
ON THE EXISTENCE OF ENRIQUES-FANO THREEFOLDS

OF INDEX GREATER THAN ONE

LUIS GIRALDO* ANGELO FELICE LOPEZ**

Departamento de Álgebra Dipartimento di Matematica
Universidad Complutense de Madrid Università di Roma Tre

Avenida Complutense, s/n Largo San Leonardo Murialdo 1
28040 Madrid, Spain 00146 Roma, Italy

e-mail giraldo@eucmax.sim.ucm.es e-mail lopez@matrm3.mat.uniroma3.it

AND

ROBERTO MUÑOZ∗
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1. INTRODUCTION

In the first half of the previous century Fano [Fa1-6] pioneered the study of higher di-

mensional algebraic varieties by studying projective threefolds whose curve section is a

canonical curve. These varieties, and more generally Fano varieties, that is varieties with

ample anticanonical bundle, have since then been studied by many authors and a classifi-

cation has been achieved in dimension three ([I1-4], [MM]). In the former case the surface

section is a K3 surface and it seems therefore interesting to study the threefolds whose sur-

face section is some other surface of Kodaira dimension zero. While in the case of abelian

or hyperelliptic surfaces there is no irreducible threefold (different from a cone) having

them as hyperplane sections (Remark (3.12)), when the surface section is an Enriques

surface a complete classification has not been achieved yet.
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Definition (1.1). Let X ⊂ IPN be an irreducible threefold having a hyperplane section

Y that is a smooth Enriques surface and such that X is not a cone over Y . X is called an

Enriques-Fano threefold.

Observe that an equivalent definition is to assume that a general hyperplane section is a

smooth Enriques surface. Fano himself in 1938 [Fa6] (see also the papers of Godeaux [Go1-

4]) published an article in which he claimed a classification of Enriques-Fano threefolds, but

his proof contains many gaps. Conte and Murre [CoMu] (see also [Co1-2]) first remarked

that an Enriques-Fano threefold X must be singular (with isolated singularities), and with

some assumptions on the nature of them, filled out some of these gaps. They proved that X

has eight quadruple points whose tangent cone is a cone over the Veronese surface (proved

also by Alexeev [Al] under the hypothesis of terminal singularities) and that X carries a

birational system of K3 surfaces whose image is a Fano threefold. After the blossoming

of Mori theory the problem of classifying Enriques-Fano threefolds was studied by several

authors and, at least with some strong hypotheses on the singularities, a list was given

by Bayle [Ba] and Sano [Sa1]. Precisely ([P]), let X be a projective threefold with only

log-terminal singularities and assume that −KX is numerically equivalent to an ample

Cartier divisor H and that |H| contains a smooth Enriques surface. Then n(KX + H)

is linearly equivalent to zero for some n > 0 and one can construct a cyclic covering

X̃ → X with X̃ a Fano threefold with Gorenstein canonical singularities. Under the

additional assumption that X̃ is smooth (which is equivalent to X having only terminal

cyclic quotient singularities), using Mori and Mukai’s classification of Fano threefolds with

B2 ≥ 2 [MM], Bayle and Sano gave a complete list of such Enriques-Fano threefolds. Some

other interesting results on Enriques-Fano threefolds are given in the works of Cheltsov,

namely that such a threefold is rational [Ch2], is either a retraction of a cone or has

canonical singularities [Ch1], and in this last case the genus of a curve section is at most

47 [Ch3] (in analogy with the case of Fano threefolds).

On the other hand the introduction of Gaussian maps and Zak’s theorem has allowed

recently to give, with very simple proofs, a classification of smooth Fano threefolds with

very ample anticanonical bundle and more generally of Mukai varieties, that is projective

varieties of any dimension with canonical curve section [CLM1-2]. The main theme in these
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papers was to compute the corank of the Wahl map ΦωC
:
∧2

H0(C,ωC)→ H0(C,ω⊗3C ) of

a hyperplane section C of a general K3 surface. Then Zak’s theorem was used to exclude

the existence of Mukai varieties of dimension n ≥ corkΦωC
+ 2. The corank of ΦωC

was

then used to calculate the dimension of the Hilbert scheme of the remaining cases and

they were classified. An important role in the problem of classifying Fano threefolds is

played by its index, that is the largest integer dividing the anticanonical bundle in the

Picard group. One common feature of all the proofs ([I1-2], [Mu], [CLM2]) has been that

the larger the index the easiest the proof. It seemed therefore reasonable to us that the

same approach, applied to Enriques surfaces and Prym-canonical curves, that is curves

embedded with ωC ⊗ η, where η is a 2-torsion line bundle, should give similar results at

least for index greater than one (see below). To do that it was necessary to calculate the

corank of Gaussian maps of type ΦωC⊗η,ωr
C
⊗ηr−1 . While the known results on Gaussian

maps did not give an answer, we realized that any calculation of the corank of such maps,

for example with the methods of [BEL], should take into consideration the Clifford index

of C and ultimately the fact that, when C is hyperplane section of an Enriques surface

S, if a Gaussian map as above is not surjective then S must have many trisecant lines

and four-secant 2-planes. We therefore studied this problem with the usual Reider-type

methods (section 2), relating the existence of many trisecant lines and four-secant 2-planes

to the gonality and Clifford index of C, and then to the calculation of the cohomology

of the normal bundle of S (section 3) in order to apply Zak’s theorem. This led to the

following very simple result on the nonexistence of Enriques-Fano threefolds of (integer)

index greater than one (for an extension see Remark (3.13)).

Theorem (1.2). Let X ⊂ IPN be an irreducible nondegenerate threefold such that X

has a smooth hyperplane section Y which is the r-th Veronese embedding, for r ≥ 2, of a

linearly normal Enriques surface S ⊂ IP g−1. Then X is a cone over Y .

A few remarks on the index are in order. Suppose that X is a Q-Fano n-fold, that is

a normal n-dimensional variety with terminal singularities and ample anticanonical Weil

divisor. Let a be the least positive integer such that −aKX is Cartier and b the largest

positive integer dividing −aKX in the Picard group of X. Then b/a is called the Fano index
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of X. In [Sa2] Sano classified non-Gorenstein Q-Fano n-folds with a > 1 and b/a > n− 2

(for n ≥ 3) and in particular proved that, under the same assumptions above, a and

b are coprime. On an Enriques-Fano threefold X with hyperplane section H we have

−2KX = 2H and if we let H = r∆ with r maximal, we get a = 2, b = 2r, hence, Sano’s

result gives also a proof of our Theorem (1.2) when X has terminal singularities. On the

other hand, while we assume that ∆|H is very ample and r ≥ 2, in our theorem we have no

assumptions whatsoever on the singularities (also note that by Reider’s theorem [R] ∆|H

is automatically very ample if H3 ≥ 10r2 unless ∆|H is one of the linear systems listed in

[CD1, Prop. 3.6.1, 3.6.2 and 3.6.3]). In the work of Bayle [Ba] and Sano [Sa1] is instead

studied the case of Fano index one and cyclic quotient terminal singularities.

Besides of the application to the existence of Enriques-Fano threefolds our work on trisecant

lines to Enriques surfaces has proved useful also to study the ideal of an Enriques surface.

In [GLM] it was proved that any smooth linearly normal Enriques surface has homogeneous

ideal generated by quadrics and cubics. Here we are able to specify when the quadrics are

enough, at least scheme-theoretically.

Theorem (1.3). Let S ⊂ IP g−1 be a smooth linearly normal nondegenerate Enriques

surface with g ≥ 11.

(1.4) If S does not contain a plane cubic curve then S is scheme-theoretically cut out by

quadrics;

(1.5) If S contains a plane cubic curve then there are exactly two of them and the intersec-

tion of the quadrics containing S is the union of S and the two planes in which the cubic

curves lie.

By [GLM, Thm. 1.1] any linearly normal Enriques-Fano threefold X ⊂ IPN is arithmeti-

cally Cohen-Macaulay (this was also one of the assumptions in [CoMu]) except when N = 6

and Y = X ∩H is embedded with a Reye polarization. A trivial consequence of Theorem

(1.3) is that, if N ≥ 11 and the general hyperplane section through any point p 6∈ X

does not contain a plane cubic curve, then X is furthermore set-theoretically cut out by

quadrics.

Finally in Remark (3.13) we give a small extension of Theorem (1.2) to other embeddings
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(not Veronese) and in Corollary (3.14) a consequence about Gaussian maps on Enriques

surface sections.

2. TRISECANT LINES TO ENRIQUES SURFACES

This section will consist of two parts. In the first one we study trisecant lines to Enriques

surfaces S ⊂ IP g−1, essentially relating their existence to the existence of plane cubic curves

on S. This will be accomplished by vector bundle techniques such as the Bogomolov-Reider

method. The second part will be a description of the embedding linear systems when S

contains cubic or quartic elliptic half pencils.

We denote by ∼ (respectively ≡) the linear (respectively numerical) equivalence of divisors

on S. Unless otherwise specified for the rest of the article we will denote by E (or E1 etc.)

divisors such that |2E| is a genus one pencil on S, while nodal curves will be denoted by

R (or R1 etc.).

Proposition (2.1). Let S ⊂ IP g−1 be a smooth irreducible linearly normal Enriques

surface and let C = S ∩H be a smooth hyperplane section of S.

(2.2) If S contains a plane cubic curve E then C has a trisecant line L such that L ∩E =

C ∩ E. Vice versa, if C has a trisecant line L and g ≥ 8 then S contains a plane cubic

curve E such that L ∩ E = C ∩ E;

(2.3) If C has a trisecant line, then it has a g16 ; if g ≥ 18 the converse holds;

(2.4) Suppose that S does not contain a plane cubic curve and that g ≥ 11. Let P ∈ C be

a general point and let C ⊂ IPH0(OC(H − P )) = IP g−3 be the projection of C from P .

Then C has no trisecant lines.

Proof. If S contains a plane cubic curve E then H does not contain the IP 2 =< E > span

of E, hence L = H∩ < E > is a trisecant line to C such that L ∩ E = C ∩ E.

Vice versa suppose there is a zero-dimensional subscheme Z ⊂ C of degree 3 defining the

trisecant line L. We are going to apply Reider’s method [R]. Of course Z is in special

position with respect to OS(1) = OS(C + KS + KS), hence by [GH, Prop. 1.33] there

exists a rank two vector bundle E sitting in an exact sequence

(2.5) 0→ OS → E → IZ ⊗OS(C +KS)→ 0
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and its Chern classes are c1(E) = C + KS , c2(E) = degZ = 3. The discriminant of E is

then ∆(E) = c1(E)2 − 4c2(E) = 2g − 14 > 0 and hence E is Bogomolov unstable [Bo], [R].

Therefore there exist two line bundles A and B on S and a zero-dimensional subscheme

Z1 ⊂ S such that

(2.6) 0→ A→ E → IZ1
⊗B → 0

and with c1(E) = A+B, c2(E) = A ·B+degZ1. Moreover A−B lies in the positive cone of

S, that is (A−B) ·D > 0 for every ample D and (A−B)2 = ∆(E) + 4degZ1 > 0. We now

claim that A and B are effective, non trivial and h0(IZ ⊗ B) > 0. To see this notice first

that (A+B)2 = C2 = 2g−2, hence 2A ·B = 2g−2−A2−B2; (A−B)2 ≥ ∆(E) = 2g−14,

hence A2 + B2 ≥ 2g − 8. Also 0 < (A − B) · C = (A − B) · (A + B) = A2 − B2, that

is A2 > B2. If we had A2 ≤ 0, then B2 ≤ −2 and hence 2g − 8 ≤ −2, a contradiction.

Therefore A2 ≥ 2. Note that A · C ≥ 0, otherwise A · C < 0, B · C < 0, but then

both A and B are not effective and (2.6) gives h0(E) = 0, contradicting (2.5). Therefore

h2(A) = 0 and h0(A) ≥ 2 by the Riemann-Roch theorem. Tensoring (2.5) by OS(−A) we

get h0(IZ ⊗B) ≥ h0(E(−A)) ≥ 1 by (2.6) and the claim is proved.

Now we will see that the claim implies A · B = 3, B2 = 0. The latter will then conclude

the proof of (2.2) since C · B = 3, hence B is a cubic of arithmetic genus one, that is a

plane cubic. Moreover in this case L =< Z >= H∩ < B >, hence L ∩B = C ∩B.

Choose B′ ∈ |IZ ⊗B|. Since C is not a component of B′ and both C and B′ contain Z we

have 3 ≤ B′·C = B·C = B·(A+B) = A·B+B2, therefore B2 ≥ 3−A·B = degZ1 ≥ 0. Now

A−B lies in the positive cone of the Neron-Severi group of S and B in its closure, hence the

signature theorem implies that (A−B)·B > 0 ([BPV, VIII.1]). If it were B2 ≥ 2, we would

have 3 = c2(E) = A · B + degZ1 ≥ A · B > B2 ≥ 2, that is A · B = 3, B2 = 2,degZ1 = 0,

but then the Hodge index theorem applied to A− B and B would give the contradiction

4g − 28 = 2∆(E) = (A − B)2B2 ≤ ((A − B) · B)2 = 1. Therefore we have B2 = 0 and

hence A ·B = 3. This proves (2.2).

To see (2.3) suppose first that C has a trisecant line spanned by a zero-dimensional sub-

scheme Z ⊂ C of degree 3. Since h0(OC(1)(−Z)) = g−3 then, setting η = (KS)|C , by the

Riemann-Roch theorem and Serre duality we get h0(OC(Z+η)) = 1. Then there exists an
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effective divisor Z ′ of degree 3 such that Z+η ∼ Z ′, where ∼ denotes linear equivalence on

C. Moreover, as η 6∼ 0, we get 2Z ∼ 2Z ′, Z 6= Z ′, hence C has a g16 . In the other direction,

setting gon(C) for the gonality of C, by [GLM, Thm. 1.4] we have that gon(C) = 6 and

that S contains a plane cubic curve, hence C has a trisecant line.

To prove (2.4) suppose to the contrary that for the general point P ∈ C the projection

from P , C ⊂ IP g−3, has a trisecant line spanned by some zero-dimensional subscheme

Z ⊂ C of degree 3. This means that there is a a zero-dimensional subscheme Z ⊂ C

of degree 3 such that h0(OC(H − P − Z)) = g − 4. We claim that the zero-dimensional

subscheme ZP = Z ∪ {P} is in special position with respect to OS(1). Notice that ZP

spans a IP 2, hence the map H0(OS(1)) → H0(OZP
(1)) is not surjective, and in fact

h0(IZP /S(1)) = g − 3. Let Z ′ ⊂ ZP be a subscheme of degree 3. If h0(IZ′/S(1)) > g − 3

then, for any Z ′′ ⊂ Z ′ of degree 2, we get h0(IZ′/S(1)) = h0(IZ′′/S(1)) = g − 2, that is Z ′

gives a trisecant line to C and then S contains a plane cubic curve by (2.2), a contradiction.

Therefore we have proved that ZP is in special position with respect to OS(1). As above

there exists a rank two vector bundle E sitting in an exact sequence

(2.7) 0→ OS → E → IZP
⊗OS(C +KS)→ 0

with Chern classes c1(E) = C+KS , c2(E) = degZP = 4 and discriminant ∆(E) = 2g−18 >

0. Hence E is Bogomolov unstable and we can find two line bundles A and B on S and a

zero-dimensional subscheme Z1 ⊂ S such that

(2.8) 0→ A→ E → IZ1
⊗B → 0

and with c1(E) = A + B, c2(E) = A · B + degZ1, A − B lying in the positive cone of S,

(A−B)2 = ∆(E) + 4degZ1 > 0.

Again we claim that A and B are effective, non trivial, that there exists an effective divisor

BP ∈ |B| containing ZP and that A·B = 4, B2 = 0. First we notice that (A−B)2 ≥ 2g−18,

hence A2 +B2 ≥ 2g− 10. Also A2 > B2, hence A2 ≥ 2 and A ·C ≥ 0, as h0(E) > 0. Then

h0(A) ≥ 2 and (2.7), (2.8) give h0(IZP
⊗B) ≥ h0(E(−A)) ≥ 1. Now choose B′ ∈ |IZP

⊗B|.

Then 4 ≤ B′ · C = B · (A+ B) = A · B + B2, therefore B2 ≥ 4− A · B = degZ1 ≥ 0. As

above (A−B) ·B > 0, hence it cannot be B2 ≥ 2, else 4 = A ·B+degZ1 ≥ A ·B > B2 ≥ 2,
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that is A ·B = 3, 4 and B2 = 2. But then the Hodge index theorem applied to A−B and

B gives g ≤ 10. Therefore we have B2 = 0, A ·B = 4. In particular B ·C = B ·(A+B) = 4.

We now show that this implies that C has a g14 , contradicting as above [GLM, Thm. 1.4].

Indeed, the exact sequence

0→ OS(B − C)→ OS(B)→ OC(B)→ 0

shows that h0(OC(B)) ≥ h0(OS(B)), since (B − C) · C = −2g + 6 < 0. Now either

h0(OS(B)) ≥ 2 and then it cuts out a g14 on C or h0(OS(B)) = 1 and hence |IZP
(B)| =

{BP }. Thus we have proved that there is an open subset U of C such that for every

P ∈ U and for every effective divisor Z on C of degree 3 whose projection from P gives a

trisecant line, there is a well-defined effective divisor BP on S with ZP = Z ∪ {P} ⊂ BP .

Let Y ⊂ C(4) be the subset of the fourth symmetric product of C described by these divisors

ZP . Define a map ψ : Y → Pic(S) by ψ(ZP ) = OS(BP ). Since Pic(S) is a countable set

then there exists a line bundle L ∈ Imψ such that the set ψ−1(L) is uncountable. Therefore

OS(BP ) = L for every element ZP in ψ−1(L). Since |OS(BP )| = {BP }, this means that

C is a component of BP . But this is not possible since if BP = C + D with D effective,

we have the contradiction 4 = C ·B ≥ 2g − 2.

Let us now recall an important result about the Enriques lattice. Let B be a nef line

bundle on S with B2 > 0 and set

Φ(B) = inf{B · E : |2E| is a genus one pencil}.

Then by [CD1, Cor. 2.7.1, Prop. 2.7.1 and Thm. 3.2.1] (or [Co, 2.11]) we have Φ(B) ≤

[
√
B2], where [x] denotes the integer part of a real number x. In particular, if C is very

ample on S, we have 3 ≤ Φ(C) ≤ [
√

2g − 2] and g ≥ 6.

Remark (2.9). When 6 ≤ g ≤ 8 any smooth irreducible Enriques surface S ⊂ IP g−1

contains plane cubic curves, because there are always genus one pencils |2E| on S with E

of degree 3. On the other hand it is easy to construct examples of S ⊂ IP g−1 containing

plane cubic curves for every large g.

As we have seen in Proposition (2.1) and in Remark (2.9) the existence of trisecant lines

to an Enriques surface S ⊂ IP g−1 depends on the existence of genus one pencils on S with
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low degree. In fact when such a pencil is present on S the embedding linear system |C| can

be decomposed as sum of suitable divisors and this fact will be useful in the next section.

We will therefore proceed to find these decompositions.

Lemma (2.10). Let S ⊂ IP g−1 be a smooth irreducible linearly normal Enriques surface,

C a smooth hyperplane section. Set ε = 0, 1 and suppose that Φ(C) = 3 + ε and let |2E|

be a genus one pencil on S such that C · E = 3 + ε.

(2.11) If g = 8 or g ≥ 9+ε then either H1(C−2E) = H1(2C−4E) = 0 or C ∼ ∆+M+KS

withM nef,M2 > 0, C ·M > 0,∆2 > 0, |∆| base-component free and either C ·∆ ≥ ∆2+5

or C ·∆ = ∆2 + 4 with ∆ not hyperelliptic.

(2.12) If ε = 1, g = 9 or ε = 0, 6 ≤ g ≤ 7 then C ∼ E + ∆ with |∆| base-point free,

∆2 = 2g − 8− 2ε, E ·∆ = 3 + ε. Moreover H0(∆ +KS − 2E) = 0.

Proof. To see (2.11) for g ≥ 9 + ε set M = C − 2E and notice that M2 = 2g − 14− 4ε >

0, C · M = 2g − 8 − 2ε > 0 whence h2(M) = 0 and h0(M) ≥ g − 6 − 2ε ≥ 2. We

first consider the case when |M | is base-component free. Then it is nef, so is 2M , hence

H1(M) = H1(2M) = 0 by [CD1, Cor. 3.1.3]. Otherwise M ∼ F +M has a nonempty

base component F , |M| is base-component free and we will prove that ∆ = 2E + F +KS

is the required divisor. Now h0(M) = h0(M) ≥ g − 6− 2ε and h2(M) = 0.

We first show that the caseM2 = 0 cannot occur. In fact then by the proof of [CD1, Cor.

3.1.2] we have M∼ 2E1 and M2 = 2, that is ε = 1, g = 10. Now C ∼ 2E + F + 2E1 and

10 = C ·M = C ·F + 2C ·E1 implies C ·F = 2. From M2 = 2 we deduce F 2 = 2− 4F ·E1

and from C · F = 2 we get E · F = E1 · F . Moreover F is a conic and F 2 can only

be −2,−4,−8, therefore it must be E1 · F = 1. But then 4 = C · E = 1 + 2E1 · E, a

contradiction.

Therefore by [CD1, Prop. 3.1.4 and Cor. 3.1.3] we have M2 ≥ 2 and h1(M) = 0. By the

Riemann-Roch theorem we get h0(M) = 1+ 1
2M

2 ≥ g−6−2ε, that isM2 ≥ 2g−14−4ε.

Also C · F + C · M = 2g − 8 − 2ε, hence C · M ≤ 2g − 9 − 2ε. Applying the Hodge

index theorem to C and M we see that the only possible cases are: C · F = 1 and either

M2 = 2g−14−4ε or ε = 1,M2 = 2g−16; ε = 0, g = 9 and C ≡ 2M; ε = 1,M2 = 2g−18

and either 2 ≤ C · F ≤ 3 or C ≡ 3M. Now the cases ε = 0, C ≡ 2M and ε = 1, C ≡ 3M

are excluded by C · E = 3 + ε. When C · F = 1, ε = 1,M2 = 2g − 16 we have that F is a
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line and F 2 = −2. But then 2g−18 = M2 = 2g−18 + 2F ·M, that is F ·M = 0, and this

gives the contradiction 1 = C ·F = 2E ·F − 2. When C ·F = 1,M2 = 2g− 14− 4ε = M2

we get as above F · M = 1 and this implies E · F = 1. In this case we easily see that ∆

satisfies the properties in (2.11) by [CD1, Cor. 3.1.4]. We are then reduced to study the

cases ε = 1,M2 = 2g−18, 2 ≤ C ·F ≤ 3. From M2 = 2g−18 it follows that F 2 = −2F ·M.

Suppose first C · F = 2. Then F is a conic and if F 2 = −2 we get F · M = 1, but

this gives 2 = C · F = 2E · F − 1, a contradiction. If F = 2R with R a line we have

F 2 = −8, hence R · M = 2; but this gives 1 = C · R = 2E · R − 2, again impossible.

When F = R1 + R2 with R1 and R2 disjoint lines we have M · R1 +M · R2 = 2, hence

1 = C ·R1 = 2E ·R1− 2 +M·R1. Therefore E ·R1 = 1, otherwise E ·R1 = 0,M·R1 = 3,

contradicting the equality above. For the same reason we get E · R2 = 1. In this case we

have that ∆ is nef and ∆2 = 4 hence it satisfies the properties in (2.11) by [CD1, Prop.

3.1.6].

Suppose now C · F = 3. Then F is a cubic and from F 2 = −2F · M we deduce F 2 =

6 − 4E · F . We deal first with the case F reduced. If F is irreducible then it is either

a plane or a twisted cubic. In the first case by [CD1, Thm. 3.2.1, Prop. 3.1.2 and Prop.

3.1.4] we have that |2F | is a genus one pencil, but this contradicts Φ(C) = 4. If F is

a twisted cubic then F 2 = −2, E · F = 2. Therefore we have again that ∆ is nef and

∆2 = 6 and it satisfies the required properties. If F = R1 + R2 with R1 a line, R2 an

irreducible conic, we have 0 ≤ R1 ·R2 ≤ 2 and F 2 = −4 + 2R1 ·R2 = 6− 4E ·F , therefore

R1 · R2 = 1, F 2 = −2, E · F = 2. Hence M · R1 +M · R2 = 1, E · R1 + E · R2 = 2.

Now 1 = C · R1 = 2E · R1 − 1 + M · R1, and then E · R1 = E · R2 = 1. When

F = R1 + R2 + R3 is union of three lines with R2 · R3 = 1 by F 2 = 6 − 4E · F we get

2E ·F+R1 ·R2+R1 ·R3 = 5, but 0 ≤ R1 ·R2+R1 ·R3 ≤ 2, hence, without loss of generality,

we can assume R1 · R2 = 1, R1 · R3 = 0. Therefore E · F = 2, F 2 = −2, F · M = 1, that

is M · R1 +M · R2 +M · R3 = 1. Now from 1 = C · R2 = 2E · R2 +M · R2 we get

E · R2 = 0,M · R2 = 1 and therefore M · R1 = M · R3 = 0 and by C · Ri = 1 we get

E · Ri = 1 for i = 1, 3. In the last two cases for F we see that ∆ is nef, ∆2 = 6 and it is

as in (2.11).

If F = R1 +R2 +R3 is union of three lines by the above case they must be disjoint, hence
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F 2 = −6, E · F = M · F = 3. Now 1 = C · Ri = 2E · Ri − 2 +M · Ri and if E · R1 = 0

we get M · R1 = 3, hence M · R2 = 0 and 2E · R2 = 3, a contradiction. Therefore

E · Ri =M · Ri = 1. From C · E = 4 we get E · M = 1, whence Φ(M) = 1. Now recall

that M2 = 2g − 18, C · M = 2g − 13 hence using Φ(C) = 4 and [CD1, Prop. 3.1.4 and

Prop. 3.6.1] we contradict C · M = 2g − 13.

When F is non reduced of type F = 2R1 + R2 with R1 and R2 distinct lines, we have

0 ≤ R1·R2 ≤ 1, F 2 = −10+4R1·R2, hence R1·R2+2E·R1+E·R2 = 4. Moreover, C ·R2 = 1

gives 2E ·R2+2R1 ·R2+M·R2 = 3 and C ·E = 4 implies 2E ·R1+E ·R2+E ·M = 4. Now

either E ·R2 = 1 and hence R1 ·R2 = 0,M·R2 = 1, but then 2E ·R1 = 3, or E ·R2 = 0 and

hence R1 · R2 = 0, E · R1 = 2, but then E · M = 0, implying the contradiction E ≡ 0 by

the Hodge index theorem. Finally when F = 3R with R a line we get F 2 = −18, E ·R = 2,

but this contradicts 4 = C ·E = 6 +M·E. This proves (2.11) with the exception of g = 8.

If g = 8 we have ε = 0 and we use Lemma (A.2) of the appendix to [GLM]. In the cases

(A.4), (A.5) and (A.6) we have H1(C−2E) = H1(2C−4E) = 0. In the cases (A.7), (A.8)

and (A.10) we set ∆ = 2E+R+KS (where in the cases (A.7), (A.8) R = R2). In the case

(A.9) we set ∆ = 2E +R1 +R2 and note that there is no genus one pencil |2E′| such that

E′ ·∆ = 1, therefore ∆ is not hyperelliptic by [CD1, Prop. 3.1.4 and Prop. 4.5.1]. Then it

is easily verified in all cases (A.4) through (A.10) that ∆ satisfies the required properties.

Now to see the first part of (2.12) set ∆ = C − E. From ∆2 = 2g − 8 − 2ε ≥ 4, E ·∆ =

3 + ε, C ·∆ = 2g − 5− ε > 0 we conclude that h2(∆) = 0 and h0(∆) ≥ g − 3− ε ≥ 2. We

claim that |∆| is base-component free. If not ∆ ∼ F +M has a nonempty base component

F, |M| is base-component free and h0(M) = h0(∆) ≥ g − 3 − ε, h2(M) = 0. As ∆2 ≥ 4

we have M2 > 0 by [CD1, Cor. 3.1.2]. Therefore h1(M) = 0 by [CD1, Cor. 3.1.3] and

M2 ≥ 2g−8−2ε by the Riemann-Roch theorem. But also C ·M = C ·∆−C ·F ≤ 2g−6−ε

and this contradicts the Hodge index theorem. Now since |∆| is base-component free to

see that it has no base points by [CD1, Prop. 3.1.4, Prop. 4.5.1 and Cor. 4.5.1 of page 243]

we just need to show that it cannot be ∆ ≡ (g − 4− ε)E1 +E2 or (g − 3− ε)E1 +R with

E1 ·E2 = E1 ·R = 1. But in both cases we get C ·∆ ≥ (g− 3− ε)(3 + ε), a contradiction.

As for the vanishing in (2.12) observe that when g = 6 we have (∆ +KS − 2E) ·∆ = −2

hence the vanishing holds. For g = 7, 9 we first prove:
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(2.13) if g = 7 then ∆ ≡ E1 +E2 +E3 with Ei ·Ej = E ·Ei = 1 for i 6= j and E1 +E2−E

is effective;

(2.14) if g = 9 then ∆ ≡ E + 2E1 with E · E1 = 2.

When g = 9 we have ∆2 = 8, C · ∆ = 12 hence Φ(∆) = 2 and we can apply [CD1,

Prop. 3.6.2]. Now Φ(C) = 4 hence in all but one case we get C · ∆ > 12, that is when

∆ ≡ 2E1 + E2 with E1 · E2 = 2. From 12 = 2C · E1 + C · E2 we deduce C · E2 = 4

and therefore E · E2 = 0, that is E ≡ E2 and this gives (2.14). To prove (2.13) note that

∆2 = 6, C · ∆ = 9 hence Φ(∆) = 2 and by [CD1, Prop. 3.1.4, Lemma 4.6.1 and Thm.

4.6.3] we have that |∆| is superelliptic hence by [CD1, Thm. 4.7.2] ∆ ≡ E1 + E2 + E3

with Ei ·Ej = 1 for i 6= j (the other two cases of [CD1, Thm. 4.7.2] give C ·∆ > 9). Also

9 = C ·E1 +C ·E2 +C ·E3 and therefore C ·Ei = 3, E ·Ei = 1. Now by the same argument

above also E + E1 + E2 is superelliptic hence by [CD1, Thm. 4.7.2] we can assume that

E1 + E2 − E is effective and (2.13) is proved.

We now proceed to prove that H0(∆ +KS − 2E) = 0. In case (2.14) we have (∆ +KS −

2E) · E1 = −2, hence the vanishing. We finish with case (2.13). Let ∆1 = E1 + E2 − E;

then ∆2
1 = −2, C ·∆1 = 3. We prove first that ∆1 is reduced. In fact if ∆1 is nonreduced

then it cannot be ∆1 = 3R since ∆2
1 = −2, therefore ∆1 = 2R1 + R2 with R1 and R2

lines, but then we get the contradiction R1 · R2 = 2. It follows that either ∆1 = R is

irreducible, or ∆1 = R′1 + R′2 with R′1 a line, R′2 an irreducible conic and R′1 · R′2 = 1 or

∆1 = R′1 +R′2 +R′3 with R′1, R
′
2 and R′3 lines such that R′1 ·R′2 = R′1 ·R′3 = 1, R′2 ·R′3 = 0.

Now let B = ∆ + KS − 2E and suppose that H0(B) 6= 0. Since B2 = −6, C · B = 3

we are going to show that B = R1 + R2 + R3 with R1, R2 and R3 disjoint lines. In fact

C ·B = 3 shows that B can have at most three irreducible components. If B is nonreduced

then it cannot be B = 3R′ since B2 = −6, therefore B = 2R1 + R2 with R1 and R2

two meeting lines. But then 0 = B · R2 = ∆ · R2 − 2E · R2 and we get the contradiction

1 = C ·R2 = 3E ·R2. If B is reduced then it cannot be irreducible because B2 = −6, and

also it cannot be R1 +R2 with R1 a line, R2 an irreducible conic again because B2 = −6

would give R1 · R2 = −1. Therefore B = R1 + R2 + R3 and to satisfy B2 = −6 we must

have that R1, R2 and R3 are disjoint lines. Now notice that B ·∆1 = −3 hence it cannot

be ∆1 = R with R irreducible. If ∆1 = R′1 + R′2 as above we have −3 = R′1 · B + R′2 · B
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and R′2 · Ri ≥ 0, hence R′1 must coincide with some Ri, but then R′1 · B = −2 and we

get a contradiction. We are left with the case ∆1 = R′1 + R′2 + R′3 as above. Note that

C · Ri = 1 hence E · Ri ≤ 1. Now B · ∆1 = −3 shows that at least one of the lines Ri

must coincide with one of the R′j . On the other hand their intersections imply that not

all of them can coincide. If only one coincidence occurs we have for example R3 = R′3 and

therefore E3 +R′1 +R′2 ≡ E+R1 +R2 hence E ·R1−2 = R1 · (E3 +R′1 +R′2) ≥ 0, therefore

the contradiction E · R1 ≥ 2. The other coincidences can be excluded similarly. If two

coincidences occur we have necessarily R2 = R′2, R3 = R′3 and therefore E3 +R′1 ≡ E+R1

hence E ·R1 − 2 = R1 · (E3 +R′1) ≥ 0, again a contradiction.

3. COHOMOLOGY OF THE NORMAL BUNDLE OF AN ENRIQUES SUR-

FACE

Let S ⊂ IP g−1 be a smooth irreducible linearly normal Enriques surface, NS its normal

bundle. As mentioned in the introduction, in order to apply Zak’s theorem to study

extendability of the Veronese embeddings of S, one needs to know the cohomology of the

negative twists of its normal bundle. We will see that in fact the situation is particularly

simple, since we always have H0(NS(−2)) = 0. This is the goal of this section. The proof

will be divided in two distinct cases, depending on whether the surface contains elliptic

curves of low degree or not. We start with the first case.

Proposition (3.1). Let S ⊂ IP g−1 be a smooth irreducible linearly normal Enriques

surface, C a hyperplane section and suppose Φ(C) ≤ 4. Then H0(NS(−2)) = 0.

Proof. Suppose to the contrary that H0(NS(−2)) 6= 0 and take 0 6= σ ∈ H0(NS(−2))

and x ∈ S a general point. Let |∆| be a linear system on S of dimension at least one,

let D ∈ |∆| be a general divisor containing x and suppose that D is smooth irreducible.

As σ|D(x) = σ(x) 6= 0, we deduce that H0(NS(−2)|D) 6= 0. Under the hypothesis of the

Proposition we are going to find such a linear system |∆| so that H0(NS(−2)|D) = 0.

Consider to this end the exact sequence

0→ ND/S(−2)→ ND/IP g−1(−2)→ NS(−2)|D → 0.
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Set < D > for the linear span of D. We will be done if we show

(3.2) H0(ND/<D>(−2)) = 0

and

(3.3) φ : H1(ND/S(−2))→ H1(ND/IP g−1(−2)) is injective

because (3.2) is equivalent to H0(ND/IP g−1(−2)) = 0. We now collect some sufficient

conditions that ensure (3.2) and (3.3). To see the first one, suppose that D is linearly

normal and dim < D >= h0(OD(1))− 1 ≥ 2, then the Euler sequence

0→ Ω1
<D>|D

⊗ ωD(2)→ H0(OD(1))⊗ ωD(1)→ ωD(2)→ 0

shows that H1(Ω1
<D>|D

⊗ ωD(2)) = 0 by the surjectivity of the standard multiplication

map H0(OD(1))⊗H0(ωD(1))→ H0(ωD(2)) ([Gr, Thm. 4.e.1]). Then the normal bundle

sequence

0→ N∗D/<D> ⊗ ωD(2)→ Ω1
<D>|D

⊗ ωD(2)→ ω2
D(2)→ 0

implies that h0(ND/<D>(−2)) = h1(N∗D/<D> ⊗ ωD(2)) = corkΦOD(1),ωD(1), where the

latter is the Gaussian map associated to OD(1) and ωD(1) ([W1]). Therefore (3.2) will

follow from

(3.4) H1(C −D) = 0, h0(OD(1)) ≥ 3 and ΦOD(1),ωD(1) is surjective

because then D is linearly normal since S is. Concerning (3.3), since N∗D/IP g−1
∼= ID/IP g−1⊗

OD, we have the following commutative diagram

H0(ID/IP g−1(2))⊗H0(ωD) −→ H0(N∗D/IP g−1(2)⊗ ωD)

↓ ψ ↓ φ∗
H0(ID/S(2))⊗H0(ωD)

χ−→ H0(N∗D/S(2)⊗ ωD).

Now ψ is surjective sinceH1(IS/IP g−1(2)) = 0 by [GLM, Thm. 1.1] unless g = 6 andOS(1) is

a Reye polarization. If we denote by V the image of H0(OS(2C−D))→ H0(OD(2C−D)),

we see that (3.3) follows, with the above exception, if the multiplication map

(3.5) µV,ωD
: V ⊗H0(ωD)→ H0(OD(2C −D)⊗ ωD) is surjective
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since then χ is surjective and so is φ∗.

By hypothesis we have Φ(C) = 3 + ε for ε = 0, 1 and let |2E| be a genus one pencil

on S such that C · E = 3 + ε. Suppose first that g = 8 (hence ε = 0) or g ≥ 9 + ε. If

H1(C−2E) = H1(2C−4E) = 0, we set ∆ = 2E. Then for a general D ∈ |2E| (3.4) follows

by [BEL, Thm. 1]. Also (3.5) is satisfied because V = H0(OD(2C −D)) and µV,ωD
is an

isomorphism since D is elliptic. On the other hand if one of the two vanishings for 2E does

not hold, we take ∆ as in (2.11). Note that the general divisorD ∈ |∆| is smooth irreducible

by [CD1, Prop. 3.1.4 and Thm. 4.10.2] since |∆| is base-component free and ∆2 > 0. Then

H1(C−D) = H1(M+KS) = 0 by [CD1, Cor. 3.1.3], H2(C−D) = H2(M+KS) = 0 since

C · M > 0. Therefore h0(OD(1)) = g − h0(C −D) = C ·D − 1
2D

2 ≥ 5 and (3.4) follows

again by [BEL, Thm. 1]. For the same reason above we also have H1(2C − 2D) = 0 hence

V = H0(OD(2C − D)) and µV,ωD
is surjective by the base-point free pencil trick [ArSe,

Thm. 1.6], since D is not rational and degOD(2C −D) ≥ 2g(D) + 1, that is OD(2C −D)

is very ample. Hence also (3.5) is satisfied in this case.

It remains to study the cases g = 6, 7 (hence ε = 0) or g = 9, ε = 1. We take ∆ as in (2.12)

and observe that as above the general D ∈ |∆| is smooth irreducible and nonhyperelliptic

(since |∆| is base-point free by [CD1, Prop. 4.5.1, Thm. 4.5.4 and Rmk. 4.5.2]). To see

(3.5) notice that H1(2C +KS −D) = H1(2E +KS +D) = 0 by [CD1, Cor. 3.1.3] and we

have a diagram

H0(2C −D)⊗H0(D +KS)
γ−→ H0(2C +KS)

↓ ↓ π
V ⊗H0(ωD)

µV,ωD−→ H0(OD(2C −D)⊗ ωD)

where π is surjective. Now both 2C−D ∼ 2E+D and D+KS are base point free by [CD1,

Prop. 3.1.4 and Thm. 4.4.1] since Φ(D) ≥ 2. Also h1(2C − 2D−KS) = h1(2E +KS) = 0

and h2(2C − 3D) = h0(D+KS − 2E) = 0 by (2.12) hence γ is surjective by Castelnuovo-

Mumford and so is µV,ωD
. We now study (3.4).

When g = 9, ε = 1 we have that C ·D = D2+4, hence (3.4) follows as above by [BEL, Thm.

1]. When g = 7 we have h0(C−D) = 1, h0(OD(1)) = 6 and D ⊂ IP 5 is a smooth irreducible

nondegenerate linearly normal nonspecial curve of degree 9 and genus 4. To see (3.4) we
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need to show that ΦOD(1),ωD(1) is surjective or equivalently that H0(ND/IP 5(−2)) = 0.

To this end notice first that D is projectively normal by Castelnuovo’s theorem hence

in particular it is contained in 6 linearly independent quadrics. Moreover Cliff(D) = 1

hence by [LS, Thm. 1.3] the intersection of the 6 quadrics containing D is the union of

D and of its trisecant lines. Now observe that D cannot have infinitely many trisecant

lines, otherwise their union would sweep a nondegenerate surface X ⊂ IP 5 intersection of

6 quadrics. Let Y be a component of X containing D, then Y is a rational normal surface

scroll since its hyperplane section is a nondegenerate curve in IP 4 contained in 6 linearly

independent quadrics, that is a rational normal curve. Since D has degree 9 and genus 4

and is not hyperelliptic it follows that the rulings of Y cut out on D a pencil of divisors

Aλ of degree 3 such that h0(OD(1)(−Aλ)) = 4 ([Sc, §2]). We prove that such a pencil

does not exist. In fact let A be a divisor on D of degree 3 with h0(OD(1)(−A)) = 4 and

h0(A) ≥ 2. Then h0(ωD(−1)(A)) = 1 and degωD(−1)(A) = 0, that is A ∼ H −KD on D.

But D ∼ C − E on S, hence we have an exact sequence

0→ OS(2E +KS − C)→ OS(E +KS)→ A→ 0

and h1(2E + KS − C) = h1(C − 2E) = 0 by [GLM, Lemma A.2], hence h0(A) ≤ 1. Let

now P ∈ D be a general point and denote by D ⊂ IP 4 the projection of D from P . Then

D is a smooth irreducible nondegenerate linearly normal nonspecial curve of degree 8 and

genus 4. As in [E, Lemma 4] or [BEL, 2.7] we have an exact sequence

0→ OD(−1)(2P )→ ND/IP 5(−2)→ ND/IP 4(−2)(−P )→ 0

where P ∈ D is the projection of P . To conclude for g = 7 we will therefore prove that

h0(ND/IP 4(−2)(−P )) = 0. Notice now that h0(ID/IP 4(2)) = 2 + h1(ID/IP 4(2)) and we

cannot have three linearly independent quadrics containing D because a component Y of

their intersection that contains D would be a rational normal surface scroll in IP 4, but

on such surface there are no smooth irreducible curves of the given degree and genus.

Therefore h0(ID/IP 4(2)) = 2, h1(ID/IP 4(2)) = 0 and ID/IP 4 is 3-regular in the sense of

Castelnuovo-Mumford. It follows that the homogeneous ideal of D is generated in degree

≤ 3. Let Q1, Q2 be the two quadrics containing D and let X be their complete intersection.
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By the above X is irreducible and we claim that D ∩ Sing(X) = ∅. To see this suppose

there is a point Q ∈ D ∩ Sing(X) and let πQ be the projection in IP 3 from Q. As πQ|D is

not 7 : 1 we have that πQ(D) is a curve of degree 7 contained in πQ(X), which is therefore

a surface of degree necessarily two. Hence there is a ruling Lt of πQ(X) intersecting πQ(D)

in at least 4 points and Mt =< Lt, Q > is a 2-plane at least 5-secant to D. On the other

hand D is not hyperelliptic, hence Mt is exactly 5-secant and the hyperplanes containing

it cut out a g13 on D. But clearly this gives infinitely many g13 ’s on D, a contradiction.

Therefore we get an exact sequence

0→ ND/X(−2)(−P )→ ND/IP 4(−2)(−P )→ OD(−P )⊕2 → 0

which gives the desired vanishing.

Finally when g = 6 there are two possibilities for S. If OS(1) is a Reye polarization, that

is if S is contained in some quadric in IP 5, then by [CD2] (as mentioned in section 1 of

[DR]), the quadric must be nonsingular and, under its identification with the Grassmann

variety G = G(1, 3), S is equal to the Reye congruence of some web of quadrics. By

[ArSo, 4.3] S is geometrically linked, in the complete intersection of G and two general

cubic hypersurfaces containing S, to a smooth congruence T ⊂ G of bidegree (2, 6). By

[K, 2.19.1 and Cor. 2.12] (note that in [K, 2.19.1] there is a misprint; in the second line

one should replace H1(IX/Y (fi + v)) by H1(IX(fi + v))) it is then enough to show that

H0(NT/IP 5(−2)) = 0. This fact is probably well known, but in any case we prove it with

the methods above. To this end notice that by [ArSo, 4.1] T ∼= IPE π−→E is the ruled

surface with invariant −1 over an elliptic curve E and is embedded in IP 5 by the linear

system |H| = |2C0 + π∗L|, where C0 is a section and L a line bundle on E of degree one.

Let ∆ = C0 + π∗L and D general in |∆|. It is easily seen that D is a smooth irreducible

elliptic quintic spanning a IP 4, whence (3.2) follows by [H, Prop. V.2.1]. To see (3.3) we

first show that H1(IT/IP 5(2)) = 0, or, equivalently, H1(IT/G(2)) = 0. By [ArSo, 4.1] if Q

is the universal quotient bundle on G, we have an exact sequence

0→ O⊕2G (−1)→ S2Q(−1)→ IT/G(2)→ 0

whence H1(IT/G(2)) = 0 (since H2(OG(−1)) = H1(S2Q(−1)) = 0 by [ArSo, 1.4] or Bott

vanishing). Now, as above, (3.3) follows by (3.5) and the latter holds since H1(OT (2H −
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2D)) = H1(OIPE(2C0)) = 0. Therefore the case of a Reye polarization is concluded. Sup-

pose instead that g = 6 and OS(1) is not a Reye polarization. By what we proved above we

are left with proving (3.4) for D ∼ C−E as in (2.12). We have h0(C−D) = 1, h0(OD(1)) =

5, hence D is a smooth irreducible linearly normal nonspecial curve of degree 7 and genus

3 spanning a IP 4. To finish the proof of (3.4) we prove that H0(ND/IP 4(−2)) = 0. By

Castelnuovo’s theorem D is projectively normal hence in particular it is contained in 3

linearly independent quadrics Q1, Q2, Q3. Let X be their complete intersection and sup-

pose first that for every genus one pencil |2E| on S such that C · E = 3 we have that

X is a surface. In this case we prove directly that h0(NS(−2)) = 0. In fact as above a

component Y of X containing D must be a rational normal surface scroll in IP 4 hence,

taking into account the degree and genus of D and the fact that D is not hyperelliptic, it

follows that the rulings of Y cut out on D a pencil of divisors Aλ of degree 3 such that

h0(OD(1)(−Aλ)) = 3 ([Sc, §2]). By the Riemann-Roch theorem we deduce Aλ ∼ H −KD

on D, hence h0((E +KS)|D) ≥ 2. By the exact sequence

0→ OS(2E +KS − C)→ OS(E +KS)→ (E +KS)|D → 0

and h1(E+KS) = h0(2E+KS−C) = 0, we see that h1(2E+KS−C) = h1(C−2E) ≥ 1.

But C ·(C−2E) = 4, (C−2E)2 = −2, hence h0(C−2E) = h1(C−2E) ≥ 1 by the Riemann-

Roch theorem. Notice now that it cannot be h0(C − 2E) ≥ 2 otherwise C − 2E must have

a nonempty base component F by [CD1, Prop. 3.1.4] and if we set C − 2E ∼ F +M with

|M| base-component free, then h0(M) = h0(C − 2E) ≥ 2 and C · M = 4 − C · F ≤ 3.

Now either M2 = 0 but then M∼ 2hE1 and C · M ≥ 6 or M2 ≥ 2, but this contradicts

the Hodge index theorem applied to C and M. Therefore for every genus one pencil |2E|

on S such that C · E = 3 we have that h1(2E + KS − C) = h0(C − 2E) = 1. By [CoVe,

Prop. 3.13] C ′ = C + KS is a Reye polarization. Let S′ be the embedding of S in IP 5

with C ′. As hi(TIP 5|S (−2)) = hi(TIP 5
|S′

(−2)) = 0, i = 0, 1 (see proof of Theorem (1.2)),

then h0(NS/IP 5(−2)) = h1(TS(−2C)) = h1(TS′(−2C ′)) = h0(NS′/IP 5(−2)) = 0 since S′ is

embedded with a Reye polarization. Finally suppose that there exists a genus one pencil

|2E| on S such that C ·E = 3 and X is a curve. Let Z be the subscheme of X defined by

IZ/IP 4/IX/IP 4 = HomOIP4 (OD,OX). Then by [Sw, Thm. 13, Thm. 12 and Rmk. G2] we see
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that D and Z are geometrically linked and that Z is a line. Of course h0(NZ/IP 4(−2)) = 0,

hence the same holds for D by [K, 2.19.1 and Cor. 2.12].

To deal with the case when S does not contain a plane cubic curve we first record the

following simple but useful application of the techniques of [BEL].

Lemma (3.6). Let D ⊂ IP s = IPH0(L) be a smooth irreducible non degenerate linearly

normal curve of genus g(D) ≥ 4 and suppose that

(3.7) degL ≥ 2g(D) + 3− 2h1(L)− Cliff(D) and

(3.8) for a general point P ∈ D the projection D ⊂ IPH0(L(−P )) has no trisecant lines.

Then H0(ND/IP s(−2)) = 0.

Proof. Setting, as in [BEL], RL = N∗D/IP s ⊗L, we get h0(ND/IP s(−2)) = h1(RL⊗ωD⊗L).

Note that L(−P ) is very ample and H1(ωD ⊗L(−2P )) = 0. We apply the exact sequence

[BEL, 2.7]

0→ RL(−P ) ⊗ ωD ⊗ L→ RL ⊗ ωD ⊗ L→ ωD ⊗ L(−2P )→ 0.

By [La, Prop. 2.4.2] and the hypotheses (3.7), (3.8) we have that D ⊂ IPH0(L(−P ))

is scheme-theoretically cut out by quadrics, hence we get a surjection L−2(2P )⊕a →

N∗
D/IP s−1

∼= RL(−P ) ⊗ L−1(P ), whence a surjection ωD(P )⊕a → RL(−P ) ⊗ ωD ⊗ L and

therefore H1(RL(−P ) ⊗ ωD ⊗ L) = 0.

We now come to the proofs of our main results.

Proof of Theorem (1.3). By [GLM, Thm. 1.4, Rmk. 2.10 and proof of Cor. 1.10] we know

that there exists a countable family {Zn, n ∈ N} of zero dimensional subschemes Zn ⊂ S of

degree two, such that if C ⊂ IP g−2 is a hyperplane section of S not containing Zn for every

n, then it has gonality gon(C) ≥ 6 and C is not isomorphic to a smooth plane septic. In

fact this implies that Cliff(C) ≥ 4: By [CoMa, Thm. 2.3] we have gon(C)− 3 ≤ Cliff(C) ≤

gon(C) − 2, hence it cannot be Cliff(C) ≤ 2. If Cliff(C) = 3 we have then gon(C) = 6,

hence the Clifford index of C is not computed by a g1k, and if we set Cliffdim(C) =

min{dim |A|, A ∈ Pic(C) such that dim |A| ≥ 1, h1(A) ≥ 2,deg(A)− 2 dim |A| = Cliff(C)}

([ELMS]), then Cliffdim(C) > 1. Let A be a line bundle on C that computes the Clifford

index of C and has minimal dimension, that is such that Cliff(A) = Cliff(C) = 3, s =

dim |A| = Cliffdim(C) ≥ 2,degA ≤ g − 1. Recall that A is very ample by [ELMS, Lemma
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1.1]. We get deg(A) = 2s+ 3 and by [CoMa, Thm. C] we have 2s+ 3 ≤ 2Cliff(C) + 4 = 10,

that is s ≤ 3. It cannot be s = 3 for then g = 10 by [Ma, Satz 1]. Therefore s = 2 and C

is isomorphic to a smooth plane septic, case already excluded.

Now we suppose that S does not contain a plane cubic curve and show (1.4). Since S

is nondegenerate and linearly normal we have that every quadric containing a smooth

hyperplane section of S lifts uniquely to a quadric containing S. Suppose that S is not

scheme-theoretically cut out by quadrics at some point P ∈ S. Take a general hyperplane

H 3 P and let C = S ∩ H. By [Mf, Lemma in the introduction] we have that C is

not scheme-theoretically cut out by quadrics at P . On the other hand we know that

Cliff(C) ≥ 4 and, as degC = 2g − 2 and h1(OC(1)) = 0, we have a contradiction by [La,

Prop. 2.4.2], since C has no trisecant lines by (2.2).

If S does contain a plane cubic curve E then by [CD1, Thm. 3.2.1, Prop. 3.1.2 and Prop.

3.1.4] we have that |2E| is a genus one pencil and let us see that the only other plane cubic

on S is E+KS . In fact if there is another genus one pencil |2E1| such that C ·E1 = 3 then

E · E1 ≥ 1 but the Hodge index theorem applied to C and E + E1 gives a contradiction.

Now the planes spanned by the two plane cubic curves lying on S are contained in the

intersection of the quadrics containing S. On the other hand let P ∈ IP g−1 be a point not

lying on S and not lying on any plane spanned by the plane cubic curves contained in S.

Take a general hyperplane H 3 P and let C = S ∩ H. By (2.2) P does not lie on any

trisecant line to C. By [LS, Thm. 1.3] we can find a quadric Q′ ⊂ H such that P 6∈ Q′.

On the other hand there is a quadric Q ⊃ S such that Q′ = Q ∩H, therefore Q 63 P and

(1.5) is proved.

Proof of Theorem (1.2). The goal is to show that h0(NY/IPN−1(−1)) ≤ N and apply Zak’s

theorem [Z], [Lv], [Bd]. As H1(OY (−1)) = 0, from the Euler sequence of Y ⊂ IPN−1 =

IPW

0→ OY (−1)→W ∗ ⊗OY → TIPN−1|Y (−1)→ 0

we deduce that h0(TIPN−1|Y (−1)) = N . Now the normal bundle sequence

0→ TY (−1)→ TIPN−1|Y (−1)→ NY/IPN−1(−1)→ 0
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gives h0(NY/IPN−1(−1)) ≤ N + h1(TY (−1)) = N + h1(TS(−r)). We will show that

(3.9) h1(TS(−r)) = 0.

To this end observe that the Euler sequence of S ⊂ IP g−1

0→ OS(−r)→ H0(OS(1))∗ ⊗OS(−r + 1)→ TIP g−1|S (−r)→ 0

implies that h0(TIP g−1|S (−r)) = 0, H1(TIP g−1|S (−r)) = Cokerµ, where we denote by µ :

H0(OS(1)) ⊗H0(ωS(r − 1)) → H0(ωS(r)) the multiplication map. The surjectivity of µ

can be proved by restricting to a general hyperplane section C of S as follows. By the

diagram
0 0
↓ ↓

H0(OS)⊗H0(ωS(r − 1))
∼=−→ H0(ωS(r − 1))

↓ ↓
H0(OS(1))⊗H0(ωS(r − 1))

µ−→ H0(ωS(r))
↓ ↓

H0(OC(1))⊗H0(ωS(r − 1))
ν−→ H0(ωC(r − 1))

↓ ↓
0 0

it is enough to prove that ν is surjective. On the other hand ν is the composition of the

maps H0(OC(1))⊗H0(ωS(r− 1))
α−→H0(OC(1))⊗H0(ωC(r− 2))

β−→H0(ωC(r− 1)). The

map α is surjective since H1(ωS(r − 2)) = 0, while the map β is surjective by [Gr, Thm.

4.e.1] if r ≥ 3 and by the base-point free pencil trick if r = 2 [ArSe, Thm. 1.6]. Therefore

also h1(TIP g−1|S (−r)) = 0, and then the normal bundle sequence of S shows that (3.9) will

follow if we show

(3.10) h0(NS/IP g−1(−2)) = 0.

Let C ⊂ IP g−2 be a general hyperplane section of S. By Proposition (3.1) we can assume

Φ(C) ≥ 5 and hence g ≥ 14. In particular, as in the previous proof, S does not contain a

plane cubic curve. Note that since NS/IP g−1 |C
∼= NC/IP g−2 , it is enough to prove that

(3.11) h0(NC/IP g−2(−2)) = 0.
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To this end we apply Lemma (3.6) to C. By (2.4) we see that (3.8) is satisfied. Since

deg C = 2g − 2 and h1(OC(1)) = 0, we deduce that (3.7) holds as soon as Cliff(C) ≥ 5.

We now proceed as in the proof of Theorem (1.3). It cannot be Cliff(C) ≤ 3, otherwise

gon(C) ≤ 6, contradicting [GLM, Thm. 1.4]. If Cliff(C) = 4 we have gon(C) = 7, again

by [GLM, Thm. 1.4]. Therefore Cliffdim(C) > 1 and we can find a very ample line bundle

A on C such that Cliff(A) = Cliff(C) = 4, s = dim |A| = Cliffdim(C) ≥ 2,degA ≤ g − 1.

Then deg(A) = 2s+ 4 and by [CoMa, Thm. C] we have 2s+ 4 ≤ 2Cliff(C) + 4 = 12, that

is s ≤ 4. Now, by [ELMS, §5] we have that if s = 3, 4, then Cliff(C) = 2s − 3 = 3, 5 6= 4.

Therefore s = 2 and C is isomorphic to a smooth plane octic. The latter case is excluded

by [GLM, Cor. 1.10].

Remark (3.12). Any polarized abelian variety (A,L) of dimension at least two satisfies

H1(TA ⊗ L−i) = 0 for every i ≥ 1, hence it does not lie on another variety (except from

a cone) as an ample divisor with normal bundle L, by a theorem of Fujita [Fu]. The

same holds for hyperelliptic surfaces as they are étale quotients with finite fibers of abelian

surfaces.

Remark (3.13). As we have seen, if S ⊂ IP g−1 = IPH0(L) is a smooth irreducible

Enriques surface then H0(NS(−2L)) = 0. Therefore also H0(NS(−2L− L′)) = 0 for any

effective line bundle L′. This means that, in many cases (see (∗) below), the embedding

of S with 2L+L′ is not extendable, that is it is not a hyperplane section of any threefold

different from a cone. On the other hand if g ≥ 14 and S does not contain a plane cubic

curve in its embedding in IP g−1, a little bit better result can be proved with the same

methods above. In fact take any effective line bundle L1 on S such that (∗) L + L1 is

very ample, H1(−L1) = 0 and the multiplication map µL,KS+L1
is surjective. Then the

embedding of S with L + L1 is not extendable as soon as H0(NC(−L − L1)) = 0, where

C is a general hyperplane section of S. The latter vanishing follows, as in Lemma (3.6), if

h0(L− L1) ≤ 1.

As noticed in the introduction we record the following consequence of the proof of Theorem

(1.2).

Corollary (3.14). Let S ⊂ IP g−1 be a smooth irreducible linearly normal Enriques
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surface not containing a plane cubic curve and let C = S ∩ H be a smooth hyperplane

section of S of genus g ≥ 14. If g ≤ 17 or g = 21 assume furthermore that C is general.

Then the Gaussian map ΦOC(1),ωC(s) is surjective for any s ≥ 1.

Proof. By [W1, Prop. 1.10] we have corkΦOC(1),ωC(s) = h0(NC/IP g−2(−s − 1)) and the

latter is zero by (the proof of) (3.11).

Remark (3.15). When s ≥ 3 the surjectivity of the above Gaussian map also follows

by [W2, Thm. 2.6] while by [W1] (or [Z]) ΦOC(1),ωC
is not surjective. On the other

hand OC(1) ∼= ωC(KS|C ) and we know that if (C, η) is a general pair, with C a smooth

curve of genus g, η a 2-torsion line bundle on C, we have that ΦωC⊗η,ωC
is surjective for

g ≥ 12, g 6= 13, 19 by the result of Ciliberto-Verra [CiVe].
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[Fa1] Fano, G.: Sopra alcune varietà algebriche a tre dimensioni aventi tutti i generi nulli.
Atti Accad. Torino 43, (1908) 973-984.
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[Fa4] Fano, G.: Sulle varietà algebriche a tre dimensioni a curve sezioni canoniche. Mem.
Accad. d’Italia VIII, (1937) 23-64.

[Fa5] Fano, G.: Nuove ricerche sulle varietà algebriche a tre dimensioni a curve-sezioni
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