ON THE PROOF OF THE GENUS BOUND FOR ENRIQUES-FANO THREEFOLDS

ANDREAS LEOPOLD KNUTSEN*, ANGELO FELICE LOPEZ** AND ROBERTO MUÑOZ***

Abstract

Given an Enriques surface S embedded in \mathbb{P}^{r} with a certain linear system, we show that S is not hyperplane section of any threefold $X \subset \mathbb{P}^{r+1}$ that is not a cone over S. This special case completes the proof of the genus bound for Enriques-Fano threefolds [KLM, Thm.1.5].

1. Introduction

Given a smooth variety $Y \subset \mathbb{P}^{r}$, a very natural question is whether Y can be hyperplane section of a variety $X \subset \mathbb{P}^{r+1}$ that is not a cone over Y. When this does not happen $Y \subset \mathbb{P}^{r}$ is said to be nonextendable. While several classical works have addressed this question for special classes of varieties Y, in 1989 Zak [Z], [L, Thm.0.1] proved that if $\operatorname{codim} Y \geq 2$ and $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right) \leq r+1$, then Y is nonextendable. The shift was then on how to compute the cohomology $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right)$. In the same year a result of Wahl [W, Prop.1.10] introduced, for this goal, when Y is a curve, the point of view of Gaussian maps: $h^{0}\left(N_{Y / \mathbb{P}^{r}}(-1)\right)=r+1+\operatorname{cork} \Phi_{H_{Y}, \omega_{Y}}$, where $\Phi_{H_{Y}, \omega_{Y}}$ is the Gaussian map associated to the canonical and hyperplane bundle H_{Y} of Y. The pairing of these two results led to a number of articles about Gaussian maps and nonextendability of curves. In some notable cases this could also be extended to study nonextendability of surfaces, by passing to their curve section. We mention, for example, [CLM1, CLM2] where Y was a general hyperplane section of a general K3 surface.

On the other hand, until the introduction of [KLM, Thm.1.1], no general method was known when Y is a surface. This method, still based on Gaussian maps on suitable linear systems on Y, was applied in $[\mathrm{KLM}]$ to study nonextendability of pluricanonical embeddings of surfaces of general type and of Enriques surfaces. The study of the latter case led then in [KLM] to give a genus bound (also obtained simultaneously and independently by Prokhorov [P]) for the curve section, in analogy with the case of smooth Fano threefolds ([I1, I2, MM, CLM1, CLM2]), for Enriques-Fano threefolds, that is threefolds $X \subset \mathbb{P}^{N}$ having a hyperplane section Y that is a smooth Enriques surface, and such that X is not a cone over Y. Such threefolds were classically studied by Fano $[\mathrm{F}]$ and more recently by Conte and Murre [CM] and specially by Bayle [Ba, Thm.A] and Sano [Sa, Thm.1.1], but all of these works were not enough to get a genus bound.

The genus bound in [KLM, Thm.1.5] depends therefore on studying nonextendability of Enriques surfaces embedded in \mathbb{P}^{r} with a very ample line bundle. Now in the course of the proof of [KLM, Thm.1.5], one explicit case of embedding line bundle (see [KLM, Prop.8.5]) was not treated, for reasons of space. In the present article we therefore complete the proof by showing nonextendability in this case.

[^0]To be more precise let now $S \subset \mathbb{P}^{r}$ be an Enriques surface embedded by a very ample line bundle H of degree $H^{2}=2 g-2$. Let $E>0$ be such that $E^{2}=0$ and $E . H=\phi(H)$ (see Definition 2.3).

Suppose that H be of type (I), that is, after applying the decomposition procedure of [KLM, $\S 6]$ (briefly recalled at the beginning of Section 3), we get an effective decomposition

$$
H \equiv \beta E+\gamma E_{1}+M_{2} \text { with } E^{2}=E_{1}^{2}=0 \text { and } E \cdot E_{1}=1 .
$$

Then we have
Theorem 1.1. Let H be of type (I) with $\beta \leq 4, \gamma=2$ and $M_{2}>0$ and such that $H^{2} \geq 32$ or $H^{2}=28$. Then S is nonextendable, except possibly for the following two cases, where $H^{2}=28$ and $E_{2}:=M_{2}, E_{2}^{2}=0$:
(i) $H \sim 3 E+2 E_{1}+E_{2}, E \cdot E_{1}=E_{1} \cdot E_{2}=1, E \cdot E_{2}=2$,
(ii) $H \sim 4 E+2 E_{1}+E_{2}, E . E_{1}=E . E_{2}=E_{1} \cdot E_{2}=1$.

The above theorem proves [KLM, Prop.8.5] and therefore completes the proof of the genus bound for Enriques-Fano threefolds [KLM, Thm.1.5]. As a suggestion to the reader, we remark that the present article and [KLM], at least in the part regarding nonextendability of Enriques surfaces, are written to be read together.

2. Basic facts on line bundles on Enriques surfaces

We first recall.
Definition 2.1. Let L and M be line bundles on a smooth projective variety. Given $V \subseteq H^{0}(L)$ we denote by $\mu_{V, M}: V \otimes H^{0}(M) \longrightarrow H^{0}(L \otimes M)$ the multiplication map of sections, $\mu_{L, M}$ when $V=H^{0}(L)$, and by $\Phi_{L, M}: \operatorname{Ker} \mu_{L, M} \longrightarrow H^{0}\left(\Omega_{X}^{1} \otimes L \otimes M\right)$ the Gaussian map. This map can be defined locally by $\Phi_{L, M}(s \otimes t)=s d t-t d s[\mathrm{~W}, 1.1]$.

We henceforth let S be an Enriques surface.
Definition 2.2. We denote by ~ (respectively \equiv) the linear (respectively numerical) equivalence of divisors (or line bundles) on S. A line bundle L on S is primitive if $L \equiv h L^{\prime}$ for some line bundle L^{\prime} and some integer h, implies $h= \pm 1$. An effective line bundle L on S is quasi-nef [KL1] if $L^{2} \geq 0$ and $L . \Delta \geq-1$ for every Δ such that $\Delta>0$ and $\Delta^{2}=-2$.

A nodal curve on S is a smooth rational curve. A nodal cycle on S is a divisor $R>0$ such that $\left(R^{\prime}\right)^{2} \leq-2$ for any $0<R^{\prime} \leq R$. An isotropic divisor F on S is a divisor such that $F^{2}=0$ and $F \not \equiv 0$. An isotropic k-sequence is a set $\left\{f_{1}, \ldots, f_{k}\right\}$ of isotropic divisors such that $f_{i} \cdot f_{j}=1$ for $i \neq j$.

We will often use the fact that if R is a nodal cycle, then $h^{0}(R)=1$ and $h^{0}\left(R+K_{S}\right)=0$.
Definition 2.3. Let L be a line bundle on S with $L^{2}>0$. Following $[\mathrm{CD}]$ we define

$$
\phi(L)=\inf \left\{|F . L|: F \in \operatorname{Pic} S, F^{2}=0, F \not \equiv 0\right\} .
$$

One has $\phi(L)^{2} \leq L^{2}$ [CD, Cor.2.7.1] and, if L is nef, then there exists a genus one pencil $|2 E|$ such that $E . L=\phi(L)[\mathrm{C}, 2.11]$. Moreover we will often use the fact that if L is nef, then it is base-point free if and only if $\phi(L) \geq 2$ [CD, Prop.3.1.6, 3.1.4 and Thm.4.4.1].
Definition 2.4. A line bundle $L>0$ with $L^{2} \geq 0$ on S has a (nonunique) decomposition $L \equiv$ $a_{1} E_{1}+\ldots+a_{n} E_{n}$, where a_{i} are positive integers, and each E_{i} is primitive, effective and isotropic, cf. e.g. [KL2, Lemma2.12]. We will call such a decomposition an arithmetic genus 1 decomposition. An effective line bundle L on S with $L^{2} \geq 0$ is said to be of small type if either $L=0$ or if in every arithmetic genus 1 decomposition of L as above, all $a_{i}=1$.

Line bundles of small type have specific decompositions that are classified in [KLM, Lemma4.3]. We also record the following two useful results.

Lemma 2.5. Let L be a nef and big line bundle on an Enriques surface and let F be a divisor satisfying $F . L<2 \phi(L)$ (respectively $F . L=\phi(L)$ and L is ample). Then $h^{0}(F) \leq 1$ and if $F>0$ and $F^{2} \geq 0$ we have $F^{2}=0, h^{0}(F)=1, h^{1}(F)=0$ and F is primitive and quasi-nef (resp. nef).

Proof. If $h^{0}(F) \geq 2$ we can write $|F|=|M|+G$, with M the moving part and $G \geq 0$ the fixed part of $|F|$. By [CD, Prop.3.1.4] we get $F . L \geq 2 \phi(L)$, a contradiction. Then $h^{0}(F) \leq 1$ and if $F>0$ and $F^{2} \geq 0$ it follows that $F^{2}=0$ and $h^{1}(F)=0$ by Riemann-Roch. Hence F is quasi-nef and primitive by [KL1, Cor.2.5]. If $F . L=\phi(L), L$ is ample and F is not nef, by [KL2, Lemma2.4] we can write $F \sim F_{0}+\Gamma$ with $F_{0}>0, F_{0}^{2}=0$ and Γ a nodal curve. But then $F_{0} \cdot L<\phi(L)$.

Lemma 2.6. For $1 \leq i \leq 4$ let $F_{i}>0$ be four isotropic divisors on S such that $F_{1} \cdot F_{2}=F_{3} \cdot F_{4}=1$ and $F_{1} \cdot F_{3}=F_{2} \cdot F_{3}=2$. If $F_{4} \cdot\left(F_{1}+F_{2}\right)=4$ then $F_{1} \cdot F_{4}=F_{2} \cdot F_{4}=2$.

Proof. By symmetry and [KL1, Lemma2.1] we can assume, to get a contradiction, that $F_{1} \cdot F_{4}=1$ and $F_{2} \cdot F_{4}=3$. Then $\left(F_{2}+F_{4}\right)^{2}=6$ and $\phi\left(F_{2}+F_{4}\right)=2$ whence, by [KL2, Lemma2.4], we can write $F_{2}+F_{4} \sim A_{1}+A_{2}+A_{3}$ with $A_{i}>0, A_{i}^{2}=0$ and $A_{i} . A_{j}=1$ for $i \neq j$. But this gives the contradiction $8=\left(F_{2}+F_{4}\right) \cdot\left(F_{1}+F_{2}+F_{3}\right) \geq 3 \phi\left(F_{1}+F_{2}+F_{3}\right)=9$.

3. First reductions in the proof of Theorem 1.1

In this section we show how to use some results in $[\mathrm{KLM}]$ to reduce the proof of Theorem 1.1 to some explicit intersections cases (Lemma 3.1).

We briefly recall here the decomposition procedure of $[\mathrm{KLM}, \S 6]$.
Let $S \subset \mathbb{P}^{r}$ be an Enriques surface of sectional genus g and let H be its hyperplane divisor. Let $|2 E|$ be a genus one pencil such that $E . H=\phi(H)$ and, as H is not of small type by [KLM, Lemma4.3], we can define, as in [KLM, §4],

$$
\begin{array}{cl}
\alpha=\min \{k \geq 2 \quad \mid & (H-k E)^{2} \geq 0 \text { and if }(H-k E)^{2}>0 \text { there exists } F>0 \text { with } \\
& \left.F^{2}=0, F . E>0 \text { and } F .(H-k E) \leq \phi(H)\right\}
\end{array}
$$

$L_{1}=H-\alpha E$ and let $E_{1}>0$ be such that $E_{1}^{2}=0$ and $E_{1} \cdot L_{1}=\phi\left(L_{1}\right)$. Now repeat the procedure on L_{1}. Then we get a decomposition

$$
H=\alpha E+\alpha_{1} E_{1}+\alpha_{2} E_{2}^{\prime}+\ldots+\alpha_{n-1} E_{n-1}^{\prime}+L_{n}
$$

for some $n \geq 1, \alpha \geq 2, \alpha_{i} \geq 2$ for $1 \leq i \leq n-1$ and L_{n} is of small type. Removing copies of E or E_{1} from L_{n} one gets several decompositions (see [KLM, §6]).

We say that the decomposition is of type (I) if H is not 2-divisible in $\operatorname{Num}(S)$ and we are in one of the two cases
(I-A) $n=3, E_{2}^{\prime} \equiv E$, or
(I-B) $n=2$.
This allows us to write

$$
H \equiv \beta E+\gamma E_{1}+M_{2}, \text { with } E \cdot E_{1}=1
$$

Note that, in particular, when $\beta \leq 3$, we must be in case (I-B).
We now start the proof of Theorem 1.1.
Let H be as in Theorem 1.1. Replacing M_{2} with $M_{2}+K_{S}$, that has the same properties, we can assume

$$
H \sim \beta E+2 E_{1}+M_{2}
$$

Since by construction M_{2} neither contains E nor E_{1} in its arithmetic genus 1 decompositions, we have $\left(M_{2}-E\right)^{2}<0$ and $\left(M_{2}-E_{1}\right)^{2}<0$. Also $E . H \leq E_{1} . H$ and $E_{1} \cdot L_{1} \leq E . L_{1}$, giving

$$
\begin{align*}
& \frac{1}{2} M_{2}^{2}+1 \leq E \cdot M_{2} \leq E_{1} \cdot M_{2}+\beta-2, \text { and } \tag{1}\\
& \frac{1}{2} M_{2}^{2}+1 \leq E_{1} \cdot M_{2} \leq E \cdot M_{2}+2-\beta+\alpha \leq E \cdot M_{2}+2 \tag{2}
\end{align*}
$$

Also, by [KLM, Lemmas6.1 and 6.2], we have

$$
\begin{align*}
& E+E_{1} \text { is base-component free. If } \Delta>0 \text { is such that } \Delta^{2}=-2 \tag{3}\\
& \text { and } \Delta . E_{1}<0, \text { then } \Delta \text { is a nodal curve and } E_{1} \sim E+\Delta+K_{S} .
\end{align*}
$$

Now we can give a first reduction.
Lemma 3.1. Let H be of type (I) with $\beta \leq 4, \gamma=2$ and $M_{2}^{2} \geq 2$. Then S is nonextendable unless, possibly, we are in one of the following cases (where all the E_{i} 's are effective and isotropic):
(a) $M_{2}^{2}=2, M_{2} \sim E_{2}+E_{3}, E_{2} \cdot E_{3}=1$, and either
$(\mathrm{a}-\mathrm{i}) \beta=2, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,1,2),(1,2,2,1),(1,1,2,2),(2,2,2,2)$, $(1,2,2,2)$; or
(a-ii) $\beta=3,\left(E . E_{2}, E . E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(2,2,2,2),(2,2,1,2)$; or (a-iii) $\beta=3,4,\left(E . E_{2}, E . E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,1,1,1),(1,1,1,2),(1,1,2,2)$.
(b) $M_{2}^{2}=4, M_{2} \sim E_{2}+E_{3}, E_{2} \cdot E_{3}=2$, and either
(b-i) $\beta=2$, $\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,1,2),(1,2,2,1),(1,2,2,2),(1,2,1,3)$; or
(b-ii) $\beta=3$, $\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,2,1),(1,2,1,3)$.
(c) $M_{2}^{2}=6, M_{2} \sim E_{2}+E_{3}+E_{4}, E_{2} \cdot E_{3}=E_{2} \cdot E_{4}=E_{3} \cdot E_{4}=1$, and

$$
\beta=2,\left(E \cdot E_{2}, E \cdot E_{3}, E \cdot E_{4}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{1} \cdot E_{4}\right)=(1,1,2,1,1,2) .
$$

Proof. We write $M_{2} \sim E_{2}+\ldots+E_{k+1}$ as in [KLM, Lemma4.3] with $k=2$ or 3. Moreover we can assume that $1 \leq E . E_{2} \leq \ldots \leq E . E_{k+1}$, whence that $E . M_{2} \geq k E . E_{2}$.

We first consider the case $\beta=4$.
We note that $\left(M_{2}-2 E_{2}\right)^{2}=-2$ if $M_{2}^{2}=2$ or $6,\left(M_{2}-2 E_{2}\right)^{2}=-4$ if $M_{2}^{2}=4$ and $\left(M_{2}-2 E_{2}\right)^{2} \geq-6$ if $M_{2}^{2}=10$. In the latter case $E . M_{2} \geq 6$ by (1), whence $E .\left(M_{2}-2 E_{2}\right) \geq 2$. Using this and setting $B:=E+E_{1}+E_{2}$ one easily verifies that $(H-2 B)^{2}=4 E .\left(M_{2}-2 E_{2}\right)+\left(M_{2}-2 E_{2}\right)^{2} \geq 0$ and $E .(H-2 B)>0$ (whence $H-2 B \geq 0$ by Riemann-Roch), except for the cases

$$
\begin{equation*}
M_{2}^{2}=2,4 \text { and } E \cdot E_{2}=E \cdot E_{3} . \tag{4}
\end{equation*}
$$

Moreover, except for these cases, using (1) and (2), one easily verifies that $H^{2} \geq 54$, except for the case $M_{2}^{2}=2$ and $\left(E \cdot M_{2}, E_{1} \cdot M_{2}\right)=(3,2)$, where $H^{2}=50$. In this case $(3 B-H) . H=4<$ $\phi(H)=5$, so that, if $3 B-H>0$ it must be a nodal cycle. Therefore either $h^{0}(3 B-H)=0$ or $h^{0}\left(3 B+K_{S}-H\right)=0$, so in any case B satisfies the conditions in [KLM, Prop.5.2] or in [KLM, Prop.5.3] and S is nonextendable.

In the remaining cases (4) we can without loss of generality assume $1 \leq E_{1} . E_{2} \leq E_{1} . E_{3}$ and we set $B:=E+E_{2}$. Then $(H-2 B)^{2}=8+4 E_{1} \cdot\left(E_{3}-E_{2}\right)+\left(E_{3}-E_{2}\right)^{2} \geq 4$ and $(H-2 B) . E=2$. Using (1) and (2), one gets $H^{2} \geq 64$ if $M_{2}^{2}=4, H^{2} \geq 74$ if $M_{2}^{2}=2$ and $E . E_{2}=E . E_{3}=3$, and $B . H \geq 17$ if $M_{2}^{2}=2$ and $E . E_{2}=E . E_{3}=2$. Moreover, in the latter case, we have that again $H^{2} \geq 64$ unless $E_{1} \cdot M_{2}=2,3$, which gives $E_{1} \cdot E_{2}=1$ and B is nef by [KLM, Lemma6.3(c)] since $E_{2} . H=11<2 \phi(H)=12$, whence E_{2} is quasi-nef by Lemma 2.5. Therefore B satisfies the conditions in [KLM, Prop.5.2] or in [KLM, Prop.5.4] and S is nonextendable unless $M_{2}^{2}=2$ and $E \cdot E_{2}=E \cdot E_{3}=1$. In the latter case, by (2) we have $2 \leq E_{1} \cdot M_{2} \leq 4$ and if $E_{1} \cdot M_{2}=4$ then $\alpha=4$. In this last case $L_{1} \sim 2 E_{1}+M_{2}$, whence $\phi\left(L_{1}\right)=E_{1} \cdot M_{2}=4$ and we get that $4 \leq E_{i} . L_{1}=2 E_{1} \cdot E_{i}+1$ for $i=2,3$, so that $E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=2$. Therefore we get the cases in (a-iii) with $\beta=4$.

We next treat the cases $\beta \leq 3$. As we know, we are in case (I-B), whence L_{2} is of small type and either $L_{2} \sim M_{2}$ or $L_{2} \sim E+M_{2}$.

Suppose first that $L_{2} \sim E+M_{2}$.
Then $\beta=3, \alpha=2$ and, since L_{2} is of small type, by (1), we can only have $\left(M_{2}^{2}, E \cdot M_{2}\right)=(2,2)$, $(2,4)$ or $(4,3)$.

If $\left(M_{2}^{2}, E . M_{2}\right)=(2,2)$, then $E . E_{2}=E . E_{3}=1$ and by (2) we have $2 \leq E_{1} \cdot M_{2} \leq 3$, yielding the first two cases in (a-iii).

If $\left(M_{2}^{2}, E \cdot M_{2}\right)=(2,4)$, then $L_{2}^{2}=10$ and $\phi\left(L_{2}\right)=3$. As $E \cdot E_{i}+1=L_{2} \cdot E_{i} \geq \phi\left(L_{2}\right)=3$ for $i=2,3$, we must have $E \cdot E_{2}=E \cdot E_{3}=2$. Now $L_{1} \sim E+2 E_{1}+M_{2}$ and $\left(1+E_{1} \cdot M_{2}\right)^{2}=\phi\left(L_{1}\right)^{2} \leq$ $L_{1}^{2}=14+4 E_{1} \cdot M_{2}$ and (1) yield $E_{1} \cdot M_{2}=3$ or 4 . Therefore, by Lemma 2.6 and symmetry, we get the two cases in (a-ii).

If $\left(M_{2}^{2}, E \cdot M_{2}\right)=(4,3)$, then $E_{1} \cdot M_{2}=3$ or 4 by (2). Since $L_{2}^{2}=10$ and $\phi\left(L_{2}\right)=E \cdot L_{2}=3$, there is by [CD, Cor.2.5.5] an isotropic effective 10 -sequence $\left\{f_{1}, \ldots, f_{10}\right\}$ such that $E=f_{1}$ and $3 L_{2} \sim f_{1}+\ldots+f_{10}$.

In the case $E_{1} \cdot M_{2}=3$ we get $E_{1} \cdot L_{2}=4$, whence we can assume, possibly after renumbering, that $E_{1} \cdot f_{i}=1$ for $1 \leq i \leq 8$ and $\left(E_{1} \cdot f_{9}, E_{1} \cdot f_{10}\right)=(2,2)$ or $(1,3)$. In the latter case we have $\left(E_{1}+f_{10}\right)^{2}=6$ and $\phi\left(E_{1}+f_{10}\right)=2$, whence we can write $E_{1}+f_{10} \sim A_{1}+A_{2}+A_{3}$ for some $A_{i}>0$ such that $A_{i}^{2}=0, A_{i} \cdot A_{j}=1$ for $i \neq j$. But $f_{i} \cdot\left(E_{1}+f_{10}\right)=2$ for all $1 \leq i \leq 9$, a contradiction. Hence $\left(E_{1} \cdot f_{9}, E_{1} \cdot f_{10}\right)=(2,2)$. One easily sees that there is an isotropic divisor $f_{19}>0$ such that $f_{19} \cdot f_{1}=f_{19} \cdot f_{9}=2$ and $L_{2} \sim f_{1}+f_{9}+f_{19}$. Therefore $E_{1} \cdot f_{19}=1$. Setting $E_{2}^{\prime}=f_{9}$ and $E_{3}^{\prime}=f_{19}$ we get the first case in (b-ii).

If $E_{1} \cdot M_{2}=4$ we get $E_{1} \cdot L_{2}=5$, whence we can assume, possibly after renumbering, that $E_{1} \cdot f_{i}=1$ for $1 \leq i \leq 5$. As above there is an isotropic divisor $f_{12}>0$ such that $f_{12} \cdot f_{1}=f_{12} \cdot f_{2}=2$ and $L_{2} \sim f_{1}+f_{2}+f_{12}$. Hence $E_{1} \cdot f_{12}=3$. Setting $E_{2}^{\prime}=f_{2}$ and $E_{3}^{\prime}=f_{12}$ we get the second case in (b-ii).

Finally, we have left the case with $L_{2} \sim M_{2}$, where $\beta=\alpha$. We have $L_{1} \sim 2 E_{1}+M_{2}$, whence $\left(E_{1} \cdot M_{2}\right)^{2}=\phi\left(L_{1}\right)^{2} \leq L_{1}^{2}=4 E_{1} \cdot M_{2}+M_{2}^{2}$, so that (2) and [KL2, Prop.1] give $E_{1} \cdot M_{2} \leq 4$. In particular $M_{2}^{2} \leq 6$ by (2).

If $\beta=\alpha=3$, by definition of α, we have $1+E_{1} \cdot M_{2}=E_{1} \cdot\left(L_{1}+E\right)>\phi(H)=2+E \cdot M_{2}$, whence $E_{1} \cdot M_{2}=4, E \cdot M_{2}=2$ and $M_{2}^{2}=2$ by (1). Then $E \cdot E_{2}=E \cdot E_{3}=1$ and, for $i=2,3, E_{i} \cdot L_{1}=$ $2 E_{i} \cdot E_{1}+1 \geq \phi\left(L_{1}\right)=E_{1} \cdot M_{2}=4$, whence $E_{1} \cdot E_{2}=E_{1} \cdot E_{3}=2$, that is the third case in (a-iii).

In the remaining cases we have $\beta=\alpha=2$.
If $M_{2}^{2}=2$ using again $\phi\left(L_{1}\right)^{2} \leq L_{1}^{2}, E_{i} \cdot L_{1} \geq \phi\left(L_{1}\right)$, (1) and (2) together with $H^{2} \geq 32$ or $H^{2}=28$, we deduce the possibilities $\left(E \cdot M_{2}, E_{1} \cdot M_{2}\right)=(3,3),(2,4),(3,4)$ or $(4,4)$. By symmetry one easily sees that one gets the cases in ($\mathrm{a}-\mathrm{i}$).
If $M_{2}^{2}=4$ we similarly get $\left(E \cdot M_{2}, E_{1} \cdot M_{2}\right)=(3,3),(3,4)$ or $(4,4)$. From the first two cases, using Lemma 2.6 for the second, we obtain the cases in (b-i). If $\left(E \cdot M_{2}, E_{1} \cdot M_{2}\right)=(4,4)$, we now show that H also has a decomposition of type (III) as in [KLM, §6]. It will follow that S is nonextendable by [KLM, §10]. We have $E . H=6$, whence $(H-3 E)^{2}=8$ and $H-3 E>0$ by [KL2, Lemma2.4]. If $\phi(H-3 E)=1$ we can write $H-3 E \sim 4 A_{1}+A_{2}$ with $A_{i}>0, A_{i}^{2}=0$ and $A_{1} \cdot A_{2}=1$. Now $6 \leq H \cdot A_{1}=3 E \cdot A_{1}+1$ gives $E \cdot A_{1} \geq 2$, whence the contradiction $6=H \cdot E=4 E \cdot A_{1}+E \cdot A_{2} \geq 8$. Therefore there is an $E_{1}^{\prime}>0$ such that $\left(E_{1}^{\prime}\right)^{2}=0$ and $E_{1}^{\prime} .(H-3 E)=2$. Since $\left(H-3 E-2 E_{1}^{\prime}\right)^{2}=0$, by [KL2, Lemma2.4] we can write $H \sim 3 E+2 E_{1}^{\prime}+E_{2}^{\prime}$, with $E_{2}^{\prime}>0,\left(E_{2}^{\prime}\right)^{2}=0$ and $E_{1}^{\prime} \cdot E_{2}^{\prime}=2$. From $6 \leq H . E_{1}^{\prime}=3 E . E_{1}^{\prime}+2$ we get $E . E_{1}^{\prime} \geq 2$. Now from $6=H . E=2 E . E_{1}^{\prime}+E . E_{2}^{\prime}$ we see that we cannot have $E . E_{1}^{\prime} \geq 3$, for then $E . E_{1}^{\prime}=3, E . E_{2}^{\prime}=0$, but this gives $E_{2}^{\prime} \equiv q E$ for some $q \geq 1$ by [KL1, Lemma2.1], whence the contradiction $2=E_{1}^{\prime} \cdot E_{2}^{\prime}=3 q$. Therefore $E \cdot E_{1}^{\prime}=2, E_{1} \cdot E_{2}^{\prime}=1$ so that E_{2}^{\prime} is primitive and since $E_{1}^{\prime} \cdot L_{1}=E_{1}^{\prime} \cdot(H-3 E)+E_{1}^{\prime} \cdot E=4=\phi\left(L_{1}\right)$ we obtain a decomposition of H of type (III), as claimed.

If $M_{2}^{2}=6$, by (1) and (2) we get, as above, $E_{1} \cdot M_{2}=E \cdot M_{2}=4$, yielding by symmetry the case in (c) in addition to the case ($\left.E \cdot E_{2}, E \cdot E_{3}, E \cdot E_{4}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{1} \cdot E_{4}\right)=(1,1,2,1,2,1)$. In the latter case we note that $\phi(H)=E \cdot H=E_{1} \cdot H=6$ and $\phi\left(H-2 E_{1}\right)=\phi\left(2 E+E_{2}+E_{3}+E_{4}\right)=$ $E_{3} .\left(H-2 E_{1}\right)=4$. Hence we can decompose H with respect to E_{1} and E_{3}, which means that H is also of type (III) (as in [KLM, §6]) and S is nonextendable by [KLM, §10].

4. Conclusion of the proof of Theorem 1.1

By Lemma 3.1 we can assume that either $M_{2}^{2}=0$ or we are in one of the cases of that lemma. Moreover recall that H is not 2-divisible in $\operatorname{Num}(S)$ and we are in case (I-A) or (I-B).
4.1. The case $M_{2}^{2}=0$. We write $M_{2}=E_{2}$ for a primitive $E_{2}>0$ with $E_{2}^{2}=0$.
4.1.1. $\beta=2$. From (1) and (2) we get $1 \leq E . E_{2} \leq E_{1} \cdot E_{2} \leq E . E_{2}+2$. Moreover, since $L_{1} \sim 2 E_{1}+E_{2}$, we get $\left(\phi\left(L_{1}\right)\right)^{2}=\left(E_{1} \cdot E_{2}\right)^{2} \leq L_{1}^{2}=4 E_{1} \cdot E_{2}$, whence $E_{1} \cdot E_{2} \leq 3$ by [KL2, Prop.1], as E_{2} is primitive. Since $H^{2} \geq 28$, we are left with the cases $\left(E \cdot E_{2}, E_{1} \cdot E_{2}\right)=(2,3)$ or $(3,3)$, so that S is nonextendable by [KLM, Lemma5.5(iii-b)].

4.1.2. $\beta=3$. From (1) and (2) we get $1 \leq E . E_{2} \leq E_{1} \cdot E_{2}+1 \leq E \cdot E_{2}+\alpha$.

If $\alpha=2$ we get $E . E_{2}-1 \leq E_{1} . E_{2} \leq E . E_{2}+1$. Moreover, since we are in case (I-B), $L_{2} \sim E+E_{2}$ is of small type, whence $E . E_{2} \leq 3$ or $E . E_{2}=5$. Furthermore, since $L_{1} \sim E+2 E_{1}+E_{2}$, we get $\left(\phi\left(L_{1}\right)\right)^{2}=\left(1+E_{1} \cdot E_{2}\right)^{2} \leq L_{1}^{2}=4+4 E_{1} \cdot E_{2}+2 E \cdot E_{2}$. However, in the case $\left(E \cdot E_{2}, E_{1} \cdot E_{2}\right)=(3,4)$, we find $\left(L_{1}^{2}, \phi\left(L_{1}\right)\right)=(26,5)$, which is impossible by [KL2, Prop.1]. This yields that $E \cdot E_{2}=2,3,5$ if $E_{1} \cdot E_{2}=E \cdot E_{2}-1 ; E \cdot E_{2}=1,2,3$ if $E_{1} \cdot E_{2}=E \cdot E_{2} ;$ and $E \cdot E_{2}=1,2$ if $E_{1} \cdot E_{2}=E \cdot E_{2}+1$.

If $\alpha=3$ we must have, by [KLM, (11)], that $E_{1} \cdot(H-3 E)=\phi(H)$, whence $E_{1} \cdot E_{2}=2+E \cdot E_{2}$. Moreover, since $L_{1} \sim 2 E_{1}+E_{2}$, we get $\left(\phi\left(L_{1}\right)\right)^{2}=\left(E_{1} \cdot E_{2}\right)^{2} \leq L_{1}^{2}=4 E_{1} . E_{2}$, whence $E_{1} \cdot E_{2} \leq 3$ by [KL2, Prop.1] since E_{2} is primitive. Hence $E_{1} \cdot E_{2}=3$ and $E \cdot E_{2}=1$.

To summarize, using $H^{2} \geq 32$ or $H^{2}=28$, we have the following cases:

$$
\begin{array}{rcc}
E_{1} \cdot E_{2}=E \cdot E_{2}-1, & E \cdot E_{2}=2,3 \text { or } 5, & g=15,20 \text { or } 30 . \\
E_{1} \cdot E_{2}=E \cdot E_{2}, & E \cdot E_{2}=2 \text { or } 3, & g=17 \text { or } 22 . \tag{5}\\
E_{1} \cdot E_{2}=3, & E \cdot E_{2}=2, & g=19 .
\end{array}
$$

We will now show, in Lemmas 4.1-4.4, that S is nonextendable in the five cases of genus $g \geq 17$. The case with $g=15$ is case (i) in Theorem 1.1.

Lemma 4.1. In the case $\left(E \cdot E_{2}, E_{1} \cdot E_{2}, g\right)=(5,4,30)$ in $(5), S$ is nonextendable.
Proof. We have $H^{2}=58$ and $\phi(H)=E \cdot H=E_{1} \cdot H=7$. Hence both E and E_{1} are nef by Lemma 2.5. Let now $H^{\prime}=H-4 E$. Then $\left(H^{\prime}\right)^{2}=2$ and consequently we can write $H \sim 4 E+A_{1}+A_{2}$ for $A_{i}>0$ primitive with $A_{i}^{2}=0$ and $A_{1} \cdot A_{2}=1$. Since $E \cdot H=E \cdot A_{1}+E \cdot A_{2}=7$ we can assume by symmetry that either (a) $\left(E \cdot A_{1}, E \cdot A_{2}\right)=(2,5)$ or (b) $\left(E \cdot A_{1}, E \cdot A_{2}\right)=(3,4)$. Also since $E_{1} \cdot H=7$ we have $E_{1} \cdot\left(A_{1}+A_{2}\right)=3$, whence we have the two possibilities $\left(E_{1} \cdot A_{1}, E_{1} \cdot A_{2}\right)=(2,1)$ or $(1,2)$.

In case (b) we get $A_{1} \cdot H=13$, whence $\left(H-2\left(E+A_{1}\right)\right)^{2}=2$. Since $\left(H-2\left(E+A_{1}\right)\right) \cdot E=1$, we have $H-2\left(E+A_{1}\right)>0$ by Riemann-Roch, whence S is nonextendable by [KLM, Prop.5.2].

In case (a) we get $A_{1} \cdot H=9$. Now if $E_{1} \cdot A_{1}=2$, we get $\left(H-2\left(E+A_{1}+E_{1}\right)\right)^{2}=6$, and as above S is nonextendable by [KLM, Prop.5.2]. If $E_{1} \cdot A_{1}=1$, then $E_{1} .(H-2 E)=A_{1} \cdot(H-2 E)=5$, whence $L_{1} \sim H-2 E$ and $\phi\left(L_{1}\right)=A_{1} \cdot L_{1}=5$. Therefore we can continue the decomposition with respect to A_{1} instead of E_{1}. Since H now is of type (III) (as in [KLM, $\left.\S 6\right]$), S is nonextendable by [KLM, §10]

Claim 4.2. Let $H \sim 3 E+2 E_{1}+E_{2}$ be as in (5) with $\left(E . E_{2}, E_{1} \cdot E_{2}, g\right)=(3,2,20)$ (respectively $\left.\left(E . E_{2}, E_{1} \cdot E_{2}, g\right)=(3,3,22)\right)$. Then there exists an isotropic effective 5 -sequence $\left\{E, F_{1}, F_{2}, F_{3}, F_{4}\right\}$ (respectively an isotropic effective 4-sequence $\left\{E, F_{1}, F_{2}, F_{3}\right\}$ together with an isotropic divisor $F_{4}>0$ such that $E . F_{4}=F_{2} \cdot F_{4}=F_{3} \cdot F_{4}=1$ and $F_{1} \cdot F_{4}=2$) such that $H \sim 2 E+2 F_{1}+F_{2}+F_{3}+F_{4}$ and:
(a) F_{1} is nef and F_{i} is quasi-nef for $i=2,3,4$;
(b) $\left|E+F_{2}\right|$ and $\left|F_{1}+F_{3}\right|$ are without base components;
(c) $\left|E+F_{1}+F_{2}+F_{3}\right|$ and $\left|E+F_{1}+F_{4}\right|$ are base-point free;
(d) $h^{1}\left(F_{1}+F_{4}-F_{2}\right)=h^{2}\left(F_{1}+F_{4}-F_{2}\right)=0$.

Proof. Since $\left(E+E_{2}\right)^{2}=6$ and both E and E_{2} are primitive, we can write $E+E_{2} \sim A_{1}+A_{2}+A_{3}$ with $A_{i}>0, A_{i}^{2}=0$ and $A_{i} . A_{j}=1$ for $i \neq j$. We easily find (possibly after renumbering) that $A_{i} \cdot E=A_{i} \cdot E_{2}=A_{1} \cdot E_{1}=A_{2} \cdot E_{1}=1$ for $i=1,2,3$ and $A_{3} \cdot E_{1}=1$ if $g=20$ and 2 if $g=22$. Moreover $A_{i} . H \leq 8<2 \phi(H)=10$, whence all the A_{i} 's are quasi-nef by Lemma 2.5.

Assume now there is a nodal curve R_{i} with $R_{i} . A_{i}=-1$ for $(i, g) \neq(3,22)$. Then we can as usual write $A_{i} \sim B_{i}+R_{i}$, with $B_{i}>0$ primitive and isotropic. Since $A_{i} . H=6$ we deduce that $B_{i} \equiv E$ or $B_{i} \equiv E_{1}$, where the latter case only occurs if $g=20$.

If $g=20$, then, since for $i \neq j$, we have $\left(E+R_{i}\right) \cdot\left(E+R_{j}\right)=2+R_{i} \cdot R_{j}=\left(E_{1}+R_{i}\right) \cdot\left(E_{1}+R_{j}\right)$, we see that at most two of the A_{i} 's can be not nef, otherwise we would get $R_{i} . R_{j}=-1$, a contradiction. Possibly after reordering the A_{i} 's and adding K_{S} to two of them, we can therefore assume that A_{1} is nef, and that either A_{2} is nef or $A_{2} \sim E+R+K_{S}$ for R a nodal curve with $E . R=1$. Now E_{1} is nef, by Lemma 2.5 , as $E_{1} \cdot H=\phi(H)=5$, so that both $\left|E_{1}+A_{1}\right|$ and $\left|E+A_{2}\right|$ are without fixed components. Setting $F_{1}=E_{1}, F_{2}=A_{2}, F_{3}=A_{1}$ and $F_{4}=A_{3}$ we therefore have the desired decomposition satisfying (a) and (b). It also follows by construction that $E+F_{1}+F_{2}+F_{3}$ and $E+F_{1}+F_{4}$ are nef, the latter because E and F_{1} are, and F_{4} is either nef or $F_{4} \equiv A+R^{\prime}$ with $A=E$ or $A=E_{1}$, for R^{\prime} a nodal curve with $A \cdot R^{\prime}=1$. Therefore (c) also follows.

If $g=22$, we similarly find that we can assume that A_{1} and A_{2} are nef. Moreover $A_{1} \cdot L_{1}=$ $A_{1} \cdot(H-2 E)=E_{1} \cdot(H-2 E)=4$, so if E_{1} is not nef, we can substitute E_{1} with A_{1} and repeat the process. Therefore we can assume that E_{1} is nef as well. Again both $\left|E_{1}+A_{1}\right|$ and $\left|E+A_{2}\right|$ are without fixed components, and setting $F_{1}=E_{1}, F_{2}=A_{2}, F_{3}=A_{1}$ and $F_{4}=A_{3}$ we therefore have the desired decomposition satisfying (a) and (b). Now $E+F_{1}+F_{2}+F_{3}$ is again nef by construction. To see that $E+F_{1}+F_{4}$ is nef, assume, to get a contradiction, that there is a nodal curve Γ with $\Gamma .\left(E+F_{1}+F_{4}\right)<0$. Then $\Gamma . F_{4}=-1$ and $\Gamma .\left(E+F_{1}\right)=0$ by (a). The ampleness of H implies $\Gamma .\left(F_{2}+F_{3}\right) \geq 2$, whence the contradiction $\left(F_{4}-\Gamma\right)^{2}=0$ and $\left(F_{4}-\Gamma\right) .\left(F_{2}+F_{3}\right) \leq 0$, recalling that $F_{4}-\Gamma>0$ by [KL2, Lemma2.3]. Therefore (c) is proved. We now prove (d).

If $g=20$ then $\left(F_{1}+F_{4}-F_{2}\right)^{2}=-2$ and $\left(F_{1}+F_{4}-F_{2}\right) . H=5=\phi(H)$, whence $h^{2}\left(F_{1}+F_{4}-F_{2}\right)=0$ and if $F_{1}+F_{4}-F_{2}>0$ it is a nodal cycle, so that either $h^{0}\left(F_{1}+F_{4}-F_{2}\right)=0$ or $h^{0}\left(F_{1}+F_{4}-F_{2}+K_{S}\right)=$ 0 . Replacing F_{1} with $F_{1}+K_{S}$ if necessary, we can arrange that $h^{0}\left(F_{1}+F_{4}-F_{2}\right)=0$, whence also $h^{1}\left(F_{1}+F_{4}-F_{2}\right)=0$ by Riemann-Roch.

If $g=22$, then $\left(F_{1}+F_{4}-F_{2}\right)^{2}=0$ and $\left(F_{1}+F_{4}-F_{2}\right) \cdot H=8<2 \phi(H)$, whence (d) follows by Lemma 2.5 and [KL1, Cor.2.5].
Lemma 4.3. In the cases $\left(E \cdot E_{2}, E_{1} \cdot E_{2}, g\right)=(3,2,20)$ or $(3,3,22)$ in $(5), S$ is nonextendable.
Proof. By Claim 4.2 we can choose $D_{0}=E+F_{1}+F_{2}+F_{3}$ with $D_{0}^{2}=12$ and both D_{0} and $H-D_{0} \sim E+F_{1}+F_{4}$ base-point free. We have $h^{0}\left(2 D_{0}-H\right)=h^{0}\left(F_{2}+F_{3}-F_{4}\right) \leq 1$ by Lemma 2.5, as $\left(F_{2}+F_{3}-F_{4}\right) . H \leq 6<2 \phi(H)$. Hence the map $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)(iv)]. To show the surjectivity of $\mu_{V_{D}, \omega_{D}}$ we use Claim $4.2(\mathrm{~b})$ and let $D_{1} \in\left|E+F_{2}\right|$ and $D_{2} \in$ $\left|F_{1}+F_{3}\right|$ be general smooth curves and apply [KLM, Lemma5.6]. Now $H-D_{0}-D_{1} \sim F_{1}+F_{4}-F_{2}$ whence $h^{1}\left(H-D_{0}-D_{1}\right)=0$ by Claim $4.2(\mathrm{~d})$, so that $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by [KLM, (14)] since $\left(H-D_{0}\right) \cdot D_{1}=\left(E+F_{1}+F_{4}\right) \cdot\left(E+F_{2}\right)=5$. Since $\left(H-D_{0}-D_{2}\right) \cdot H=\left(E+F_{4}-F_{3}\right) \cdot H \leq 7<2 \phi(H)$
we have that $h^{0}\left(H-D_{0}-D_{2}\right) \leq 1$ by Lemma 2.5 and $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [KLM, (16)]. Therefore $\mu_{V_{D}, \omega_{D}}$ is surjective whence S is nonextendable by [KLM, Prop.5.1].
Lemma 4.4. If $E . E_{2}=2$ and $\left(E_{1} \cdot E_{2}, g\right)=(2,17)$ or $(3,19)$ in (5), then S is nonextendable.
Proof. We first observe that it is enough to find an isotropic divisor $F>0$ such that $E . F=1$, $F . H=6$ if $g=17$ and $F . H=7$ if $g=19$ and $B:=E+F$ is nef. In fact the latter implies that $H \sim 2 B+A$, with $A>0$ isotropic with $E . A=2$ and $F . A=4$ if $g=17$ and $F . A=5$ if $g=19$. As H is not 2-divisible in $\operatorname{Num} S, A$ is automatically primitive and it follows that S is nonextendable by [KLM, Lemma5.5(iii-b)].

To find the desired F we first consider the case $g=17$.
Set $Q=E+E_{1}+E_{2}$. Then $Q^{2}=10$ and $\phi(Q)=3$. By [CD, Cor.2.5.5] there is an isotropic effective 10-sequence $\left\{f_{1}, \ldots, f_{10}\right\}$ with $3 Q \sim f_{1}+\ldots+f_{10}$. Since $E \cdot Q=E_{1} \cdot Q=3$, we can assume that $f_{1}=E$ and $f_{2}=E_{1}$ and then $E_{2} \cdot f_{i}=1$ for $i \geq 3$. We now claim that $E+f_{i}$ is not nef for at most one $i \in\{3, \ldots, 10\}$. Indeed, note that, for $i \geq 3$, we have $f_{i} . H=6<2 \phi(H)=8$, whence each f_{i} is quasi-nef by Lemma 2.5. Now assume that $R_{i} \cdot\left(E+f_{i}\right)<0$ for some nodal curve R_{i}. Then $R_{i} . E=0$ and $R_{i} . f_{i}=-1$, so that $f_{i} \sim \overline{f_{i}}+R_{i}$, by [KL2, Lemma2.3], with $\overline{f_{i}}>0$ primitive and ${\overline{f_{i}}}^{2}=0$. Since H is ample we must have $R_{i} \cdot E_{j}>0$ for $j=1$ or 2 . If $R_{i} \cdot E_{2}>0$ then $E_{2} \cdot f_{i}=1$ implies $\overline{f_{i}} \equiv E_{2}$ and $R_{i} \cdot E_{2}=1$. But then we get the contradiction $E . f_{i}=E .\left(E_{2}+R_{i}\right)=2$. Therefore $R_{i} . E_{1}>0$, so that $\overline{f_{i}} \equiv E_{1}$ and $R_{i} \cdot E_{1}=1$. Now suppose that also $E+f_{j}$ is not nef for $j \in\{3, \ldots, 10\}-\{i\}$. Then $R_{i} \cdot R_{j}=\left(f_{i}-E_{1}\right) \cdot\left(f_{j}-E_{1}\right)=-1$, a contradiction. Therefore $E+f_{i}$ is not nef for at most one $i \in\{3, \ldots, 10\}$. Now one easily verifies that any $F \in\left\{f_{3}, \ldots, f_{10}\right\}$ such that $E+F$ is nef satisfies the desired numerical conditions.

We next consider the case $g=19$.
Since $\left(E_{1}+E_{2}\right)^{2}=6$ and $\phi\left(E_{1}+E_{2}\right)=2$ we can find an isotropic effective 3 -sequence $\left\{f_{3}, f_{4}, f_{5}\right\}$ such that $E_{1}+E_{2} \sim f_{3}+f_{4}+f_{5}$. Since $E .\left(E_{1}+E_{2}\right)=E_{1} \cdot\left(E_{1}+E_{2}\right)=3$ we have $f_{i} . E=f_{i} . E_{1}=1$ for $i=3,4,5$, so that we have an isotropic effective 5 -sequence $\left\{f_{1}, \ldots, f_{5}\right\}$ with $f_{1}=E$ and $f_{2}=E_{1}$ such that $H \sim 3 f_{1}+f_{2}+f_{3}+f_{4}+f_{5}$. By [CD, Cor.2.5.6] we can complete the sequence to an isotropic effective 10 -sequence $\left\{f_{1}, \ldots, f_{10}\right\}$. Note that for $i \geq 6$ we have f_{i}. $H=7<2 \phi(H)=8$, whence each f_{i} is quasi-nef by Lemma 2.5. Now the same arguments as above can be used to prove that $E+f_{i}$ is nef for at least one $i \in\{6, \ldots, 10\}$, whence any $F \in\left\{f_{6}, \ldots, f_{10}\right\}$ such that $E+F$ is nef satisfies the desired numerical conditions.
4.1.3. $\beta=4$. From (1) and (2) we get $1 \leq E . E_{2} \leq E_{1} \cdot E_{2}+2 \leq E \cdot E_{2}+\alpha$.

If $\alpha=2$ we get $E . E_{2}-2 \leq E_{1} \cdot E_{2} \leq E . E_{2}$. Moreover, since $L_{2} \sim 2 E+E_{2}$ is not of small type, we get $\left(\phi\left(L_{2}\right)\right)^{2}=\left(E . E_{2}\right)^{2} \leq L_{2}^{2}=4 E . E_{2}$, whence $E . E_{2} \leq 3$ by [KL2, Prop.1]. Therefore $\left(E . E_{2}, E_{1} \cdot E_{2}\right) \in\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$. The first case is case (ii) in Theorem 1.1 and in the other cases S is nonextendable by (3) and [KLM, Lemma5.5(iii-a)].

If $\alpha=3$ or 4 we must have $E_{1} \cdot(H-\alpha E)=\phi(H)$ by [KLM, (11)], whence $E_{1} \cdot E_{2}=E \cdot E_{2}+\alpha-2$. Moreover $L_{1} \sim(4-\alpha) E+2 E_{1}+E_{2}$ and using $\left(\phi\left(L_{1}\right)\right)^{2} \leq L_{1}^{2}$, we get $E_{1} \cdot E_{2} \leq 4$. If equality holds then $\left(L_{1}^{2}, \phi\left(L_{1}\right)\right)=(26,5)$ or $(16,4)$, both excluded by [KL2, Prop.1], as E_{2} is primitive. Therefore $\left(E \cdot E_{2}, E_{1} \cdot E_{2}\right)=(1,2),(1,3)$ or $(2,3)$ and S is nonextendable by (3) and [KLM, Lemma5.5(iii-a)].
4.2. The case $M_{2}^{2}=2$. We write $M_{2}=E_{2}+E_{3}$ as in Lemma 3.1(a).
4.2.1. $\beta=2$. By Lemma 3.1 we have left to treat the cases ($\mathrm{a}-\mathrm{i}$), that is

$$
\begin{equation*}
\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,1,2),(1,2,2,1),(1,1,2,2),(2,2,2,2),(1,2,2,2) \tag{6}
\end{equation*}
$$

We first show that S is nonextendable in the first case of (6).
Since $E_{2} \cdot H=\phi(H)=5$ and $E_{3} \cdot H=9<2 \phi(H)$ we have that E_{2} is nef and E_{3} is quasi-nef by Lemma 2.5. In particular we get that $h^{1}\left(E_{2}+E_{3}\right)=h^{1}\left(E_{2}+E_{3}+K_{S}\right)=0$ by [KL1, Cor.2.5] and
$h^{0}\left(E_{2}+E_{3}\right)=2$ by Riemann-Roch. Now $D_{0}:=E+E_{1}+E_{2}+E_{3}$ is nef by [KLM, Lemma6.3(b)] with $\phi\left(D_{0}\right)=3$ and $D_{0}^{2}=16$. Also $H-D_{0} \sim E+E_{1}$ is base-component free by (3) and $2 D_{0}-H \sim E_{2}+E_{3}$. Then $h^{0}\left(2 D_{0}-H\right)=2$ and $h^{1}\left(H-2 D_{0}\right)=0$, so that $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (13)] and $\Phi_{H_{D}, \omega_{D}}$ is surjective by $[\mathrm{KL} 3$, Thm. (v)], as gon $(D)=6$ by [KL2, Cor.1], whence $\operatorname{Cliff}(D)=4$, as D has genus 9 [ELMS, §5]. By [KLM, Prop.5.1], S is nonextendable.

We next show that S is nonextendable in the last four cases in (6).
By Lemma 2.5 and [KLM, Lemma6.3(b)] we see that E_{2} and E_{3} are quasi-nef and $E+E_{1}+E_{2}$ and $E+E_{1}+E_{3}$ are base-point free. Set $D_{0}=E+E_{1}+E_{2}$. Then $D_{0}^{2} \geq 8, D_{0}$ is nef, $\phi\left(D_{0}\right) \geq 2$ and $H-D_{0} \sim E+E_{1}+E_{3}$ is base-point free. Moreover $h^{0}\left(2 D_{0}-H\right)=0$ as $\left(2 D_{0}-H\right) . H=$ $\left(E_{2}-E_{3}\right) . H \leq 0$, so that $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)]. Now, in all cases except for $\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,2,2)$, we have $\left(H-2 D_{0}\right)^{2}=-2$ and $\left(H-2 D_{0}\right) \cdot H=0$, so that $h^{0}\left(H-2 D_{0}\right)=h^{2}\left(H-2 D_{0}\right)=0$, whence $h^{1}\left(H-2 D_{0}\right)=0$ by Riemann-Roch and $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)] (noting that $\left(H-D_{0}\right)^{2}=10$ in the case $(2,2,2,2)$, while $H-D_{0}$ is not 2-divisible in Pic S as either $E .\left(H-D_{0}\right)=3$ or $E_{1} .\left(H-D_{0}\right)=3$ in the other two cases). By [KLM, Prop.5.1], S is nonextendable in those cases.

We now prove the surjectivity of $\mu_{V_{D}, \omega_{D}}$ in the case $\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2,2,2)$.
Note that $E_{1}+E_{2}$ is nef by [KLM, Lemma6.3(e)], whence base-point free, and that $E_{1}+E_{3}$ is quasi-nef. To see the latter, let $\Delta>0$ be such that $\Delta^{2}=-2$ and $\Delta . E_{1}+\Delta . E_{3} \leq-2$. As E_{1} is quasi-nef by (3) and E_{3} is quasi-nef we get, again by (3), that $\Delta \cdot E_{1}=\Delta . E_{3}=-1$ and $E_{1} \equiv E+\Delta$, giving the contradiction $\Delta . E_{3}=0$. Hence $E_{1}+E_{3}$ is quasi-nef. To show the surjectivity of $\mu_{V_{D}, \omega_{D}}$ we let $D_{1}=E$ and $D_{2} \in\left|E_{1}+E_{2}\right|$ be a general smooth curve and apply [KLM, Lemma5.6]. The map $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by [KLM, (15)] since $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left(E_{1}+E_{3}\right)=0$ by [KL1, Cor.2.5]. Finally, $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [KLM, (16)], using the fact that $h^{0}\left(H-D_{0}-D_{2}\right)=$ $h^{0}\left(E+E_{3}-E_{2}\right) \leq 1$ by Lemma 2.5, as $\left(E+E_{3}-E_{2}\right) \cdot H=7<2 \phi(H)$. Therefore $\mu_{V_{D}, \omega_{D}}$ is surjective and S is nonextendable by [KLM, Prop.5.1].
4.2.2. $\beta=3,4$. By Lemma 3.1 we have left to treat the cases (a-ii) and (a-iii), that is

$$
\begin{array}{r}
\beta=3, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{2} \cdot E_{3}\right)=(2,2,2,2,1), \\
\beta=3, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{2} \cdot E_{3}\right)=(2,2,1,2,1) \tag{8}\\
\beta=3,4, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{2} \cdot E_{3}\right)=(1,1,2,2,1) \\
\beta=3,4, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{2} \cdot E_{3}\right)=(1,1,1,2,1) \\
\beta=3,4, \quad\left(E \cdot E_{2}, E \cdot E_{3}, E_{1} \cdot E_{2}, E_{1} \cdot E_{3}, E_{2} \cdot E_{3}\right)=(1,1,1,1,1) .
\end{array}
$$

Claim 4.5. In the cases (7)-(11) both E_{2} and E_{3} are quasi-nef.
Proof. We first prove that E_{2} is quasi-nef. Assume, to get a contradiction, that there exists a $\Delta>0$ with $\Delta^{2}=-2$ and $\Delta . E_{2} \leq-2$. By [KL2, Lemma2.3] we can write $E_{2} \sim A+k \Delta$, for $A>0$ primitive with $A^{2}=0$ and $k=-\Delta . E_{2}=\Delta . A \geq 2$. From $E_{2} \cdot E_{3}=1$ it follows that $\Delta . E_{3} \leq 0$. If $\Delta . E>0$, we get from $2 \geq E . E_{2}=E . A+k E . \Delta$ that $E . E_{2}=k=2, E . \Delta=1$ and $E . A=0$, whence the contradiction $E \equiv A$. Hence $\Delta . E=0$ and the ampleness of H gives $\Delta . E_{1} \geq 2$ and the contradiction $E_{1} \cdot E_{2}=E_{1} \cdot A+k E_{1} \cdot \Delta \geq 4$. Hence E_{2} is quasi-nef. The same reasoning works for E_{3}.
Lemma 4.6. S is nonextendable in cases (7)-(9) and cases (10)-(11) with $\beta=4$.
Proof. Define $D_{0}=2 E+E_{1}+E_{2}$, which is nef by [KLM, Lemma6.3(a)] with $\phi\left(D_{0}\right) \geq 2$ and $D_{0}^{2} \geq 12$ in cases (7)-(9) and $D_{0}^{2}=10$ in cases (10) and (11). Also $H-D_{0} \sim(\beta-2) E+E_{1}+E_{3}$, whence $\phi\left(H-D_{0}\right) \geq 2$ and $H-D_{0}$ is base-point free by [KLM, Lemma6.3(b)]. We have $2 D_{0}-H \sim$ $(4-\beta) E+E_{2}-E_{3}$, whence $h^{0}\left(2 D_{0}-H\right) \leq 1$ in the cases $(7)-(9)$, as $\left(2 D_{0}-H\right) . H \leq \phi(H)$, and $h^{0}\left(2 D_{0}-H\right)=0$ in cases (10)-(11), as $\left(2 D_{0}-H\right) . H \leq 0$. It follows from [KL3, Thm.(iii)-(iv)] that the map $\Phi_{H_{D}, \omega_{D}}$ is surjective.

We next note that $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)] if $h^{1}\left(H-2 D_{0}\right)=h^{1}\left(E_{3}-(4-\beta) E-E_{2}\right)=0$.
Since $\left(E_{3}-E_{2}\right) \cdot H=0$ in cases (9) and (11) we have $h^{0}\left(E_{3}-E_{2}\right)=h^{2}\left(E_{3}-E_{2}\right)=0$, whence $h^{1}\left(E_{3}-E_{2}\right)=0$ by Riemann-Roch. It follows that $\mu_{V_{D}, \omega_{D}}$ is surjective, whence S is nonextendable by [KLM, Prop.5.1] in cases (9) and (11) with $\beta=4$. In the remaining cases we can assume that

$$
\begin{equation*}
h^{1}\left(E_{3}-(4-\beta) E-E_{2}\right)>0 . \tag{12}
\end{equation*}
$$

We next show that $\mu_{V_{D}, \omega_{D}}$ is surjective in case (8). For this we use (3), [KLM, Lemmas5.6 and 6.3(c)] and let $D_{1} \in\left|E+E_{1}\right|$ and $D_{2} \in\left|E+E_{2}\right|$ be general smooth members.

By Claim 4.5 and [KL1, Cor.2.5] we have that $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left(E_{3}\right)=0$, whence $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by [KLM, (14)]. Furthermore $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [KLM, (16)], where one uses that $h^{0}\left(H-D_{0}-D_{2}\right)=h^{0}\left(E_{1}+E_{3}-E_{2}\right) \leq 1$ by Lemma 2.5 since $\left(E_{1}+E_{3}-E_{2}\right) \cdot H<2 \phi(H)$. Hence $\mu_{V_{D}, \omega_{D}}$ is surjective and S is nonextendable by [KLM, Prop.5.1].

Finally we treat the cases (7), (9) (with $\beta=3$) and (10) (with $\beta=4$). Since $\left(E_{3}-(4-\beta) E-E_{2}\right)^{2}=$ -2 and $\left(E_{3}-(4-\beta) E-E_{2}\right) \cdot H=-\phi(H)$ in (7) and (9) (respectively 2 in (10)), we see that RiemannRoch and (12) imply that $E+E_{2}-E_{3}+K_{S}$ is a nodal cycle in (7) and (9) and $E_{3}-E_{2}$ is a nodal cycle in (10). With β as above, it follows that

$$
\begin{equation*}
h^{i}\left(E+E_{2}-E_{3}\right)=0 \text { in (7) and (9) and } h^{i}\left(E_{3}-E_{2}+K_{S}\right)=0 \text { in (10), } i=0,1,2 . \tag{13}
\end{equation*}
$$

We now choose a new $D_{0}:=(\beta-2) E+E_{1}+E_{3}$, which is nef with $\phi\left(D_{0}\right) \geq 2$ and with $H-D_{0}$ base-point free by [KLM, Lemma6.3(a)-(b)]. Then $D_{0}^{2} \geq 8$ with $h^{0}\left(2 D_{0}-H\right)=h^{0}\left(E_{3}-E-E_{2}\right)=0$ in (7) and (9) and $D_{0}^{2}=12$ with $h^{0}\left(2 D_{0}-H\right)=h^{0}\left(E_{3}-E_{2}\right)=1$ in (10), whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)-(iv)]. Now (13) implies $h^{1}\left(H-2 D_{0}\right)=0$, so that $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)] and S is nonextendable by [KLM, Prop.5.1].

We have left the cases (10) and (11) with $\beta=3$, which we treat in Lemmas 4.7 and 4.9.
Lemma 4.7. S is nonextendable in case (10) with $\beta=3$.
Proof. Since $E_{2} \cdot H=6$ one easily finds another decomposition of the same type

$$
\begin{equation*}
H \sim 3 E+2 E_{2}+E_{1}+E_{3}^{\prime}, \text { with } E_{2} \cdot E_{3}^{\prime}=2, \tag{14}
\end{equation*}
$$

and all other intersections equal to one.
We first claim that either E_{1} or E_{2} is nef. In fact $\phi\left(L_{1}\right)=E_{1} \cdot L_{1}=E_{1} \cdot\left(E+2 E_{1}+E_{2}+E_{3}\right)=4=$ $E_{2} . L_{1}$. By (3), if neither E_{1} nor E_{2} are nef, there are two nodal curves R_{1} and R_{2} such that $R_{i} . E=1$ and $E_{i} \equiv E+R_{i}$, for $i=1,2$. But then we get the absurdity $R_{1} \cdot R_{2}=\left(E_{1}-E\right) \cdot\left(E_{2}-E\right)=-1$.

By (14) we can and will from now on assume that we have a decomposition $H \sim 3 E+2 E_{1}+E_{2}+E_{3}$ with E_{2} nef.
Claim 4.8. Either $h^{0}\left(E+E_{3}-E_{2}+K_{S}\right)=0$, or $h^{0}\left(E+E_{2}-E_{3}\right)=0$, or $h^{0}\left(E_{2}+E_{3}-E+K_{S}\right)=0$. Proof. Let $\Delta_{1}:=E+E_{3}-E_{2}+K_{S}, \Delta_{2}:=E+E_{2}-E_{3}$ and $\Delta_{3}:=E_{2}+E_{3}-E+K_{S}$. Assume, to get a contradiction, that $\Delta_{i} \geq 0$ for all $i=1,2,3$. Since $\Delta_{i}^{2}=-2$ we get that $\Delta_{i}>0$ for all $i=1,2,3$. We have $\Delta_{2} \sim 2 E+K_{S}-\Delta_{1}$. Since $\Delta_{1} \cdot H=6$ and $E . H=4$, we can neither have $\Delta_{1} \leq E$ nor $\Delta_{1} \leq E+K_{S}$. Therefore, as E and $E+K_{S}$ have no common components, we must have $\Delta_{1}=\Delta_{11}+\Delta_{12}$ with $0<\Delta_{11} \leq E$ and $0<\Delta_{12} \leq E+K_{S}$ and $\Delta_{11} \cdot \Delta_{12}=0$. Moreover we have $E . \Delta_{11}=E . \Delta_{12}=0$, whence $\Delta_{1 i}^{2} \leq 0$ for $i=1,2$. From $-2=\Delta_{1}^{2}=\Delta_{11}^{2}+\Delta_{12}^{2}$ we must have $\Delta_{1 i}^{2}=0$ either for $i=1$ or for $i=2$. By symmetry we can assume that $\Delta_{11}^{2}=0$. Therefore $\Delta_{11} \equiv q E$ for some $q \geq 1$ by [KL1, Lemma2.1], but $\Delta_{11} \leq E$, whence $\Delta_{11}=E$ and $\Delta_{12}^{2}=-2$. Moreover $\Delta_{12} . H=2$. Now since $E+\Delta_{12} \equiv \Delta_{1} \equiv E+E_{3}-E_{2}$, we get $E_{3} \equiv E_{2}+\Delta_{12}$ and $E_{2} \cdot \Delta_{12}=1$. Hence $\Delta_{3} \sim E_{2}+E_{3}-E+K_{S} \sim\left(E+E_{3}+K_{S}-\Delta_{1}\right)+E_{3}-E+K_{S} \sim 2 E_{3}-\Delta_{1} \sim 2\left(E_{2}+\Delta_{12}\right)-\Delta_{1} \sim$ $2 E_{2}+\Delta_{12}-\Delta_{11}$, therefore

$$
\begin{equation*}
\Delta_{11}+\Delta_{3} \in\left|2 E_{2}+\Delta_{12}\right| . \tag{15}
\end{equation*}
$$

We claim that $\left|2 E_{2}+\Delta_{12}\right|=\left|2 E_{2}\right|+\Delta_{12}$. To see the latter observe that it certainly holds if Δ_{12} is irreducible, for then it is a nodal curve with $E_{2} \cdot \Delta_{12}=1$ (recall that $\left|2 E_{2}\right|$ is a genus one pencil). On the other hand if Δ_{12} is reducible then, using $\Delta_{12} \cdot H=2$ and the ampleness of H we deduce that $\Delta_{12}=R_{1}+R_{2}$ where R_{1}, R_{2} are two nodal curves with $R_{1} \cdot R_{2}=1$. Moreover the nefness of E_{2} allows us to assume that $E_{2} \cdot R_{1}=1$ and $E_{2} \cdot R_{2}=0$. But then $R_{2} \cdot\left(2 E_{2}+\Delta_{12}\right)=-1$ so that R_{2} is a base-component of $\left|2 E_{2}+\Delta_{12}\right|$ and of course R_{1} is a base-component of $\left|2 E_{2}+\Delta_{12}-R_{2}\right|=\left|2 E_{2}+R_{1}\right|$ and the claim is proved.

Since Δ_{11} and Δ_{12} have no common components we deduce from (15) that each irreducible component of $E=\Delta_{11}$ must lie in some element of $\left|2 E_{2}\right|$. The latter cannot hold if E is irreducible for then we would have that $2 E_{2}-E>0$ and $\left(2 E_{2}-E\right) \cdot E_{2}=-1$ would contradict the nefness of E_{2}. Therefore, as is well-known, we have that $E=R_{1}+\ldots+R_{n}$ is a cycle of nodal curves and we can assume, without loss of generality, that $E_{2} \cdot R_{1}=1$ and $E_{2} \cdot R_{i}=0$ for $2 \leq i \leq n$. As we said above, we have $2 E_{2}-R_{1}>0$. Now for $2 \leq i \leq n-1$ we get $R_{i} .\left(2 E_{2}-R_{1}-\ldots-R_{i-1}\right)=-1$, whence $2 E_{2}-R_{1}-\ldots-R_{i}>0$. Therefore $2 E_{2}-R_{1}-\ldots-R_{n-1}>0$ and since $R_{n} .\left(2 E_{2}-R_{1}-\ldots-R_{n-1}\right)=-2$ we deduce that $2 E_{2}-E>0$, again a contradiction.

Conclusion of the proof of Lemma 4.7. We divide the proof into the three cases of Claim 4.8.
Case A: $h^{0}\left(E+E_{3}-E_{2}+K_{S}\right)=0$. Set $D_{0}=2 E+E_{1}+E_{3}$. Then $D_{0}^{2}=12$ and $\phi\left(D_{0}\right)=2$. Moreover D_{0} is nef by Claim 4.5 and [KLM, Lemma6.3(a)] and $H-D_{0} \sim E+E_{1}+E_{2}$ is nef since $E+E_{1}$ and E_{2} are (the first by (3)), so that $\left|H-D_{0}\right|$ is base-point free, since $\phi\left(H-D_{0}\right)=$ $E .\left(H-D_{0}\right)=2$. We have $2 D_{0}-H \sim E+E_{3}-E_{2}$ and since $\left(2 D_{0}-H\right) . H=6<2 \phi(H)=8$, we have $h^{0}\left(2 D_{0}-H\right) \leq 1$ by Lemma 2.5, so that $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)-(iv)]. Clearly $h^{0}\left(H-2 D_{0}\right)=0$ and we also have $h^{2}\left(H-2 D_{0}\right)=h^{0}\left(2 D_{0}-H+K_{S}\right)=h^{0}\left(E+E_{3}-E_{2}+K_{S}\right)=0$ by assumption. Therefore $h^{1}\left(H-2 D_{0}\right)=0$ by Riemann-Roch and $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)]. Hence S is nonextendable by [KLM, Prop.5.1].

Case B: $h^{0}\left(E+E_{2}-E_{3}\right)=0$. We set $D_{0}=E+E_{1}+E_{3}$, so that $D_{0}^{2}=8, \phi\left(D_{0}\right)=2$ and both D_{0} and $H-D_{0} \sim 2 E+E_{1}+E_{2}$ are nef by Claim 4.5 and [KLM, Lemma6.3(a)-(b)], whence base-point free. Since $2 D_{0}-H \sim E_{3}-E-E_{2}$ and $\left(E_{3}-E-E_{2}\right) . H<0$ we have $h^{0}\left(2 D_{0}-H\right)=0$, whence $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)]. Now by hypothesis $h^{0}\left(H-2 D_{0}\right)=0$ and we also have $h^{0}\left(2 D_{0}-H+K_{S}\right)=h^{0}\left(E_{3}-E-E_{2}+K_{S}\right)=0$, and by Riemann-Roch we get $h^{1}\left(H-2 D_{0}\right)=0$ as well. Therefore $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)]. Hence S is nonextendable by [KLM, Prop.5.1].

Case C: $h^{0}\left(E_{2}+E_{3}-E+K_{S}\right)=0$. Set $D_{0}=E+E_{1}+E_{2}+E_{3}$, which is nef (since $E+E_{1}+E_{3}$ is nef by Claim 4.5 and [KLM, Lemma6.3(b)] and E_{2} is nef by assumption) with $D_{0}^{2}=14$ and $\phi\left(D_{0}\right)=3$. Moreover $H-D_{0} \sim 2 E+E_{1}$ is without fixed components. We have $H-2 D_{0} \sim E-E_{2}-E_{3}$ and since $\left(H-2 D_{0}\right) \cdot E=-2$ we have $h^{0}\left(E-E_{2}-E_{3}\right)=0$. By hypothesis we have $h^{2}\left(E-E_{2}-E_{3}\right)=0$, whence $h^{1}\left(H-2 D_{0}\right)=0$ by Riemann-Roch. It follows that $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (12)]. Furthermore, since $2 D_{0}-H \sim E_{2}+E_{3}-E$ and $h^{0}\left(E_{2}+E_{3}-E+K_{S}\right)=0$ we have $h^{0}\left(2 D_{0}-H\right) \leq 1$, and $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(iii)-(iv)]. Hence S is nonextendable by [KLM, Prop.5.1].

Lemma 4.9. S is nonextendable in case (11) with $\beta=3$.
Proof. By Claim 4.5, [KLM, Lemma6.3(d)] and symmetry, and adding K_{S} to both E_{2} and E_{3} if necessary, we can assume that $\left|E+E_{2}\right|$ is base-component free.

Now set $D_{0}=2 E+2 E_{1}+E_{3}$. Then $D_{0}^{2}=16$ and $\phi\left(D_{0}\right)=3$. Hence (3) and [KLM, Lemma6.3(b)] give that D_{0} is nef and $H-D_{0} \sim E+E_{2}$ is base-component free. We have $H-2 D_{0} \sim-\left(2 E_{1}+E+\right.$ $E_{3}-E_{2}$) and we now prove that $h^{0}\left(2 D_{0}-H\right)=2$ and $h^{1}\left(H-2 D_{0}\right)=0$. To this end, by [KL1, Cor.2.5] and Riemann-Roch, we just need to show that $B:=2 E_{1}+E+E_{3}-E_{2}$ is quasi-nef. Let $\Delta>0$ be such that $\Delta^{2}=-2$ and $\Delta . B \leq-2$. By [KL2, Lemma2.3] we can write $B \sim B_{0}+k \Delta$ where $k=-\Delta . B \geq 2$, $B_{0}>0$ and $B_{0}^{2}=B^{2}=2$. Now $2=E . B=E \cdot B_{0}+k E . \Delta \geq 1+2 E . \Delta$, therefore $E . \Delta=0$. The
ampleness of H implies that $E_{2} \cdot \Delta \geq 2$, giving the contradiction $4=E_{2} \cdot B=E_{2} \cdot B_{0}+k E_{2} \cdot \Delta \geq 5$. Therefore B is quasi-nef.

Let $D \in\left|D_{0}\right|$ be a general curve. By [KL2, Cor.1] we know that $\operatorname{gon}(D)=2 \phi\left(D_{0}\right)=6$ whence $\operatorname{Cliff}(D)=4$, as D has genus 9 [ELMS, $\S 5$]. Therefore the map $\Phi_{H_{D}, \omega_{D}}$ is surjective by [KL3, Thm.(v)]. Also $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (13)] and S is nonextendable by [KLM, Prop.5.1].
4.3. The case $M_{2}^{2}=4$. We write $M_{2}=E_{2}+E_{3}$ as in Lemma 3.1(b).
4.3.1. $\beta=2$. By Lemma 3.1 we have $\left(E . E_{2}, E \cdot E_{3}\right)=(1,2)$ and the four cases $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=$ $(1,2),(2,1),(2,2)$ and $(1,3)$. Note that in all cases $E_{2} \cdot H<2 \phi(H)=10$, whence E_{2} is quasi-nef by Lemma 2.5.
If $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,2)$ we claim that either $E+E_{2}$ or $E_{1}+E_{2}$ is nef. Indeed if there is a nodal curve Γ such that $\Gamma .\left(E+E_{2}\right)<0$ then $\Gamma . E_{2}=-1$ and $\Gamma . E=0$. By [KLM, Lemma6.3(a)] we have $\Gamma . E_{1}>0$, so that $E_{2} \equiv E_{1}+\Gamma$ and $E_{1}+E_{2} \equiv 2 E_{1}+\Gamma$ is nef. By symmetry the same arguments work if there is a nodal curve Γ such that $\Gamma .\left(E_{1}+E_{2}\right)<0$ and the claim is proved.

By symmetry between E and E_{1} we can now assume that $E+E_{2}$ is nef. Setting $A:=H-2 E-2 E_{2}$ we have $A^{2}=0$. As $E \cdot A=3$ and $E_{2} \cdot A=4$ we have that $A>0$ is primitive and S is nonextendable by [KLM, Lemma5.5(iii-b)].

If $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(2,1)$ one easily sees that $H \sim 2\left(E_{1}+E_{2}\right)+A$, with $A^{2}=0, E_{1} \cdot A=1$ and $E_{2} . A=4$. Then $A>0$ is primitive, $E_{1}+E_{2}$ is nef by [KLM, Lemma6.3(e)] and S is nonextendable by [KLM, Lemma5.5(ii)].

If $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,3)$ we have $\left(E_{1}+E_{3}\right)^{2}=6$ and we can write $E_{1}+E_{3} \sim A_{1}+A_{2}+A_{3}$ with $A_{i}>0, A_{i}^{2}=0$ and $A_{i} \cdot A_{j}=1$ for $i \neq j$. Then $E \cdot A_{i}=E_{1} \cdot A_{i}=E_{2} \cdot A_{i}=E_{3} \cdot A_{i}=1$ and $A_{i} \cdot H=6$.

We now claim that either A_{i} is nef or $A_{i} \equiv E+\Gamma_{i}$ for a nodal curve Γ_{i} with $\Gamma_{i} \cdot E=1$. In particular, at least two of the A_{i} 's are nef. If there is a nodal curve Γ with $\Gamma . A_{i}<0$, then since $A_{i} \cdot L_{1}=4=\phi\left(L_{1}\right)$ we must have $\Gamma . L_{1} \leq 0$, whence $\Gamma . E>0$ by the ampleness of H and the first statement immediately follows. If two of the A_{i} 's are not nef, say $A_{1} \equiv E+\Gamma_{1}$ and $A_{2} \equiv E+\Gamma_{2}$ then $1=A_{1} \cdot A_{2}=\left(E+\Gamma_{1}\right) \cdot\left(E+\Gamma_{2}\right)=2+\Gamma_{1} \cdot \Gamma_{2}$ yields the contradiction $\Gamma_{1} \cdot \Gamma_{2}=-1$ and the claim is proved.

We can therefore assume that A_{1} and A_{2} are nef. Let $A=H-2 A_{1}-2 A_{2}$. Then $A^{2}=0$ and $E \cdot A=1$, whence $A>0$ is primitive. As $A_{1} \cdot A=A_{2} \cdot A=4$ and $\phi(H)=5$, we have that S is nonextendable by [KLM, Lemma5.5(iii-b)].

If $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(2,2)$, note first that $E_{1}+E_{2}$ is nef by [KLM, Lemma6.3(e)]. Set $A:=$ $H-2 E_{1}-2 E_{2}$. Then $A^{2}=0$ and $A \cdot E=1$, so that $A>0$ is primitive. As $\left(E_{1}+E_{2}\right) \cdot A=6$, we have that S is nonextendable by [KLM, Lemma5.5(ii)].
4.3.2. $\beta=3$. By Lemma 3.1 we have $\left(E \cdot E_{2}, E \cdot E_{3}\right)=(1,2)$ and $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,3)$ or $(2,1)$.

We first show that E_{i} is quasi-nef for $i=2,3$. We have $H . E_{2} \leq 9<2 \phi(H)=10$, whence E_{2} is quasi-nef by Lemma 2.5. Now let $\Delta>0$ be such that $\Delta^{2}=-2$ and $\Delta . E_{3} \leq-2$. By [KL2, Lemma2.3] we can write $E_{3} \sim A+k \Delta$, for $A>0$ primitive with $A^{2}=0, k=-\Delta \cdot E_{3}=\Delta . A \geq 2$. If $\Delta . E>0$, from $E \cdot E_{3}=E \cdot A+k \Delta . E$ we get that $k=2, \Delta \cdot E=1$ and $E \cdot A=0$, whence the contradiction $E \equiv A$. Hence $\Delta . E=0$. We get the same contradiction if $\Delta . E_{2}>0$. Hence, by the ampleness of H we must have $\Delta \cdot E_{1} \geq 2$, but this gives the contradiction $E_{1} \cdot E_{3}=E_{1} \cdot A+k \Delta \cdot E_{1} \geq 4$. Hence also E_{3} is quasi-nef.

We now treat the case $\left(E_{1} \cdot E_{2}, E_{1} \cdot E_{3}\right)=(1,3)$.
Let $D_{0}=2 E+E_{1}+E_{2}$. Then $D_{0}^{2}=10, \phi\left(D_{0}\right)=2$ and D_{0} and $H-D_{0} \sim E+E_{1}+E_{3}$ are base-point free by [KLM, Lemma6.3 (a)-(b)]. Moreover $2 D_{0}-H \sim E+E_{2}-E_{3}$, and since $\left(2 D_{0}-H\right) \cdot E=-1$, we have $h^{0}\left(2 D_{0}-H\right)=0$ and it follows from [KL3, Thm.(iii)] that the map $\Phi_{H_{D}, \omega_{D}}$ is surjective.

After possibly adding K_{S} to both E_{2} and E_{3}, we can assume, by (3) and [KLM, Lemma6.3(c)], that the general members of both $\left|E+E_{1}\right|$ and $\left|E+E_{2}\right|$ are smooth irreducible curves. Let $D_{1} \in\left|E+E_{1}\right|$ and $D_{2} \in\left|E+E_{2}\right|$ be two such curves. By [KL1, Cor.2.5] we have $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left(E_{3}\right)=0$, whence $\mu_{V_{D_{1}}, \omega_{D_{1}}}$ is surjective by [KLM, (14)].

We now claim that $h^{0}\left(E_{1}+E_{3}-E_{2}\right) \leq 2$. Indeed, assume that $h^{0}\left(E_{1}+E_{3}-E_{2}\right) \geq 3$. Then $\left|E_{1}+E_{3}-E_{2}\right|=|M|+G$, with G the base-component and $|M|$ base-component free with $h^{0}(M) \geq 3$. If $M^{2}=0$, then $M \sim l P$, for an elliptic pencil P and an integer $l \geq 2$. But then $14=\left(E_{1}+\right.$ $\left.E_{3}-E_{2}\right) \cdot H=(l P+G) \cdot H \geq l P . H \geq 4 \phi(H)=20$, a contradiction. Hence $M^{2} \geq 4$, but since $M . H \leq\left(E_{1}+E_{3}-E_{2}\right) \cdot H=14$, this contradicts the Hodge index theorem.

Therefore we have shown that $h^{0}\left(E_{1}+E_{3}-E_{2}\right) \leq 2$ and $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [KLM, (16)]. By [KLM, Lemma5.6], $\mu_{V_{D}, \omega_{D}}$ is surjective and by [KLM, Prop.5.1], S is nonextendable.

Next we treat the case $\left(E_{1} \cdot E_{2} \cdot E_{1} \cdot E_{3}\right)=(2,1)$.
Let $D_{0}=2 E+E_{1}+E_{3}$. Then $D_{0}^{2}=14, \phi\left(D_{0}\right)=3$ and D_{0} and $H-D_{0} \sim E+E_{1}+E_{2}$ are base-point free by [KLM, Lemma6.3(a)-(b)]. Moreover $2 D_{0}-H \sim E+E_{3}-E_{2}$, and since $E+E_{3}$ is nef by $\left[\mathrm{KLM}\right.$, Lemma6.3(c)] and $\left(2 D_{0}-H\right) \cdot\left(E+E_{3}\right)=\left(E+E_{3}-E_{2}\right) \cdot\left(E+E_{3}\right)=$ 1, we get that $h^{0}\left(2 D_{0}-H\right) \leq 1$. It follows from [KL3, Thm.(iii)-(iv)] that the map $\Phi_{H_{D}, \omega_{D}}$ is surjective. Let $D_{1} \in\left|E+E_{1}\right|$ and $D_{2} \in\left|E+E_{3}\right|$ be two general members. By [KL1, Cor.2.5] we have that $h^{1}\left(H-D_{0}-D_{1}\right)=h^{1}\left(E_{2}\right)=0$, whence $\mu_{V_{D_{1}}, \omega_{D_{1}}}=\mu_{\mathcal{O}_{D_{1}}\left(H-D_{0}\right), \omega_{D_{1}}}$. Since $\omega_{D_{1}}$ is a base-point free pencil we get that $\mu_{\mathcal{O}_{D_{1}\left(H-D_{0}\right)}, \omega_{D_{1}}}$ is surjective by the base-point free pencil trick because $\operatorname{deg}\left(\mathcal{O}_{D_{1}}\left(H-D_{0}-D_{1}+K_{S}\right)\right)=3$, whence $h^{1}\left(\mathcal{O}_{D_{1}}\left(H-D_{0}-D_{1}+K_{S}\right)\right)=0$. We have $\left(E_{1}+E_{2}-E_{3}\right) \cdot H=5=\phi(H)$, whence $h^{0}\left(E_{1}+E_{2}-E_{3}\right) \leq 1$ and $\mu_{V_{D_{2}}, \omega_{D_{2}}\left(D_{1}\right)}$ is surjective by [KLM, (16)]. By [KLM, Lemma5.6], $\mu_{V_{D}, \omega_{D}}$ is surjective and, by [KLM, Prop.5.1], S is nonextendable.
4.4. The case $M_{2}^{2}=6$. By Lemma 3.1 we have $\beta=2$ and $M_{2}=E_{2}+E_{3}+E_{4}$ as in that lemma. We note that E_{1}, E_{2} and E_{3} are nef by Lemma 2.5 and E_{4} is quasi-nef by the same lemma.

By the ampleness of H it follows that $D_{0}:=E+E_{1}+E_{2}+E_{3}+E_{4}$ is nef with $D_{0}^{2}=24$, $\phi\left(D_{0}\right)=4$ and $H-D_{0} \sim E+E_{1}$ is base-component free. Since $H-2 D_{0} \sim-\left(E_{2}+E_{3}+E_{4}\right)$ we have $h^{1}\left(H-2 D_{0}\right)=0$ by [KL1, Cor.2.5] and $h^{0}\left(2 D_{0}-H\right)=4$ by Riemann-Roch. Then $\mu_{V_{D}, \omega_{D}}$ is surjective by [KLM, (13)] and so is $\Phi_{H_{D}, \omega_{D}}$ by [KL3, Thm.(v)], since gon $(D)=8$ by [KL2, Cor.1], whence Cliff $D=6$ by [ELMS, $\S 5$], as $g(D)=13$. Hence S is nonextendable by [KLM, Prop.5.1].

References

[Ba] L. Bayle. Classification des variétés complexes projectives de dimension trois dont une section hyperplane générale est une surface d'Enriques. J. Reine Angew. Math. 449, (1994) 9-63.
[CLM1] C. Ciliberto, A. F. Lopez, R. Miranda. Projective degenerations of K3 surfaces, Gaussian maps, and Fano threefolds. Invent. Math. 114, (1993) 641-667.
[CLM2] C. Ciliberto, A. F. Lopez, R. Miranda. Classification of varieties with canonical curve section via Gaussian maps on canonical curves. Amer. J. Math. 120, (1998) 1-21.
$[\mathrm{CM}] \quad$ A. Conte, J. P. Murre. Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12, (1985) 43-80.
[C] F. Cossec. On the Picard group of Enriques surfaces. Math. Ann. 271, (1985) 577-600.
[CD] F. R. Cossec, I. V. Dolgachev. Enriques Surfaces I. Progress in Mathematics 76. Birkhäuser Boston, MA, 1989.
[ELMS] D. Eisenbud, H. Lange, G. Martens, F-O. Schreyer. The Clifford dimension of a projective curve. Compositio Math. 72, (1989) 173-204.
[F] G. Fano. Sulle varietà algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno. Memorie Soc. dei XL 24, (1938) 41-66.
[I1] V. A. Iskovskih. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41, (1977) 516-562, 717.
[I2] V. A. Iskovskih. Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat. 42, (1978) 506-549.
$[\mathrm{KLM}]$ A. L. Knutsen, A. F. Lopez, R. Muñoz. On the extendability of projective surfaces and a genus bound for Enriques-Fano threefolds. To appear on J. Differential Geom.
[KL1] A. L. Knutsen, A. F. Lopez. A sharp vanishing theorem for line bundles on K3 or Enriques surfaces. Proc. Amer. Math. Soc. 135 (2007), 3495-3498.
[KL2] A. L. Knutsen, A. F. Lopez. Brill-Noether theory of curves on Enriques surfaces. I. The positive cone and gonality. Math. Z. 261, (2009) 659-690.
[KL3] A. L. Knutsen, A. F. Lopez. Surjectivity of Gaussian maps for curves on Enriques surfaces. Adv. Geom. 7, (2007) 215-247.
[L] S. L'vovsky. Extensions of projective varieties and deformations. I. Michigan Math. J. 39, (1992) 41-51.
[MM] S. Mori, S. Mukai. Classification of Fano 3-folds with $B_{2} \geq 2$. Manuscripta Math. 36, (1981/82) 147-162. Erratum: "Classification of Fano 3-folds with $B_{2} \geq 2 "$. Manuscripta Math. 110, (2003) 407.
[P] Yu. G. Prokhorov. On Fano-Enriques varieties. Mat. Sb. 198 (2007), 117-134.
[Sa] T. Sano. On classification of non-Gorenstein \mathbb{Q}-Fano 3-folds of Fano index 1. J. Math. Soc. Japan 47, (1995) 369-380.
[W] J. Wahl. Introduction to Gaussian maps on an algebraic curve. Complex Projective Geometry, Trieste-Bergen 1989, London Math. Soc. Lecture Notes Ser. 179. Cambridge Univ. Press, Cambridge 1992, 304-323.
[Z] F. L. Zak. Some properties of dual varieties and their applications in projective geometry. Algebraic geometry (Chicago, IL, 1989), 273-280. Lecture Notes in Math. 1479. Springer, Berlin, 1991.

Andreas Leopold Knutsen, Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway. e-mail andreas.knutsen@math.uib.no

Angelo Felice Lopez, Dipartimento di Matematica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy. e-mail lopez@mat.uniroma3.it.

Roberto Muñoz, ESCet, Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain. e-mail roberto.munoz@urjc.es

[^0]: * Research partially supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme.
 ** Research partially supported by the MIUR national project "Geometria delle varietà algebriche" COFIN 20022004.
 *** Research partially supported by the MCYT project BFM2003-03971.
 2000 Mathematics Subject Classification : Primary 14J30, 14J28. Secondary 14J29, 14J99.

