of an étale
morphism is étale [Sta23, Tag 02GO], hence f is étale onto L =~ P!. Since P! is simply
connected [Har77, Example IV.2.5.3], L decomposes as the disjoint union

erlu...l_lrd,


https://stacks.math.columbia.edu/tag/02GO
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where each ['; is isomorphic to P! under fir, = ¢ir;. Denoting by ¢; the inclusion I'; C X for
eachi=1,...,d, we have jo fir, = ¢ o ;. In particular, we get

Bir, = ({B = (/¢"Ox(1) = f7. ' Ox(1) = fr. OL(1).

Then the projection formula B - I'; = deg(fir;) - deg(L) = 1 says that I'; is a B-line.

The schematic i image X is smooth [Liu02, Corollary 4.3.24], hence the sheaf E= ©:E1s
an Ulrich bundle for (X, OX(I)) by Proposition 1.1.10. As (4.1) is cartesian and ¢ is affine,
[GW20, Proposition 12.6] yields

EL=j¢:E= £’ = fu(Ep). 4.2)

Using [LS23, Lemma 3.3], we obtain the surjectivity of restriction map H'X,8) —
HO(L, &i1). On the other hand, we have

H'(X,&) = H'X,¢,.8) = H'(X, &)
and, thanks to (4.2),
HL,&p) = H(L, f.(&p)) = H(L, &)

This proves the first part of the assertion. Moreover the space of global sections of 8|Z splits
as
HYL, &) = H'I'.&r) & & H'(T'0, ).

From this we deduce that the restriction map
H(L,&p) — H (T, &)

is surjective for all i. Therefore, if I C X is a B-line, the schematic image L’ = ¢(I") C X isa
line (Remark 3.0.10) and I is one of the connected components of o (L. By the previous
part, we get the conclusion. O

If the O-dimensional closed subscheme of length 2 is not contained in any fibre of ¢p,
we will use the following.

Lemma 4.0.5. Let X be a smooth projective variety and let B be a globally generated ample
line bundle on X. Suppose there is a subspace V ¢ H°(X, B) such that ¢y : X — ¢y(X) =
X c PV is étale. Let & be a B-Ulrich bundle on X. Let Z C X be a O-dimensional closed
subscheme of length 2 which is not contained in any B-line. If Z satisfies Z ¢ 90‘_,1 (¢ (X)) for
every x € Z, then

r: H'(X,8) — H(Z,&)

is surjective.

Proof. Set ¢ = gy and Z = ¢(Z) C X. Observe that X is smooth [Liu02, Corollary 4.3.24]
and that the sheaf & = & is an Ulrich bundle for X, Ox(1)) by Proposition 1.1.10 (see also
the proof of Lemma 4.0.4). Our assumption on Z implies that Z is 0-dimensional, closed
and of length 2. There are two cases: there is no line in X containing Z or there exists a line
L C X containing Z.
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Consider the first case. Then the restriction map
H'(X,&) — H(Z,&p)

is surjective by [LS23, Lemma 3.2]. Now, let Z’ = Z X% X C X be the scheme-theoretic
inverse image of Z [GW20, (4.11)] and consider the cartesian diagram

A %
g\[ ¢ 4.3)
7 %h)

’

S

>

where i and 4 are the inclusions and g is the restriction of ¢ to Z’. Since ¢ is affine and (4.3)
is cartesian, we can apply [GW20, Proposition 12.6] to get

glf =h".E = g.0°E = g.(Ez).
Since H)(X, &) = HO(X, é) and H(Z', Ez) = H(Z, 8+(&Ez)), we deduce that
H'(X,8) — H(Z', &)
is surjective. As Z ¢ Z’ and dim Z’ = 0, also
HZ ,&z) — H'(Z,&)

is surjective. Therefore r is onto as required.
Finally, assume that there exists a line L C X passing through Z. Let L be the scheme-
theoretic inverse image of L. We know that

L=ry| || |ra

with I'; being a B-line (see the proof of Lemma 4.0.4). Since Z is not contained in any B-line,
there must exist 1 < a # b < d suchthat x € I', and x’ € I',, where Z = {x, x’}. Observe that
x and x’ cannot be infinitely near for otherwise supp(Z) = {x} and I', N I, # 0. The vector
bundles &, and &, are globally generated, therefore

H (I, 8r,) — &), H' Iy, &) — E(X)
are surjective. It follows that the restriction map

HY(L,&7) — &x) @ E(X') = H(Z, &)

is surjective. The conclusion follows from the surjectivity of H'(X,&) — HO(L, 8|Z)
(Lemma 4.0.4). O

The next two simple results of general nature will be helpful in case the 0-dimensional
closed subscheme of length 2 is contained in a fibre of ¢p.



4. Augmented base locus of an Ulrich bundle 66

Lemma 4.0.6. Let X be a projective variety and let B be a globally generated ample line
bundle on X. Let F be a vector bundle on X which is 0-regular with respect to B and let
V < H%(X, B) be a non-zero vector subspace such that dim Bs(|V|) < 1. Then

H' (X, F) — H°Bs(VI), Fissqvy)
is surjective.

Proof. SetVx = V@Oxand Y = Bs(|V]) Cc X. Let s = dim V and let 7 = Im(V® B* — Oyx)
be the base ideal of |V|]. As in [Laz04a, §B.2], we can form the Koszul complex

0 — A*Vx(=sB) — --- — A’Vx(=2B) — Vx(-B) & J — 0,

which is exact off Y and with ¢ being surjective. Tensoring through by 7, we obtain the
complex

0— AVy @ F(=sB) — - — A2Vy @ F(=2B) — Vx @ F(-B) > F @ F — 0.

This remains exact off ¥ and ¢ is still surjective. Let k; = dim A’V for 1 < i < s. The
O-regularity of ¥ yields the vanishing of the cohomology group

H™Y(X, A" Vy @ F((-1 - j)B)) = HH (X, F (-1 - j)B)®+ =0

for every 0 < j < s. It follows by [Laz04a, Proposition B.1.2] that H "X, F ®9) =0. Then,
taking the cohomology of the exact sequence

O—>7—'®j—>7j—>7:|y—>0,
we get the conclusion. O

Remark 4.0.7. Let f: X — Y be an affine morphism of schemes and let ¥ be a coherent
sheaf on X such that f,5 is generated by global sections. Suppose the schematic fibre
X, =f ~1(y) over y € Y is non-empty. Then the restriction map

H'(X, F) — H(X,, Fix,)

is surjective.
Indeed, consider the cartesian diagram

X, = X xy Spec (C(y)) ——— X

g f

{y} = Spec (C(y)) ——L ¥

with i and j being the inclusions and g the base change of f. Since f.F is globally generated
on Y, the map

H(Y, .F) — (L)) = HW) (L )
is surjective. On the other hand, [GW20, Proposition 12.6] gives the isomorphism
Ty = T /T = gd"F = gu(Fix,)-
As H'(X, F) = H(Y, £.F) and HO(Xy, Fix,) = HO({y},g*(ﬁX},)), the assertion follows.
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Lemma 4.0.8. Let X be a smooth projective variety and let B be a globally generated ample
line bundle on X. Suppose there is a subspace V ¢ H(X, B) such that ¢y : X — @y(X) =
X c PV is étale. Let & be a B-Ulrich bundle on X. Let Z C X be a 0-dimensional closed
subscheme of length 2 which is not contained in any B-line. Then

r: H'(X, &) — H(Z, &)
is surjective.

Proof. Write ¢ = ¢y and denote by Fy the schematic fibre ¢~ !(¢(y)) for every y € X. If
Z ¢ F, for every x € Z, the claim follows by Lemma 4.0.5. On the other hand, since ¢.&
is Ulrich on X (see the proof of Lemma 4.0.4), hence globally generated, we know from
Remark 4.0.7 that

ry: H(X, &) — H(Fy, &)

is surjective for every y € X. As & is O-regular and Bs(|m,(B)|) = F is O-dimensional, the
surjectivity of r, descends also from Lemma 4.0.6. In case Z C F, for x € Z, the schemes
F, and Z consist of distinct points due to ¢ is unramified. Therefore

r'r H(Fx, &) — H'(Z,8p)
is surjective. Since r = r’ o ry, the assertion follows. O

Lemma 4.0.9. Let X be a smooth projective variety and let B be a globally generated ample
line bundle on X. Suppose there is a subspace V .c H°(X, B) such that py: X — py(X) =
X c PN is étale. Let & be a B-Ulrich bundle on X. Let Z C X be a 0-dimensional closed
subscheme of length 2 and let r: H(X,&) — H(Z, &Eiz) be the restriction map. Then r is
surjective if one of the following holds:

(i) There is no B-line containing Z.
(ii) There is a B-line I' C X containing Z and Er is ample on I

Proof. In case (i), the claim follows by Lemma 4.0.8. Then suppose that (ii) holds. Lemma
4.0.4 says that rp: HO(X, &) — HOT, &r) is surjective, and the (very) ampleness of & on
I ~ P! (Remark 3.0.10) tells that rz: HY(I, ) — H(Z, &) is surjective. The map r
factors as the composition r = rz o r, hence the assertion follows. O

Now we relate the separation properties of the B-Ulrich bundle & with the Seshadri
constant of the tautological line bundle Opg)(1).

Lemma 4.0.10. Let X be a smooth projective variety and let B be a globally generated
ample line bundle on X. Suppose there is a subspace V c H°(X, B) such that ¢ = ¢y : X —
ey(X) = X c PV is étale. Let & be a B-Ulrich bundle on X. Let x € X be a point and
suppose one of the following conditions holds:

(i) There are no B-lines passing through x.
(ii) &Er is ample on every B-line I' C X passing through x.

Then &(Ope)(1);y) > 1 for all y € P(E(x)).
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Proof. Let m: P(§) — X be the natural projection, and write ¢ = Op) (1) and &, :=
&Py = Opie-1(1). Fix a point y € P(E(x)). According to Remark B.2.9, it suffices to
show that the restriction map

rz: HUP(E),&) — HY(Z,&7)

to every O-dimensional closed subscheme Z c P(&) of length 2 with supp(Z) = {y} is
surjective. If Z C P(&E(x)), since &z = (€1))z, one has the commutative diagram

HOP@©),é) ——Z—— HYZ &)

P = (4-4)

HOP(E(X)), &) —=— HOZ, (£)2)-

The map p is surjective [LS23, Remark 2.3], as well as rz, since &, is very ample on P(E(x)).
Therefore rz must be surjective by the commutativity of (4.4). Suppose Z ¢ P(E(x)), so
that 7(Z) c X is a O-dimensional closed subscheme of length 2. Thanks to our assumptions,
the restriction map H(X,8) — H'(n(2), Ejnz)) 1s surjective by Lemma 4.0.9: if there is no
B-line containing 7(Z), we are in case (i); if 7(Z) C I" for a B-line I" C X, then we are in the
case (ii). It follows that r; is surjective as claimed. O

Now we are ready to prove the main result of the section.

Theorem 4.0.11. Ler X be a smooth projective variety and let B be a globally generated
ample line bundle such that there is a linear series |V| C |B| inducing a morphism which is
étale onto its schematic image. Let & be a B-Ulrich bundle on X and let x € X be a point.
Then £(&; x) = 0 if and only if there exists a B-line I' C X passing through x such that Er is
not ample on I'. In particular,

B.(E) = U r (4.5)

recx

where I ranges over all B-lines in X such that Er is not ample on I

Proof. The last part of the assertion is a consequence of the characterization of the aug-
mented base locus in Remark B.2.17. Hence we only need to show the first one. The “if
part” follows by Lemma 4.0.1 and Remark 3.0.10. Conversely, suppose that £(&; x) = 0. By
Remark A.3.4 we know that there is a point z € P(E(x)) such that z € B..(Opg)(1)), hence
such that (Opg)(1); z) = 0 (Remark B.2.8). Let 8B, be the set of all B-lines passing through
x. Then B, # 0, for otherwise Lemma 4.0.10(i) would imply &(Op(g)(1);z) > 1. Moreover,
if &, is ample on every I'y € B,, then &(Opg)(1);z) > 1 by Lemma 4.0.10(1), giving a
contradiction. Therefore we conclude that there must exist a B-line I" C X such that & is
not ample. O

The following is an immediate consequence.

Corollary 4.0.12. Let X be a smooth projective variety and let B be a globally generated
ample line bundle such that there is a linear series |V| C |B| inducing a morphism which is
étale onto its schematic image. Let & be a B-Ulrich bundle. Then:
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(a) & is V-big if and only if X is not covered by B-lines I' C X on which Er is not ample.

(b) & is ample if and only if either X contains no B-lines or Er is ample on every B-line
rcX.

Proof. This is a simple consequence of Theorems A.3.8 - 4.0.11 and of Proposition A.3.5(2).
O

Let’s see an easy example where the augmented base locus can be computed explicitly.

Example 4.0.13. Consider a Del Pezzo surface § = §; of degree 3 < d < 7. Then
Y-k S — P°~“ is an embedding and, as is well known, there are finitely many lines lying
on S. Indeed, looking at S as the blow-up of P2at9-d points Py, ..., Py9_4 in general
position, the lines are: the exceptional divisors E1, ..., Eg_g, the strict transforms F;; of the
lines through the distinct points P;, P; with 1 <i < j <9 —d and, when d = 3, 4, the strict
transforms Co C S4, C; C S5 of the conics passing through 5 distinct points P;,, ..., P;; with
1<ij<--<is<9-dandi#iy,...,i5. Conversely, by arguing as in [Har77, Proof of
Theorem V.4.9], one sees that any line is linearly equivalent to one of them. By adjunction
formula a line is a (—1)-curve, therefore the each linear system |/'| must contain a single
representative.

In our situation at least two of them are disjoint, say ¢; and £». Then & = (£; — £,)(—Kys)
is a (—Ks)-Ulrich line bundle on S [Beal8, Proposition 4.1(i)]. Since & = d —2 > 0, this is
(nef and) big. Hence B (&) # S (Remark A.3.7). We claim that

B.(&) = ¢ L| U ¢

£cS line:
INe1=0, £+, N #0

It particular, all these &’s are big Ulrich bundles which are not ample (Corollary 4.0.12).
To see this, by Theorem 4.0.11 we only need to find the lines £ C § such that &- £ = 0.

Asall lines in S are (—1)-curvesand &- € = £ - £ — €5 - € + 1, the claim immediately follows.
For instance, for £; = E| and {, = E, we have

B.(&) = E| ifd =17,
9—d
F
Jj=3

9—d

Sy clJ ifd = 3.
=3

Unlike what happens for the ampleness and (1-)very ampleness (see Theorem 4.0.20),
bigness and V-bigness for a B-Ulrich bundle, with B as above, are not equivalent.

B+(8):E1|_| if4<d<6,

B.&)=E| |

Remark 4.0.14. Let 0, c P™! be a smooth quadric of dimension n > 7,1 # 10. Then the
spinor bundles S, &', if n is even, and §”, when n is odd, are the only indecomposable Ulrich
bundles on Q, [Beal8, Proposition 2.5] and are big in this situation [LMS24, Theorem 1].
However, their restriction to every line in Q,, is not ample [Ott88, Corollary 1.6]. Since Q,,
is covered by lines, by Corollary 4.0.12(a) we conclude that S, S’ and S are not V-big.
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Thanks to Corollary 4.0.12 and to Theorem 4.0.20 we can find new examples of (V-)big
Ulrich bundles which are not ample (and whose c; is not very ample). See also [LLS23,
Remark 4.3].

Example 4.0.15. Let S ¢ P? be the cubic surface (with hyperplane section Og (1) = —K).
Since S is not covered by lines (see Example 4.0.13), all Ulrich bundles on S are trivially
V-big by Corollary 4.0.12. Now, looking at §' as the blow-up of the plane at 6 points in
general position, denote by H the pullback of a line and by E; the exceptional divisors, for
i=1,...,6.By[Cas+12, Examples 3.6 - 4.7] there exist three Ulrich bundles &,, &, &4 of
rank 2 and an Ulrich bundle &, of rank 3 on S such that

c1(&,) = 2H, c1(&y) =3H — Ey — E; — Es,

5 4
c1(8d):4ﬁ—2E1—ZEi, c1(8h)=6ﬁ—ZZE,-—E5.
=2 i=1

Each of the above c; is clearly not ample, for instance c; - Eg = O for all of them. Then
&, Ep, Eg, & cannot be ample, for otherwise they would be 1-very ample (Theorem 4.0.20)
and their first Chern class would be so as well (Remark A.3.2).

We can find big non-ample Ulrich bundles even if its Chern class is very ample and the
variety is covered by lines.

Example 4.0.16. Let (X, B) be a Del Pezzo threefold of degree 3 < d < 5. Then X is covered
by lines [Isk79, Proposition III.1.4(i1)], and in fact the Fano scheme of lines F(X) is a
smooth irreducible surface [Isk79, Propositions III.1.3(iii) - I11.1.6(i) & Remark I1I.1.5]. Let
& be any stable special Ulrich bundle of rank 2 on X [CFK23, Theorem 1.1]. In particular
c1(&) = 2B is very ample. As &(—1) is still stable and ¢1(&E(—1)) = 0, H'(X,&8(-2)) = 0,
we see that &(—1) is an instanton bundle in the sense of [Kuz12, Definition 1.1]. Since
&L= Or(1)®2 for a general line [L] € F(X) [CFK23, (Proof of) Lemma 4.8(i)], by [Kuz12,
Theorem 3.17] there exists a non-zero divisor Dg C F(X) which parameterizes the lines
L c X such that &(-1);; = Op(=1) ® O(1). Then Corollary 4.0.12 and (4.5) tell that & is
not ample with non-empty augmented base locus

B.(§) = U L.

[L1eDg

Consider the incidence correspondence

S={(x[I)eXXFX)|xel}cXxFX)

with projections 7y, 2. As every fibre 7, Y([L]) = L is smooth irreducible of dimension 1, a
dimension count shows that 7y (7 1(Dg)) € X is a proper subset. As B, (&) = my () 1(Dg)),
we conclude that & is V-big.

We observe that Theorem 4.0.11 and Corollary 4.0.12 no longer hold if we do not
assume @y to be étale, in particular if we allow the ramification locus to be non-empty.
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Remark 4.0.17. The Del Pezzo surface (S, —Kjs) of degree d = 2, that is finite flat double
cover p_g;: S — P? branched over a smooth plane quartic curve, supports a non-big
(—Ks)-Ulrich line bundle & (see Proposition 1.2.4 and Example 3.0.27). This means that
B. (&) = S. However, exactly as already seen in Example 4.0.13 for Del Pezzo surfaces of
degree 3 < d <7, § contains finitely many (—Kg)-lines: interpreting S as the blow-up of
the plane at 7 points in general position, we see there are 56 (—Kj )-lines which correspond
to the 7 exceptional divisors, to the strict transforms of the 21 lines through two of those
points, to the strict transforms of the 21 conics through five of those points and to the strict
transforms of the 7 cubics through all of those points with a double point at one of them.
Indeed, all these curves are clearly (—Kj)-lines; conversely, by arguing as in [Har77, Proof
of Theorem V.4.9], one sees that any (—Kjy )-line is linearly equivalent to one of them. By
adjunction formula a (—Kg)-line I C S has self-intersection I 2 = —1, therefore the each
linear system |/'| must contain a single representative, proving the claim. Thus it’s clear that
(4.5) cannot hold for &.

The previous example was easy because the variety contains a finite number of B-lines.
However the same problem may arise also when the variety is covered by B-lines.

Remark 4.0.18. Let (X, B) be a Del Pezzo 3-fold of degree d = 2 and let & be the stable
special B-Ulrich bundle of rank 2 provided by Proposition 1.3.3. As above, we are not in the
situation of Theorem 4.0.11 since the morphism ¢p: X — P3 is a finite flat double cover
branched over a smooth quartic surface. But, on the contrary of the previous remark, X
is covered by B-lines (see Remark 3.0.11). More precisely the Fano scheme of (B-)lines
F(X) is an irreducible surface [Isk79, Remark III.1.7]. In Example 3.0.28 we showed that &
is non-big. Therefore B, (&) = X. However, in [Fae14, Proof of Theorem D, Step 1] it is
proved that Er = Opi(1)®? for a general B-line [I'] € F(X). Exactly as in Example 4.0.16,
&E(—B) is an instanton bundle on X [Kuz12, Definition 1.1]. Therefore the B-lines I € X
such that Er = Op1 @ Opi(2) form a non-zero divisor Dg C F(X) by [Kuz12, Theorem
3.17]. Consider the incidence correspondence

S={(x,IDeXXFX)|xel'tcXXF(X)

with projections 71, 2. Every fibre 7 L([I']) = I' is smooth irreducible of dimension 1. For
dimensional reasons, 7y (7 '(Dg)) € X must be a proper subset. By construction, every point
x € X\my(m, I(Dg)) is crossed only by B-lines I' C X such that & = Op: (1)®2. We conclude
that the union over all B-lines I C X such that & is not ample cannot coincide with X. This
says that Theorem 4.0.11 and Corollary 4.0.12 do not apply even in this situation.

We point out that the assumptions on B considered so far are not necessary: there are
examples in which ¢p is not étale but the characterization of Theorem 4.0.11 holds.

Remark 4.0.19. First we observe that given any smooth projective curve C of genus g > 0
with a globally generated ample line bundle B, one can easily see that &;, = L(B) is B-Ulrich
for every line bundle L € Pict~1(C)\®, with © being the divisor which contains all effective
line bundles on C of degree g — 1. Note that deg(&;) =deg B+ g — 1.
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Any pair (C, B) # (P!, Opi(1)) is not a B-line and, in this case, all &;’s are ample since
deg(&r) > 0. Therefore B (Ex) = 0 accordingly with the fact that C contains no B-lines.

However, taking for instance (C, B) with g = 1 and deg B = 2, we see that &, is ample
but not (1-)very ample. This shows that also Theorem 4.0.20 does not hold when ¢p is
ramified: in fact gp: C — P! is a finite flat double cover with 2 branch points. Anyway, if
deg B > g + 2, the B-Ulrich line bundle &, is (1-)very ample even if ¢y is not étale for all
V| c|B.

Regarding the ampleness of a B-Ulrich bundle (with B as above), thanks to the previous
lemmas about the separation properties, we can also prove the analogue of [LS23, Theorem
1] in this setting. Let’s recall first another notion of positivity for vector bundles.

Theorem 4.0.20 (Lopez-Sierra). Let X be a smooth projective variety and let B be a globally
generated ample line bundle such that there is a linear series |V| C |B| inducing a morphism
which is étale onto its schematic image. Let & be a B-Ulrich bundle on X. Then the following
are equivalent:

(1) &is 1-very ample.

(2) & is very ample.

(3) &is ample.

(4) Either X contains no B-lines or Er is ample on every B-line I' C X.

Proof. 1t’s clear that (2) implies (3), while the fact that (1) implies (3) follows by Remark
A.3.2. Corollary 4.0.12(b) gives the equivalence of (3) and (4). Let 7: P(€§) — X be the
natural projection and let & = Opg)(1) be the tautological line bundle on P(E). Now assume
(4) and let Z c P(E) (resp. Z’ c X) be a 0-dimensional closed subscheme of length 2. To
prove (2) (resp. (1)), we show that

rz: HOP(E),&) — HY(Z, &) (resp. ' : H(X,&) — HY(Z', &)

is surjective. If Z ¢ P(&E(x)) for some x € X, we obtain the same commutative diagram
of (4.4), which then forces rz to be surjective. Suppose Z ¢ P(&E(x)) for every x € X.
Then n(Z) c X is a O-dimensional closed subscheme of length 2. Let r: H'(X,8) —
HO((Z), Ejn(z)) be the restriction map. If there is no B-line passing through 71(Z) (resp. Z'),
which happens in particular when X contains no B-lines, then r (resp. r’) is surjective by
Lemma 4.0.9(i), hence so is rz. Analogously, if I" C X is a B-line containing m(Z) (resp.
Z"), then we know that r (resp. r’) is surjective thanks to Lemma 4.0.9(ii). Therefore r; is
surjective as desired. This concludes the proof. O



73

Chapter 5

Projective normality of Ulrich
bundles

Lopez-Sierra theorem 4.0.20 tells that a B-Ulrich bundle &, when |B| contains a linear series
|V| inducing an étale morphism onto the schematic image, is ample if and only if it is very
ample if and only if either X does not contain B-lines or & is ample on every B-line I’ C X.
It is then natural trying to understand the embedding of the corresponding projective bundle
through the (complete) linear system of the tautological line bundle. In this regard, we are
going to study the projective normality of an Ulrich bundle, namely the normal generation
of its tautological line bundle (see Definitions B.3.1-5.0.5). Unfortunately, this property
does not behave as expected: Ulrich bundles on curves are projectively normal when the
degree of the polarization is big with respect to the genus, but this is no longer true on
(low-dimensional) hypersurfaces where Ulrich bundles, which are likely very ample (it
is enough that the hypersurface is general of degree which is at least the double of the
dimension), are, instead, surprisingly almost never projectively normal (see also Remark
5.3.5). Therefore it appears very difficult to obtain a general criterion for this property. In
addition to this, the techniques we are going to exploit to study projective normality involves
Castelnuovo-Mumford regularity which is usually not well-behaved with respect to tensor
operations if the dimension is greater than 2 (see Appendix B.1). Therefore the main results,
that are stated below, are on curves, surfaces with ¢ = p, = 0 and on hypersurfaces of
dimension n = 2, 3.

Theorem 5.0.1. Let C be a smooth projective curve of genus g and let B be a globally
generated ample line bundle of degree d on C. Let & be a B-Ulrich bundle on C. Then:

(1) & is projectively normal if d > g + 1.

(2) & satisfies (N1) and Opg)(1) is Koszul if d > g + 2.

(3) & satisfies (N,) for p > 2 if d > %((g +p+ 1)+ g2 +2eBp+ 1)+ (p- 1)2).

(4) If there exists a linear series |V| C |B| which induces a morphism which is étale
onto the schematic image, the general B-Ulrich bundle of rank r on C is projectively
normal as soon as C supports a non-special normally generated line bundle of degree
d. This holds in particular if d > g + 2 — Cliff (C).
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(5) If C is general of genus g > 3 and B is a general very ample line bundle of degree

. 3+ 4/8g+1
= 2 b
then the general B-Ulrich bundle of rank r is projectively normal. Moreover this

bound is sharp for r = 1.

Theorem 5.0.2. Let S c PN be a smooth projective surface with g(S) = Pe(S) =0 and let
& be an ample 0-regular vector bundle of rank r > 2 on S such that h = h°(S,&) > r+3. Let
E = det(&) be its determinant line bundle and let € = (h;r ) — 1. The following are equivalent:

(1) P(E) is not aCM.
(2) & is not projectively normal.
(3) There exist a closed subscheme Z C S and a non-zero divisor D C S such that:

(a) Z is smooth of dimension 0.

. . 0 2 0%
(b) Z is the degeneracy locus of € general sections si,...,s¢ € H (S, A"My).
(c) 1Z]=5(h—r=2)((h=r+ D)cr(EP - 2c2(6)).
(d) Del|Ks +(h—r—1)E|.
(e) ZcC D.

(4) There exist a closed subscheme Z C S and a curve C C S such that:

. . 0 2 A%
(f) Z is the degeneracy locus of € general sections oy, ..., 0¢ € H'(S, A*Mp).
(g) C is the degeneracy locus of the (¢ + 1) general sections o,...,0¢,0¢41 €
H(S, A*M).
(h) C €|(h—r—1)E|is smooth and irreducible.
(i) Z C C is a special (effective) divisor.

Theorem 5.0.3. Let X € P! be a smooth hypersurface of degree d > 3 withn = 2,3 and
let & be an Ulrich bundle of rank r on X. Let

us: H(X,8) @ H'(X,8) — H' (X, E® &)
denote the multiplication of sections. Then:

(1) If n = 2 and det(&) = Ox(g(d — 1)), then ug cannot be surjective and & cannot be
projectively normal ifd > 5,0ord =4 andr <5,ord =3 andr < 2.

(2) If n =3 and d > 4, then ug is never surjective and & cannot be projectively normal if
d+4

r> 3 -
We start by recalling the main definitions and some properties of projective normality
of vector bundles. Standard facts and useful technical results on normal generation of line
bundles and of higher rank vector bundles are gathered in Appendix B.3.

Throughout this chapter we will use the following convention.
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Notation 5.0.4. For a very ample vector bundle & on a projective scheme X we will
always consider the embedding P(E) — P(H°(X, &)) induced by the complete linear system
|Ope) (D).

The natural generalizations of the notions of projective normality of line bundles and of
ACM embedding (Definitions B.3.1-B.3.9) to vector bundles is asking them to hold for the
tautological bundle.

Definition 5.0.5. Let & be a vector bundle on a projective variety X. We say that & is
projectively normal (resp. k-normal for some k > 1) if Opg)(1) is normally generated
(resp. k-normal) on P(E). We say that P(E) is aCM if Opg)(1) induces an embedding
P(&) c P(H'(X, &)) which is aCM. Finally, & is strongly k-normal (for some k > 1) if

e HO(X, & — H(X, &%)
is surjective. When k = 2, we will write ug = ué.

By Remarks B.3.2-B.3.10 we know that projective normality is implied both by strongly
normality for all k > 1 and by the ACM property of the projective bundle. This simple
observation will be used with no further mention.

Proposition 5.0.6. Let X ¢ PN be a projective variety of dimension n > 1 such that Ox(1)
is 3n-Koszul. Then every O-regular vector bundle on X is strongly k-normal for all k > 1. In
particular, all ample O-regular vector bundles are projectively normal.

This Proposition applies for instance to all embedded varieties in Example B.1.12.

Proof. Let & be a 0-regular vector bundle on X c PV and proceed by induction on k > 1.
As the base case k = 1 is trivial, suppose k£ > 1 and consider the commutative diagram

HO ( X, 8)®k

id®y§" Hg

HO(X,8) @ HO(X, E8K-1) s HO(X, E%F).

k
me

The map id®ulg1 is surjective by the inductive hypothesis and mg is surjective by Proposition
B.1.13. Thus p’é = mg o(id® u/é‘l) is surjective as required. O

Strongly 2-normality on O-regular vector bundles on low dimensional varieties directly
implies projective normality.

Remark 5.0.7. Let (X, B) be either an irreducible curve with a globally generated ample line
bundle or an irreducible surface with a very ample line bundle. Then a strongly 2-normal 0-
regular vector bundle for (X, B) is automatically strongly k-normal for all k > 2. In particular,
all ample O-regular and strongly 2-normal vector bundles for (X, B) are projectively normal.

Indeed, let & be a strongly 2-normal O-regular vector bundle for (X, B) and let Mg be its
syzygy bundle. Tensoring the syzygy exact sequence of & through by &, we immediately see
that the strongly 2-normality implies H'(X, Mg ® E) = 0. If dim X = 1, this amounts to say
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that Mg ® & is 1-regular. If X is a surface, observing that also & ® & is 0-regular (Corollary
B.1.10), the exact sequence

0=H'X,E®E-B)) — H*(X, Mg ® &(-B)) — H(X,E) @ H*(X,E(-B)) = 0

tells that Mg ® & is 1-regular also in this case. Then, by Proposition B.1.9, Mg ® &%/ and
E®J are respectively 1-regular and O-regular for all j > 1. Proceeding inductively on k > 2,
suppose k > 2 and assume that ,ug is surjective for all 1 < h < k — 1. Using the 1-regularity
of Mg ® 2%~ we immediately get the surjectivity of

HY(X, &) ® HO (X, 2%V — HO(x, E%5).

Since H(X, &) = H'(X,8) ® H(X, &) — HO(X, &) ® HO(X, &8%D) is onto by the
inductive hypothesis, the assertion follows.

We conclude this preliminary part with a result which says that for very ample vector
bundles with no first cohomology group over curves and surfaces with p, = 0, the projective
normality is equivalent to the 2-normality. This will be crucial for the proofs of Theorems
5.0.1-5.0.2.

Proposition 5.0.8. Let Y be a smooth projective variety of dimension m > 1 with H*(Y, Oy) =
0 and let & be a 2-normal very ample vector bundle on Y such that H'\(Y,&) = H(Y, (Ky +
det(E)) ® S"3E) = 0. Then & is projectively normal, T PE)/PHO(YE) IS 3-regular and
Ip)p0(ve)) is generated in degree less than or equal to 3.

Proof. We just need to verify the hypothesis of Lemma B.3.13. We already know that
Opg)(1) is very ample and 2-normal, and also that H 6] Ope)(1)) = H*(P(E), Ore)) =
0. Finally, letting r = 1k(&), we have
H(P(E), Kpe) + Ope)(m + 1 = 3) = H'(PE), 7" (Ky + det(E)) + Ope)(m — 3)
= HO(Y, (Ky + det(8)) ® 7. Op(e)(m — 3))
= H(Y, (Ky + det(8)) ® S"°E)
=0

as required. O

5.1 Projective normality of Ulrich bundles on curves

The goal of this section is to determine under which conditions an Ulrich bundle on a smooth
projective curve is projectively normal. Thanks to Proposition 5.0.8 we only need to study
the 2-normality of an Ulrich bundle. In this section, a curve is always smooth and projective.

Recall that for a vector bundle & on a curve, it is defined the quantity
1 (&) = min {u(Q) | Q is a quotient vector bundle of &},

where p(—) = deg(—)/ rk(—) is the slope of a vector bundle. We always have u(&) > u=(&)
with the equality holding if & is u-semistable. We refer to [But94] for more details.
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Proposition 5.1.1. Let & be a vector bundle on a smooth projective curve C with slope
u (&) > 2g(C). Then & is strongly 2-normal, projectively normal, Tpgppocey) i 3-
regular and Ip g p(ro(x g)) s generated in degree < 3 in the embedding P(E) C P(H 0(X, &)
determined by |Opg)(1)|.

Proof. The vector bundle & is very ample with H c,e =0 by [But94, Lemma 1.12]
and strongly 2-normal by [But94, Theorem 2.1]. The assertion follows from Proposition
5.0.8. O

Corollary 5.1.2. Let C be a smooth projective curve and let & be a B-Ulrich bundle of rank
r on C, where B is a globally generated ample line bundle of degree d on C. If d > g(C) + 1,
then & is strongly k-normal for all k > 2, projectively normal, and I'pg, pra-1 is 3-regular
and Ipg, pra-1 is generated in degree < 3 in the embedding P(E) C P” 41 determined by
|Op&) (D).

Proof. By Lemma 1.1.16(ii) and Proposition 1.1.17, & is semistable with slope u(&) >
2g(C). The claim follows by Proposition 5.1.1 and Remark 5.0.7. O

This condition is certainly not necessary for the projective normality of an Ulrich bundle.

Remark 5.1.3. For a smooth plane C ¢ P? of degree d > 4 one has d < g + 1, but all
Ulrich bundles on C ¢ P? are very ample Theorem 4.0.20 and also strongly 2-normal by
[Laz04a, Example B.1.3] applied to the resolution (5.6) in Lemma 5.3.1 below. In particular,
by Proposition 5.0.8 every Ulrich bundle & on C ¢ P? is projectively normal, 7 p(E)/prd-1 18
3-regular and Ip(g) /pra-1 is generated in degree < 3 in the embedding oy (1): P(E) C P" =1,

However, the condition in Corollary 5.1.2 is sharp some sense if we consider Ulrich
bundles defined with respect to globally generated ample line bundles (and possibly non-very
ample).

Remark 5.1.4. Let C be a hyperelliptic curve of genus g = 3 and let £ be any K¢-Ulrich
line bundle (Proposition 1.2.2). In particular, since £ cannot be of the form Kc(D) for
an effective divisor D of degree 2, we know that L is very ample. However, £ cannot be
projectively normal by [GL86, Corollary 1.4].

In light of this, we will focus on the case of Ulrich bundles defined with respect to a
very ample polarization.

Remark 5.1.5. Ulrich bundles on a smooth rational curve of degree d > 2 are always
projectively normal by Corollary 5.1.2. Since all very ample line bundles on smooth
projective curves of genus g = 1,2 have degree d > g + 2, the same is true also in this case.

‘We now recall the definition of Clifford index of a curve.

Definition 5.1.6. Let C be a smooth projective curve of genus g > 2 and let L be a line
bundle on C. The Clifford index of L is the quantity

Cliff(L) = deg(L) — 2dim |L| = deg(L) — 2(h°(C, L) - 1).
The Clifford index of C is defined as

CIiff(C) = min {CIiff(4) | A € Pic(C), h'(C,A) > 2 fori = 0,1}.
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We now pass to the study of projective normality of the general B-Ulrich bundle on a
curve C. We first observe that, as in the case of very ample polarization, they define open
subsets in the corresponding moduli space of semistable vector bundles on C. First we state
a simple remark.

Remark 5.1.7. Let C be a smooth projective curve of genus g and fix a line bundle A of
positive degree a > 0. The line bundles of the form A + D, for D; being an effective divisor
of degree d < g — 1, are contained in a proper closed subset of Pic*t4(C).

Indeed, an effective divisor of degree d < g — 1 lies in the image of the Abel map
C, — Pic?(C), which is a closed subset of dimension d < g =dim Pic?(C). As the tensor
product trough by A determines an isomorphism Pic? (©) = Picetd (C), the assertion follows.

Remark 5.1.8. Let C be a smooth projective curve of genus g and let B be a globally
generated ample line bundle of degree d on C. By semicontinuity B-Ulrich bundles of rank
r, which are always semistable, define a non-empty open subset in the good moduli space
(resp. moduli stack) of semistable vector bundles of rank r and degree r(d + g — 1) (see also
[Cas+12, p. 8] and [Cos17a, p. 95]). Moreover, by Remarks 4.0.19-5.1.7, B-Ulrich line
bundles form a dense open subset in Pic‘”g_l(C ) (see also [Cos17a, (4.1.3)]).

We can now prove one of the main result of this section.

Proposition 5.1.9. Let C be a smooth projective curve of genus g > 2 and let B be a globally
generated line bundle of degree d > 1 such that there exists a linear series |V| C |B| which
induce a morphism which is étale onto the schematic image.

If C supports a non-special projectively normal line bundle of degree d + g — 1, then the
general B-Ulrich bundle of rank r is projectively normal, for any r > 1. In particular, the
general rank r Ulrich bundle is projectively normal on C ifd > g + 2 — Cliff(C).

For a detailed account of the main properties of the moduli space (resp. moduli stack) of
semistable vector bundles on a smooth projective curve we refer to [Alp13; Alp+22].

Proof. The second part of the statement will follow from the first one combined with [GLS86,
Theorem 1]. For the first part, observe that all Ulrich bundles on C are ample (Corollary
4.0.12), then fix r > 1 and let M g (r,e) C M (r, e) be the non-empty open subset of B-Ulrich
bundles (Remark 5.1.8) of rank r in the irreducible good moduli space of semistable vector
bundles of rank r and degree e = r(d + g — 1) (see [Alp+22, Theorem 3.12]). Then Lemma
B.3.8 says that the subset P of (semistable) non-special (Notation B.3.7), ample, globally
generated, strongly 2-normal vector bundles # is open in the (irreducible) moduli stack
M (r, e) of semistable vector bundles of rank r and degree e = r(d + g — 1) on C. As the
good moduli space
fiMZ(r,e) — ME(r,e)

is universally closed [Alp+22, Theorem 3.5], the subset
P = fIME(r,e)\P) C M (r,e)

is closed and consists of points [E] € M (r, e) such that there exists a vector bundle ¥ € [E]
which either is special either is not ample either is not globally generated or us is not
surjective. The complement P = M (r,e)\P* is then open and can be described as

[E] € Mgs(r, e) | AF € [&] such that
¥ is non-special, ample, globally generated and strongly 2-normal |
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Now, if there exists a non-special projectively normal line bundle in Pic?*¢~!(C), by
Lemma B.3.8 (or [LM85, Lemma 1.3]) we can find a dense open subset consisting of
non-special projectively normal line bundles of degree d + g — 1. In virtue of the openness
of Ulrich line bundles in Pic?*4~1(C) (Remark 5.1.8), there exists a dense open subset of
projectively normal B-Ulrich line bundles on C ¢ PV. Let £ be one of them. Then L&
lies in M, CU (r,e) N P by Remark B.3.4. Therefore the conclusion follows by combining the
irreducibility of M (r, ) and Proposition 5.0.8. O

As an application of this result, we see that the bound in Corollary 5.1.2 can be lowered
for the general rank Ulrich bundle.

Lemma 5.1.10. Let C c PV be a smooth projective curve of genus g > 3 and degree d > 1.
Then:

(i) Ifd = g, g + 1, all Ulrich line bundles on C are projectively normal.

(ii) If g > gn, where

15 if h=2
|17 if h=3
§h=Y 27 if h=4
33 if h=5

the general non-special line bundle of degree 2g — h is projectively normal.

In particular, the general rank r Ulrich vector bundle is projectively normal ifd = g, g + 1

andifd=g—h+1and g > g, forh=2,3,4,5.
Before seeing the proof, we make a couple of simple observations.

Remark 5.1.11. A smooth projective curve C € PV of genus g > 2 and degree d < g + 1 is
neither hyperelliptic nor elliptic-hyperelliptic, i.e. a double cover of an elliptic curve.

Indeed, very ample line bundles on smooth hyperelliptic curves of genus g > 2 have
degree d > g + 1 by [Par08, Theorem 3.1(3)], and a very ample line bundle L on an
elliptic-hyperelliptic curve must have 4'(C, L) < 1 [Marl2, (5)] which cannot happen if
deg(L) < g+ 1.

Proof of Lemma 5.1.10. By Proposition 5.1.9 we only need to prove (i)-(ii). We observe
also that C can be neither hyperelliptic nor elliptic-hyperellitpic (Remark 5.1.11).

Let’s show (i). If d = g + 1, all Ulrich line bundle have degree 2g and so projectively
normal by [GL86, Corollary 1.4].
Assume d = g and let H C C be a hyperplane section. We first show that if d = g = 6, then
C cannot be a plane quintic. Assuming the contrary, write H = pj + - - - + pg. Since there are
no smooth curves of genus 6 and degree 6 in P3 [Har77, Example 1V.6.4.2], we must have

W(C, Kec—pi—-—pg)=h"(C,H) = h%(C,H) -6 -1+6=h"(C,H) - 1> 4.

However, h°(C, K¢ — q1 — q2 — q3) = 3 for every q1,q2,q3 € C: the effective divisor
D = g1 + ¢» + ¢3 must have 1°(C, D) = 1, for otherwise we would get a gé on a plane quintic,
hence Riemann-Roch gives the claim.

Now, C is not a plane quintic and we immediately see that N > 3. Using Castelnuovo
theorem [Har77, Theorem 1V.6.4], we get d = g > 8. In this case, an Ulrich line bundle £
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has degree deg(L) = 2g — 1. Thus [GL86, Corollary 1.6] tells that £ fails to be projectively
normal if and only if C is trigonal and £ = K¢ — E + D for an effective divisor D of degree
4and E € W3] (C). However this cannot happen for otherwise

h(C,L)=h"(C,Kc—~H+D-E)=h"(C,H-D+E)>0.

(Indeed, writing D = Z?zl pi for some points p; € C and using that H is very ample with
h(C,H) > 4 and E € W3(C), we have

W(C,H - p1 —pa—p3) > 1, R(CE - py) > 1,

proving the claim.) Therefore £ is projectively normal even in this case. This proves (i).

For (ii), we are going to use [KKO99, Theorems 3.1-3.2] and [Aka04, Theorems 3.1—
3.2]: it is proved that a non-special line bundle L of degree 2g — h on a curve of genus
g = gn, for h = 2,3,4,5, is not projectively normal if and only if either C has a certain
gonality or is a covering of a certain curve and

L=Kc—cA+D

where A € W) = Wi(C),D € Wy = WO(C)and with 1 <c <5, j=1,23<a<9<g,
a>2j,2<b<12<gsuchthat2g—2—c-a+b = 2g— h given in the Theorems in loc. cit.
This says that non-special non-projectively normal line bundles are contained in the image
of the incidence correspondence

pn_ [ @LDe W/ x Pic®(C) :
ab | L =K¢—cA+ D forsome D € W,

/ x
w/ Pic%(C)

a

through the projection ;. The fibre of 711 over each A € W,{ can be identified with the image
of W;, under the multiplication map Pic’(C) 5 Pic’¢~"(C) by K¢ — cA. As seen in Remark
5.1.7, this set is closed of dimension b. Hence, by [Har77, Exercise I1.3.22(b)] and [Arb+85,
Theorem IV.5.1], we obtain the bound

dim my(I%}) < dim I} < dim WJ + dim Wj, <a - 2j— 1 +b.
By [KKO99, Theorems 3.1-3.2] and [Aka0O4, Theorems 3.1-3.2] we have:
e (j,a,b)=(1,3,6),(1,4,4) when h = 2;
e (j,a,b)=(1,3,8),(1,4,3),(1,5,4) when h = 3;
e (j,a,b)=(1,3,10),(1,4,6),(1,5,3),(1,6,4),(2,8,6) when h = 4;
e (j,a,b)=(1,3,12),(1,4,5),(1,5,2),(1,6,3),(1,7,4),(2,8,5),(2,9,6) when h = 5.

For each (4, j, a, b) listed above, we see that dim ﬂz(]é’Z) < gn < g. Therefore we obtain the
assertion in (i1). O
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Thanks to the proof of the Maximal Rank Conjecture for non-special curves [BE87],
we can find a lower bound for the projective normality of the general Ulrich bundle on a
general curve. Moreover this is sharp for Ulrich line bundles.

Proposition 5.1.12. On a general curve of genus g > 3, the general rank r Ulrich bundle
defined with respect to a general very ample polarization of degree

3+ 4/8g+1
d> ————
2
is projectively normal. Moreover, this bound is sharp forr = 1.

Proof. We reduce to the case r = 1 thanks to Proposition 5.1.9. By [BE87, Theorem]
(and references therein), on a general curve C of genus g > 3 the general non-special very
ample line bundle L of degree u = g + (d — 1) inducing an embedding ¢ : X <— P41, for

d> 3+1/8g+

5 ! > 4, satisfies the Maximal Rank Conjecture (MRC), i.e. the restriction map
rex: SSHO(C, L) — HO(C, kL)

has maximal rank for all k > 1. Since a general line bundle H of degree d is very ample
[EH83, Theorem 5.1.2] and H-Ulrich line bundles form an open subset in Pic*(C) [Cos17a,
(4.1.3)], we infer that the general H-Ulrich line bundle £ satisfies MRC. Now, Lemma
B.3.13 says that L is projectively normal if and only if it is 2-normal if and only if rp» = 1y
is surjective. Given that r, has maximal rank, this holds if and only if

d+1
dim S’H(C, L) = ( 5 ) >hC2L) =2u+1-g=2d+g-1,
where the term on the right is easily computed via Riemann-Roch theorem. The assertion is

now clear. O

Remark 5.1.13. Observe that the same bound can be obtained using [BF10, Theorem 1]
(together with Proposition 5.1.9).

We conclude the section with some remarks on the (N,) property for vector bundles.

Definition 5.1.14. Let X be a projective variety and let L be a very ample line bundle
defining an embedding
¢r: X — P(H(X,L)) =PV,

Then R(L) admits a minimal graded free resolution £, — R(L) as graded Rx-module:

- = B = (P Rx(-a1,)) = Eo = Ry ® () Rx(~a0 j) — R(L) = 0.

We say that L satisfies the Property (N,) if Eg = Ry and a;; = i + 1 for all j whenever
1 <i < p. In particular, L satisfies (Np) if and only if L is normally generated. A vector
bundle & on X satisfies the (N,) property if Opg)(1) does it on P(E).

Proposition 5.1.15. Let C be a smooth projective curve of genus g > 0 and let B be a
globally generated ample line bundle on C of degree d > 0. Let & be a B-Ulrich bundle on
C. Then:
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(1) & satisfies (N1) and Opg)(1) is Koszul if d > g + 2.

(2) & satisfies (N,) for p > 2 ifd > %((g +p+ D)+ Vg2 +2eBp+ 1)+ (p-17?).

Proof. In both situations we have d > g + 1, therefore & is very ample (Theorem 4.0.20) and
semistable with (&) = d + g — 1 (Lemma 1.1.16). We also know from Corollary 5.1.2 that
& is projectively normal. Letting 7: P(&) — C be the natural projection, through [Har77,
Exercise II1.8.4(a)] it’s immediate to see that

Rz, (Opey(1)(=1 = i)) = R'm,Opg)(—i) = 0 for i > 0.

In other words, Opg)(1) is (—1)-regular with respect to  in the sense of [Laz04a, Example
1.8.24], or [But94, §3]. Then, if d > g+2, [But94, Theorem 6.1] tells that Opg)(1) is Koszul.
Since a very ample Koszul line bundle satisfies (N1), see [But94, Remark 5.2] or [Her10,
Remark 7], this proves (1). Finally, (2) is just a rephrasing of [Par06, Theorem 1.3]. O

Proof of Theorem 5.0.1. This is just a recollection of the facts proved in Corollary 5.1.2 and
Propositions 5.1.9-5.1.12-5.1.15 O

Analogously to Green theorem for line bundles on curves [Laz04a, Theorem 1.8.53] and
to Corollary 5.1.2, the expectation is that an Ulrich bundle on a smooth projective curve of
degree d and genus g satisfies (N),) assoonasd > g+ 1+ p.

5.2 Projective normality of Ulrich bundles on surfaces

We study the projective normality of O-regular vector bundles on smooth regular embedded
surfaces. We use a very ample polarization because all the tensor powers remain O-regular
(Corollary B.1.10).

Lemma 5.2.1. Let & be a 0-regular vector bundle on a smooth projective surface S c PV,
Then:

(i) & is k-normal for all k > 4;
(ii) &is 3-normal if pe(S) = 0;

(i) If ¢(S) = 0, & is 2-normal if and only if K*(S, A*Mg) = pg(S)(hO(g’a)) if and only if
the map
A?H(S, &) ® H(S,Ks) — H(S, A’M} ® Ks)

is surjective (or, equivalently, an isomorphism).

Observe that this gives another proof for the fact, already know from Proposition 5.0.8,
that a 2-normal ample O-regular vector bundle on an embedded smooth projective surface
with p, = 0 is automatically projectively normal.

Proof. We know from (B.3) in Lemma B.3.5 that the syzygy exact sequence 0 — Mg —
V®0Os — & — 0, where V = H’(S, &), yields the long exact sequence

0— A*Mg - AVe Oy - A lVeE — - -5 A VeSFZe s VvesShle - sf& -0
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for every k > 2. By Remark B.3.3, to prove (i) we have to show the surjectivity on global
section of the rightmost map. For k > 4, the vanishings

H'(S, A2VeSk28) = A2ve H'(S,S¥728) = 0, HX(S, A’ VeS38) = A3 veH?(S,S538) = 0,

which follow from the O-regularity of the symmetric power of & (Corollary B.1.10), together
with _ . . _ . _
H(S, A Ve S1g) = AV @ H(S,$"'&) = 0 fori > 3,
give the claim by [Laz04a, Example B.1.3].
Now, assuming p,(S) = 0, for k = 3 we similarly have

H' (S, A’V®&) = A’V H'(S,8) =0, HX(A’V & Os) = A’H(S,8) @ HX(S,Os) = 0

and H3(S, A3Mg) = 0. Item (ii) is obtained in the same way.

Assume ¢g(S) = 0, so that H (S, Mg) = 0, then consider k = 2 in the above exact
sequence and let K = ker(V ® & — S2&). The cohomology of the corresponding exact
sequence immediately shows that H?*(S,K) = H'(S,S%E) = 0 and that & is 2-normal if and
only if H (S, K) = 0. On the other hand, as K = Im(A*’Mg — A?V ® Oy), we get the exact
sequence of vector spaces

0 — HY(S,K) — HXS,A>Mg) L A2V @ HX(S,Og) — H*(S,K) = 0.

Thus, f being surjective, H'(S, K) = 0 if and only if f is injective if and only if f is an
isomorphism if and only if #*(S, A>Mg) = pg(S) - dim A?V. Taking the dual map of f and
using Serre duality, we see that f is injective if and only if

AV @ H(S, Ks) — H(S,A’M} ® Ks)
is surjective. This proves (iii). O

In virtue of this, we will mostly focus on regular smooth surfaces S possibly with

Pg(S) =0.
Let’s see what happens when we consider O-regular locally free sheaves with aCM
projectivized bundle.

Proposition 5.2.2. Let S ¢ PV be smooth projective surface and let & be a very ample
0-regular bundle on S of rank r > 2. Then:

(1) If P(E) is aCM, then q(S) = pg(S) = 0.

(2) If q(S) = pg(S) = 0 and & is 2-normal, then P(E) is aCM, Lpg)puocs ) is 3-regular
and Ipg) pos &) s generated in degree less than or equal to 3.

Proof. Since SKE is 0-regular (Corollary B.1.10), by [Har77, Exercise I11.8.4] we have

, Hi(S,0g5) fori>0,=0
H (P(E), Ops)(£)) = 5.1
(P(E). Ore)(D)) {0 fori>1,0> —r+1,0%0. 1)

Therefore, if P(E) is aCM, then H'(S, Os) = H'(P(E), Op)) = 0 for 1 < i < 2 (Remark
B.3.10). This gives (1).



5. Projective normality of Ulrich bundles 84

Now assume ¢(S) = py(S) = 0 and that & is 2-normal. Then Proposition 5.0.8 tells that
& is projectively normal with Zp g, /po(s.&) Which is 3-regular and Ipg) ppo(s &) that is
generated in degree less than or equal to 3. We only need to prove that P(E) is aCM. To do this,
by Lemma B.3.11 it suffices to prove that a smooth sectional curve of P(E) c P(H(S, &)) is
projectively normal. Take r smooth hyperplane sections Hj, ..., H, € |Opg)(1)| such that
Y;=H;Nn---NH;CP(E) is smooth and irreducible. We claim that Hi(Yj, Oyj(h)) = 0 for
alli>lassoonash>—-r+1+ ]
To see this, we proceed by induction on 1 < j < r. Thanks to (5.1), we can immediately see
from the exact sequence 0 — Opg)(h—1) — Opg)(h) — Oy, (h) — 0 that H iy, Oy, (h)) =
Oforalli>1aslongash— 1> —r+ 1 as desired. For j > 1, we get the claim by applying
the inductive hypothesis to 0 — Oy, ,(h — 1) — Oy, (h) — Oy,(h) — 0.
Now, as H' (P(E), Ope) = Hl(Yj, Oy;) =0forall 1 < j <r-1, weknow thatall Yy,..., Y,
are linearly normal. Moreover, since H' (P(&), Opek—-1)=H 1(Yj, (’)y_/(k —1)) =0 for
allk>2and 1 < j <r,Lemma B.3.11 tells that Yi, ..., Y, are projectively normal. Since
Y, is a sectional curve, this proves (2). O

For O-regular vector bundles with ample determinant on embedded surfaces with g =
pe = 0 we can also give a geometric characterization for the non-2-normality.

Proposition 5.2.3. Let S c PN be smooth projective surface with ¢(S) = pe(S) = 0and
let & be a 0-regular vector bundle of rank r > 2 on S with ample determinant line bundle
bundle E = det(E). Assume h = h%(S,E) > r + 3 and let £ = (h;r) — 1. The following are
equivalent:

(1) & is not 2-normal.

(2) There exist a closed subscheme Z C S and a non-zero divisor D C S such that:
(a) Z is smooth of dimension 0.
(b) Z is the degeneracy locus of € general sections sy,. .., S¢ € HO(S,A2M:§).
(c) [Z] = %(h -r=2) ((h —r+ Dei(E)? - 2c2(8)).
(d) De|Kg +(h-r-1)E|.
(e) ZCD.

(3) There exist a closed subscheme Z C S and a curve C C S such that:

. . 0 2 A 0%
(f) Z is the degeneracy locus of € general sections o1, ...,0¢ € H'(S, A“Mp).
(g) C is the degeneracy locus of the (€ + 1) general sections oi,...,0¢,0¢41 €
H(S, A*M).
(h) C €|(h—r—1)E|is smooth and irreducible.
(i) Z c C is a special (effective) divisor.

Proof. First of all, from the syzygy exact sequence 0 — Mg — H(S,E)® Os — & — 0
and its dual we can see that:

(A) HYS,A’Mg) c HY(S, Mg ® Mg) c HO(S,8) ® H(S, Mg) = 0;

(B) ¢1(Mg) = —c1(E) and c2(Mg) = ¢1(E)* — c2(E);
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(C) the map A’2H’(S,&)* ® O — AZM(’;) is surjective (thanks to (B.4) for k = 2).

Now assume (1). Since (C) tells in particular that AZM(’:3 is generated by global sections, we
can take a general subspace V ¢ H'(S, AZM;;) of dimension

h—
[:rk(AzMg)—I:( 2r)—1
and we let Z = D;_1(v) C S be the degeneracy locus of the evaluation map v: V® Os —
AZM(*S. As AZM(*8 is generated by global sections and dimS = 2, it is well known, for
instance from [Bdn91, Statement (folklore), §4.1], that Z is either empty or is smooth of (the
expected) codimension 2 and that there is a short exact sequence

0— VeOs — A*Mj, — Iz5(M) — 0,

with M = det(AzM(*g) = (h—r—-1)E (Lemma B.4.2(i)) and 77,5 = Og in case Z = (.
However Z cannot be empty, for otherwise, by dualizing the above sequence and using
Kodaira vanishing on the line bundle M, which is ample by the hypothesis, we would have
HO(S, A>Mg) = V* which contradicts (A). This gives (a)-(b). As Z # 0, by construction and
(B) (and by Lemma B.4.2) we get

[Z] = cz(AzMg) = %(h —r+ D(h=r=2)c1(E* = (h—r—2)ca(E),

that is (c). Now, twist the above sequence through by K and take the cohomology. We
immediately see that H(S, A’M} ® Ks) = H(S,Izs(M + Ks)). By Lemma 5.2.1, we
finally get (d)-(e), proving (2).

Conversely, if Z C § satisfies (a) and (b), then (c) holds by construction. Furthermore,
by [Ott95b, Teorema 2.14 & Esercizio, p. 23], the ideal sheaf 77/ fits into the same exact
sequence as above. If there is D C § satisfying (d)-(e), we have HY(S, T z/s(M + Kg)) # 0.
Repeating the above argument backwards, we obtain the equivalence between (1) and (2).

Now we observe that (a) and (b), which imply (c) as seen above, is equivalent to (f) and
(g), which in turn yield (h) by construction. One direction is obvious, hence we assume
(b). Let W c H(S, A>M?*) be the subspace generated by the sections in (b) and choose
a subspace W’ c H(S, A M) of dimension ¢ + 1 that contains W. The degeneracy locus
D¢(w) of the evaluation map w: W @ O — AZME contains Z, is supported on a smooth
member C € |M|, which is then irreducible by [Har77, Corollary II1.7.9], and coker(w) = L
is a line bundle on C (see [Bdn91, Statement (folklore), §4.1] and [BT24, §4.1]). This gives
the claim. In addition to this, from the Snake lemma applied to the diagram

0 —— W05 — A*M;, — Iz5(M) — 0,

R

~
~
L

0 — We0s — A*M; >
we get the exact sequence

OHOS HIz/s(M)HLHO
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which yields L(—M) = i,O¢c(—Z), where i: C < § is the inclusion.
To prove the equivalence (2)-(3), it’s enough to see that

H'(C,Z) # 0if and only if H(S, I7/5(M + Ks)) # 0.

To do this, twist the above sequence through by K and take the cohomology. It’s immediate
to see that HO(S, I75(M+Ky)) = HO(C, Oc(Kg + M —Z)). On the other hand, by adjunction
and Serre duality, we have ho(C, Oc(Ks+M-2Z)) = h'(C, Z). Then the assertion follows. O

In turn we get a characterization for ample O-regular bundle on embedded surfaces with
q = pg = 0 for non-being projectively normal and aCM.

Proof of Theorem 5.0.2. Remark B.3.10 immediately tells that (2) implies (1). For the
converse, we just need to observe that if & was projectively normal, then it would be
automatically very ample and 2-normal, but then Proposition 5.2.2 would imply that P(&) is
aCM, contradicting the assumption. On the other hand, since & is ample, by Remark B.3.2
and Lemma 5.2.1 we know that & is not projectively normal if and only if & is not 2-normal.
As E is ample as well by [Laz04b, Corollary 6.1.16], the equivalence between (2), (3) and
(4) follows from Proposition 5.2.3. O

Then we can provide a numerical criterion for the non projective normality of an ample
0-regular bundle on a surface with g = p, = 0.

Corollary 5.2.4. Let S ¢ PN be a smooth projective surface with ¢(S) = pe(S§)=0.Let&
be an ample O-regular vector bundle on S c PN of rank r > 2 with h = h%(S,8) > r + 3.
Then & is not aCM, or equivalently not projectively normal, if

(h—r—=1c1(E)-Ks +2(h—r=2)c2(E) + h(h— 1) > (h—r = 3)c1(E)* + rQh —r - 1).
We first state a simple remark involving Grothendieck-Verdier duality.

Remark 5.2.5. Let f: X — Y be an affine morphism of smooth projective varieties of
relative dimension —k = dim X —dim Y < 0, and let ¥, G be locally free sheaves on X, Y
respectively. Then

xtly (f.F.6) = G(—Ky) ® fu(F"(Kx)).

In particular, if f is the inclusion of a subvariety of codimension k > 1 with normal bundle
Nx,y, then
Extly (f.F.G) = G® fuF" ® A Nyy). (5.2)

To see this, we are going to use Grothendieck-Verdier duality [Huy06, Theorem 3.34].
First we observe that the direct image Rf.& = f.& does not need to be derived for any
coherent sheaf & on X and L f*(G) = f*G as well. Indeed, for the second assertion, since
G is locally free on Y, it is enough apply the definition (see [GW23, Proposition/Definition
21.110 & Remark 21.92(1)]). For the first one, take any bounded below quasi-coherent
Jf«-acyclic resolution & — I°, for instance any quasi-coherent injective resolution [Huy06,
Lemma 3.24] which exists by [Har77, Exercise I11.3.6(a)]. In this way Rf.& = f.(Z*) in the
bounded below derived category D*(Qcoh(Y)) of quasi-coherent sheaves on Y. Since we
have

H(f.(I*) = H' RfE) =R(f.8 =0fori<0
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and

HOfT) = H'RL.E) = RU(f.8) = f.&
by [Huy06, Remark 2.49] and also

HI(f.(I*) = H/(Rf.E) = RI(f.E) = 0 for j > 0

by [Har77, Exercise 111.8.2], we know from [KS06, Proposition 13.1.12(i)-(iii)] that the
object Rf.E belongs to the full subcategory Qcoh(Y) c D*(Qcoh(Y)) c D(Qcoh(Y)) and
that corresponds to

RAE = fu(Z*) = HO(£.(I))0] = HO(f(T°) = f.&.

Since Rf.&E = f.& is in fact coherent [Har77, Corollary I1.5.20], this proves the observation.
Now, since the relative dualizing bundle of f is wy = Kx(—f*Kjs), Grothendieck-Verdier
duality yields the isomorphisms

R0, (LT, G) = R om0, RES . G)
= RR oo (F,Li'(G) ® wy [-K])
= RER om0, (F. G ® wy [-k])
= Rf,Horm 0y (7", f'Ge® (Uf[_k])
=RA(F"® f"'G ® wsl-k])
= Rf(F(Kx) ® f(G(=Ky))[=kD.

5.3)

Here we performed the identifications
R ooy (F. f*G @ wil—k1) = Mooy (F. G wsl-k]) = F* ® f'G @ wyl—k]

as complexes concentrated in degree k which comes from the locally freeness on X of ¥ (see
[Huy06, §3.3, p. 84] and [Har77, Exercise 11.5.1(b)]). Taking the k-th cohomology sheaf
H*: D(Coh(Y)) — Coh(Y) on both sides of (5.3) and adopting the usual sign conventions
for translations and cohomology [Con00, (1.3.4)], by definition [GW23, (21.21.2)] and by
[GW23, Remark 21.26(3)] we have the claimed isomorphism of coherent sheaves

xtey, (f.F,G) = H' R 0, (f.F,5))
= H'Rf(F"(Kx) ® f*(G(—Ky)[-k])
= R (f.(F*(Kx) ® f*(G(~Ky))

= f.(F"(Kx) ® f*(G(-Ky)))
= G(—Ky) ® f.(F*(Kx)).

The last part of the claim descends from adjunction formula [Har77, Proposition I1.8.20].

We point out that the isomorphism (5.2) can be obtained also using the sheaf version of
[Har77, Lemma II1.7.4], which can be proved in the exact same way.

Proof of Corollary 5.2.4. Justlike in Proposition 5.2.3 and its proof, consider the degeneracy
loci Z < C c S of £and £ + 1 general sections of the globally generated bundle A>M:., with
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{ = (hgr ) — 1. Both of them are smooth, Z is 0-dimensional with [Z] given in Proposition

5.2.3(c), and C € |M| is irreducible, where M = det(AzM:,f;) = (h—r—1)det(E). As seen in
the proof of Proposition 5.2.3, we have the exact sequence

0— 02D - A2ME — i.Oc(M ~Z) — 0

where i: C < § is the inclusion. Taking the dual with respect to S, we get the short exact
sequence
0 — A’Mg — O3 — éxt}, (i.Oc(M - Z),05) — 0.

But éaxtgos (i.0c(M = Z),0s) = i,0c(Z) by Remark 5.2.5. Thus, using that A”Mg has no
non-zero global sections, we can see that h%(C, Z) > £ + 1. Computing the genus of C C S
via adjunction formula, applying Riemann-Roch theorem and using this inequality, we see
that
1
h(C,2) > E((h —r—1Dc1(E) - Ks +2(h—r—2)c2(E)
+h(h=1) = (h—r=3)c1(E) = rCh—r - 1)).

By Proposition 5.2.3, & is not projectively normal as soon as 1'(C, Z) > 0. Then the claim
follows. O

For an Ulrich bundle & on a smooth embedded surface S ¢ PV we can calculate the
dimensions of the global sections of the second tensor power €& ® & and of the symmetric
powers S2E, S3E. As a necessary condition for the k-normality of & is dim SKHO(S, &) >
h(S, SKE), this gives a way to check if & could potentially be k-normal. This method will be
used in the next examples and also in the next section for Ulrich bundles on hypersurfaces.

First we recall that the second Chern class of an Ulrich bundle & of rank r on a smooth
surface § c PV of degree d is given by Casnati formula [Cas17b, Proposition 2.1]

1
e2(8) = 5 (1) = c1(&) - Ks) + rx(Os) = rd. (5.4)

Lemma 5.2.6. Let & be a rank r Ulrich bundle on a smooth projective surface S c PV of
degree d. Then:

(i) %S, E®E) = x(S,E®E) = c1(E)* + r*(2d — x(S, Os)).
(ii) hO(S,S%E) = x(8,8%8) = r(r + 2)d + 1(c1(E)* + c1(E) - Ks) — “Z2x(S, Os).
(iii) h°(S,S3E) = x(S,$38) = L(r+2)(Bc1(E)*+3¢1(E)-Ks +3rd(r+3)-2rx(S, Og )(r+4)).
In particular, if ¢1(E) = 5(Ks + 3H), where H is the class of a hyperplane section, we have:
(a) (E®E) = x(S.E®E) = [17d + 6Ks - H + K} — 4x(S., Os)].

(b) h'(S,S*E) = x(S,S%E)
= £[(17r +16)d + 2 + NK? + 6(r + DKs - H = 4(r + 3)(S, Os)].

(c) K°(S,S°E) = x(S,5°E)
= £(r+2)[3d(13r + 12) + 3(r + 2)K? + 18(r + DH - K5 — 8(r + 4)x(S. Os)] .
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Proof. Both ERE and the symmetric powers S?E, S3E are 0-regular (Corollary B.1.10), there-
fore we only need to compute the Euler characteristics y(S, & ® &) and x(S, S28), x(S, S38).
This is easily done via Hirzebruch-Riemann-Roch theorem [Har77, Theorem A.4.1] which
says that

1
X(S.F) = 5x(5. 05) + 5 (1T = e1(F) - Ks ) = ea(F)

for any rank s vector bundle ¥ on §. Using (5.4), the conclusion follows from formulae in
Lemmas B.4.1-B.4.4 and Corollary B.4.3. O

Example 5.2.7. Let S ¢ P? be any smooth K3 surface of degree 4 and let & be an Ulrich
bundle of rank » = 2 or r = 4 with det(€) = Og(3r/2) (which always exists by [Fael9,
Theorem 1] combined with Lemma 1.1.12). Then & cannot be projectively normal because,
by Lemma 5.2.6(b), the inequality

dim S’H(S, &) = 2r(dr + 1) > h°(S, S26),
which is necessary for the 2-normality, is never satisfied.

Example 5.2.8. Let S ¢ P* be a smooth very general complete intersection of type (2, a)
for a > 3. Then no rank r-Ulrich bundle on §, which always exists by [HUB91], can be
projectively normal if @ > 15.

To see this, let & be an Ulrich bundle of rank r on S. By Noether-Lefschetz theorem
we can assume Pic(S) = Z - Og(1) (for instance, one can apply [RS09, Theorem 1],
or [BGL21, Proposition 3.2], to Og(a) where Q C P* is a smooth quadric). Letting
d = deg S = 2a be the degree of S and H C S be a hyperplane section of S c PV, we have
Ks =(@-3)H = %(d —6)H and (S, Os) = 2‘1—4(d2 —9d + 26). Moreover, by Lemma 1.1.16
we have ¢|(E) = 5(Ks + 3H) = 7dH. Substituting in Lemma 5.2.6(b) we get

10(S, S2E) = ;—‘é [rd2 + 18(r + 1)d + 44r + 36] .

This means that if & is 2-normal, then 4°(S, S?€) — rd(rd + 1)/2 < 0, which happens if and
only if
rd*> — (30r — 18)d + 44r — 12 < 0.

One can check that this forces the following conditions on r and d = 2a:
e 6<d<18ifr>2;
e d=20,22if r > 3;
o d=24ifr>5;
e d=26ifr > 8§;
o d=28ifr>41;

In any case we have 2a = d < 28. Then the claim follows.
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5.3 Projective normality of Ulrich bundles on low dimensional
hypersurfaces
Ulrich bundles on hypersurfaces always exist [HUB91]. Moreover, Ulrich bundles on the
general hypersurface X ¢ P**! of degree d > 2n is very ample as X does not contain lines
(Threorem 4.0.20). Therefore the expectation is them to be quite positive, in particular
projectively normal. However we will see that this is not the case for hypersurfaces of
dimension 2 and 3.
In this section, all hypersurfaces are smooth.

We begin by recalling that every Ulrich bundle on a hypersurface X ¢ P**! admits a
locally free resolution on X.

Lemma 5.3.1. Let X ¢ P! be a smooth hypersurface of dimension n > 1 and degree
d > 2. An Ulrich bundle & of rank r on X admits the resolution

0 — &(=d) — Ox(-1)®" — 0% = H'(X,E) ® Ox — & — 0. (5.5)

In particular, the tensor power & ® & is resolved by
0—ERE(-d) — &1 - ¥ = H (X, 696 - ERE — 0. (5.6)
Proof. This is essentially [Tril6, §2] and [Tril7, §2] applied to the Ulrich bundle resolution

0 — Opui (=1)¥* — 0%, = HO(P"™',i,8) ® Oput = H'(X,8) ® Opuet — .8 — 0

of i,& on P! with i: X < P"*! being the inclusion. More precisely, as in loc. cit. it is

shown that 9%?""” (i.8,1.Ox) = i,.E(—d), taking the tensor product of the above resolution
trough by i.Oyx, by Remark B.1.8 and projection formula we obtain the exact complex

0 — i.(8(=d)) — i.(Ox(=1)®) — H'P"™! i,8) ®i.0x = H'(X,8) ® i.0x — i.E — 0.
Since i is a closed immersion, we get (5.5). O

Remark 5.3.2. Despite the embedding of every smooth quadric @ ¢ P**! is Koszul
(Example B.1.12), which implies that every O-regular vector bundle on Q is k-normal for all
k > 1, an Ulrich bundle on Q cannot be projectively normal if n > 3 because it is not ample
by Theorem 4.0.20 in virtue of [Ott88, Corollary 1.6].

Lemma 5.3.3. Let S c P3 be a smooth hypersurface of degree d > 2 and let & be an Ulrich
bundle of rank r on X such that det(€) = Ox(5(d — 1)). Then:

(i) hO(S,E®E) = x(S,E®E) = Z(d + 1)(d +5).
(ii) h%(S,S%E) = x(S,8%6) = Z(d + ) ((d + 5)r +6).
(iii) hO(S,S%6) = x(S,8%8) = 24(d + 1)(r + 2)(r + 4 + d(5r + 2)).
In particular, if & is 2-normal, then either d =2,ord =3 andr > 3,ord =4 andr > 6.

Note that, by Lemma 1.1.16, the set of 2-dimensional smooth hypersurfaces supporting
such Ulrich bundles contains the subset of hypersurfaces S c P? with Pic(S) = Z - Og(1),
which are very general in |Op3(d)| by Noether-Lefschetz theorem [Lef50; GH85].
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Proof. By hypothesis we have ¢1(E) = %(d — 1H, for H € |Og(1)]. Since

d-1\ d@d*-6d+11
0,05y = 1417 1) A0 1D
3 6
formulae (i)-(i1)-(iii) are obtained by substituting these in Lemma 5.2.6(a-b-c). For the last
part, observe that the 2-normality of & implies the inequality

dim S*H%(S, &) =

w < (X, S28),

which is satisfied in the claimed ranges. O

On the contrary, in the situation of the above Lemma, the difference
d
dim S*H°(S,8) - h’(S,S38) = ;—2(d —D(r=2)d(Tr+2)+r+28)

is negative if and only if » = 1 (which happens very rarely), it’s zero for rank 2 (that is for
Pfaffian surfaces), and it is always positive for r > 3. Therefore the 3-normality of & usually
does not imposes any restriction.

We now move to hypersurfaces in P*. We begin with the calculations of Chern classes
and Euler characteristics of tensor powers and symmetric powers. Note that it is no longer
granted that the tensor operations of Ulrich bundles are again O-regular.

Lemma 5.3.4. Let X  P* be a smooth hypersurface of degree d > 1 and let & be a rank r
Ulrich bundle on X. Then:

(i) c3(8) = 12(d - D*(r = 2)(rd = r +2).
(i) c3(E®E) = 24(d - 1) (P -2) (2@ -1)+3-d).
(iii) ¢3(S26) = 1(d - 12(r +2) (2 +r—4)(P(d - 1) +2).
(iv) y(X,E®E) =X, E08) -h'(X,E®RE) = %d(d + 1)(d + 3).
(v) x(X,S%6) = h%(X,S*8) — h'(X, S?E) = 24(d + 1)(d + 3)3r + 4 - d).

Proof. For (i), see [Ben+23, Proposition 3.7] or just apply Hirzebruch-Riemann-Roch
theorem to y(X, &) = rd. Lefschetz theorem tells that the restriction map Pic(P*) — Pic(X)
induces an isomorphism [Laz04a, Example 3.1.25]. Hence, letting H be the class of a
hyperplane section of X C P*, we have ¢(8) = %(d — 1)H (Lemma 1.1.16). Using [LR24a,
Lemma 3.2(ii)] and (i) on Lemma B.4.1(iii) and Corollary B.4.3(iii) one obtains (ii) and (iii)
respectively. Now, observe that

H (X, E®E(p)) = H'(X,ERE(p)) =0 for p > -2 (5.7)

by [Laz04a, Proposition B.1.2(i)] applied to the resolution (5.6) twisted by Ox(p). Then (iv)
and (v) follow from Hirzebruch-Riemann-Roch theorem for £® & and S>E respectively. O
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Proof of Theorem 5.0.3. Item (1) is an immediate consequence of Lemma 5.3.3. For (2),
note that we must have r > 2 by Lefschetz theorem [Laz04a, Example 3.1.25] and Remark
1.2.1. Thanks to Lemma 5.3.4(iv), we immediately see that the inequality

WX, E®E) > x(X,E®8) > dim H(X, &) = rAd?

holds for every pair (r, d). Therefore ug is never surjective. Finally, by Lemma 5.3.4(v), we
can check that

d(rd + 1
WX, S26) > ¥(X,S2E) > dim SPH(X, &) = %
holds for if » > %. In particular & cannot be projectively normal for all such ranks. O

The bound on the rank, possibly not optimal, is necessary. As we are going to see, Theo-
rem 5.0.3(2) is sharp for the 2-normality of Ulrich bundles on 3-dimensional hypersurfaces
of degree 5.

Remark 5.3.5. Let X c P"*! be a hypersurface of dimension n = 3 or 4 and degree d > 3.
Suppose X supports an Ulrich bundle & of rank r = 2 or r = 3. Then & is 2-normal. If n = 4
and r = 3, then & is also 3-normal.

Indeed, as A&, being isomorphic either to Ox(d — 1) for n = 3 or to &*(3(d — 1)/2)
when n = 4, is aCM, we know from [Tril7, Proposition 5.1] that AZMg is aCM as well.
Since H*(X, A>’Mg) = 0, the first part is provided by Example B.3.6. Assuming n = 4 and
r = 3, by applying [Laz04a, Example B.1.3] to the long exact sequence

0— A°Mg — APH'X,E)®0x — A’H' (X, ) ®E — H' (X, E) ®S*E — $3€ — 0,

given by (B.3), we deduce that & is 3-normal if (and only if) H3(X, A’Mg) = 0. As A3 Mg is
aCM [RT19, Theorem 5.7(a)], the claim follows.

In the above situation, except for » = 2 with n = 3 and d < 5, these hypersurfaces live
in a closed subset of |Op:+1(d)| (see [BealO0, Proposition 8.9] and [[LR24b, Corollary 1 &
Theorem 2]). Moreover, a pfaffian hypersurface of degree d in P* or in P3, which are exactly
those supporting Ulrich bundles of rank 2, contains no lines if d > 6 or d > 8 respectively.
This means that all Ulrich bundles on such hypersurfaces are very ample (Theorem 4.0.20).

The behaviour of 2-normality of rank 2 Ulrich bundles on pfaffian surfaces and paffian
threefolds or fourfolds is different: while no (very general) pfaffian surface of degree d > 5
supports a 2-normal Ulrich bundle of rank 2 (Lemma 5.3.3), all rank 2 Ulrich bundles on
pfaffian 3-folds and 4-folds of degree d > 3 are 2-normal.
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Appendix A

Background

The main purpose of this chapter is to recollect the basic definitions and results used
throughout the work. For proofs and further details we refer to the books [Har77; HL10;
Laz04a; Liu02; OSS80].

A.1 Unramified morphisms
In this section we recollect the main characterizations and properties of unramified mor-

phisms.

Definition - Theorem A.1.1. Ler f: X — Y be a morphism of schemes and let x € X be a
point. Lety = f(x) and let X, = f ~1(y) be the schematic fibre over f(x). The morphism f is
unramified at x if it satisfies one of the following equivalent conditions:

1. The homomorphism f¥: Oy sy — Ox. satisfies my - Ox, = my.
2. Xy is smooth at x and x is an isolated point in X,
3. Qxyx =0.

4. Qx, . =0.

5. dif: TX — T,Y is injective.

A point X' € X is a ramification point of f if f is not unramified at x'. We set Ram(f) :=
supp(L2yx,y) to be the set of ramification points of f. A point 'y’ € Y is a branch point of
fif f is not unramified at all points of the fibre over y'. A morphism is unramified if it is
unramified at all points.

Proof. The equivalence between 1 and 2 is [Liu02, Lemma 4.3.20]. Items 1-3-4-5 are
equivalent by [Sta23, Tag 02GF & Tag 0B2G]. O

Remark A.1.2. We use these equivalent definitions without explicit mention.

Remark A.1.3. Let f: X — Y and g: Y — Z be morphisms of schemes which are
unramified at x € X and at y = f(x) respectively. Then g o f is unramified at x.

Indeed, taking the stalk at x of the exact sequence f*Qy;z — Qx/;z — 2x/y — 0 (see,
e.g., [Har77, Proposition I1.8.11]) and using the identification (f*Qy;z)x = Qy/zy ®0,, Ox
[Sta23, Tag 0098], we immediately see that 2x,z, = 0. A


https://stacks.math.columbia.edu/tag/02GF
https://stacks.math.columbia.edu/tag/0B2G
https://stacks.math.columbia.edu/tag/0098
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Lemma A.14. Let f: X — Y be a finite surjective morphism of varieties and suppose Y is
normal. Then # (f‘l(y)) < deg(f) for every y € Y, and the equality holds if and only if y is
not a branch point of f.

Proof. Fix y € Y and set d = deg(f). The first part of the assertion is [Shal3, Theorem
2.28]. For the last part, observe that the schematic fibre Xy is a non-empty 0-dimensional
Noetherian scheme. In particular, (’)xy (Xy) = Ais an Artin ring [AM69, Theorem 8.5] and
also a C-algebra of dimc(A) = m > d [Liu02, Exercise 5.1.25(a)]. By the structure theorem
of Artin rings [AM69, Theorem 8.7], we have a decomposition A = A| X -- - X A, where
#(f‘l(y)) = k < m and (A;, m;) is a local Artin ring for all 1 < i < k. We have to exclude

the case k > d, for otherwise # ( f ‘1(y)) > d contradicting the previous part. So we must
have k < d.If k = d, then (A;, m;) = (C, (0)) forall 1 <i <k, whence Qx,.x; = 0, where x; is
the point corresponding to m;, for all i (see for instance [Har77, Proof of Theorem I1.8.6A]).
This says that f is unramified at all points x; € X, that is y is not a branch point of f. If
k < d, there must exist j = 1,...,k such that (A;, m;) # (C, (0)). Any non-zero element
a € m; is nilpotent, given that A; is local and Artinian [AM69, Corollary 8.2 & Proposition
8.4], hence it defines a non-zero class da in QAJ. ,c. In particular QXy, X F 0, where x; is the
point corresponding to m;, which means that y is a branch point of f. O

A.2 Arithmetically Cohen-Macaulay bundles

One way to understand the geometry of a projective variety X is studying the category of
the vector bundles that it supports. Following this philosophy, a central role have been
played by vector bundles with no intermediate cohomology, also called arithmetically
Cohen-Macaulay.

Definition A.2.1. A coherent sheaf & on a projective variety X is called arithmetically
Cohen-Macaulay, or aCM for short, with respect to an ample line bundle L if it is locally
Cohen-Macaulay and

H'(X,&(jL)) = 0

forO<i<nand jeZ.
Example A.2.2. The line bundle Op:(d) is aCM with respect to Ops(1) on P".

A seminal result due to Horrocks asserts that on projective spaces vector bundles which
are aCM with respect to O(1) split as sum of line bundles.

Theorem A.2.3 (Horrocks’ theorem). A vector bundle & on a projective space P" splits as
sum of line bundles if and only if & is aCM.

Proof. See [OSS80, Theorem 2.3.1]. O

In [AYO08] the authors proved a similar splitting theorem for reflexive sheaves.

Theorem A.2.4. Let F be an algebraically closed field, and let & be a reflexive sheaf of rank
r>1onPyg, withn > 3. Then & splits as a sum of line bundles if and only if there exists a
hyperplane H C Py, such that Ey splits as a sum of line bundles.

Proof. See [AY08, Theorem 0.2]. O
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A.3 Positivity of vector bundles

Positivity of line bundles is nowadays well understood and has played a major role in
the study of projective geometry. For vector bundles of higher rank, the situation is quite
different. While the usual notions of positivity (nefness, ampleness) have been generalized
by using the tautological line bundle on the projectivized bundle (see, e.g., [Laz04b, §6-
§8]), at the same time other positivity notions appeared and are different from the previous
generalizations. Here we recollect some of these notions and their interplay with the
asymptotic base loci. We mainly refer to [Bau+15].

Definition A.3.1. A vector bundle ¥ on a projective variety X is nef (resp. big, ample, very
ample) if the line bundle Op(#(1) is nef (resp. big, ample, very ample) on the projectivized
bundle P(%). Given an integer k > 0, we say that ¥ is k-very ample if the restriction map

HX,F) — H(Z. Fiz)
is surjective for every O-dimensional closed subscheme Z c X of length &k + 1.

Remark A.3.2. Observe that a vector bundle is O-very ample if and only if it is globally
generated. For line bundles, 1-very ampleness is equivalent to very ampleness. This is no
longer true for higher ranks. In general, if k > 0 and ¥ is a k-very ample vector bundle on a
(smooth) projective variety, then F is ample (and det(¥) is very ample) [Bal94, Remark 1.3
& Lemma 1.4].

One defines the asymptotic base loci also for vector bundles. Rather than on the
projectivized bundle, these can be defined on the variety itself.

Definition A.3.3. Let ¥ be a vector bundle on a projective variety X. The base locus of
is the set
Bs(F) = {X € X| H'(X, ) — F(x) is not surjective}.

The stable base locus of F is defined as

B(F) = ﬂ Bs(Sym*¥).

k>1

The augmented (resp. restricted) base locus of F is

B.(F) = [ |B(Sym*F)(-A)) resp. B_(F) = ] B(Sym*F)(A)) |,

k>1 k=1
where A is an ample line bundle on X.

Remark A.3.4. One can prove that the definition of augmented (and restricted) base locus
of a vector bundle ¥ does not depend on the choice of the ample line bundle. Moreover, if
n: P(f) — X denotes the natural projection, we have n(B.(Op)(1))) = B.(F) [FM21,
Proposition 6.4].

As for line bundles, the positivity of vector bundle is strictly related to asymptotic base
loci. See [Bau+15] for complete treatment.
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Proposition A.3.5. Let X be a smooth projective variety and let F be a vector bundle on X.
Then:

(1) F is nefif and only if B_L(F) = 0.
(2) F is ample if and only if BL.(F) = 0.
Proof. See [Bau+15, Propositions 5.2-6.2]. O

It is well known that a line bundle L is big if and only if B, (L) # X, see for instance
[Bau+15, Proposition-Definition 4.2]. For vector bundles, this condition produces a notion
of positivity which is stronger than bigness.

Definition A.3.6. A vector bundle ¥ on a projective variety X is said V-big if there exist an
ample line bundle A and a positive integer k > 0 such that B_((Symk?' )(-A)) # X.

Remark A.3.7. On smooth projective varieties, a V-big vector bundle is big [Bau+15,
Corollary 6.5]. The converse is typically false for vector bundles of rank strictly greater than
1 (see for instance [Bau+15, Remark 6.6]).

Theorem A.3.8 ([Bau+15, Theorem 6.4]). Let X be a smooth projective variety and let
be a vector bundle on X. Then F is V-big if and only if B.(F) # X.

A.4 Stability of coherent sheaves

In this section we recall the notions of stability and of semistability of a coherent sheaf on a
projective variety. See [HL10] for more details.

Definition A.4.1. Given a coherent sheaf & on a scheme X, the dimension of & is defined to
be
dim(&) := dim(supp(E)).

We say that & is pure if dim(#) = dim(&) for all nonzero coherent subsheaf ¥ c &.

Definition A.4.2. Let (X, B) be a polarized projective variety and let let & be a coherent
sheaf whose support has dimension k. By [HL10, Lemma 1.2.1], we can write the Hilbert
polynomial P(E, m) := y(X, E(mB)) with respect to B in the form

k i

m

P(E,m) = § @i(a)i—,,
i=0 '

where @;(&) is an integral coefficient for every i = 0, ... k. The reduced Hilbert polynomial
is defined by

_PE,m
p(E,m) = —a/k(S) .
The rank of E is
KE) i B m®

a(Ox) ~ pdimx”
The coherent sheaf & is said (semi)stable if & is pure and p(F) < p(E) (resp. p(F) <

p(E)) in the lexicographic order of their coeflicients for every proper coherent subsehaf
F cé.
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The slope of &€ is defined by
_ deg(&)

&) = ,
H(&) K@)
where deg(&) := ax-1(E) — ax-1(Ox) rk(E). If X is smooth, then deg(E) = ¢1(E) - Bk1 by
Hirzebruch-Riemann-Roch theorem. The coherent sheaf & is u-(semi)stable if u(F) < w(&E)
(resp. u(F) < w(&)) for all nonzero coherent subsheaves ¥ c & with 0 < k(7)) < rk(&E).

Remark A.4.3. All the quantities defined above, except the rank, depend on the choice
of the polarization B. If we want to emphasize the dependence on B, we put a subscript
Pp(E,m), pp(E,m) and so on.

The following chain of implications holds [HL10, Lemma 1.2.13]

& is p-stable = & is stable = & is semistable = & is p-semistable.

Note that on a smooth projective curve, (semi)stability is equivalent to u-(semi)stability.

Remark A.4.4. Let X be a projective variety and let B be an ample and globally generated
line bundle. Consider a u-semistable coherent sheaf & on X which is not y-stable. Then we
can always assume that the “u-destabilizing subsheaf” ¥ c &, i.e. u(%) = u(&€), is such that
the quotient &/F is torsion free.

Indeed, if it is not the case, let G C & be the sheaf

G =ker(&—» &/F » (E/F ),

where (&/F ) is the torsion-free part of &/F . Then: G is torsion-free, contains ¥, has the
same rank of ¥, and is such that G/¥ is torsion. As a consequence deg(G/¥) > 0, giving
deg(¥) < deg(G). Therefore, using the u-semistability of &, we deduce that

&) = u() < W@ < u&.
To get the assertion, it is enough to replace ¥ with G.

Proposition A.4.5. Let X be a projective variety together with an ample line bundle B.
Every semistable sheaf & admits a filtration

0= céE c---c& =68

such that, for 1 <i < ¢, gry(8) = E;/E;-1 is stable with p(&E;/&Ei-1) = p(E). This is called a
Jordan-Hoélder filtration of & Moreover, non-zero &;’s are semistable with p(&;) = p(&E),
and gr(€) = @le gr,(&) does not depend on the choice of such filtration.

Proof. See [HL10, §1.5 & Proposition 1.5.2]. O
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Appendix B

Preliminary results

This chapter is devoted to a recollection of some standard results for which we add proofs
for convenience or because of a lack of references.

B.1 Castelnuovo-Mumford regularity

Let X be a projective variety, and let B be an ample line bundle. If ¥ is a coherent sheaf
on X, Cartan-Serre-Grothendieck theorem [Laz04a, Theorem 1.2.6] and its consequences
[Laz0O4a, Example 1.2.22] states that the following hold for d > 0:

e ¥ (dB) is generated by global sections;
e H/(X,F(dB)) =0fori>0;
o the natural multiplication map
pax: H'(X, F(dB)) ® H'(X, B®) — H°(X, F((d + k)B))
is surjective for all k > 0.

Castelnuovo-Mumford regularity provides a quantitative measure of the size of d which is
necessary to have these three properties.

Definition B.1.1. Let X be a projective variety and let B be an ample line bundle. A coherent
sheaf F on X is said m-regular with respect to B (in the sense of Castelnuovo-Mumford) if

H{(X,F((m - i)B)) =0
for i > 0. The regularity of ¥ (with respect to B) is
regg(F) ;= min{s € Z | ¥ is s-regular with respect to B}.
Example B.1.2. The line bundle Op:(d) is (—d)-regular with respect Op-(1) on P”".

Theorem B.1.3 (Castelnuovo-Mumford). Let X be a projective variety and let B be an
ample globally generated line bundle. If  is an m-regular sheaf with respect to B, then for
everyk > 0:

(1) F((m + k)B) is generated by global sections.
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(2) The natural multiplication maps
pimg: H(X, F(mB)) ® H(X, B®) — H (X, F((m + k)B))
are surjective.
(3) F is (m + k)-regular with respect to B.
Proof. See [Laz0O4a, Theorem 1.8.5]. O

Remark B.1.4. Let X be a projective variety, and let 7 be a m-regular sheaf with respect
to the base-point-free ample line bundle B. Then ¥ (mB) is generated by global sections
(Theorem B.1.3(1)) and satisfies H?(X, ¥ (mB)) = 0 for p > 0: Castelnuovo-Mumford
theorem implies that H'(X, 7 ((m + p — i)B)) = 0 for every i > 0 and every p > 0. Taking
i = p the assertion follows.

As is well-known, e.g. from [Laz04a, Proposition 1.8.9], the regularity of the tensor
product of two vector bundles on the projective space is (at most) the sum of the regularity of
each vector bundle. This no longer holds for other varieties, mainly because the polarization
is not (—1)-regular (with respect to itself). In [Ara04, §3], Arapura observes that one needs
to consider the regularity of the structure sheaf in order to compute the regularity of tensor
products.

For any projective variety X endowed with a globally generated ample line bundle B we
fix

M := max {1,regz(Ox)}

for the rest of the section.

Remark B.1.5. Normal polarized varieties (X, B) of dimension n > 2 with at worst Q-
factorial terminal singularities having M = 1 are classified. Indeed, reg(Ox) < 1 implies

(X, Kx + (n— 1)B) = i"(X,(1-n)B) =0 and h'(X,0x) =0
which, by [BS95, Corollary 7.28 & Table 7.1], force (X, B) to one of the following:
o (P, Opn(1));
o (Q", Opu1(1)gn)), where Q" C P! is a quadric;
o (P(F), Opi)(1)), where ¥ is an ample vector bundle of rank n over P';
e a possibly degenerate generalized cone C, (P2, Op2(2)) over (P2, Op2).

The following is a version of [Laz04a, Example 1.8.7 & Proposition 1.8.8] for every
polarized variety.

Lemma B.1.6. Let X be a projective variety of dimension n > 1 and let B be a globally
generated ample line bundle on X.
A p-regular coherent sheaf ¥ on X admits a long resolution

F,: e W[®B®<—p—€M) e W1®B®(—P—M) N WO®B®(—P) —F =0 (B.)

where the W/s are some finite-dimensional vector spaces and Wy = HY(X, F(pB)).
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Conversely, if a coherent sheaf G on X admits a possibly infinite resolution by coherent
sheaves
G,.: o> Gp— -G —>Gy—G—0

with G being qj-regular for 0 < j <n—1 (resp. 0 < j < n), then G is g-regular (resp. the
map
H°(X,Go(¢'B) — H(X.G(q'B))

is surjective), with q = maxo<j<p—1{q; — j} (resp. ' = maxo<j<nlq; — Jj})-
Proof. See [Ara04, Corollary 3.2 & Lemma 3.9]. O
This leads to a generalization of [Laz04a, Proposition 1.8.9].

Corollary B.1.7. Let X be a projective variety of dimension n > 1 and let B be a globally
generated ample line bundle on X. Let & and F be coherent sheaves on X such that at every
point of X either & or F is locally free. If & is e-regular and F is f-regular, then E® F is
(e + f+ (n—1)(M — 1))-regular and the multiplication map

H(X, F(fB)) ® H(E((e + n(M — 1))B)) — H(X,(E® F)(e + f +n(M — 1))B)
is surjective.

Proof. Consider the resolution F, of ¥ given in (B.1) and twist it through by &. The
resulting complex

= W ®E((—f —tM)B) — - — W ®E((—f — M)B) — Wy®E(—fB) S EQF — 0

is still exact: as W, ® B®/=tM) is flat, the claim follows by the fact that it remains exact on
the right since at stalk level either & or F is flat. We immediately see that W;®E((—f — jM)B)
is (e + f + jM)-regular for every 0 < j < n. Indeed, for i > 0 we have

H'(X,W; ® E((—f — jM)B)(e + f + jM — i)B) = H'(X,E((e — )B)®4™Wi = 0
by the e-regularity of €. The conclusion follows by the second part of Lemma B.1.6. O
The following is a simple observation, but we add the proof for the sake of completeness.

Remark B.1.8. For a closed immersion f: Y — Z of schemes, the canonical morphism

of Oz-modules [GW20, (7.8.3)] is an isomorphism for any pair of Oy-modules ¥, G on Y.

Indeed, the stalk of ¥ at z € Z is either 0 ®p, . 0 — 0if z ¢ f(Y) or Fy ®o, ., Gy —
Fy ®0y.y Gy if z = f(y) for some y € Y. In both cases i, is a bijective map of Oz -modules,
therefore ¢ is an isomorphism.

Proposition B.1.9. Let X be a projective variety and let B be a globally generated ample
line bundle on X. Let & and F be coherent sheaves on X. If & is e-regular and F is f-regular,
then E® F is (e + f)-regular assuming one of the following holds:

(1) M =1 and at every point of X either & or F is locally free.
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(2) X is a curve and at every point of X either & or F is locally free.
(3) X is a surface and B is very ample.
Part (3) is just [Sid02, Proposition 1.5].

Proof. 1If (1) or (2) holds, the claim follows immediately from Corollary B.1.7. Assume (3)
and consider an embedding ¢: X < PV such that Ox(1) = B. The canonical map

.ER LT — 1. (EQF)

is an isomorphism (Remark B.1.8) and, by projection formula, ¢.& and ¢, are respectively
e-regular and f-regular with respect to Opn(1). By [Laz04a, Proposition 1.8.8], or by Lemma
B.1.6, we have a linear resolution

Fuioor @OPN(_f_z)_) @OPN(_f_1)—> @OPN(—f)—u*THO.

Tensoring the above complex through by ¢.& and using projection formula, we obtain a
complex

Qi - = (P u@f ~2) = P/~ 1) = PuE-N > uEeF) -0
=0 =0 =00

which is still exact on the right, i.e. QO — Qp — w(E® F) — 0 is exact, thanks
to the right-exactness of the tensor operation. In particular, the O-th homology sheaf is
Ho(Q.) = 1.(EQ F). By definition, the higher homology sheaves of Q. are the Tor sheaves

H(Q) = Tor| ™ (1.6,1,F), for i > 0,

As a consequence, the support of H;(Q,) for i > 0 is contained in X: the stalks (¢.E)y, (t.F)y
are zero for every y € PN\X because ¢ is a closed embedding, therefore, e.g. by [GW23,
(21.20.3)], we find that

Hi(Q.a)y = (QW?PN(L*S, L*T))y = Torl.OPN‘” ((L*S)y, (L F )y) =0

for every y € P¥\X as claimed. Furthermore, every Q j1s (e + f + j)-regular: indeed, for
i > 0 we have

H'®PY, Qi+ f+j-i) = PHXEe-i)=0
by the e-regularity of &. Since dim X = 2, the statement follows by [Sid02, Lemma 1.4]. O

Corollary B.1.10. Let X be a projective variety of dimension n > 1 and let B be a globally
generated ample line bundle on X. Given an e-regular vector bundle & on X, the bundles
E®P SPE, APE are (pe)-regular if one of the following holds:

(a) M =1.
(b) X is a curve.

(c) X is a surface and B is very ample.
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Proof. Under one of those assumptions, the p-fold tensor power E*P is (pe)-regular by
Proposition B.1.9. As we are working over the field of complex numbers, the p-th symmetric
power SPE and p-th exterior power APE are direct summands of E7. Hence they must be
(pe)-regular as well. O

Another property of the polarization which allows the regularity to behave well under
the tensor operation is the Koszul property. We refer to [Totl13; CDR13; Fr699] for more
details.

Definition B.1.11. A line bundle L on a n-dimensional projective variety X is K-Koszul if L
is very ample and its section ring R(L) = @m H°(X, mL) determines a resolution of C as
graded R(L)-module

= Mg - M —-My—C—0

with M; = @ R(L)(—i) being a free R(L)-module generated in degree i for every i < K. We
say that L is Koszul ample if L is 2n-Koszul. We say that L is Koszul if it is K-Koszul for all
K.

Example B.1.12. Examples of embedded n-dimensional smooth projective varieties X ¢ PV
whose hyperplane section H = Ox(1) is Koszul are:

e smooth complete intersections of type (2,2, ...,2) [Fr699, §3.1].

¢ anticanonically embedded Del Pezzo surfaces of degree d > 4 [BMR24, Remark
3.22].

e canonically embedded curves which are neither hyperelliptic nor trigonal nor plane
quintics [PP97].

e embedded homogeneous varieties X = G/P with G being a simply connected semisim-
ple algebraic group and P a parabolic subgroup of G [Rav95].

e abelian varieties such that H = L®” for some ample line bundle L on X and p > 4
[Kem89, Theorem 1].

e embedded varieties such that H = B® for any k > regz(B) with B very ample on X
[Han10, Theorem 3.3].

e embedded varieties with trivial canonical bundle such that H = A®"*D for a very
ample line bundle A on X [Par93, Theorem B].

The following can be found also in [Ray23, Theorem 6.8 & Lemma 6.9 (First Version)].

Proposition B.1.13. Let & and F be vector bundles on X that are respectively e-regular
and f-regular. Then:

(1) E@F is (e + f)-regular if B is Koszul ample.

(2) H'(X,E(eB)) ® HO(X, F(fB)) — HY(X,(E ® F)((e + f)B)) is surjective if B is 3n-
Koszul.
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Proof. Ttem (1) is [Tot13, Theorem 3.4]. For (2), up to replace &, F with E(eB), F (fB),
suppose ¢ = f = 0. Then consider the long resolution of the structure sheaf O, of the
diagonal 4 ¢ X X X given by [Tot13, Theorem 2.1]

R X B G- .. R R Be-D OxrOx — 04— 0,

for some vector bundles R;, with i = 1,...,3n." Tensoring the above complex through by
ER F and truncating it, we obtain a resolution of E® ¥ on X X X:

0—-K—=Ru®ER(F(-2nB)) — - —= RIVER(F(-B) - ERF —ERF — 0.

For dimensional reasons we have H>"*!(X x X, K) = 0. Letting 1 < i < 2n, by Kunneth
formula we have

H'(X x X,(R;® &) 8 (F(-iB)) = (P (H (X, R; ® &) @ H'(X, F (~iB))).
p=0
But H'(X, ¥ (—=iB))) = 0 by the O-regularity of 7, and
H™P(X,R®E) =0when0< p<i
by [Tot13, Lemma 3.3]. Then [Laz04a, Example B.1.3] implies that
HX, &9 H' X, F)= HHX xX,ERF) —» H' (X,EQRF)

is surjective as required. O

B.2 Seshadri constants

In order to study the local positivity of a line bundle, Demailly introduced the Seshadri
constants in [Dem92]. More precisely the aim is quantifying how much of the positivity of
an ample line bundle can be localized at a given point of a projective variety. See [Bau+09]
for a detailed account of the main properties of Seshadri constants.

Definition B.2.1. Let x be a point in an projective variety X and let L be a nef line bundle
on X. The Seshadri constant of L at x is the non-negative real number

eX,L;x) = &(L;x) :=max{ € > 0| u"L — ¢E is nef },
where u: X — X is the blow-up at x, with exceptional divisor E. The real number
elL)=¢eX, L) := }(Iel)f( eX,L;x)
is the Seshadri constant of the line bundle L.

Actually Demailly’s original definition of Seshadri constant is the following.

'For more details on the R;’s, we refer to [Tot13, §2]
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Proposition B.2.2. Let x € X be a point in a projective variety and let L be a nef line bundle.
One has

L-C
e(L; x) = inf {nfuTx(é) | C C X is an irreducible curve passing through x } .
Proof. See [Laz0O4a, Proposition 5.1.5]. O

Remark B.2.3. We use these equivalent definitions without explicit mention.

Remark B.2.4. As shown in [Laz04a, Example 5.1.18], it is easy to see that if L is ample
and base-point-free, then £(L; x) > 1 for every x.

Definition B.2.5. Let x € X and L be as in Definition B.2.1. An irreducible curve I’ c X
such that

is called a Seshadri curve for L at x.

Generally it is not known the existence of Seshadri curves.

We list some basic properties of Seshadri constants.

Proposition B.2.6. Let X be a projective variety, let L be a nef line bundle and fix a point
x € X. Then:

(1) e(L; x) depends only on the numerical equivalence class of L and satisfies e(mL; x) =
m - &(L; x) for every m € N.

(2) If V C X is a subvariety of dimension k > 1 passing through x, then

(- v) )’1

s(hix) < (multx(V)

Moreover, equality holds for some V, possibly equal to X, passing through x.
(3) Assume that X is smooth. The Seshadri function
eX,—;-)=¢e(—;-): Nef(X) x X > (L,x)— &(L;x) eR

is continuous with respect to the first variable and lower semi-continuous with respect
to the second variable in the topology for which closed sets are countable union of
closed Zariski sets. In particular, for any L € Nef(X), the function €(L; —) attains its
maximal value for a very general point. We denote this value by (X, L; 1) = &(L; 1).

Proof. See [Laz04a, Examples 5.1.3-5.1.4 & Proposition 5.1.9] for items (1)-(2). For the
continuity in the first variable and the lower semi-continuity in the second variable, see
[Bau+09, Remark 1.17 & (2.2.8)]. To conclude, let p: X X X — X be the projection onto
the first factor, let 4: X — X X X be the diagonal morphism and let £ = p*L. Since X is
separated, the restriction of p is smooth along A(X). Then, by [Laz04a, Example 5.1.11], a
very general point x* € X satisfies

eX, Ly x) = Xy, Lix,: 4(x)) < e(Xy, Lix . A(xY)) = &(X, L; x7)

for all x € X. In conclusion &(L; x*) = &(L; 1) is the maximal value. O
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Remark B.2.7. Let x € X C P” be a point in a projective variety, and let H be a hyperplane
section. Then &(H; x) = 1 if and only if there is a line £ C X passing through x. In particular,
X is covered by lines if and only if e(H; 1) = 1.

Indeed, a line £ C X satisfies (H - €) = 1 = mult,(¢) for every y € ¢, whence one direction
follows from Remark B.2.4. Conversely, e(H; x) = 1 means that u*H — E is not ample in
the blow-up u: X — X centered at x with exceptional divisor E (Lemma B.2.13(i)), hence
the conclusion descends from [Lop22, Lemma 7.1].

Given a nef line bundle on a smooth projective variety, Nakamaye theorem leads to
a characterization in terms of Seshadri constants of its augmented base locus. See also
[Ein+09, Remark 6.5].

Remark B.2.8. Let X be a smooth projective variety of dimension n > 1 and let L be a nef
line bundle on X. Then
B,.(L)={xeX|e(L;x)=0}.

To prove this, suppose initially that L is non-big. In this case B, (L) = X and L" = 0.
The claim immediately follows by Proposition B.2.6(2): for every x € X one has

0<e(l;x) < (L”)ﬁ =0.

Now assume L is big. Nakamaye theorem [Laz04b, Theorem 10.3.5] tells that B, (L)
coincides with the null locus of L which is defined as

Null(L) = U 1%

vex

with V ranging over all non-empty proper subvarieties of X such that L4™ V.V = 0. Therefore
&(L; x) = 0 for every x € B, (L) by Proposition B.2.6(2). Conversely, if e(L;y) = 0, by
Proposition B.2.6(2) we can find a subvariety W C X of dimension k£ > 0 containing y such

L' w )i’

0=e(L;y) = (m

The subvariety W must be proper because L" # 0 given that L is big. We conclude that y
belongs to Null(L) = B.(L).

Remark B.2.9. Let X be a projective variety and let L be a nef line bundle on X. Let x € X
be a point and suppose that L separates tangent vectors at x, namely the restriction map
H(X,L) — H°(Z, L7) to every 0-dimensional closed subscheme Z C X of length 2 with
supp(Z) = {x} is surjective (see, for instance, the proofs in [Sta23, Tag OE8R]). Then
e(L;x) > 1.

To prove this we use Proposition B.2.2. Let C c X be an irreducible curve and let
v € T,C c T,X be a non-zero tangent vector. Since L separates tangents at x, we can find a
divisor D € |L| which passes through x with v ¢ T .D [Har77, Remark I1.7.8.2]. It follows
that C ¢ D, for otherwise v € T,,.C C T, D giving a contradiction. Then

(L-C)=(D-C)zmult(C).

This implies that e(L; x) > 1, as claimed.


https://stacks.math.columbia.edu/tag/0E8R
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The definition of Seshadri constant can be naturally extended to arbitrary subschemes
[CELO1].

Definition B.2.10. Let Y C X be a closed subscheme in a projective variety X, and let L be
a nef line bundle on X. The Seshadri constant of L at Y is the non-negative real number

eX,L;Y)=¢e(L;Y) =suple 20| u"L — eE is nef },

where u: X — X is the blow-up of X along Y with exceptional divisor E.
If Y is a reduced subscheme supported at g distinct points xi, ..., x4, then

e(L;Y) =e(L; x1,...,xq)
is called the multi-point Seshadri constant of L at xy, . .., X4.
Analogously to Proposition B.2.2, one can prove the following characterization.

Proposition B.2.11. Let X be a projective variety of dimension n > 1 and let L be a nef line
bundle.

(1) If x1, ..., x4 are q distinct points, then
. (L 0) C c X is an irreducible curve
elL;xy,...,xy) =inf § ————— .
', mult,,(C) passing through some x;

(2) If x1,..., x4 are smooth points for X, then

n\n
e(Lyxy,...,xg) < (—) . (B.2)
q
Moreover
e(L;x1,...,x9) < s(L;le,...,xjp)
for any subset {x;,, .. .,xjp} C{xr, ..., xg)

(3) If x € X is a smooth point and Z C X is a O-dimensional closed subscheme which is
smooth at x € Z, then (L; Z) < &(L; x).

Proof. The blow-up u: X —XofX along Y = {xy, ..., x,} can be seen as the composition
p=pgo-ou: X=X, — Xgo = — X — Xo =X,

where u;, for 1 < j < g, is the blow-up of X; | centred at the strict transform D eXx j-1 0f
x; via u;_1. By a slight abuse of notation, for each 1 < p < g, we denote the exceptional
divisor E® ¢ X, of uP = Hp o -+ opuy by the sum EP =E; +---+ E,, where each E;
for 1 < j < p —11is (the strict transform of) the exceptional divisor of ;. Here E = E@
is the exceptional divisor of y. To study the nefness of u*L — E, take an irreducible curve
Cc X,. If C C E, then (u*L — €E) - C > 0 by Nakai-Moishezon-Kleiman criterion for
mapping [Laz04a, Corollary 1.7.9], which can be invoked since Op(=E) is pg-ample
(IGW20, Proposition 13.96(1)] and [Laz04a, Example 1.7.7]) and C is contracted to a point.
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Hence, we can suppose that ,u(E) = C C X is an irreducible curve. Setting uq(g) =Cy-1,
then one has

(WL —€E)-C = ™) (L-eEY9™V). Cpuy — & multyy(Cymr)
by [Laz04a, Lemma 5.1.10]. As u9~" is an isomorphism around x'?, we see that
mult ) (Cy-1) = multy, (C).

Proceeding inductively, we obtain

_ q

WL-¢E)-C=(L-C)-¢ Z mult,. (C).
i=1

Clearly, if C does not contain any x;, the above equation is greater than or equal to 0 as L is

nef. Therefore, assuming that C passes through some x;, we conclude that (u*L —eE) - C>0
if and only if

(L-C)
~ 34 mult, (C)
giving (1).
For (2), take any subset {x;,, ..., x;,} C ¥, and write ey for the Seshadri constant &(L; x1, . . ., x,).

If C C X is any irreducible curve passing through some x;,, in particular it satisfies CNY # 0.
Consequently we get that

(L-C) < (L-C)
L mult,(C) ~ ¥, multy, (C)

Taking the inf over all irreducible curves passing through some x;,, we obtain the claim.

To prove (B.2), consider let u: X > XandE = E; + - + E, be as above. Then
E;’s are mutually disjoint with E} = (=1)™*! for all i. Therefore, using the nefness of
H'L—e(L;x;...,xy)E (Lemma B.2.13(i)), we have

n
0< (,u"L—e(L;xl ...,xq)E) =L"—&L;xi...,x9)" - q,

thus proving (B.2).

In order to prove (3), let p: X’ — X be the blow-up of X at x with exceptional divisor F,

and let Z’ C X’ be the strict transform of Z; = Z — {x}. Let p’: X — X’ be the blow-up of X’
along Z’ with exceptional divisor Fz . Then the composition 7 = p’ o p is the blow-up of
X along Z with exceptional divisor F = F’ + Fz, where F” is the strict transform of F via
p’. Let & > 0 be such that 7*L — £F is nef. To obtain the conclusion, it is enough to prove
that € < #AC(C) for every irreducible curve C C X passing through x. Indeed, if this is true,
by taking the infimum over all irreducible curves passing through x we get € < &(L; x). By
taking the sup over all & > 0 such that 7*L — &F is nef, we get &(L; Z) < &(L; x).
Given an irreducible curve C C X containing x, set C’ € X’ and C C X to be respectively
the strict transform of C via p and the strict transform of C” via p’. In particular C is the
strict transform of C through 7, and C’ ¢ F and C ¢ F for otherwise they would be mapped
onto a point. As a consequence F - C > 0. Therefore, using also projection formula and
[LazO4a, Lemma 5.1.10], we obtain:

0<(*L-¢eF)-C=p"(p'L—¢F)-C—&Fz-C<(p'L—¢F)-C' =L-C—¢-mult,(C),

which gives the claim. O
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Definition B.2.12. Given a line bundle L and ¢ distinct smooth points xi,...,x, on a
projective variety X, an irreducible curve realizing the infimum in Proposition B.2.11(1) is
called multi-point Seshadri curve of L at xy, . .., x4. An irreducible curve C such that

(L . C) LdimX ﬁ
<
7, mult,, (C) ( q )

is said to be submaximal for L at x1, ..., x,. If the inequality in (B.2) is strict, then L is said
to be submaximal at x1, .. ., x,.

non-empty proper closed subscheme. Let u: X — X be the blow-up of X along Y with
exceptional divisor E, and let L be a nef line bundle on X. Let o € R. Then:

Lemma B.2.13. Let X be a projective variety of dimension n > 1 and let Y C X be a

(i) 'L —e(L; Y)E is nef but not ample.

(ii) If uW*L — o E is nef, then o < e(L; Y).
(ii’) If u”*L — oF is ample, then o < &(L;Y).
(iii) Assumingn >2 anddimY = 0, if u*L — o E is nef, then o > 0.
(iii’) Assuming n > 2 and dimY = 0, if u*L — o E is ample, then o > 0.

(iv) Assuming dimY = 0 and n > 2, we have that u*L — o E is nef if and only if o €
[0, e(L; Y)]. For n = 1, we have that u*L — o'E is nef if and only if o € (—0, &(L; Y)].

(iv’) Assume dimY = 0. For n = 1, then u*L — o E is ample if and only o € (—o0, &(L; Y)).
Forn > 2 and L ample, we have that u*L — o E is ample if and only if o € (0, &(L; Y)).

Proof. Write € = &(L; Y) and L= u'L—¢eE.

Item (i) easily follows from the closedness of the nef cone and the opennes of the ample
cone: by definition there exists a sequence of non-negative real numbers {&}reN converging
to & such that y* L — & E is nef for all k. Therefore u*L — ¢E = limy_.o(u*L — & E) must be
nef since Nef(f) is closed. On the other hand, u*L — €E cannot be ample, otherwise we
could find a sufficiently small real number ¢ > 0 such that u*L — (¢ + 6)E is ample [Laz04a,
Example 1.3.14], giving a contradiction.

Items (ii) and (ii’) are clear by definition and by part (i).

Suppose for the moment that X is a curve. Since deg(zg) > 0 by (i), and deg(E) > 0 as
E is a non-trivial effective divisor, from

deg(u*L — 0E) = deg(L,) + (¢ — o) deg(E)

we immediately get the case n = 1 in (iv) and (iv’), the second one by Nakai-Moishezon-
Kleiman criterion for R-divisors [Laz04a, Theorem 2.3.18 & Proposition 1.3.13].

Henceforth we assume n > 2 and dim Y = 0. In this situation, the line bundle Og(-E) is
ample: it is the restriction of the u-ample line bundle Ox(-E) [GW20, Proposition 13.96(1)],
hence it is yg-ample by [Laz04a, Example 1.7.7]. Since every subvariety in E is contracted
by u to a point, Nakai-Moishezon-Kleiman criterion for mapping [Laz04a, Corollary 1.7.9]
says that Og(—E) is ample on E, proving the claim.
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If u*L — o°E is nef (resp. ample), then o cannot be negative (resp. non-positive) since
for any irreducible curve C C E we would have

WL-0E)-C=-0E-C<0 (resp. W'L—0E)-C=—-0E-C<0).

This proves (iii) (resp. (iii’)).

Combining (ii) and (iii) (resp. (ii’) and (iii’)) we immediately obtain the “only if” part
of (iv) (resp. (iv’)). For (d), it remains to prove that ,u*L oE is nef if o € [0, ]. To this
end, fix such a o~ and take an irreducible curve C C X. As —E\g is ample, if C C E, we have
W'L-0cE)- C=-0E-C>0. Suppose C ¢ E,andlet C = y(C) C X be the image. If
CNE=0, we have (UL - 0E) - C=L-C>0. HencewemayassumeCﬂE # (. Using
the nefness of L,S given by (i), we have

WL-0E)-C=L,-C+(s—-0)E-C > 0.

This proves that u*L — o E is nef. To conclude the proof, we need to prove that u*L — o E is
ample if o € (0, £) when L is ample. To this end, by Nakai-Moishezon-Kleiman criterion
for R-divisors [Laz04a, Theorem 2.3.18 & Proposition 1.3.13], it is enough to show that
('L — cE)* - V' > 0 for every irreducible subvariety V’ X of dimension k > 1. One
easily checks that this holds both for V/ C E and for V’ which is disjoint from E: in the first
case one has (u*L — cE)f - V' = 0*(—=E)* - V/ > 0 by the ampleness of —Eg, in the other
one, V = u(V’) C X is an irreducible subvariety of dimension k and the projection formula,
together with the ampleness of L, implies (u*L — cE)* - V' = L¥ - V > 0. Hence we can
assume V' N E # 0 and that V = u(V’) C X is a k-dimensional subvariety. Then, observe
that (u*L)*~/ - EJ- V' = 0 forevery 0 < j < k. Indeed, as j > 0, Z = (W*L)*/=' - EJ . V" is
a 1-cycle (see the proof of [Laz04a, Lemma 1.1.18]) which is supported on E. Therefore,
writing Z = Y} _, a;Z;, it follows that u,Z, = 0 for all , which forces .Z = 0. By projection
formula and [Ful98, Proposition 2.5(a)] we deduce the claim:

WL E .V =u'L-Z=0.

On the other hand, (—E)* - V’ < 0. To see this, first observe that £ NV’ is a (k — 1)-cycle on
E which is effective. Indeed, V' ¢ E, so ENV’ C V' is a divisor which must be effective for
otherwise the restriction map HO(X, Oz(E)) — H(X, Oz(E) ® Oy) would be zero, saying
that V' c E. Therefore, writing (~E)* - V' = —(=E)*"! . (E N V’), the assertion follows by
the ampleness of Og(—FE). Putting all together, we obtain

WL-oEY- -V =" V) + A Ef -V > - V) + B} - v =K.V >0,

with the last inequality coming from (i) and Kleiman theorem [Laz04a, Theorem 1.4.9], as
desired. O

Lemma B.2.14. Let X be a projective variety of dimension n > 1 and let Y C X be
a non-empty proper closed subscheme. Let u: X — X be the blow-up of X along Y
with exceptional divisor E, and let L be an ample line bundle on X. Then &(L;Y) =
sup{€ € R, | u*L — €E is ample} .

Proof. Write € = &(L;Y), Ly = u*L — ¢E, and let & = sup{{ > 0| u*L — ¢E is ample}.
Observe that the set {¢ > 0 | u*L — ¢E is ample} is non-empty since we can always find a
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positive integer m > 0 such that mu*L — E is ample by [Har77, Exercise 11.7.14(b)]. Clearly

g < g if y”*L — €E is ample, then it is nef, hence ¢ < &. Taking the sup over all £ > 0

such that u*L — €E is ample, we obtain the claimed inequality. To prove the other direction,

consider again an ¢ > 0 such that u*L — ¢E is ample. Then v = [u*L — {E] belongs to the

ample cone A = Amp(X) of X. As A is open, v belongs to its interior. On the other hand,
= [u*L — €E] belongs to the nef cone Nef(X), which is the closure of A. Then

(I-twv+tw=[u'L—(—1tl+e)E]

is in the interior of A for every t € [0, 1) by [Roc97, Theorem 6.1]. In other words, (1-f)v+tw
is ample for every 0 < ¢ < 1. In particular we have

C—tl+et<e forall 0<tr<l.

Taking the limit of the above inequality for t+ — 1, we finally obtain & < &’, proving the
assertion. O

The definition of Seshadri constant at a point has been generalized to vector bundles in
[FM21]. Actually the setting can be even more general. However, for our purposes, it is
enough to stick to the case of locally free sheaves.

Definition B.2.15. Let X be a projective variety and let ¥ be a vector bundle on X. Let
n: P(f) — X be the natural projection and let ¢ = Op#)(1) be the tautological line bundle
on P(7). Let x € X be a point and let C# , denote the set of irreducible curves in P(¥) that
meet P(¥ (x)) but are not contained in the fibre P(¥ (x)). The Seshadri constant of F at x is

o= inf {5 €
e(Fix) = Cgcli;x {multx(ﬂ'*c)}'

Whenever the vector bundle is nef, i.e. the tautological line bundle is nef, the definition
can be formulated analogously to the one of line bundles.

Remark B.2.16 ([FM21, Remark 3.10(a-c)]). Let X be 2 projective variety and let ¥ be
a nef vector bundle on X. Let x € be a point and let u: X — X be the blow-up at x with
exceptional divisor E. Then:

(@ e(F;x)=0.
(b) &(F;x) =sup {8 > 0| u*F(—€E) is nef on )?} .

Remark B.2.17. Analogously to Remark B.2.8, for a nef vector bundle ¥ on a projective
variety X, one has the following characterization [FM21, Proposition 6.9]:

B.(f) ={xeX|e&;x) =0}

B.3 Projective normality of vector bundles

The notion of projective normality for line bundles is well known. We refer to [Laz04a,
§1.8.D] for more details. We recall the definition for convenience.
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Definition B.3.1. A line bundle L on a projective variety X is said k-normal for some k > 1
if the natural map
S*HO(X, L) — H°(X, kL)

is surjective. We say L is normally generated if it is ample and k-normal for all £ > 1.
An embedded projective variety X ¢ PV is said m-normal for some m > 1 if the
restriction map
H(P", Opy(m) — H(X, Ox(m))

is surjective, or equivalently if H'(PY, Iy pv(m)) = 0. A 1-normal variety is said linearly
normal. The variety X c PV is projectively normal if it is m-normal for all m > 1.

The following observation is very well-known.

Remark B.3.2. Let L be an ample line bundle on a projective variety X. Then the following
are equivalent:

(a) Lisnormally generated.

(b) H(X, L)®** — H°(X, kL) is surjective for all k > 1.

(c) H'(X,L)® H(X, kL) — H°(X, (k + 1)L) is surjective for all k > 0.

(d) Lis very ample and embeds X < P(H°(X, L)) as a projectively normal variety.

For the equivalence, let £ > 0 and consider the following diagram:

Pk+1

HOX, Ly®*+D 20 o pOx 1) ® HOX, kL) —* 5 HO(X, (k + 1)L)

\ /

SHIHO(X, L).

with gx1 being always surjective. If s;1 is surjective, then so are u ; and the composition
Uik © pr+1- This means that (a) implies (b) and (c). Obviously, if (b) holds, then both
(a) and (c) do. Assuming (c), in order to prove (b) we can suppose by induction that
H(X, L)®" — HO(X, hL) is surjective for all 1 < h < k. In particular this says that

st s HOX, LP*D = X, L) @ H(X, L)** — H°(X, L) ® H(X, kL)

is surjective. Thus the surjectivity of u;x yields that the composition is onto as desired,
proving (b). Now, if (a) holds, it is shown in [Mum?70, §1] that L is very ample. Letting
X c P(H°(X, L)) = PN be the embedding, we have a short exact sequence

0 —— Txpv(k) ——> Opn(k) s L8k 5 0

for every k > 1. Since H'(PY, Opn(k)) = SKFHO(X, L), (d) immediately follows. Conversely,
if we assume (d), and X c PV is the embedding determined by |L|, the above exact sequence
shows that the map

S*HO(X, L) = H(PY, Opn(k)) — H(X, kL)

is surjective for every k > 1, giving (a).
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Therefore a normally generated line bundle L on a projective variety X induces an
embedding ¢; : X < PV as a projectively normal scheme. We identify normal generation
(of L) and projective normality (of ¢;(X) c PV). Moreover in this case the coordinate ring
Ry and the section ring R(L) coincide.

We now recollect some standard facts and some technical results on projective normality
of vector bundles whose relevant definitions are given in Definition 5.0.5.

Remark B.3.3. Given a vector bundle & of rank r on a projective variety X, by [Har77,
Exercises II1.8.1-1I1.8.4] there are isomorphisms

H'(P(E), Ope) (k) = H'(X,S*E)

for every i,k > 0. In particular, by Remark B.3.2, & is k-normal for some k > 1 (resp.
projectively normal) if and only if

S*H(X,8) — H°(X,SkE) or, equivalently, H'(X,&)*F — HO(X, Sk&)

is surjective (resp. is surjective for all k > 1 and & is ample).
A stronger condition to get k-normality (resp. projective normality) of & is requiring
that multiplication the map

e HO(X, & — HO(X, &%)

is surjective (resp. is surjective for all k > 1 and & is ample). Indeed, one has the commutative
diagram
HO ( X, 8)®k
k
% \

HO(X, E%F) > HO(X, Sk&)

for every k > 1. As the h-symmetric product S"& is a direct summand of the A-tensor power
&®! for all h > 0, the horizontal map is always surjective. Thus the conclusion immediately
follows.

The above remarks will be used with no further mention.

Remark B.3.4. Let & = F%° for a vector bundle F on a projective variety X and for some
s > 1. Then & is strongly 2-normal if and only if # is strongly 2-normal.
This follows by observing that

§2
ug: HX,E@ H'(X,8) = (KX, F)@ H'X, 7)) — H'X,FeF)™ = H'(X,E88)

is surjective if and only if each us: HO(X, F) ® H'(X, F) — H°(X,F ® F) is surjective.

The following result is well-know, see for instance [Mir94, Fact 1.7] or [Tril6, p. 1014].
For more details we refer to [BE75; Eis95; Wey03].

Lemma B.3.5. Let0 — & — F — G — 0 be an exact sequence of vector bundles on a
variety X. Then we have the following exact sequences of vector bundles for every k > 1:

0— A& s AfF s AFlF G — - 5 FoSilg — skg — 0, (B.3)
0 Sfe-S1g0F — - = E@AIF — AFF — AfG — 0, (B.4)
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This lemma shows that we can obtain the k-normality through some cohomology van-
ishings.

Example B.3.6. Let X be a smooth regular projective variety and let & be a globally
generated vector bundle on X such that H (X, &) = 0. Then & is 2-normal if H*(X, A>Mg) =
0. The converse holds if H2(X, Ox) = 0.

To see this, consider (B.3) with & = 2 for the syzygy exact sequence of & and then split
it in the two exact sequences

0—-K—HXE®E— S’ — 0and 0 — A’Mg — A’HY (X, &) ® Ox — K — 0.

Taking the cohomology of the first one, we immediately see that H(X, &) ® H(X,&) —
HO(X, S?€) is surjective if and only if H'(X, K) = 0. The cohomology of the second one
yields the exact sequence

0=A’H’X,& 9 H'(X,0x) — H' (X, K) — H*(X, A>Mg) — A’H(X, &) ® H*(X, Ox).
The claim is now obvious.

Notation B.3.7. A coherent sheaf ¥ on a variety X is special if H'(X, 7) # 0. We say F is
non-special if H'(X,F) = 0.

We observe that projective normality is an open property in proper flat families of
non-special vector bundles. This will allow us to consider open subsets of projectively
normal Ulrich bundles in the moduli spaces of vector bundles.

Lemma B.3.8. Ler f: Y — S be a proper morphism over a Noetherian scheme S and let
F be a coherent sheaf on Y that is flat over S. Suppose there is O € S such that Fo = Fy, is
locally free, semistable, non-special, ample, globally generated and 2-normal (resp. strongly
2-normal). Then there exists an open neighborhood U C S of 0 such that s = Fy, satisfies
all the above properties for every s € U.

Proof. The assertion is local on the target, so we assume S is affine. Thanks to [HL10,
Lemma 2.1.8 & Proposition 2.3.1] and to [GW23, Corollary 23.144], up to shrink §, we
can suppose that 7 is locally free, semistable and non-special for every s € S. In particular,
¥ is locally free on Y by [HL10, Lemma 2.1.7]. Shrinking again, we can assume also f.7
is locally free as well [GW23, Corollary 23.144]. Up to replace S with a suitable open
neighborhood of 0, by [Laz04b, Proposition 6.1.9] we can suppose ¥ is ample for every
s € §. Note that the function s — h'(Y,, ) = 0 is constant.

Letting p: f*f.¥ — ¥ be the natural morphism, we can see that ¥ is not globally
generated if and only if p; = py,: HO(Y,F) ® Oy, — F, is not surjective. To prove this,
observe that there is a factorization

Ps = €50 (rs®idOYs)

where e;: H(Y, Fy) ® Oy, — F is the evaluation map and ry: HO(Y, F) — HO(Yy, Fy) is
the restriction map. If we prove that ry is surjective, then the claim will be clear. In order to
do this, observe that, since hl(YS, Fs) = 0 for all s, [GW23, Corollary 23.144] provide the
isomorphism

(eF ) specCisy) = (fiy,)«(Fs)
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for every s € S. Since S is affine, thanks to [Har77, Proposition III.8.5 & Proposition
I1.5.2(e)] this yields

HOY,F)® C(s) = HO(S, £.F) ® C(s)
= (Hom¢))|3pec(cm)
= HO(Spec(C(5), (fiy,)«(F3))
=~ HO(Y\S,Jﬁ).

In virtue of the equivalence of categories between (Og-modules over S and I'(S, Og)-
modules, we thus obtain the isomorphism

HO(Y, 7)® C(s) = H(Y,, F>).

Since § is affine, the locally free sheaf f.F is globally generated. Therefore the restriction
of the surjective evaluation map H(S, £.F)®Os — f.F to Spec(C(s)) yields the surjective
map

re: HOY, F) = H(S, £.F) — H°(Spec(C(s)), (f.F )| spec(C(s))
= HO(S, (fir,)«(F5) = HO(Y,, Fy),

as desired.

As Fy is generated by global sections, the coherence of coker(p) tells that there is an
affine open neighborhood of 0 such that p is surjective on every fibre Y. Hence, up to shrink
S, we suppose that 7 is globally generated for all s, so that p is globally surjective.

Now, P(¥5) is a fibre of the composite proper morphism P(¥) — Y — S and £ =
Op#(1) is a line bundle on P(7) such that £; = Op(#,)(1) for every s € S. The surjectivity
of the multiplication map

H(P(Fo), Lo) ® H'(P(F), Lo) — H (P(Fo), Lo ® Lo)

is well-known to be an open condition by semicontinuity (see [LM85, Proof of Lemma 1.3,
lines 7-8]), thus the conclusion in case of the 2-normality of F( follows.

As a recap, we have that 7 is locally free, semistable, non-special, ample and globally
generated for all s € §. Assuming that # is strongly 2-normal, we need to prove that there
is a neighborhood U c S of 0 such that 7 is strongly 2-normal for all s € U. To do this,
consider the morphism u: H(Y,7) ® ¥ — F ® F. We claim that u is surjective on Y.
Indeed, as f.7 is globally generated, then so is f* f.F . Thanks to the surjectivity of p, we
deduce that 7 is globally generated as well. The assertion follows by tensoring the syzygy
exact sequence of 7 through by 7 itself. In conclusion, we have the exact sequence

0-K=M;r®F - HY,F)®F - FQF — 0.

Note also that M#, hence K, is flat over S by [AM69, Exercise 2.25]. Hence the above
sequence restricts to the short exact sequence

0K, —» HYF)oF, 2 F.oF, — 0
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for each s € S. Taking the cohomology, we obtain the following commutative diagram

Hs(Ys)

HO(K¢)®HO(YM7_;) > HO(YxsTr®7:s) _> Hl(yxs(](s) _> 0

rs®id HFs
H(Y,, 7)) ® H(Y,, )

where the row is exact. Since ry is surjective, we deduce that u(Yy) is surjective if and only
if ug, is surjective. Now, ¥y is strongly 2-normal, and this forces u,, hence uo(Yp), to be
onto. The exactness of the cohomology sequence yields H' (Yy, Ko) = 0. As K is flat over
S, the semicontinuity theorem applied to s — h'(Yy, K) provides an open neighborhood
U c S of 0 where h!(Y,, K) = O for all s € U. We obtain the surjectivity of us(Ys), thus of
U, for all s € U as required. O

It’s well known that a normal projective variety X ¢ PV is projectively normal if and
only if Ry is integrally closed (see for instance [Har77, Exercise I11.5.14]). A related property
on Ry is being Cohen-Macaulay.

Definition B.3.9. An embedded projective variety X c PV is said arithmetically Cohen-
Macaulay (aCM for short) if the homogeneous coordinate ring Ry is Cohen-Macaulay, i.e.
dim Rx = depth(Rx).

As is well-known, aCM property is stronger than projective normality.

Remark B.3.10. A projective variety X ¢ PV of positive dimension is aCM if and only if
H'(PV, Ixpn(k)) = 0 for all k > 0 and Oy is an aCM sheaf with respect to Ox(1) if and
only if Hi(PN,IX/PN(k)) =0forl <i<dimX and k € Z [CMP21, Proposition 2.1.9]. In
particular, an irreducible projective curve C ¢ PV is aCM if and only if it is projectively
normal.

Let’s see how k-normality and aCM property behave with respect to hyperplane sections.

Lemma B.3.11. Let X C PV be a linearly normal projective variety of dimension n > 2 and
let Y = X N PN7! be a linearly normal irreducible hyperplane section. Then the following
holds:

(i) For k > 0, if the embedding Y < PN~! is h-normal for 2 < h < k, then so is the
embedding X ¢ PN. Conversely, Y ¢ PN is k-normal for k > 0 if X ¢ PN is
k-normal and H'(X, Ox(k — 1)) = 0.

(ii) If X is aCM, then so is Y. The converse holds if X is locally Cohen-Macaulay.

Proof. Let’s consider (i). For every k > 0 we have the following commutative diagram with
exact rows

0—— HO(PN,OPN(](— 1) — HO(PN,OPN(/()) e HO(PNfl,OPN—l(k)) — 0
Jrkl \|Vk \|r,’(
0 — HOX, Ox(k - 1)) —— H(X, Ox(k)) —Z— H(Y, Oy(k)) —— H'(X, Ox(k - 1)).

For the first part, we proceed by induction on A, with 2 < h < k. The base case h = 2 is
obtained immediately from the Snake lemma since r; is surjective, by the 1-normality of X,
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as well as r} by hypothesis. The inductive step with 2 < i < k follows again by the Snake
lemma, the inductive hypothesis and the surjectivity of ;.
For the converse, our assumption implies the surjectivity of the composite map py o rx. The
commutativity of the right square tells that r; is onto as desired.

To prove the first part of (ii), consider the short exact sequence

0—0x(j-1— Ox(j) = Or(j) = 0

for j € Z. Remark B.3.10 and (i) imply that ¥ ¢ P¥~! is projectively normal. Moreover, it
is clear from the cohomology of the above sequence that H'(Y, Oy(j)) = 0 for all j € Z and
0 <i<n-1.Therefore Y c PN~!isaCM by Remark B.3.10. For the converse, see [Mig98,
Theorem 1.3.3]. o

Remark B.3.12. Let X be a regular smooth projective variety of dimension n > 1 and let &
be a very ample vector bundle of rank r > 2 on X. Then P(&) is aCM as soon as
B = n)s,(E") = 3 + (Kx + det(E)) - 5,-1(E")

where s (&) is the k-th Segre class of &*.

To see this, consider a smooth sectional curve C c P(8) c P(H(X, &)) = P¥ for the
embedding defined by |Opg)(1)| and let g = g(C) be its genus. Letting & be the class of
Opg)(1), we know that

deg C = degP(E) = &1 = 5,(&).

Observe that this is linearly normal since H LP©&), Ope) = H (X, Ox) = 0. By Lemma
B.3.11 we can reduce to study the projective normality of C ¢ PM*2="=" A classical result
states that C ¢ PM*27"~" ig projectively normal if degC > 2g + 1 (see, e.g., [Mum?76,
§2, Corollary to Theorem 6]). Using the adjuction formula and recalling that Kpg) =
" (Kx + det(&)) — ré, we find that

1
g=1+3 (Kp) - €72 + (n+ r = 2)&™ 1)
=1+ % (ﬂ*(KX +det(&)) - &2 + (n - 2)§"+’—1)

- % ((Kx +det(E)) - 5,-1(E") + (n = 2),(E")) .

The conclusion follows by putting all together.

The last useful result, which is just a rephrasing of [AR02, Proposition 1.2], will be
important for Proposition 5.0.8.

Lemma B.3.13. Let L be a very ample line bundle on a smooth projective variety Y of
dimension n > 1 and let Y ¢ PN be the embedding determined by |L|. If L is 2-normal and

H(Y,Ky + (n=2)L) = H'(Y,L) = H*(Y,Oy) = 0,
then:
(i) Lypn is 3-regular and lypn is generated in degree less than or equal to 3,
(ii) L is projectively normal.

Proof. Our assumption and Kodaira vanishing immediately yield H**!(¥, L®(1-9) = 0 for all
0 <i<dimY - 1.AsY c PV is linearly normal as embedded through a complete linear
system, the statement follows by [AR02, Proposition 1.2] and Remark B.3.2. O



B. Preliminary results 118

B.4 Chern classes computations

We calculate the first three Chern classes of & ® &, S2E, A2E and the first two Chern classes
of S3& for a vector bundle &E.

Lemma B.4.1. Let X be a smooth variety and let & be a vector bundle of rank r. Then:
(i) c1(E®E) =2rc1(E).
(ii) c2(E®E) = 2r* —r — 1)c1(E)* + 2rcx(E).
(iii) c3(E®8E) = 3(2r° = 312 = 2r + 3)c1(E)* + (417 = 2r — H)c1(E)c2(E) + 2rc3(6).

Proof. Item (i) is well known, see for instance [EH16, Proposition 5.18]. Recalling that the
Chern character

1 1
ch = tk+c; + E(c{ —2¢)) + 6(cf —3cier +3¢3) + -
satisfies ch(&)? = ch(& ® &) [EH16, §5.5.2], to prove (ii) and (iii) it suffices to equate terms

up to degree 2 and 3 respectively in the previous equality. More precisely, for (ii), taking the
terms up to degree 2 on the left-hand-side of

2
(r +c1(&) + %(q &) - 2c2(8))) =P +c(E®E)’ + %(01(8 ®E)’ - 20(E®E))

and using (ii), we obtain 2¢1(8)? + 2r(c1(E)* — 2¢2(E)) = 4r*¢1(E)* — 2¢2(E ® &). Then (i)
follows. For (iii), the proof is completely analogous: extract the terms of degree 3 from

Q+cm8y+%@maf—zq@n»+é@u8f—3m«®q@b+3q&mf,
equate the result with the terms of degree 3 in
P +c1(E@E) + %(c1(8®8)2 ~202(E®E))+ é(c1(8®8)3 -3¢1(E®RE)CLEBE) +3¢3(EBE)),
and use (i) and (ii) on the resulting equation
m@ﬁdm&ma+%ﬁ#—m@M@+m@>
= é(cl(a ®E) -3c1(ERE)HERE) +3c3(E®E))

to expand as much as possible. In the end, we obtain the desired expression for c3(E®E). O
Lemma B.4.2. Let X be a smooth variety and let & be a vector bundle of rank r. Then:

(i) c1(A%) = (r = 1)c1(8).

(ii) cx(A%8) = (3')e1(E) + (r = 2)e2(E).

(iii) c3(A28) = (3")c1(E) + (r = 22c1(E)ca(®) + (r — H)c3(6).
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Proof. We prove the above formulae by induction on r > 1 by using the splitting principle.
Since they are clearly true for r = 1, we suppose r > 2 and that & decomposes as&E = L& F
with L being a line bundle and ¥ being a direct sum of (» — 1) line bundles. Then, in virtue
of A28 = A°F @ (L® F), we have

c1(&) =c1(L) + c1(F), c1(A%E) =1 (A*F) + c1(L® F),
c2(&) =c1(L)c1(F) + ca(F),  ca(A2E) =co(A*F) + c1(L ® F)c1(A*F) + co(L @ F),
c3(E) =c1(L)ea(F) + e3(F),  c3(A%E) =c3(A*F) + co(A*F)ei(L® F)
+ 1 (A’F)ea(L®F) + c3(L® F),
with cx(L® F) = 5'{:0 (r_l;k+i)c1(L)ick_i(?) (see [EH16, Proposition 5.17]). Using the

inductive hypothesis on ¥ we immediately get the desired formulae. For (i), we immediately
see

cl(A’8) = (r = 2)c1(F) + (r = Der(L) + e1(F) = (r = D(er(L) + c1(F)) = (r = Dei ()

as claimed. The other items are proved in the exact same way. Indeed, we have
r—2
e2(A°E) = (r = B)ea(F) + ( ) )cl(ff)z +(r =21 (F) + (r = 2)(r = Der(Ler (F)

+ e (F) + (r = Der(L)er(F) + (r ; l)cl(uz

_ %Cl(ﬁ + 2(r; 1)C1(L)c1(¢) + (r; 1)q(L)2

+(r=2ci(L)er(F) + (r = 2)c(F)

-1
= (r 5 )(01(7:)2 +2c1(L)c1(F) + c1(L)2) +(r =2) (c2(F) + c1(L)ci (F))

- (’ ; l)cl E)? + (r—2)c2(E)

which is (ii). Finally, expanding the expression for c3(A?E) through by the inductive
hypothesis and (i-ii), and factoring the result we get
2 11 » 3 3 2, 13 2
aAE)=\—=r—1-r+—|caF)y +|1+=r=2r + =r’|ci(L)c1(F)
6 6 2 2
3 1 11 3
+ (1 +3r- 2r% + 5r3)61(L)26‘1(7") + (gr —1-r+ %) ci(L)’

+ (r2 - 3r) ci(D)ea(F) + (4 —4r + r2) 1 (F)ea(F) + (r —4) c3(F).



B. Preliminary results 120

On the other hand, the expression (iii) can be written as

(’ ; 1)c1<8)3 +(r=2)%c1(E)ca(E) + (r — 4)c3(8)

= CEDEZ2UI) (040 + 30, WPer(P) + 31D (7Y + e1F))
+ (r =2 (1 (L1 (F) + e1(L)ea(F) + 1 (L)er(F) + e1(Flea(F))
+ (r=4) (1 (L)ea(F) + e3(F))

) ( _ 1)61 s ((r “DO=20=3) 2)2) L2y (F)

3 2
+ (r 5 1)c1<¢)3 + ((r — XD - 2)2) eiLyer(F)?
+(r =2 + (r = 9) D)o (F) + (r = 21 (Flea(F) + (r = 4)ea(F)
3
- (%r— -7+ %)cl(L)S + (1 + %r —27 + %r3)cl(L)zcl(?')

+|1+ §r—2r2+lr3 ci(L)e (F)? + Er—l—r2+ f c1(F)
2 2 )T 6 6)"
+ (7 = 3r)e1(L)ca(F) + (4 = 4r + 17) et (F)ea(F) + (r = 4) c3(F).
This shows (iii) and completes the proof. O
Corollary B.4.3. Let X be a smooth variety and let & be a vector bundle of rank r. Then:
(i) c1(S2E) = (r + Dey(8).
(i) 2(S28) = LD (&) + (r +2)c2(E).
(iii) ¢3(S28) = LD ()3 + (12 + 21 — A)c1 (E)ea(E) + (r + Des(E).

Proof. Thanks to the decomposition & ® & = S2E @ A%E, the above formulae immediately
follow from

A(E®E) = Y ciS*E)cr-i(A*E)

k
i=0
and from Lemmas B.4.1-B.4.2. m|

Lemma B.4.4. Let X be a smooth variety and let & be a vector bundle of rank r on X. Then:
(i) 1(8*8) = ("7)e1@®) = (" )er(@®).
(ii) c2(S38) = 2(r = D(r + 2)(r? + 51 + 8)c1(E) + 3(r + 2)(r + 3)c2(E).
Item (i) is proved also in [Rub13, p. 523].

Proof. As both formulae are clearly true for line bundles, we proceed by induction on r > 2
using the splitting principle. Then we suppose & = L @& F where L is a line bundle and ¥ is
sum of r — 1 line bundles. In this way, we have

ci(&) = ci(L) + c1(F) and 2(8) = c1(L)e1(F) + co(F).
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Before going into the proof, we present the following equalities which can be easily proved
by induction:

(A) Z ({’ 2+1) — (f;ﬁ;l)
®) T, (T - i = (51,

For (i), using (A)-(B) together and the inductive hypothesis, we find that

c1(SFE)

> etV o s'F) = Z [e1(S'F) + (k= D tk(S'F)er (L)

k
i=0
k .
( 2+jqu+(_f+j@—aq@4

)(Cl(L) +c1(F))

i=

r

k —

+
( -
(; )a@)

as desired. For (ii), expanding through c,(H & G) = f:o ci(H)cr-i(G) and using the
inductive hypothesis together with (i), Corollary B.4.3(i)-(ii) and [EH16, Proposition 5.17],
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we have

(S8 = (S LeF) = (LP e L0 F © Lo S°F 0 S°F)
= c1(L%) [c1 (L @ F) + c1(L® S*F) + 1 (SF)| + 2L @ F)
+ 1L [el(L @ S*F) + c1(S*F) | + c2(L @ S*F) + 1 (L& S*F)er (SF) + ea(S*F)

= 3¢i(L) (m(sf) +2(r = Dey(L) + rey(F) + (;)cl(m + (r; 1)c1<¢))

+(F) +2(r=2)c1(F)ei (L) + 4(r ; 1)c1(L)2

+ (1 (F) +2(r = Der(L)) (r01(7:) + (;)a(L) + (r ; 1)01(7”))

1
+ %(r —2)(r + Dey(F)? + (r + Dea(F) + r((r) - 1) c1(Fyei (L) + (2r(r2+ 1))c1(L)2

2
+ (r; l)cl(?') (rcl(sv—‘) + (;)CI(L))

+ %(r =2)(r+ 1) (=1 +5(r = 1) + 8) c1(F)* + %(r + 1)(r + 2)co(F)
= %(r +2)(r + 4% +3r = 8)(c1(L)* + c1(F)?)
+ %(r +2)(r + 4r% + 51 = 2)c1(L)ci (F) + %(r +2)(r + 3)c2(F)
= %(r — D+ 2)(r% + 57 + 8)(c1 (L)* + 2c1(L)ci(F) + c1(F)?)
+ %(r +2)(r + 3)(c1 (L)1 (F) + ca(F))
= %(r — D +2)(? +5r + 8)c1(E)* + %(r +2)(r + 3)ca(E)

as required. O
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Appendix C

Brief history of Ulrich sheaves

We conclude this thesis with a short note about the origin of Ulrich sheaves.

C.1 The class of aCM sheaves

The beginning of the story is the macro-class of sheaves which contains Ulrich sheaves:
aCM sheaves.

As already seen in Appendix A.2, aCM bundles form one of the most accomplished
classes of vector bundles. The reason behind their success is twofold. From a geometric
point of view, the starting point and guiding principle has been Horrocks theorem A.2.3,
which appeared for the first time in [Hor64]. This result suggests that aCM bundles are a
sort of measurement of the complexity of the underlying variety, meaning that to a simple
variety it corresponds a simple category of aCM bundles. In this direction, a classification of
aCM varieties (of dimension n > 2) with a finite number of indecomposable aCM bundles
was proved.

Theorem C.1.1. (J[EH88]) ACM projective varieties of dimension n > 2 with a finite
number of indecomposable aCM bundles are: projective spaces P", quadric hypersurfaces
0, C P! the Veronese surface V C P, a cubic scroll S c P*.

On the other hand, aCM bundles are pushed by commutative algebra in virtue of the
close relation with the class of maximal Cohen-Macaulay (MCM) modules (recall that a
(graded) R-module M, where R is a (graded) ring, is MCM if depth(M) = dim M = dimR.)

Proposition C.1.2. (see [CMP21, Proposition 2.1.8]) Let X C P be a projective variety
with homogeneous coordinate ring Rx. The correspondence

&— X&) = (D H'(X.E1)

teZ

establishes a bijection between aCM sheaves on X and MCM Rx-modules.

MCM modules have been a very active research topic in commutative algebra and helped
to prove several nice properties for the geometric counterpart. For example, through matrix
factorization techniques it has been proved in [Saw10] that an aCM bundle on a general
hypersurface splits as sum of line bundles if the rank is sufficiently low (see also [Erm?22]).
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This is in line with the famous, but still widely open, (generic) Buchweitz-Greuel-Schreyer
conjecture.

Conjecture C.1.3. (/BGS87]) A rank r aCM bundle & on a 2( general) smooth projective
hypersurface X ¢ P! splits as sum of line bundles if r < 217 1.

Since the formulation of the above conjecture, lots of works on the splitting of low-rank
aCM bundles on smooth hypersurfaces have been produced. We mention [Kle78; MRR07a;
MRRO7b; Rav09] and [Tril6; Tril7; RT19] where the authors show respectively the splitting
of rank 2 and rank 3 aCM bundles on smooth projective hypersurfaces.

In general, the category of aCM bundles on an arbitrary subvariety is still too big, as
showed by the following result.

Theorem C.1.4. ([FP21]) An aCM projective variety X C PN of dimension n > 2 is of
wild CM-type, namely supporting families of arbitrarily large dimension of indecomposable
non-isomorphic aCM sheaves, unless it either one of those in Theorem C.1.1 or a smooth
quartic rational normal surface scroll.

Thus a classification of (indecomposable) aCM bundles, as initially hoped for, is impos-
sible. Moreover, it is difficult to study aCM bundles in families because, generally, we can’t
consider moduli spaces of aCM bundles as they are not necessarily semistable. Therefore
the class of aCM bundles is still to difficult to handle. It becomes necessary to focus the
attention on a subfamily of aCM bundles: the Ulrich bundles.

C.2 Ulrich modules

Ulrich sheaves were actually originally introduced in commutative algebra by Bernd Ulrich
in [Ulr84].

Given a local Cohen-Macaulay ring R, Ulrich found an upper bound for the number of
minimal generators v(M) of a MCM R-module (improving [Sal76, Theorem 2.1]):

v(M) < e(R)rank(M) (C.1)

where e(R) is the multiplicity of R.

Since he also proved in [Ulr84, Theorem 3.1] that a local Cohen-Macaulay ring R is
Gorenstein provided the existence of a finitely generated R-module M satisfying 2v(M) >
e(R)rank(M) and Ext}}(M, R) = 0for1 < i < dimR, he was led to raise the following
question.

Question C.2.1. ([Ulr84]) Given a local Cohen-Macaulay module R, does there always
exist a MCM R-module M of positive rank such that v(M) = e(R)rank(M)?

MCM modules satisfying the above equality, i.e. with maximum number of minimal
generators, were thus named maximally generated MCM modules, or Ulrich modules after
him.

Initially, Ulrich found a positive answer just in the cases dimR = 1 and R of minimal
multiplicity, see [Ulr84]. Later, using Eisenbud’s results on matrix factorization in [Eis80]
which imply that the existence of a rank r Ulrich module over an integral hypersurface
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domain R = A/(f) with A a regular local ring yields a presentation of f” as determinant of a
matrix of linear forms, research on Ulrich modules took a step forward, specifically in the
series of papers [BHU87; HK87; BHS88; BH89; HUB91]. Ulrich modules started to be
studied also for homogeneous Cohen-Macaulay rings, where (C.1) was showed to hold as
well for MCM modules (see [BHU87, Proposition 1.1]), their definition was fixed once for
all and Question C.2.1 was extended to this setting.

Definition C.2.2. Let R be a homogeneous Cohen-Macaulay ring, namely R = @izo R;
is a graded Cohen-Macaulay ring over a field k with Ry = k and which is generated by R;
as k-algebra. Let M be a finitely generated MCM graded R-module of positive rank. Let
e(R) denote the multiplicity and let v(M) denote the number of minimal generators of M.
Then M is called a maximally generated maximal Cohen-Macaulay, or an Ulrich module, if
v(M) = e(R)rank(M).

In this context they proved a fundamental characterization for Ulrich modules.

Proposition C.2.3. (/BHUS87, Proposition 1.5]) Let R be a homogeneous Cohen-Macaulay
ring of dimension n which is quotient of a regular homogeneous Cohen-Macaulay ring
S of dimension n + c. A graded MCM module M over R is Ulrich if and only if M is
Cohen-Macaulay over S and admits a minimal free graded linear resolution as S -module

0— S(—0)® — ... - §(=2)%2 - g1 - 5% M 0.

In virtue of this result, Ulrich modules were also called linear MCM modules.

Finally, research on the existence of Ulrich modules culminated in [HUB91] with the
proof that hypersurface rings and, more generally, complete intersection rings support an
Ulrich module.

Now a natural question may arise: Ulrich modules are special MCM modules, so what
about the geometric aspect of the story? In the middle of this purely algebraic setup we
mentioned between lines a couple of results which lead to a connection with a concrete
and very classical geometric problem whose roots can be dated back to the mid 1800’s: the
determinantal representation of the equation of a smooth projective hypersurface (see, for
example, [Gra55; Hes55; Sch63; Cay71; Sch81] for some of the first papers addressing to
this problem). In fact, even if Ulrich modules were not explicitly mentioned, in [Bea0OO]
Beauville proved that a smooth hypersurface X ¢ P"*! is determinantal or pfaffian (set-
theoretically) if and only if there exists an aCM bundle on X with a linear resolution. This
result was later improved in [Beal8].

Theorem C.2.4. ([Beal8, Proposition 2.1]) Let X ¢ P"™! be a smooth hypersurface of
degree d > 2 defined by a homogeneous equation F = 0. Then the following conditions are
equivalent:

(1) F" = det(L;;) for some r > 1, where (L;j) is a rd X rd matrix of linear forms on Pl

(2) There exists a vector bundle & of rank r on X fitting into an exact sequence

0 — Opui (=D L 08— 1,& — 0

where i: X < P" s the inclusion.
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Passing to modules S = k[xg,...,xy],Rx = S/(F),[.(X,E(@)) = r.(P™ i,8(1)), as
Ry is Cohen-Macaulay over S since X c P"*! is aCM, by Propositions C.1.2 - C.2.3 and by
[Bea00, Theorem A] we see that (2) in Theorem C.2.4 is equivalent to the existence of an
Ulrich module M over Ry (which actually holds by the aforementioned result in [HUB91]!).
The connection between Ulrich modules and algebraic geometry is now established.

C.3 Ulrich sheaves

The definitive arrival on the scenes of Ulrich sheaves in algebraic geometry is devoted to
Eisenbud and Schreyer with their extraordinary paper [ESO3].

Definition C.3.1. Let X c PV be a projective variety of dimension n > 1. A coherent sheaf
¥ on X is Ulrich if

HYX, F(j)) = 0 for j < 0, H'(X,F(d)) = 0for0 < i <nand ¥d € Z, H'(X, F(j)) = 0 for j > —n.

Afterwards Eisenbud and Schreyer proved a characterization of Ulrich sheaves which,
in virtue of Proposition C.2.3, shows the connection with Ulrich modules. More precisely,
the proposition below tells that an aCM variety X € PN supports an Ulrich sheaf if and only
if there is an Ulrich module over Ry in the sense of Definition C.2.2.

Proposition C.3.2. (/ES03, Proposition 2.1]) Let F be a coherent sheaf ¥ on a n-
dimensional projective variety i: X C P"*¢. The following are equivalent:

(a) F is Ulrich on X.
(b) H(X,F(=i) = H' (X, F(=i)) =0for 1 <i<n.
(c) For all finite linear projections n: X — P" we have n.F = O;‘fﬁ.

(d) T'.(X,F) = TP, i.F)is Cohen-Macaulay over S = k[x, ..., xy] and admits a
S -free linear resolution

0 S(=c)® Lo  Bogpeh Ly goho L pux, ) 0. (C2)

In particular, an Ulrich sheaf ¥ is an aCM sheaf: In fact, ¥ has no intermediate
cohomology by definition and it is also locally Cohen-Macaulay because for any x € X ¢ PV
we have

depthoxyx(?'x) = depthOPN’X(i*Tx) (see, e.g., [Sta23, Tag 0AUK])
= depthOPN’X Opn , — depN,X(i*T") (Auslander-Buchsbaum formula)
> dim Opv , — ¢ (sheafification of (C.2))
= dim Ox,.

Moreover, Ulrich sheaves always possess several nice properties which usually do not hold
for arbitrary aCM sheaves. For example: 0-regularity (from the definition), being simulta-
neously initialized and globally generated (by the linear resolution), and semistability (by
Proposition C.3.2(c) since finite pushforwards preserve subsheaves and Hilbert polynomials,


https://stacks.math.columbia.edu/tag/0AUK
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and (9;‘3,’1 is semistable) which gives the possibility to consider moduli spaces of Ulrich
bundles when the variety is smooth.

The motivation behind the introduction of Ulrich sheaves by Eisenbud and Schreyer
was the study of the Chow form of a variety. Given an embedded variety X C P(V) of

codimension ¢ > 1, the incidence correspondence

{(x,AN) e XX Gr(c,V)|x€ A} c X XGr(c,V)

X / \ Gr(c, V)

yields a natural divisor Dy = nz(nIl(X)) ={A eGr(c,V)|ANX # 0} C Gr(c, V) called
the Chow divisor of X. By the projective normality of the Pliicker embedding, Dy is
globally defined by the vanishing of a homogeneous polynomial equation fx in the Pliicker
coordinates. This form fx is the Chow form of X C P(V). The importance of the Chow form
comes from the very powerful feature that it scheme-theoretically determines the variety X
whenever X is smooth or a hypersurface [Cat92, Theorem 1.14]. Therefore it is an important
(and quite challenging) question determining the Chow form of a given smooth variety.
Eisenbud and Schreyer proved that fx has a very special form when X c PV supports a rank
r Ulrich sheaf: it is the r-th root of the determinant of a matrix of linear forms in the Pliicker
coordinates.

Theorem C.3.3. (/ES03, Theorem 0.3]) Let X C P(V) be a projective variety codimension
¢ 2 1. Let & be a rank r Ulrich sheaf on X and consider the linear resolution (C.2). Then

fx =det(L)

where L = (1/c!)(Li A --- A L¢) can be interpreted as a square matrix with entries in AV,
which can be seen as the space of linear forms in the Pliicker embedding Gr(c, V) C P(A°V).

In addition to this, Eisenbud and Schreyer proved also that the existence of an Ul-
rich sheaf on X ¢ PV completely characterizes the cohomology of the polarized variety
(X, Ox(1)). Recall that the cohomology table of a sheaf (resp. vector bundle) ¥ on a
polarized variety (¥, A) is the function

cg: ZxA0,...,dimY} — Z, (t,i) — K (Y, F(tA)).

By setting c# + cg = cggg for any pair of coherent sheaves (resp. vector bundles) ¥ and G
on Y and by including linear combinations with non-negative rational coefficients, we obtain
a cone C(Y,A) (resp. Cyp(Y, A)) over rational numbers called the cone of cohomology tables
of coherent sheaves (resp. of vector bundles) of (Y, A).

Theorem C.3.4. ([ES11, Theorem 4.2]) Let X c PN be a projective variety. Then
C(X, Ox(1)) = C(P", Opr(1)) (resp. Cyp(X, Ox(1)) = Cypp(P", Opo(1))) if and only if X < PV
supports an Ulrich sheaf (resp. Ulrich bundle).

We can conclude that the existence of an Ulrich sheaf strongly determines the geometry
of the underlying variety, giving another instance of our guiding philosophy on the study
of varieties. However, despite all of these constraints, Eisenbud and Schreyer raised the
question, analogous to Question C.2.1, whether any embedded variety has an Ulrich sheaf.
It soon became a conjecture.
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Conjecture C.3.5. ([ES03; ES11]) Any embedded (smooth) projective variety supports an
Ulrich sheaf (resp. Ulrich bundle).

So far, an affirmative answer has been found for several classes of smooth embedded
varieties. For example: curves [Ulr84; Eis80], complete intersections [HUB91], grassmann
varieties [CM15], minimal surfaces of Kodaira dimension 0 [Cas17a; Beal6; Beal8; Fael9],
several regular and irregular surfaces [Cas17a; Cas22; Lop21], Del Pezzo surfaces and
threefolds [Beal8; CFK23]. Despite every smooth surface which is embedded through a
sufficiently large multiple of a fixed very ample line bundle support an Ulrich bundle [CH18],
Conjecture C.3.5 is still widely open, even in dimension 2.
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