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Abstract. Given an Enriques surface S embedded in Pr with a certain linear system, we show that
S is not hyperplane section of any threefold X ⊂ Pr+1 that is not a cone over S. This special case
completes the proof of the genus bound for Enriques-Fano threefolds [KLM, Thm.1.5].

1. Introduction

Given a smooth variety Y ⊂ Pr, a very natural question is whether Y can be hyperplane section
of a variety X ⊂ Pr+1 that is not a cone over Y . When this does not happen Y ⊂ Pr is said to
be nonextendable. While several classical works have addressed this question for special classes of
varieties Y , in 1989 Zak [Z], [L, Thm.0.1] proved that if codimY ≥ 2 and h0(NY/Pr(−1)) ≤ r + 1,
then Y is nonextendable. The shift was then on how to compute the cohomology h0(NY/Pr(−1)). In
the same year a result of Wahl [W, Prop.1.10] introduced, for this goal, when Y is a curve, the point
of view of Gaussian maps: h0(NY/Pr(−1)) = r + 1 + cork ΦHY ,ωY

, where ΦHY ,ωY
is the Gaussian

map associated to the canonical and hyperplane bundle HY of Y . The pairing of these two results
led to a number of articles about Gaussian maps and nonextendability of curves. In some notable
cases this could also be extended to study nonextendability of surfaces, by passing to their curve
section. We mention, for example, [CLM1, CLM2] where Y was a general hyperplane section of a
general K3 surface.

On the other hand, until the introduction of [KLM, Thm.1.1], no general method was known
when Y is a surface. This method, still based on Gaussian maps on suitable linear systems on Y ,
was applied in [KLM] to study nonextendability of pluricanonical embeddings of surfaces of general
type and of Enriques surfaces. The study of the latter case led then in [KLM] to give a genus bound
(also obtained simultaneously and independently by Prokhorov [P]) for the curve section, in analogy
with the case of smooth Fano threefolds ([I1, I2, MM, CLM1, CLM2]), for Enriques-Fano threefolds,
that is threefolds X ⊂ PN having a hyperplane section Y that is a smooth Enriques surface, and
such that X is not a cone over Y . Such threefolds were classically studied by Fano [F] and more
recently by Conte and Murre [CM] and specially by Bayle [Ba, Thm.A] and Sano [Sa, Thm.1.1], but
all of these works were not enough to get a genus bound.

The genus bound in [KLM, Thm.1.5] depends therefore on studying nonextendability of Enriques
surfaces embedded in Pr with a very ample line bundle. Now in the course of the proof of [KLM,
Thm.1.5], one explicit case of embedding line bundle (see [KLM, Prop.8.5]) was not treated, for
reasons of space. In the present article we therefore complete the proof by showing nonextendability
in this case.
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To be more precise let now S ⊂ Pr be an Enriques surface embedded by a very ample line bundle
H of degree H2 = 2g − 2. Let E > 0 be such that E2 = 0 and E.H = φ(H) (see Definition 2.3).

Suppose that H be of type (I), that is, after applying the decomposition procedure of [KLM, §6]
(briefly recalled at the beginning of Section 3), we get an effective decomposition

H ≡ βE + γE1 +M2 with E2 = E2
1 = 0 and E.E1 = 1.

Then we have

Theorem 1.1. Let H be of type (I) with β ≤ 4, γ = 2 and M2 > 0 and such that H2 ≥ 32 or
H2 = 28. Then S is nonextendable, except possibly for the following two cases, where H2 = 28 and
E2 := M2, E

2
2 = 0:

(i) H ∼ 3E + 2E1 + E2, E.E1 = E1.E2 = 1, E.E2 = 2,
(ii) H ∼ 4E + 2E1 + E2, E.E1 = E.E2 = E1.E2 = 1.

The above theorem proves [KLM, Prop.8.5] and therefore completes the proof of the genus bound
for Enriques-Fano threefolds [KLM, Thm.1.5]. As a suggestion to the reader, we remark that the
present article and [KLM], at least in the part regarding nonextendability of Enriques surfaces, are
written to be read together.

2. Basic facts on line bundles on Enriques surfaces

We first recall.

Definition 2.1. Let L and M be line bundles on a smooth projective variety. Given V ⊆ H0(L)
we denote by µV,M : V ⊗ H0(M) −→ H0(L ⊗M) the multiplication map of sections, µL,M when
V = H0(L), and by ΦL,M : KerµL,M −→ H0(Ω1

X ⊗ L ⊗M) the Gaussian map. This map can be
defined locally by ΦL,M (s⊗ t) = sdt− tds [W, 1.1].

We henceforth let S be an Enriques surface.

Definition 2.2. We denote by ∼ (respectively ≡) the linear (respectively numerical) equivalence of
divisors (or line bundles) on S. A line bundle L on S is primitive if L ≡ hL′ for some line bundle
L′ and some integer h, implies h = ±1. An effective line bundle L on S is quasi-nef [KL1] if L2 ≥ 0
and L.∆ ≥ −1 for every ∆ such that ∆ > 0 and ∆2 = −2.

A nodal curve on S is a smooth rational curve. A nodal cycle on S is a divisor R > 0 such
that (R′)2 ≤ −2 for any 0 < R′ ≤ R. An isotropic divisor F on S is a divisor such that F 2 = 0
and F 6≡ 0. An isotropic k-sequence is a set {f1, . . . , fk} of isotropic divisors such that fi.fj = 1
for i 6= j.

We will often use the fact that if R is a nodal cycle, then h0(R) = 1 and h0(R+KS) = 0.

Definition 2.3. Let L be a line bundle on S with L2 > 0. Following [CD] we define

φ(L) = inf{|F.L| : F ∈ PicS, F 2 = 0, F 6≡ 0}.

One has φ(L)2 ≤ L2 [CD, Cor.2.7.1] and, if L is nef, then there exists a genus one pencil |2E| such
that E.L = φ(L) [C, 2.11]. Moreover we will often use the fact that if L is nef, then it is base-point
free if and only if φ(L) ≥ 2 [CD, Prop.3.1.6, 3.1.4 and Thm.4.4.1].

Definition 2.4. A line bundle L > 0 with L2 ≥ 0 on S has a (nonunique) decomposition L ≡
a1E1 + . . . + anEn, where ai are positive integers, and each Ei is primitive, effective and isotropic,
cf. e.g. [KL2, Lemma2.12]. We will call such a decomposition an arithmetic genus 1 decompo-
sition. An effective line bundle L on S with L2 ≥ 0 is said to be of small type if either L = 0 or
if in every arithmetic genus 1 decomposition of L as above, all ai = 1.
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Line bundles of small type have specific decompositions that are classified in [KLM, Lemma4.3].
We also record the following two useful results.

Lemma 2.5. Let L be a nef and big line bundle on an Enriques surface and let F be a divisor
satisfying F.L < 2φ(L) (respectively F.L = φ(L) and L is ample). Then h0(F ) ≤ 1 and if F > 0
and F 2 ≥ 0 we have F 2 = 0, h0(F ) = 1, h1(F ) = 0 and F is primitive and quasi-nef (resp. nef).

Proof. If h0(F ) ≥ 2 we can write |F | = |M |+G, with M the moving part and G ≥ 0 the fixed part
of |F |. By [CD, Prop.3.1.4] we get F.L ≥ 2φ(L), a contradiction. Then h0(F ) ≤ 1 and if F > 0 and
F 2 ≥ 0 it follows that F 2 = 0 and h1(F ) = 0 by Riemann-Roch. Hence F is quasi-nef and primitive
by [KL1, Cor.2.5]. If F.L = φ(L), L is ample and F is not nef, by [KL2, Lemma2.4] we can write
F ∼ F0 + Γ with F0 > 0, F 2

0 = 0 and Γ a nodal curve. But then F0.L < φ(L). �

Lemma 2.6. For 1 ≤ i ≤ 4 let Fi > 0 be four isotropic divisors on S such that F1.F2 = F3.F4 = 1
and F1.F3 = F2.F3 = 2. If F4.(F1 + F2) = 4 then F1.F4 = F2.F4 = 2.

Proof. By symmetry and [KL1, Lemma2.1] we can assume, to get a contradiction, that F1.F4 = 1
and F2.F4 = 3. Then (F2 + F4)2 = 6 and φ(F2 + F4) = 2 whence, by [KL2, Lemma2.4], we can
write F2 + F4 ∼ A1 + A2 + A3 with Ai > 0, A2

i = 0 and Ai.Aj = 1 for i 6= j. But this gives the
contradiction 8 = (F2 + F4).(F1 + F2 + F3) ≥ 3φ(F1 + F2 + F3) = 9. �

3. First reductions in the proof of Theorem 1.1

In this section we show how to use some results in [KLM] to reduce the proof of Theorem 1.1 to
some explicit intersections cases (Lemma 3.1).

We briefly recall here the decomposition procedure of [KLM, §6].
Let S ⊂ Pr be an Enriques surface of sectional genus g and let H be its hyperplane divisor.

Let |2E| be a genus one pencil such that E.H = φ(H) and, as H is not of small type by [KLM,
Lemma4.3], we can define, as in [KLM, §4],

α = min{k ≥ 2 | (H − kE)2 ≥ 0 and if (H − kE)2 > 0 there exists F > 0 with
F 2 = 0, F.E > 0 and F.(H − kE) ≤ φ(H)},

L1 = H − αE and let E1 > 0 be such that E2
1 = 0 and E1.L1 = φ(L1). Now repeat the procedure

on L1. Then we get a decomposition

H = αE + α1E1 + α2E
′
2 + . . .+ αn−1E

′
n−1 + Ln,

for some n ≥ 1, α ≥ 2, αi ≥ 2 for 1 ≤ i ≤ n − 1 and Ln is of small type. Removing copies of E or
E1 from Ln one gets several decompositions (see [KLM, §6]).

We say that the decomposition is of type (I) if H is not 2-divisible in Num(S) and we are in one
of the two cases

(I-A) n = 3, E′2 ≡ E, or
(I-B) n = 2.

This allows us to write
H ≡ βE + γE1 +M2, with E.E1 = 1.

Note that, in particular, when β ≤ 3, we must be in case (I-B).
We now start the proof of Theorem 1.1.
Let H be as in Theorem 1.1. Replacing M2 with M2 +KS , that has the same properties, we can

assume
H ∼ βE + 2E1 +M2.
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Since by construction M2 neither contains E nor E1 in its arithmetic genus 1 decompositions, we
have (M2 − E)2 < 0 and (M2 − E1)2 < 0. Also E.H ≤ E1.H and E1.L1 ≤ E.L1, giving

1
2
M2

2 + 1 ≤ E.M2 ≤ E1.M2 + β − 2, and(1)

1
2
M2

2 + 1 ≤ E1.M2 ≤ E.M2 + 2− β + α ≤ E.M2 + 2.(2)

Also, by [KLM, Lemmas6.1 and 6.2], we have

E + E1 is base-component free. If ∆ > 0 is such that ∆2 = −2(3)
and ∆.E1 < 0, then ∆ is a nodal curve and E1 ∼ E + ∆ +KS .

Now we can give a first reduction.

Lemma 3.1. Let H be of type (I) with β ≤ 4, γ = 2 and M2
2 ≥ 2. Then S is nonextendable unless,

possibly, we are in one of the following cases (where all the Ei’s are effective and isotropic):
(a) M2

2 = 2, M2 ∼ E2 + E3, E2.E3 = 1, and either
(a-i) β = 2, (E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 1, 2), (1, 2, 2, 1), (1, 1, 2, 2), (2, 2, 2, 2),

(1, 2, 2, 2); or
(a-ii) β = 3, (E.E2, E.E3, E1.E2, E1.E3) = (2, 2, 2, 2), (2, 2, 1, 2); or

(a-iii) β = 3, 4, (E.E2, E.E3, E1.E2, E1.E3) = (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2).
(b) M2

2 = 4, M2 ∼ E2 + E3, E2.E3 = 2, and either
(b-i) β = 2, (E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 1, 3); or
(b-ii) β = 3, (E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 2, 1), (1, 2, 1, 3).

(c) M2
2 = 6, M2 ∼ E2 + E3 + E4, E2.E3 = E2.E4 = E3.E4 = 1, and
β = 2, (E.E2, E.E3, E.E4, E1.E2, E1.E3, E1.E4) = (1, 1, 2, 1, 1, 2).

Proof. We write M2 ∼ E2 + . . . + Ek+1 as in [KLM, Lemma4.3] with k = 2 or 3. Moreover we can
assume that 1 ≤ E.E2 ≤ . . . ≤ E.Ek+1, whence that E.M2 ≥ kE.E2.

We first consider the case β = 4.
We note that (M2−2E2)2 = −2 if M2

2 = 2 or 6, (M2−2E2)2 = −4 if M2
2 = 4 and (M2−2E2)2 ≥ −6

if M2
2 = 10. In the latter case E.M2 ≥ 6 by (1), whence E.(M2 − 2E2) ≥ 2. Using this and setting

B := E + E1 + E2 one easily verifies that (H − 2B)2 = 4E.(M2 − 2E2) + (M2 − 2E2)2 ≥ 0 and
E.(H − 2B) > 0 (whence H − 2B ≥ 0 by Riemann-Roch), except for the cases

(4) M2
2 = 2, 4 and E.E2 = E.E3.

Moreover, except for these cases, using (1) and (2), one easily verifies that H2 ≥ 54, except for
the case M2

2 = 2 and (E.M2, E1.M2) = (3, 2), where H2 = 50. In this case (3B − H).H = 4 <
φ(H) = 5, so that, if 3B − H > 0 it must be a nodal cycle. Therefore either h0(3B − H) = 0 or
h0(3B + KS − H) = 0, so in any case B satisfies the conditions in [KLM, Prop.5.2] or in [KLM,
Prop.5.3] and S is nonextendable.

In the remaining cases (4) we can without loss of generality assume 1 ≤ E1.E2 ≤ E1.E3 and we
set B := E + E2. Then (H − 2B)2 = 8 + 4E1.(E3 − E2) + (E3 − E2)2 ≥ 4 and (H − 2B).E = 2.
Using (1) and (2), one gets H2 ≥ 64 if M2

2 = 4, H2 ≥ 74 if M2
2 = 2 and E.E2 = E.E3 = 3,

and B.H ≥ 17 if M2
2 = 2 and E.E2 = E.E3 = 2. Moreover, in the latter case, we have that

again H2 ≥ 64 unless E1.M2 = 2, 3, which gives E1.E2 = 1 and B is nef by [KLM, Lemma6.3(c)]
since E2.H = 11 < 2φ(H) = 12, whence E2 is quasi-nef by Lemma 2.5. Therefore B satisfies the
conditions in [KLM, Prop.5.2] or in [KLM, Prop.5.4] and S is nonextendable unless M2

2 = 2 and
E.E2 = E.E3 = 1. In the latter case, by (2) we have 2 ≤ E1.M2 ≤ 4 and if E1.M2 = 4 then α = 4.
In this last case L1 ∼ 2E1 +M2, whence φ(L1) = E1.M2 = 4 and we get that 4 ≤ Ei.L1 = 2E1.Ei +1
for i = 2, 3, so that E1.E2 = E1.E3 = 2. Therefore we get the cases in (a-iii) with β = 4.
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We next treat the cases β ≤ 3. As we know, we are in case (I-B), whence L2 is of small type and
either L2 ∼M2 or L2 ∼ E +M2.

Suppose first that L2 ∼ E +M2.
Then β = 3, α = 2 and, since L2 is of small type, by (1), we can only have (M2

2 , E.M2) = (2, 2),
(2, 4) or (4, 3).

If (M2
2 , E.M2) = (2, 2), then E.E2 = E.E3 = 1 and by (2) we have 2 ≤ E1.M2 ≤ 3, yielding the

first two cases in (a-iii).
If (M2

2 , E.M2) = (2, 4), then L2
2 = 10 and φ(L2) = 3. As E.Ei + 1 = L2.Ei ≥ φ(L2) = 3 for

i = 2, 3, we must have E.E2 = E.E3 = 2. Now L1 ∼ E + 2E1 + M2 and (1 + E1.M2)2 = φ(L1)2 ≤
L2

1 = 14 + 4E1.M2 and (1) yield E1.M2 = 3 or 4. Therefore, by Lemma 2.6 and symmetry, we get
the two cases in (a-ii).

If (M2
2 , E.M2) = (4, 3), then E1.M2 = 3 or 4 by (2). Since L2

2 = 10 and φ(L2) = E.L2 = 3,
there is by [CD, Cor.2.5.5] an isotropic effective 10-sequence {f1, . . . , f10} such that E = f1 and
3L2 ∼ f1 + . . .+ f10.

In the case E1.M2 = 3 we get E1.L2 = 4, whence we can assume, possibly after renumbering,
that E1.fi = 1 for 1 ≤ i ≤ 8 and (E1.f9, E1.f10) = (2, 2) or (1, 3). In the latter case we have
(E1 + f10)2 = 6 and φ(E1 + f10) = 2, whence we can write E1 + f10 ∼ A1 +A2 +A3 for some Ai > 0
such that A2

i = 0, Ai.Aj = 1 for i 6= j. But fi.(E1 + f10) = 2 for all 1 ≤ i ≤ 9, a contradiction.
Hence (E1.f9, E1.f10) = (2, 2). One easily sees that there is an isotropic divisor f19 > 0 such that
f19.f1 = f19.f9 = 2 and L2 ∼ f1 + f9 + f19. Therefore E1.f19 = 1. Setting E′2 = f9 and E′3 = f19 we
get the first case in (b-ii).

If E1.M2 = 4 we get E1.L2 = 5, whence we can assume, possibly after renumbering, that E1.fi = 1
for 1 ≤ i ≤ 5. As above there is an isotropic divisor f12 > 0 such that f12.f1 = f12.f2 = 2 and
L2 ∼ f1 +f2 +f12. Hence E1.f12 = 3. Setting E′2 = f2 and E′3 = f12 we get the second case in (b-ii).

Finally, we have left the case with L2 ∼ M2, where β = α. We have L1 ∼ 2E1 + M2, whence
(E1.M2)2 = φ(L1)2 ≤ L2

1 = 4E1.M2 + M2
2 , so that (2) and [KL2, Prop.1] give E1.M2 ≤ 4. In

particular M2
2 ≤ 6 by (2).

If β = α = 3, by definition of α, we have 1 + E1.M2 = E1.(L1 + E) > φ(H) = 2 + E.M2, whence
E1.M2 = 4, E.M2 = 2 and M2

2 = 2 by (1). Then E.E2 = E.E3 = 1 and, for i = 2, 3, Ei.L1 =
2Ei.E1 + 1 ≥ φ(L1) = E1.M2 = 4, whence E1.E2 = E1.E3 = 2, that is the third case in (a-iii).

In the remaining cases we have β = α = 2.
If M2

2 = 2 using again φ(L1)2 ≤ L2
1, Ei.L1 ≥ φ(L1), (1) and (2) together with H2 ≥ 32 or

H2 = 28, we deduce the possibilities (E.M2, E1.M2) = (3, 3), (2, 4), (3, 4) or (4, 4). By symmetry
one easily sees that one gets the cases in (a-i).

If M2
2 = 4 we similarly get (E.M2, E1.M2) = (3, 3), (3, 4) or (4, 4). From the first two cases, using

Lemma 2.6 for the second, we obtain the cases in (b-i). If (E.M2, E1.M2) = (4, 4), we now show
that H also has a decomposition of type (III) as in [KLM, §6]. It will follow that S is nonextendable
by [KLM, §10]. We have E.H = 6, whence (H − 3E)2 = 8 and H − 3E > 0 by [KL2, Lemma2.4].
If φ(H − 3E) = 1 we can write H − 3E ∼ 4A1 + A2 with Ai > 0, A2

i = 0 and A1.A2 = 1. Now
6 ≤ H.A1 = 3E.A1 + 1 gives E.A1 ≥ 2, whence the contradiction 6 = H.E = 4E.A1 + E.A2 ≥ 8.
Therefore there is an E′1 > 0 such that (E′1)2 = 0 and E′1.(H−3E) = 2. Since (H−3E−2E′1)2 = 0,
by [KL2, Lemma2.4] we can write H ∼ 3E + 2E′1 + E′2, with E′2 > 0, (E′2)2 = 0 and E′1.E

′
2 = 2.

From 6 ≤ H.E′1 = 3E.E′1 + 2 we get E.E′1 ≥ 2. Now from 6 = H.E = 2E.E′1 + E.E′2 we see that
we cannot have E.E′1 ≥ 3, for then E.E′1 = 3, E.E′2 = 0, but this gives E′2 ≡ qE for some q ≥ 1
by [KL1, Lemma2.1], whence the contradiction 2 = E′1.E

′
2 = 3q. Therefore E.E′1 = 2, E1.E

′
2 = 1 so

that E′2 is primitive and since E′1.L1 = E′1.(H− 3E) +E′1.E = 4 = φ(L1) we obtain a decomposition
of H of type (III), as claimed.
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If M2
2 = 6, by (1) and (2) we get, as above, E1.M2 = E.M2 = 4, yielding by symmetry the

case in (c) in addition to the case (E.E2, E.E3, E.E4, E1.E2, E1.E3, E1.E4) = (1, 1, 2, 1, 2, 1). In the
latter case we note that φ(H) = E.H = E1.H = 6 and φ(H − 2E1) = φ(2E + E2 + E3 + E4) =
E3.(H − 2E1) = 4. Hence we can decompose H with respect to E1 and E3, which means that H is
also of type (III) (as in [KLM, §6]) and S is nonextendable by [KLM, §10]. �

4. Conclusion of the proof of Theorem 1.1

By Lemma 3.1 we can assume that either M2
2 = 0 or we are in one of the cases of that lemma.

Moreover recall that H is not 2-divisible in Num(S) and we are in case (I-A) or (I-B).

4.1. The case M2
2 = 0. We write M2 = E2 for a primitive E2 > 0 with E2

2 = 0.

4.1.1. β = 2. From (1) and (2) we get 1 ≤ E.E2 ≤ E1.E2 ≤ E.E2+2. Moreover, since L1 ∼ 2E1+E2,
we get (φ(L1))2 = (E1.E2)2 ≤ L2

1 = 4E1.E2, whence E1.E2 ≤ 3 by [KL2, Prop.1], as E2 is primitive.
Since H2 ≥ 28, we are left with the cases (E.E2, E1.E2) = (2, 3) or (3, 3), so that S is nonextendable
by [KLM, Lemma5.5(iii-b)].

4.1.2. β = 3. From (1) and (2) we get 1 ≤ E.E2 ≤ E1.E2 + 1 ≤ E.E2 + α.
If α = 2 we get E.E2− 1 ≤ E1.E2 ≤ E.E2 + 1. Moreover, since we are in case (I-B), L2 ∼ E+E2

is of small type, whence E.E2 ≤ 3 or E.E2 = 5. Furthermore, since L1 ∼ E + 2E1 + E2, we get
(φ(L1))2 = (1 + E1.E2)2 ≤ L2

1 = 4 + 4E1.E2 + 2E.E2. However, in the case (E.E2, E1.E2) = (3, 4),
we find (L2

1, φ(L1)) = (26, 5), which is impossible by [KL2, Prop.1]. This yields that E.E2 = 2, 3, 5
if E1.E2 = E.E2 − 1; E.E2 = 1, 2, 3 if E1.E2 = E.E2; and E.E2 = 1, 2 if E1.E2 = E.E2 + 1.

If α = 3 we must have, by [KLM, (11)], that E1.(H − 3E) = φ(H), whence E1.E2 = 2 + E.E2.
Moreover, since L1 ∼ 2E1 + E2, we get (φ(L1))2 = (E1.E2)2 ≤ L2

1 = 4E1.E2, whence E1.E2 ≤ 3 by
[KL2, Prop.1] since E2 is primitive. Hence E1.E2 = 3 and E.E2 = 1.

To summarize, using H2 ≥ 32 or H2 = 28, we have the following cases:

E1.E2 = E.E2 − 1, E.E2 = 2, 3 or 5, g = 15, 20 or 30.
E1.E2 = E.E2, E.E2 = 2 or 3, g = 17 or 22.(5)

E1.E2 = 3, E.E2 = 2, g = 19.

We will now show, in Lemmas 4.1-4.4, that S is nonextendable in the five cases of genus g ≥ 17.
The case with g = 15 is case (i) in Theorem 1.1.

Lemma 4.1. In the case (E.E2, E1.E2, g) = (5, 4, 30) in (5), S is nonextendable.

Proof. We have H2 = 58 and φ(H) = E.H = E1.H = 7. Hence both E and E1 are nef by Lemma
2.5. Let now H ′ = H − 4E. Then (H ′)2 = 2 and consequently we can write H ∼ 4E +A1 +A2 for
Ai > 0 primitive with A2

i = 0 and A1.A2 = 1. Since E.H = E.A1 + E.A2 = 7 we can assume by
symmetry that either (a) (E.A1, E.A2) = (2, 5) or (b) (E.A1, E.A2) = (3, 4). Also since E1.H = 7
we have E1.(A1 +A2) = 3, whence we have the two possibilities (E1.A1, E1.A2) = (2, 1) or (1, 2).

In case (b) we get A1.H = 13, whence (H − 2(E + A1))2 = 2. Since (H − 2(E + A1)).E = 1, we
have H − 2(E +A1) > 0 by Riemann-Roch, whence S is nonextendable by [KLM, Prop.5.2].

In case (a) we get A1.H = 9. Now if E1.A1 = 2, we get (H − 2(E + A1 + E1))2 = 6, and as
above S is nonextendable by [KLM, Prop.5.2]. If E1.A1 = 1, then E1.(H − 2E) = A1.(H − 2E) = 5,
whence L1 ∼ H − 2E and φ(L1) = A1.L1 = 5. Therefore we can continue the decomposition with
respect to A1 instead of E1. Since H now is of type (III) (as in [KLM, §6]), S is nonextendable by
[KLM, §10] �
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Claim 4.2. Let H ∼ 3E + 2E1 + E2 be as in (5) with (E.E2, E1.E2, g) = (3, 2, 20) (respectively
(E.E2, E1.E2, g) = (3, 3, 22)). Then there exists an isotropic effective 5-sequence {E,F1, F2, F3, F4}
(respectively an isotropic effective 4-sequence {E,F1, F2, F3} together with an isotropic divisor F4 > 0
such that E.F4 = F2.F4 = F3.F4 = 1 and F1.F4 = 2) such that H ∼ 2E + 2F1 + F2 + F3 + F4 and:

(a) F1 is nef and Fi is quasi-nef for i = 2, 3, 4;
(b) |E + F2| and |F1 + F3| are without base components;
(c) |E + F1 + F2 + F3| and |E + F1 + F4| are base-point free;
(d) h1(F1 + F4 − F2) = h2(F1 + F4 − F2) = 0.

Proof. Since (E +E2)2 = 6 and both E and E2 are primitive, we can write E +E2 ∼ A1 +A2 +A3

with Ai > 0, A2
i = 0 and Ai.Aj = 1 for i 6= j. We easily find (possibly after renumbering) that

Ai.E = Ai.E2 = A1.E1 = A2.E1 = 1 for i = 1, 2, 3 and A3.E1 = 1 if g = 20 and 2 if g = 22.
Moreover Ai.H ≤ 8 < 2φ(H) = 10, whence all the Ai’s are quasi-nef by Lemma 2.5.

Assume now there is a nodal curve Ri with Ri.Ai = −1 for (i, g) 6= (3, 22). Then we can as usual
write Ai ∼ Bi +Ri, with Bi > 0 primitive and isotropic. Since Ai.H = 6 we deduce that Bi ≡ E or
Bi ≡ E1, where the latter case only occurs if g = 20.

If g = 20, then, since for i 6= j, we have (E+Ri).(E+Rj) = 2 +Ri.Rj = (E1 +Ri).(E1 +Rj), we
see that at most two of the Ai’s can be not nef, otherwise we would get Ri.Rj = −1, a contradiction.
Possibly after reordering the Ai’s and adding KS to two of them, we can therefore assume that A1

is nef, and that either A2 is nef or A2 ∼ E + R + KS for R a nodal curve with E.R = 1. Now
E1 is nef, by Lemma 2.5, as E1.H = φ(H) = 5, so that both |E1 + A1| and |E + A2| are without
fixed components. Setting F1 = E1, F2 = A2, F3 = A1 and F4 = A3 we therefore have the desired
decomposition satisfying (a) and (b). It also follows by construction that E + F1 + F2 + F3 and
E + F1 + F4 are nef, the latter because E and F1 are, and F4 is either nef or F4 ≡ A + R′ with
A = E or A = E1, for R′ a nodal curve with A.R′ = 1. Therefore (c) also follows.

If g = 22, we similarly find that we can assume that A1 and A2 are nef. Moreover A1.L1 =
A1.(H − 2E) = E1.(H − 2E) = 4, so if E1 is not nef, we can substitute E1 with A1 and repeat the
process. Therefore we can assume that E1 is nef as well. Again both |E1 + A1| and |E + A2| are
without fixed components, and setting F1 = E1, F2 = A2, F3 = A1 and F4 = A3 we therefore have
the desired decomposition satisfying (a) and (b). Now E+F1 +F2 +F3 is again nef by construction.
To see that E + F1 + F4 is nef, assume, to get a contradiction, that there is a nodal curve Γ with
Γ.(E + F1 + F4) < 0. Then Γ.F4 = −1 and Γ.(E + F1) = 0 by (a). The ampleness of H implies
Γ.(F2 + F3) ≥ 2, whence the contradiction (F4 − Γ)2 = 0 and (F4 − Γ).(F2 + F3) ≤ 0, recalling that
F4 − Γ > 0 by [KL2, Lemma2.3]. Therefore (c) is proved. We now prove (d).

If g = 20 then (F1+F4−F2)2 = −2 and (F1+F4−F2).H = 5 = φ(H), whence h2(F1+F4−F2) = 0
and if F1+F4−F2 > 0 it is a nodal cycle, so that either h0(F1+F4−F2) = 0 or h0(F1+F4−F2+KS) =
0. Replacing F1 with F1 +KS if necessary, we can arrange that h0(F1 + F4 − F2) = 0, whence also
h1(F1 + F4 − F2) = 0 by Riemann-Roch.

If g = 22, then (F1 + F4 − F2)2 = 0 and (F1 + F4 − F2).H = 8 < 2φ(H), whence (d) follows by
Lemma 2.5 and [KL1, Cor.2.5]. �

Lemma 4.3. In the cases (E.E2, E1.E2, g) = (3, 2, 20) or (3, 3, 22) in (5), S is nonextendable.

Proof. By Claim 4.2 we can choose D0 = E + F1 + F2 + F3 with D2
0 = 12 and both D0 and

H −D0 ∼ E + F1 + F4 base-point free. We have h0(2D0 −H) = h0(F2 + F3 − F4) ≤ 1 by Lemma
2.5, as (F2 + F3 − F4).H ≤ 6 < 2φ(H). Hence the map ΦHD,ωD

is surjective by [KL3, Thm.(iii)-
(iv)]. To show the surjectivity of µVD,ωD

we use Claim 4.2(b) and let D1 ∈ |E + F2| and D2 ∈
|F1 +F3| be general smooth curves and apply [KLM, Lemma5.6]. Now H −D0−D1 ∼ F1 +F4−F2

whence h1(H −D0 −D1) = 0 by Claim 4.2(d), so that µVD1
,ωD1

is surjective by [KLM, (14)] since
(H−D0).D1 = (E+F1 +F4).(E+F2) = 5. Since (H−D0−D2).H = (E+F4−F3).H ≤ 7 < 2φ(H)
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we have that h0(H − D0 − D2) ≤ 1 by Lemma 2.5 and µVD2
,ωD2

(D1) is surjective by [KLM, (16)].
Therefore µVD,ωD

is surjective whence S is nonextendable by [KLM, Prop.5.1]. �

Lemma 4.4. If E.E2 = 2 and (E1.E2, g) = (2, 17) or (3, 19) in (5), then S is nonextendable.

Proof. We first observe that it is enough to find an isotropic divisor F > 0 such that E.F = 1,
F.H = 6 if g = 17 and F.H = 7 if g = 19 and B := E + F is nef. In fact the latter implies that
H ∼ 2B + A, with A > 0 isotropic with E.A = 2 and F.A = 4 if g = 17 and F.A = 5 if g = 19. As
H is not 2-divisible in NumS, A is automatically primitive and it follows that S is nonextendable
by [KLM, Lemma5.5(iii-b)].

To find the desired F we first consider the case g = 17.
Set Q = E + E1 + E2. Then Q2 = 10 and φ(Q) = 3. By [CD, Cor.2.5.5] there is an isotropic

effective 10-sequence {f1, . . . , f10} with 3Q ∼ f1 + . . .+ f10. Since E.Q = E1.Q = 3, we can assume
that f1 = E and f2 = E1 and then E2.fi = 1 for i ≥ 3. We now claim that E + fi is not nef for at
most one i ∈ {3, . . . , 10}. Indeed, note that, for i ≥ 3, we have fi.H = 6 < 2φ(H) = 8, whence each
fi is quasi-nef by Lemma 2.5. Now assume that Ri.(E + fi) < 0 for some nodal curve Ri. Then
Ri.E = 0 and Ri.fi = −1, so that fi ∼ fi + Ri, by [KL2, Lemma2.3], with fi > 0 primitive and
fi

2 = 0. Since H is ample we must have Ri.Ej > 0 for j = 1 or 2. If Ri.E2 > 0 then E2.fi = 1
implies fi ≡ E2 and Ri.E2 = 1. But then we get the contradiction E.fi = E.(E2 + Ri) = 2.
Therefore Ri.E1 > 0, so that fi ≡ E1 and Ri.E1 = 1. Now suppose that also E + fj is not nef for
j ∈ {3, . . . , 10} − {i}. Then Ri.Rj = (fi − E1).(fj − E1) = −1, a contradiction. Therefore E + fi is
not nef for at most one i ∈ {3, . . . , 10}. Now one easily verifies that any F ∈ {f3, . . . , f10} such that
E + F is nef satisfies the desired numerical conditions.

We next consider the case g = 19.
Since (E1 +E2)2 = 6 and φ(E1 +E2) = 2 we can find an isotropic effective 3-sequence {f3, f4, f5}

such that E1 +E2 ∼ f3 + f4 + f5. Since E.(E1 +E2) = E1.(E1 +E2) = 3 we have fi.E = fi.E1 = 1
for i = 3, 4, 5, so that we have an isotropic effective 5-sequence {f1, . . . , f5} with f1 = E and f2 = E1

such that H ∼ 3f1 + f2 + f3 + f4 + f5. By [CD, Cor.2.5.6] we can complete the sequence to an
isotropic effective 10-sequence {f1, . . . , f10}. Note that for i ≥ 6 we have fi.H = 7 < 2φ(H) = 8,
whence each fi is quasi-nef by Lemma 2.5. Now the same arguments as above can be used to prove
that E + fi is nef for at least one i ∈ {6, . . . , 10}, whence any F ∈ {f6, . . . , f10} such that E + F is
nef satisfies the desired numerical conditions. �

4.1.3. β = 4. From (1) and (2) we get 1 ≤ E.E2 ≤ E1.E2 + 2 ≤ E.E2 + α.
If α = 2 we get E.E2 − 2 ≤ E1.E2 ≤ E.E2. Moreover, since L2 ∼ 2E + E2 is not of small

type, we get (φ(L2))2 = (E.E2)2 ≤ L2
2 = 4E.E2, whence E.E2 ≤ 3 by [KL2, Prop.1]. Therefore

(E.E2, E1.E2) ∈ {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}. The first case is case (ii) in Theorem 1.1
and in the other cases S is nonextendable by (3) and [KLM, Lemma5.5(iii-a)].

If α = 3 or 4 we must have E1.(H −αE) = φ(H) by [KLM, (11)], whence E1.E2 = E.E2 +α− 2.
Moreover L1 ∼ (4− α)E + 2E1 + E2 and using (φ(L1))2 ≤ L2

1, we get E1.E2 ≤ 4. If equality holds
then (L2

1, φ(L1)) = (26, 5) or (16, 4), both excluded by [KL2, Prop.1], as E2 is primitive. Therefore
(E.E2, E1.E2) = (1, 2), (1, 3) or (2, 3) and S is nonextendable by (3) and [KLM, Lemma5.5(iii-a)].

4.2. The case M2
2 = 2. We write M2 = E2 + E3 as in Lemma 3.1(a).

4.2.1. β = 2. By Lemma 3.1 we have left to treat the cases (a-i), that is

(6) (E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 1, 2), (1, 2, 2, 1), (1, 1, 2, 2), (2, 2, 2, 2), (1, 2, 2, 2).

We first show that S is nonextendable in the first case of (6).
Since E2.H = φ(H) = 5 and E3.H = 9 < 2φ(H) we have that E2 is nef and E3 is quasi-nef by

Lemma 2.5. In particular we get that h1(E2 + E3) = h1(E2 + E3 +KS) = 0 by [KL1, Cor.2.5] and
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h0(E2+E3) = 2 by Riemann-Roch. Now D0 := E+E1+E2+E3 is nef by [KLM, Lemma6.3(b)] with
φ(D0) = 3 and D2

0 = 16. Also H−D0 ∼ E+E1 is base-component free by (3) and 2D0−H ∼ E2+E3.
Then h0(2D0−H) = 2 and h1(H−2D0) = 0, so that µVD,ωD

is surjective by [KLM, (13)] and ΦHD,ωD

is surjective by [KL3, Thm.(v)], as gon(D) = 6 by [KL2, Cor.1], whence Cliff(D) = 4, as D has
genus 9 [ELMS, §5]. By [KLM, Prop.5.1], S is nonextendable.

We next show that S is nonextendable in the last four cases in (6).
By Lemma 2.5 and [KLM, Lemma6.3(b)] we see that E2 and E3 are quasi-nef and E + E1 + E2

and E + E1 + E3 are base-point free. Set D0 = E + E1 + E2. Then D2
0 ≥ 8, D0 is nef, φ(D0) ≥ 2

and H − D0 ∼ E + E1 + E3 is base-point free. Moreover h0(2D0 − H) = 0 as (2D0 − H).H =
(E2 − E3).H ≤ 0, so that ΦHD,ωD

is surjective by [KL3, Thm.(iii)]. Now, in all cases except for
(E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 2, 2), we have (H − 2D0)2 = −2 and (H − 2D0).H = 0, so that
h0(H − 2D0) = h2(H − 2D0) = 0, whence h1(H − 2D0) = 0 by Riemann-Roch and µVD,ωD

is
surjective by [KLM, (12)] (noting that (H −D0)2 = 10 in the case (2, 2, 2, 2), while H −D0 is not
2-divisible in PicS as either E.(H −D0) = 3 or E1.(H −D0) = 3 in the other two cases). By [KLM,
Prop.5.1], S is nonextendable in those cases.

We now prove the surjectivity of µVD,ωD
in the case (E.E2, E.E3, E1.E2, E1.E3) = (1, 2, 2, 2).

Note that E1 + E2 is nef by [KLM, Lemma6.3(e)], whence base-point free, and that E1 + E3 is
quasi-nef. To see the latter, let ∆ > 0 be such that ∆2 = −2 and ∆.E1 + ∆.E3 ≤ −2. As E1 is
quasi-nef by (3) and E3 is quasi-nef we get, again by (3), that ∆.E1 = ∆.E3 = −1 and E1 ≡ E+ ∆,
giving the contradiction ∆.E3 = 0. Hence E1 + E3 is quasi-nef. To show the surjectivity of µVD,ωD

we let D1 = E and D2 ∈ |E1 + E2| be a general smooth curve and apply [KLM, Lemma5.6]. The
map µVD1

,ωD1
is surjective by [KLM, (15)] since h1(H − D0 − D1) = h1(E1 + E3) = 0 by [KL1,

Cor.2.5]. Finally, µVD2
,ωD2

(D1) is surjective by [KLM, (16)], using the fact that h0(H −D0 −D2) =
h0(E+E3−E2) ≤ 1 by Lemma 2.5, as (E+E3−E2).H = 7 < 2φ(H). Therefore µVD,ωD

is surjective
and S is nonextendable by [KLM, Prop.5.1].

4.2.2. β = 3, 4. By Lemma 3.1 we have left to treat the cases (a-ii) and (a-iii), that is

β = 3, (E.E2, E.E3, E1.E2, E1.E3, E2.E3) = (2, 2, 2, 2, 1),(7)
β = 3, (E.E2, E.E3, E1.E2, E1.E3, E2.E3) = (2, 2, 1, 2, 1),(8)

β = 3, 4, (E.E2, E.E3, E1.E2, E1.E3, E2.E3) = (1, 1, 2, 2, 1),(9)
β = 3, 4, (E.E2, E.E3, E1.E2, E1.E3, E2.E3) = (1, 1, 1, 2, 1),(10)
β = 3, 4, (E.E2, E.E3, E1.E2, E1.E3, E2.E3) = (1, 1, 1, 1, 1).(11)

Claim 4.5. In the cases (7)-(11) both E2 and E3 are quasi-nef.

Proof. We first prove that E2 is quasi-nef. Assume, to get a contradiction, that there exists a ∆ > 0
with ∆2 = −2 and ∆.E2 ≤ −2. By [KL2, Lemma2.3] we can write E2 ∼ A+k∆, for A > 0 primitive
with A2 = 0 and k = −∆.E2 = ∆.A ≥ 2. From E2.E3 = 1 it follows that ∆.E3 ≤ 0. If ∆.E > 0,
we get from 2 ≥ E.E2 = E.A + kE.∆ that E.E2 = k = 2, E.∆ = 1 and E.A = 0, whence the
contradiction E ≡ A. Hence ∆.E = 0 and the ampleness of H gives ∆.E1 ≥ 2 and the contradiction
E1.E2 = E1.A+ kE1.∆ ≥ 4. Hence E2 is quasi-nef. The same reasoning works for E3. �

Lemma 4.6. S is nonextendable in cases (7)-(9) and cases (10)-(11) with β = 4.

Proof. Define D0 = 2E+E1 +E2, which is nef by [KLM, Lemma6.3(a)] with φ(D0) ≥ 2 and D2
0 ≥ 12

in cases (7)-(9) and D2
0 = 10 in cases (10) and (11). Also H −D0 ∼ (β − 2)E + E1 + E3, whence

φ(H − D0) ≥ 2 and H − D0 is base-point free by [KLM, Lemma6.3(b)]. We have 2D0 − H ∼
(4 − β)E + E2 − E3, whence h0(2D0 −H) ≤ 1 in the cases (7)-(9), as (2D0 −H).H ≤ φ(H), and
h0(2D0 −H) = 0 in cases (10)-(11), as (2D0 −H).H ≤ 0. It follows from [KL3, Thm.(iii)-(iv)] that
the map ΦHD,ωD

is surjective.
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We next note that µVD,ωD
is surjective by [KLM, (12)] if h1(H−2D0) = h1(E3−(4−β)E−E2) = 0.

Since (E3 − E2).H = 0 in cases (9) and (11) we have h0(E3 − E2) = h2(E3 − E2) = 0, whence
h1(E3 −E2) = 0 by Riemann-Roch. It follows that µVD,ωD

is surjective, whence S is nonextendable
by [KLM, Prop.5.1] in cases (9) and (11) with β = 4. In the remaining cases we can assume that

(12) h1(E3 − (4− β)E − E2) > 0.

We next show that µVD,ωD
is surjective in case (8). For this we use (3), [KLM, Lemmas5.6 and

6.3(c)] and let D1 ∈ |E + E1| and D2 ∈ |E + E2| be general smooth members.
By Claim 4.5 and [KL1, Cor.2.5] we have that h1(H −D0 −D1) = h1(E3) = 0, whence µVD1

,ωD1

is surjective by [KLM, (14)]. Furthermore µVD2
,ωD2

(D1) is surjective by [KLM, (16)], where one uses
that h0(H − D0 − D2) = h0(E1 + E3 − E2) ≤ 1 by Lemma 2.5 since (E1 + E3 − E2).H < 2φ(H).
Hence µVD,ωD

is surjective and S is nonextendable by [KLM, Prop.5.1].
Finally we treat the cases (7), (9) (with β = 3) and (10) (with β = 4). Since (E3−(4−β)E−E2)2 =

−2 and (E3−(4−β)E−E2).H = −φ(H) in (7) and (9) (respectively 2 in (10)), we see that Riemann-
Roch and (12) imply that E +E2 −E3 +KS is a nodal cycle in (7) and (9) and E3 −E2 is a nodal
cycle in (10). With β as above, it follows that

(13) hi(E + E2 − E3) = 0 in (7) and (9) and hi(E3 − E2 +KS) = 0 in (10), i = 0, 1, 2.

We now choose a new D0 := (β − 2)E + E1 + E3, which is nef with φ(D0) ≥ 2 and with H −D0

base-point free by [KLM, Lemma6.3(a)-(b)]. Then D2
0 ≥ 8 with h0(2D0−H) = h0(E3−E−E2) = 0

in (7) and (9) and D2
0 = 12 with h0(2D0−H) = h0(E3−E2) = 1 in (10), whence ΦHD,ωD

is surjective
by [KL3, Thm.(iii)-(iv)]. Now (13) implies h1(H − 2D0) = 0, so that µVD,ωD

is surjective by [KLM,
(12)] and S is nonextendable by [KLM, Prop.5.1]. �

We have left the cases (10) and (11) with β = 3, which we treat in Lemmas 4.7 and 4.9.

Lemma 4.7. S is nonextendable in case (10) with β = 3.

Proof. Since E2.H = 6 one easily finds another decomposition of the same type

(14) H ∼ 3E + 2E2 + E1 + E′3, with E2.E
′
3 = 2,

and all other intersections equal to one.
We first claim that either E1 or E2 is nef. In fact φ(L1) = E1.L1 = E1.(E+ 2E1 +E2 +E3) = 4 =

E2.L1. By (3), if neither E1 nor E2 are nef, there are two nodal curves R1 and R2 such that Ri.E = 1
and Ei ≡ E +Ri, for i = 1, 2. But then we get the absurdity R1.R2 = (E1 − E).(E2 − E) = −1.

By (14) we can and will from now on assume that we have a decomposition H ∼ 3E+2E1+E2+E3

with E2 nef.

Claim 4.8. Either h0(E+E3−E2 +KS) = 0, or h0(E+E2−E3) = 0, or h0(E2 +E3−E+KS) = 0.

Proof. Let ∆1 := E + E3 − E2 + KS , ∆2 := E + E2 − E3 and ∆3 := E2 + E3 − E + KS . Assume,
to get a contradiction, that ∆i ≥ 0 for all i = 1, 2, 3. Since ∆2

i = −2 we get that ∆i > 0 for all
i = 1, 2, 3. We have ∆2 ∼ 2E + KS − ∆1. Since ∆1.H = 6 and E.H = 4, we can neither have
∆1 ≤ E nor ∆1 ≤ E + KS . Therefore, as E and E + KS have no common components, we must
have ∆1 = ∆11 + ∆12 with 0 < ∆11 ≤ E and 0 < ∆12 ≤ E + KS and ∆11.∆12 = 0. Moreover we
have E.∆11 = E.∆12 = 0, whence ∆2

1i ≤ 0 for i = 1, 2. From −2 = ∆2
1 = ∆2

11 + ∆2
12 we must have

∆2
1i = 0 either for i = 1 or for i = 2. By symmetry we can assume that ∆2

11 = 0. Therefore ∆11 ≡ qE
for some q ≥ 1 by [KL1, Lemma2.1], but ∆11 ≤ E, whence ∆11 = E and ∆2

12 = −2. Moreover
∆12.H = 2. Now since E+ ∆12 ≡ ∆1 ≡ E+E3−E2, we get E3 ≡ E2 + ∆12 and E2.∆12 = 1. Hence
∆3 ∼ E2 +E3 −E +KS ∼ (E +E3 +KS −∆1) +E3 −E +KS ∼ 2E3 −∆1 ∼ 2(E2 + ∆12)−∆1 ∼
2E2 + ∆12 −∆11, therefore

(15) ∆11 + ∆3 ∈ |2E2 + ∆12|.
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We claim that |2E2 + ∆12| = |2E2| + ∆12. To see the latter observe that it certainly holds if ∆12

is irreducible, for then it is a nodal curve with E2.∆12 = 1 (recall that |2E2| is a genus one pencil).
On the other hand if ∆12 is reducible then, using ∆12.H = 2 and the ampleness of H we deduce
that ∆12 = R1 +R2 where R1, R2 are two nodal curves with R1.R2 = 1. Moreover the nefness of E2

allows us to assume that E2.R1 = 1 and E2.R2 = 0. But then R2.(2E2 + ∆12) = −1 so that R2 is a
base-component of |2E2+∆12| and of course R1 is a base-component of |2E2+∆12−R2| = |2E2+R1|
and the claim is proved.

Since ∆11 and ∆12 have no common components we deduce from (15) that each irreducible
component of E = ∆11 must lie in some element of |2E2|. The latter cannot hold if E is irreducible
for then we would have that 2E2 − E > 0 and (2E2 − E).E2 = −1 would contradict the nefness of
E2. Therefore, as is well-known, we have that E = R1 + . . .+Rn is a cycle of nodal curves and we
can assume, without loss of generality, that E2.R1 = 1 and E2.Ri = 0 for 2 ≤ i ≤ n. As we said
above, we have 2E2−R1 > 0. Now for 2 ≤ i ≤ n−1 we get Ri.(2E2−R1− . . .−Ri−1) = −1, whence
2E2−R1−. . .−Ri > 0. Therefore 2E2−R1−. . .−Rn−1 > 0 and since Rn.(2E2−R1−. . .−Rn−1) = −2
we deduce that 2E2 − E > 0, again a contradiction. �

Conclusion of the proof of Lemma 4.7. We divide the proof into the three cases of Claim 4.8.
Case A: h0(E + E3 − E2 + KS) = 0. Set D0 = 2E + E1 + E3. Then D2

0 = 12 and φ(D0) = 2.
Moreover D0 is nef by Claim 4.5 and [KLM, Lemma6.3(a)] and H − D0 ∼ E + E1 + E2 is nef
since E + E1 and E2 are (the first by (3)), so that |H −D0| is base-point free, since φ(H −D0) =
E.(H −D0) = 2. We have 2D0 −H ∼ E + E3 − E2 and since (2D0 −H).H = 6 < 2φ(H) = 8, we
have h0(2D0−H) ≤ 1 by Lemma 2.5, so that ΦHD,ωD

is surjective by [KL3, Thm.(iii)-(iv)]. Clearly
h0(H − 2D0) = 0 and we also have h2(H − 2D0) = h0(2D0−H +KS) = h0(E +E3−E2 +KS) = 0
by assumption. Therefore h1(H − 2D0) = 0 by Riemann-Roch and µVD,ωD

is surjective by [KLM,
(12)]. Hence S is nonextendable by [KLM, Prop.5.1].

Case B: h0(E+E2−E3) = 0. We set D0 = E+E1 +E3, so that D2
0 = 8, φ(D0) = 2 and both D0

and H −D0 ∼ 2E +E1 +E2 are nef by Claim 4.5 and [KLM, Lemma6.3(a)-(b)], whence base-point
free. Since 2D0 −H ∼ E3 − E − E2 and (E3 − E − E2).H < 0 we have h0(2D0 −H) = 0, whence
ΦHD,ωD

is surjective by [KL3, Thm.(iii)]. Now by hypothesis h0(H − 2D0) = 0 and we also have
h0(2D0−H +KS) = h0(E3−E−E2 +KS) = 0, and by Riemann-Roch we get h1(H − 2D0) = 0 as
well. Therefore µVD,ωD

is surjective by [KLM, (12)]. Hence S is nonextendable by [KLM, Prop.5.1].
Case C: h0(E2+E3−E+KS) = 0. Set D0 = E+E1+E2+E3, which is nef (since E+E1+E3 is nef

by Claim 4.5 and [KLM, Lemma6.3(b)] and E2 is nef by assumption) with D2
0 = 14 and φ(D0) = 3.

Moreover H −D0 ∼ 2E + E1 is without fixed components. We have H − 2D0 ∼ E − E2 − E3 and
since (H−2D0).E = −2 we have h0(E−E2−E3) = 0. By hypothesis we have h2(E−E2−E3) = 0,
whence h1(H − 2D0) = 0 by Riemann-Roch. It follows that µVD,ωD

is surjective by [KLM, (12)].
Furthermore, since 2D0−H ∼ E2 +E3−E and h0(E2 +E3−E+KS) = 0 we have h0(2D0−H) ≤ 1,
and ΦHD,ωD

is surjective by [KL3, Thm.(iii)-(iv)]. Hence S is nonextendable by [KLM, Prop.5.1]. �

Lemma 4.9. S is nonextendable in case (11) with β = 3.

Proof. By Claim 4.5, [KLM, Lemma6.3(d)] and symmetry, and adding KS to both E2 and E3 if
necessary, we can assume that |E + E2| is base-component free.

Now set D0 = 2E+2E1 +E3. Then D2
0 = 16 and φ(D0) = 3. Hence (3) and [KLM, Lemma6.3(b)]

give that D0 is nef and H−D0 ∼ E+E2 is base-component free. We have H− 2D0 ∼ −(2E1 +E+
E3−E2) and we now prove that h0(2D0−H) = 2 and h1(H−2D0) = 0. To this end, by [KL1, Cor.2.5]
and Riemann-Roch, we just need to show that B := 2E1+E+E3−E2 is quasi-nef. Let ∆ > 0 be such
that ∆2 = −2 and ∆.B ≤ −2. By [KL2, Lemma2.3] we can write B ∼ B0+k∆ where k = −∆.B ≥ 2,
B0 > 0 and B2

0 = B2 = 2. Now 2 = E.B = E.B0 + kE.∆ ≥ 1 + 2E.∆, therefore E.∆ = 0. The
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ampleness of H implies that E2.∆ ≥ 2, giving the contradiction 4 = E2.B = E2.B0 + kE2.∆ ≥ 5.
Therefore B is quasi-nef.

Let D ∈ |D0| be a general curve. By [KL2, Cor.1] we know that gon(D) = 2φ(D0) = 6 whence
Cliff(D) = 4, as D has genus 9 [ELMS, §5]. Therefore the map ΦHD,ωD

is surjective by [KL3,
Thm.(v)]. Also µVD,ωD

is surjective by [KLM, (13)] and S is nonextendable by [KLM, Prop.5.1]. �

4.3. The case M2
2 = 4. We write M2 = E2 + E3 as in Lemma 3.1(b).

4.3.1. β = 2. By Lemma 3.1 we have (E.E2, E.E3) = (1, 2) and the four cases (E1.E2, E1.E3) =
(1, 2), (2, 1), (2, 2) and (1, 3). Note that in all cases E2.H < 2φ(H) = 10, whence E2 is quasi-nef by
Lemma 2.5.

If (E1.E2, E1.E3) = (1, 2) we claim that either E+E2 or E1 +E2 is nef. Indeed if there is a nodal
curve Γ such that Γ.(E + E2) < 0 then Γ.E2 = −1 and Γ.E = 0. By [KLM, Lemma6.3(a)] we have
Γ.E1 > 0, so that E2 ≡ E1 + Γ and E1 + E2 ≡ 2E1 + Γ is nef. By symmetry the same arguments
work if there is a nodal curve Γ such that Γ.(E1 + E2) < 0 and the claim is proved.

By symmetry between E and E1 we can now assume that E+E2 is nef. Setting A := H−2E−2E2

we have A2 = 0. As E.A = 3 and E2.A = 4 we have that A > 0 is primitive and S is nonextendable
by [KLM, Lemma5.5(iii-b)].

If (E1.E2, E1.E3) = (2, 1) one easily sees that H ∼ 2(E1 + E2) + A, with A2 = 0, E1.A = 1 and
E2.A = 4. Then A > 0 is primitive, E1 +E2 is nef by [KLM, Lemma6.3(e)] and S is nonextendable
by [KLM, Lemma5.5(ii)].

If (E1.E2, E1.E3) = (1, 3) we have (E1 +E3)2 = 6 and we can write E1 +E3 ∼ A1 +A2 +A3 with
Ai > 0, A2

i = 0 and Ai.Aj = 1 for i 6= j. Then E.Ai = E1.Ai = E2.Ai = E3.Ai = 1 and Ai.H = 6.
We now claim that either Ai is nef or Ai ≡ E + Γi for a nodal curve Γi with Γi.E = 1. In

particular, at least two of the Ai’s are nef. If there is a nodal curve Γ with Γ.Ai < 0, then since
Ai.L1 = 4 = φ(L1) we must have Γ.L1 ≤ 0, whence Γ.E > 0 by the ampleness of H and the first
statement immediately follows. If two of the Ai’s are not nef, say A1 ≡ E + Γ1 and A2 ≡ E + Γ2

then 1 = A1.A2 = (E + Γ1).(E + Γ2) = 2 + Γ1.Γ2 yields the contradiction Γ1.Γ2 = −1 and the claim
is proved.

We can therefore assume that A1 and A2 are nef. Let A = H − 2A1 − 2A2. Then A2 = 0 and
E.A = 1, whence A > 0 is primitive. As A1.A = A2.A = 4 and φ(H) = 5, we have that S is
nonextendable by [KLM, Lemma5.5(iii-b)].

If (E1.E2, E1.E3) = (2, 2), note first that E1 + E2 is nef by [KLM, Lemma6.3(e)]. Set A :=
H − 2E1 − 2E2. Then A2 = 0 and A.E = 1, so that A > 0 is primitive. As (E1 + E2).A = 6, we
have that S is nonextendable by [KLM, Lemma5.5(ii)].

4.3.2. β = 3. By Lemma 3.1 we have (E.E2, E.E3) = (1, 2) and (E1.E2, E1.E3) = (1, 3) or (2, 1).
We first show that Ei is quasi-nef for i = 2, 3. We have H.E2 ≤ 9 < 2φ(H) = 10, whence E2

is quasi-nef by Lemma 2.5. Now let ∆ > 0 be such that ∆2 = −2 and ∆.E3 ≤ −2. By [KL2,
Lemma2.3] we can write E3 ∼ A + k∆, for A > 0 primitive with A2 = 0, k = −∆.E3 = ∆.A ≥ 2.
If ∆.E > 0, from E.E3 = E.A + k∆.E we get that k = 2, ∆.E = 1 and E.A = 0, whence the
contradiction E ≡ A. Hence ∆.E = 0. We get the same contradiction if ∆.E2 > 0. Hence, by the
ampleness of H we must have ∆.E1 ≥ 2, but this gives the contradiction E1.E3 = E1.A+k∆.E1 ≥ 4.
Hence also E3 is quasi-nef.

We now treat the case (E1.E2, E1.E3) = (1, 3).
Let D0 = 2E + E1 + E2. Then D2

0 = 10, φ(D0) = 2 and D0 and H − D0 ∼ E + E1 + E3

are base-point free by [KLM, Lemma6.3 (a)-(b)]. Moreover 2D0 − H ∼ E + E2 − E3, and since
(2D0 − H).E = −1, we have h0(2D0 − H) = 0 and it follows from [KL3, Thm.(iii)] that the map
ΦHD,ωD

is surjective.



ON THE PROOF OF THE GENUS BOUND FOR ENRIQUES-FANO THREEFOLDS 13

After possibly addingKS to both E2 and E3, we can assume, by (3) and [KLM, Lemma6.3(c)], that
the general members of both |E+E1| and |E+E2| are smooth irreducible curves. Let D1 ∈ |E+E1|
and D2 ∈ |E +E2| be two such curves. By [KL1, Cor.2.5] we have h1(H −D0 −D1) = h1(E3) = 0,
whence µVD1

,ωD1
is surjective by [KLM, (14)].

We now claim that h0(E1 + E3 − E2) ≤ 2. Indeed, assume that h0(E1 + E3 − E2) ≥ 3. Then
|E1+E3−E2| = |M |+G, with G the base-component and |M | base-component free with h0(M) ≥ 3.
If M2 = 0, then M ∼ lP , for an elliptic pencil P and an integer l ≥ 2. But then 14 = (E1 +
E3 − E2).H = (lP + G).H ≥ lP.H ≥ 4φ(H) = 20, a contradiction. Hence M2 ≥ 4, but since
M.H ≤ (E1 + E3 − E2).H = 14, this contradicts the Hodge index theorem.

Therefore we have shown that h0(E1 + E3 − E2) ≤ 2 and µVD2
,ωD2

(D1) is surjective by [KLM,
(16)]. By [KLM, Lemma5.6], µVD,ωD

is surjective and by [KLM, Prop.5.1], S is nonextendable.
Next we treat the case (E1.E2.E1.E3) = (2, 1).
Let D0 = 2E + E1 + E3. Then D2

0 = 14, φ(D0) = 3 and D0 and H − D0 ∼ E + E1 + E2

are base-point free by [KLM, Lemma6.3(a)-(b)]. Moreover 2D0 − H ∼ E + E3 − E2, and since
E + E3 is nef by [KLM, Lemma6.3(c)] and (2D0 − H).(E + E3) = (E + E3 − E2).(E + E3) =
1, we get that h0(2D0 − H) ≤ 1. It follows from [KL3, Thm.(iii)-(iv)] that the map ΦHD,ωD

is
surjective. Let D1 ∈ |E + E1| and D2 ∈ |E + E3| be two general members. By [KL1, Cor.2.5]
we have that h1(H − D0 − D1) = h1(E2) = 0, whence µVD1

,ωD1
= µOD1

(H−D0),ωD1
. Since ωD1 is

a base-point free pencil we get that µOD1(H−D0),ωD1
is surjective by the base-point free pencil trick

because deg(OD1(H − D0 − D1 + KS)) = 3, whence h1(OD1(H − D0 − D1 + KS)) = 0. We have
(E1 +E2−E3).H = 5 = φ(H), whence h0(E1 +E2−E3) ≤ 1 and µVD2

,ωD2
(D1) is surjective by [KLM,

(16)]. By [KLM, Lemma5.6], µVD,ωD
is surjective and, by [KLM, Prop.5.1], S is nonextendable.

4.4. The case M2
2 = 6. By Lemma 3.1 we have β = 2 and M2 = E2 + E3 + E4 as in that lemma.

We note that E1, E2 and E3 are nef by Lemma 2.5 and E4 is quasi-nef by the same lemma.
By the ampleness of H it follows that D0 := E + E1 + E2 + E3 + E4 is nef with D2

0 = 24,
φ(D0) = 4 and H −D0 ∼ E + E1 is base-component free. Since H − 2D0 ∼ −(E2 + E3 + E4) we
have h1(H − 2D0) = 0 by [KL1, Cor.2.5] and h0(2D0 −H) = 4 by Riemann-Roch. Then µVD,ωD

is
surjective by [KLM, (13)] and so is ΦHD,ωD

by [KL3, Thm.(v)], since gon(D) = 8 by [KL2, Cor.1],
whence Cliff D = 6 by [ELMS, §5], as g(D) = 13. Hence S is nonextendable by [KLM, Prop.5.1].
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