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ABSTRACT: Let X ⊂ IPN be either a threefold of Calabi-Yau or of general
type (embedded with rKX). In this article we give lower and upper bounds,
linear on the degree of X and N , for the Euler number of X. As a corollary we

obtain the boundedness of the region described by the Chern ratios c3
c1c2

,
c31
c1c2

of threefolds with ample canonical bundle and a new upper bound for the
number of nodes of a complete intersection threefold.

1. INTRODUCTION

A well-known approach to the classification of algebraic varieties is to divide the problem

in two different parts: first search for numerical invariants and then study the geometric

properties of the varieties arising from the set of all algebraic varieties with given invari-

ants. This approach has been successful in the study of curves (both from a projective and

abstract point of view) and surfaces, especially in the case of surfaces of general type (see

for example [Ha], [H], [C], [P]). For higher dimensional varieties the situation is more com-

plicated essentially because of the enormous variety of possibilities both from a topological

and birational point of view. Nevertheless the success of Mori theory and in particular

the study of existence of minimal models has produced a good framework for setting the

classification goals also in higher dimension. Already Mori theory indicated the impor-

tance of the study of varieties with trivial canonical bundle, but a new and unexpected

event took place with the spreading in algebraic geometry of the ideas of physicists and the

importance for their theories of Calabi-Yau threefolds. For physical reasons (such as the

compactification of the heterotic string) it became important to study the Hodge theory of

Calabi-Yau threefolds (see for example [CHSW], [COGP]) and in particular of their Euler

numbers (and this carried all the consequences and beautiful predictions nowadays known
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as mirror symmetry conjectures). The similarity with K3 surfaces already suggested that

some kind of finiteness result should hold for Calabi-Yau threefolds (see for example [R],

[H1], [G2]) but the ideas of physics contributed both to clarify what the picture might be

for the moduli space of Calabi-Yau threefolds ([CGH], [GH1], [GH2], [G1]) and, at least

from a numerical point of view, what Euler numbers to expect (currently all the known

examples satisfy −960 ≤ e(X) ≤ 960 [G1], [HS]).

The starting observation of our work has been that, at least from the projective point of

view, there is a finiteness result: let X ⊂ IPN be a smooth linearly normal Calabi-Yau

threefold, L the hyperplane bundle; by Miyaoka’s positivity of c2(X) [M2], Riemann-Roch

and Kodaira vanishing one easily gets N+1 = 1
12L·c2(X)+ 1

6deg(X) ≥ 1
6deg(X). Therefore

the degree of X is bounded by 6N + 6 and, for a given N , there are only finitely many

possible Hilbert polynomials, hence a finite number of families of Calabi-Yau threefolds

embedded in IPN ! In particular there should be a bound on their Euler number depending

only on N . Drawing on some ideas in [CKN] it is clear that a good bound on the Euler

number can be given as soon as one has an effective bound on the least integer m such that

h1(TX(−m)) = 0. This in turn can be estimated by applying some standard projective

techniques ([E]) (that give generally better results than vanishing theorems). With these

methods we found an explicit bound on the Euler number. A nice feature of the bound

is that not only it works for smooth Calabi-Yau threefolds, but also for a wide class of

singular ones. Our result is

Theorem (1.1). Let X be a smooth irreducible Calabi-Yau threefold and let L be a

globally generated line bundle on X such that the morphism ϕL : X → IPH0(L) is

birational. Set N = dim|L|, d = L3, ε1 = max{0, 5 −N}, ε2 = max{0, 7 −N} and denote

by X = ϕL(X), C a general curve section of X and ρ(X) the Picard number of X. The

following bounds hold for the Euler number of X:

If (∗) C has at most ordinary singularities we have the two lower bounds

(1.2) e(X) ≥ 2ρ(X)−min{2d+ 60N + 82 + 6ε1 + 4ε2, 8d+ 30N + 94 + 8ε1 + 6ε2}

(1.3) e(X) ≥ −min{2d+ 58N + 80 + 6ε1 + 4ε2, 8d+ 28N + 92 + 8ε1 + 6ε2}.
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If (∗∗) some multiple of L does not contract divisors to points then

(1.4) e(X) ≤ 2ρ(X) ≤ 4d+ 20N + 24.

If (∗) and (∗∗) hold then

(1.5) e(X) ≤ 22d− 24N + 68 + 2ε1 + 2ε2.

We recall that d satisfies the inequalities 3N − 7 ≤ d ≤ 6N + 6, the first of which is

Castelnuovo-Beauville’s inequality K2
S ≥ 3pg − 7 ([Ca], [B]) applied to a general S ∈ |L|.

In particular the above bounds on the Euler number can be written only in terms of N. The

bound in (1.2) is better than the one in (1.3) if and only if ρ(X) ≥ N + 1; (1.5) is better

than (1.4) only for N ≤ 8 and low values of d. As the line bundle L in the theorem is big

and nef we also have N+1 = 1
12L ·c2(X)+ 1

6L
3 by Riemann-Roch and Kawamata-Viehweg

vanishing, whence the inequalities of the theorem can also be translated into inequalities

between e(X), L · c2(X) and L3 (somehow as proposed by Wilson in [W]). Moreover as

1
2e(X) = ρ(X) − h1(TX) we can deduce an upper bound on h1(TX) (which improves the

one given in [CK]). We do not know how sharp our bounds are. Many examples of Calabi-

Yau threefolds constructed are complete intersections in weighted projective spaces and it

is not a priori clear which is the smallest globally generated and birational line bundle on

them. By a result of Oguiso and Peternell [OP] if L is an ample line bundle on a Calabi-

Yau threefold then mL is birational for m ≥ 5, globally generated for m ≥ 7 and very

ample for m ≥ 14; also if L is ample and globally generated Gallego and Purnaprajna [GP]

proved that mL is very ample (in fact normally generated) for m ≥ 4, but applying these

results in the case of complete intersections in weighted projective spaces gives bounds far

from the actual Euler number.

In the case of threefolds of general type there has been already an attempt to study the

geography of their Chern numbers, at least when the canonical bundle has some positivity

properties (see [H2], [Li]). Recently Chang, Kim and Nollet [CKN] gave a quadratic bound

on the Euler number of threefolds with ample canonical bundle. Applying our technique

we improved this to a bound linear in K3
X . As the functions appearing in the bound are

quite long, we state here a non explicit version of this bound. The explicit version is

Theorem (4.12).
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Theorem (1.6). Let X be a smooth irreducible threefold such that there exists an integer

r ≥ 1 for which rKX is globally generated and birational and denote by X = ϕrKX
(X), C

a general curve section of X. Then there exist eight functions linear in K3
X of type

αi(r)K
3
X + βi(r,X), 1 ≤ i ≤ 8 such that the following bounds hold for the Euler number

of X:

If (∗) C has at most ordinary singularities then

(1.7) e(X) ≥ max
1≤i≤6

{αi(r)K3
X + βi(r,X)}.

If (∗∗) some multiple of KX does not contract divisors to points then

(1.8) e(X) ≤ α7(r)K3
X + β7(r,X).

If (∗) and (∗∗) hold then

(1.9) e(X) ≤ α8(r)K3
X + β8(r,X).

For a smooth threefold X with ample canonical bundle results of Lee ([L1], [L2]) show

that rKX is globally generated if r ≥ 4, separates distinct points if r ≥ 6 and very ample

if r ≥ 10. Helmke [He] recently proved that in fact 5KX separates distinct points. In

particular, if KX is ample, in Theorem (1.6) we can assume r ≤ 5 in (1.8) and r ≤ 10

in (1.7) and (1.9). From Lee’s and Helmke’s work it is reasonable to suspect that r ≤ 6

should give at most ordinary singularities of the curve section, but no result is available

yet (Fujita’s conjecture predicts that 6KX is very ample). We also recall that when KX

is very ample there is a simple bound e(X) ≤ 7K3
X − 48χ due to Van de Ven (see the

introduction of [H2]).

The linearity on the bound in the above theorem has a nice consequence. In fact in the case

of threefolds of general type, for example with ample canonical bundle, an open question

([H2]) was whether the region described by the Chern ratios is bounded. We give an

affermative answer (see also [CS]).

Corollary (1.10). The region described by the Chern ratios c3
c1c2

,
c31
c1c2

of smooth irre-

ducible threefolds with ample canonical bundle is bounded.
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It can be seen from the proof that the same boundedness also holds for the set of smooth

irreducible threefolds X for which there exists an integer r ≥ 1 (independently of X)

such that rKX is globally generated, birational, some multiple of KX does not contract

divisors to points and, if X = ϕrKX
(X), a general curve section of X has at most ordinary

singularities.

An interesting case of a threefold of general type whose canonical bundle is birational, does

not contract divisors to points but is not ample, is the small resolution of a nodal complete

intersection threefold, that is the resolution obtained by replacing each node by a rational

curve. By standard topological arguments (see for example [Hi]) it is clear that in such a

case an upper bound on the Euler number gives an upper bound on the number of nodes.

The general problem of finding the maximum number of nodes of hypersurfaces is a very

classical one, going back to classical projective geometers (Severi, B. Segre, Basset and

others), until more recent work of Bruce, Miyaoka, Varchenko, Chmutov and Givental (see

for example [Br], [M1], [V], [Gi]). In the case of complete intersections, combining results

of Kleiman [K] and Gaffney [Ga], an upper bound can be deduced (see Remark (4.27)).

Applying our techniques we improve (in many cases) Kleiman-Gaffney’s bound (again for

an explicit formula see Theorem (4.26)):

Theorem (1.11). Let X ⊂ IPn+3, n ≥ 1, be an irreducible complete intersection threefold

of type (d1, . . . , dn) having δ nodes and no other singularities. Then there is a function

B(d1, . . . , dn) such that

δ ≤ B(d1, . . . , dn).

A similar bound can be given for smoothable nodal Calabi-Yau threefolds (Remark (4.28)).

Acknowledgements. The second author wishes to thank the University of California at

Riverside for the nice hospitality provided during the fall of 1998 when most of this research

was conducted.

2. BOUNDING COHOMOLOGY OF TANGENT AND NORMAL BUN-

DLES

In this section we will let Y be a smooth irreducible variety of dimension n and A a globally
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generated line bundle on Y such that the associated map ϕA : Y → IP r = IPH0(A) is

birational. We denote by Nϕ
A

the normal bundle of the map ϕA, so that we have an exact

sequence

(2.1) 0→ TY → ϕ∗ATIP r → Nϕ
A
→ 0.

Our interest will focus on giving bounds on the dimensions of the cohomologies of negative

twists of the tangent and normal bundles of Y . We start with the following standard fact.

Lemma (2.2). With Y and A as above we have

(2.3) h0(ϕ∗ATIP r ⊗A−m) = 0 if m ≥ 2, n ≥ 2;

(2.4) h1(ϕ∗ATIP r ⊗A−m) = 0 if either m ≥ 2 and n ≥ 3 or m ≥ 3 and n ≥ 2 or

n = m = 2, h1(OY ) = 0 and g(A) > 0;

(2.5) h0(Nϕ
A
⊗A−m) = h1(TY ⊗A−m) if either m ≥ 2 and n ≥ 3 or m ≥ 3 and n ≥ 2 or

n = m = 2, h1(OY ) = 0 and g(A) > 0.

Proof: By the Euler sequence

(2.6) 0→ A−m → H0(A)∗ ⊗A1−m → ϕ∗ATIP r ⊗A−m → 0

we see immediately (2.3) and also (2.4) for n ≥ 3 by Kawamata-Viehweg vanishing theorem.

In the case n = 2, (2.6) gives that h1(ϕ∗ATIP r ⊗A−m) is the cokernel of the multiplication

map µ : H0(A)⊗H0(ωY ⊗Am−1)→ H0(ωY ⊗Am). To see that µ is surjective under the

hypotheses of (2.4), let C ∈ |A| be a general curve and V = Im{H0(A)→ H0(A|C)}. We

have a diagram
0 0
↓ ↓

H0(OY )⊗H0(ωY ⊗Am−1)
∼=−→ H0(ωY ⊗Am−1)

↓ ↓
H0(A)⊗H0(ωY ⊗Am−1)

µ−→ H0(ωY ⊗Am)
↓ ↓

V ⊗H0(ωY ⊗Am−1)
ν−→ H0(ωC ⊗Am−1|C )

↓ ↓
0 0

and we will be done if we show that ν is surjective. Now ν is the composition of the maps

V ⊗H0(ωY ⊗Am−1)
α−→V ⊗H0(ωC ⊗Am−2|C )

β−→H0(ωC ⊗Am−1|C ). The map α is surjective

since H1(ωY ⊗ Am−2) = 0 for m ≥ 3 by Kawamata-Viehweg vanishing theorem and for
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m = 2 by hypothesis. The map β is surjective by [G, Theorem 4.e.1] if m ≥ 3 and by the

base point free pencil trick if m = 2. (In both cases it is used that g(C) = g(A) > 0). As

for (2.5) it is an obvious consequence of (2.3), (2.4) and the normal bundle sequence (2.1).

By (2.5) it is clear that one can study the twists of either the tangent or the normal bundle.

In the next Proposition we will use a standard projective result of L. Ein [E] to bound the

normal bundle case.

Given integers N, d, r, q we define some functions used below: Mi = max{0, (8−2i)r+1
2r d +

8− 2N} for −1 ≤ i ≤ 2,M3 = max{0, 2r+1
2r d + 9− 2N}, M4 = max{0, d2r + 2q + 7−N},

M5 =

{
max{0, 6−N} if r ≥ 2
max{0, 7 + 2q −N} if r = 1

, M6 =

{
0 if r ≥ 2 or r = 1, N ≥ 5
1 if r = 1, N = 4

. Also we

recall that ε1 = max{0, 5−N}, ε2 = max{0, 7−N}.

Proposition (2.7). Let X be a smooth irreducible threefold and L a globally generated

line bundle on X such that the map ϕ : X → IPN = IPH0(L) is birational and the general

curve section C of its image X = ϕ(X) has at most ordinary singularities. Let S ∈ |L| be

a general surface and C ∈ |Im{H0(L)→ H0(L|S)}| a general curve and denote by ϕC the

map induced by the linear system Im{H0(L) → H0(L|C)}. Assume d = L3 ≥ 3, N ≥ 4.

Then

(2.8) h0(Nϕ
C
⊗ L−m|C ) ≤ max{0, h1(Lm−3|C )− 2N + 8} for m ≥ 2.

In particular if X is a Calabi-Yau threefold we get

(2.9) h1(TX ⊗ L−m) ≤



0 for m ≥ 6
ε1 for m = 5
ε2 for m = 4, N ≥ 5
ε2 + 2 for m = N = 4
d− 2N + 9 + 3ε1 + 2ε2 for m = 3
4d− 6N + 26 + 4ε1 + 3ε2 for m = 2

.

If X is of general type and such that there exists an integer r ≥ 1 for which L = rKX

satisfies the hypotheses above, we have,

(2.10) h1(TX ⊗ L−m) ≤


0 for m ≥ 7
6∑

i=m

(i+ 1−m)Mi for 3 ≤ m ≤ 6 .
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Proof: Set W = Im{H0(L)→ H0(L|S)}, V = Im{H0(L)→ H0(L|C)}, and denote by ϕS

the map induced by W . By hypothesis it follows that S and C are smooth irreducible and

ϕC , the map induced by V , is birational and unramified. IfN = 4 we haveNϕ
C

∼= ωC⊗L3
|C .

When N ≥ 5 there is an exact sequence

0→
N−4⊕
j=1

L1−m
|C (2Pj)→ Nϕ

C
⊗ L−m|C → ωC ⊗ L3−m

|C (−2

N−4∑
j=1

Pj)→ 0

proved by Ein [E, Lemma 4] for N − 4 general points Pj ∈ C and (2.8) follows. To see

(2.9) and (2.10), observe that, as S and C are general in their linear systems, we have

(Nϕ)|S = Nϕ
S
, (Nϕ

S
)|C = Nϕ

C
and there are two exact sequences

(2.11) 0→ Nϕ ⊗ L−1 → Nϕ → Nϕ
S
→ 0

and

(2.12) 0→ Nϕ
S
⊗ L−1|S → Nϕ

S
→ Nϕ

C
→ 0.

Now suppose that X is a Calabi-Yau threefold. Then ωS = L|S , q(S) = 0, ωC = L2
|C and

V = H0(L|C) has dimension N − 1. Hence

h1(Lm−3|C ) = h0(L5−m
|C ) =


0 for m ≥ 6
1 for m = 5
N − 1 for m = 4
g = d+ 1 for m = 3
2d for m = 2

.

By (2.8), Ein’s exact sequence and the fact that in this case d ≥ 3N − 7 ([Ca], [B]), we get

(2.13) h0(Nϕ
C
⊗ L−m|C ) ≤



0 for m ≥ 6
ε1 for m = 5
ε2 for m = 4
d− 2N + 9 for m = 3
2d− 2N + 8 for m = 2
3d−N + 4 for m = 1
4d+N2 − 7N + 12 for m = 0
(N + 1)d for m = −1

.

If m ≥ 6 or m = 5 and N ≥ 5 or m = 4 and N ≥ 7, (2.12) and (2.13) imply that

H0(Nϕ
S
⊗ L−m|S ) = 0, as C is a general element of |L|S |. The same argument applied to
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(2.11) gives H0(Nϕ ⊗ L−m) = 0, hence (2.9) (by (2.5)) in these cases. If m = 5, N = 4

or m = 4 and 5 ≤ N ≤ 6 by (2.11), (2.12) we get h0(Nϕ ⊗ L−m) ≤ h0(Nϕ
S
⊗ L−m|S ) ≤

h0(Nϕ
C
⊗L−m|C ) and conclude with (2.13) and (2.5). Similarly if m = N = 4 we get, by the

above cases, h0(Nϕ
C
⊗L−4|C ) ≤ 7−N,h0(Nϕ

S
⊗L−4|S ) ≤ 8−N and h0(Nϕ⊗L−4) ≤ 9−N

and use again (2.5). If m = 3, using the same exact sequences, we deduce

h1(TX ⊗ L−3) = h0(Nϕ ⊗ L−3) ≤ h0(Nϕ ⊗ L−4) + h0(Nϕ
S
⊗ L−3|S ) ≤

≤ 3h0(Nϕ
C
⊗ L−5|C ) + 2h0(Nϕ

C
⊗ L−4|C ) + h0(Nϕ

C
⊗ L−3|C ) ≤

≤ d− 2N + 9 + 3ε1 + 2ε2.

For m = 2, we have

h1(TX ⊗ L−2) = h0(Nϕ ⊗ L−2) ≤ h0(Nϕ ⊗ L−3) + h0(Nϕ
S
⊗ L−2|S ) ≤

≤ d− 2N + 9 + 3ε1 + 2ε2 + h0(Nϕ
C
⊗ L−3|C ) + h0(Nϕ

C
⊗ L−2|C ) + h0(Nϕ

S
⊗ L−4|S ) ≤

≤ 4d− 6N + 26 + 4ε1 + 3ε2.

Now let us do the case X of general type. First we claim that

(2.14) h0(Nϕ
C
⊗ L−m|C ) ≤


0 for m ≥ 7
Mm for 2 ≤ m ≤ 6
N − 4 +M1 for m = 1
(N − 4)(2q − 1 +N) +M0 for m = 0
(N − 4)( 2r−1

2r d+ 2 + α) +M−1 for m = −1

where α =

{
pg(X) if r ≥ 2
N + 2q − 1 if r = 1

. To see (2.14) observe that by hypothesis we have

KS = (r+ 1)KX|S ,KC = (2r+ 1)KX|C . Hence h1(Lm−3|C ) = h0((5r+ 1−mr)KX|C ). This

and (2.8) give (2.14) for m ≥ 6. To do the case m = 5, we will first prove

(2.15) h0(KX|C ) ≤
{
N − 2 if r ≥ 2
N + 2q − 1 if r = 1

.

Of course (2.15) and (2.8) imply (2.14) for m = 5. To prove (2.15) for r ≥ 2, observe that

Kawamata-Viehweg vanishing gives easily h0(KX|C ) = h0(KX|S ) = h0(KX). Now either

h0(KX) = 0 and (2.15) is true or h0(KX) 6= 0 and hence h0(KX) ≤ h0((r − 1)KX) ≤

h0(rKX) − 3 = N − 2. (The last inequality is because rKX has no base locus). If r = 1,

the bound (2.15) is clear just by restricting to S and C. As above, we conclude that (2.10)



CHANG - LOPEZ 10

holds for m ≥ 5. If m ≤ 4, we will give a bound on h1(Lm−3|C ); (2.14) and (2.10) then

follow in the usual way from (2.8), (2.11), (2.12) and this bound.

For m = 4, we have h1(L|C) = h0((r+ 1)KX|C ) = (r+ 1)KX ·C−g+ 1 +h1((r+ 1)KX|C ).

Now KX · C = 1
rd, g − 1 = 2r+1

2r d and h1((r + 1)KX|C ) ≤ 2q − 1 + N , as it can be easily

seen from the exact sequences

0→ OS(KX|S )→ OS((r + 1)KX|S )→ OC((r + 1)KX|C )→ 0

and

0→ OX((1− r)KX)→ OX(KX)→ OS(KX|S )→ 0.

When m = 3 we have h1(OC) = g = 2r+1
2r d + 1. The rest of the cases of (2.14) is proved

in the same way as above by using Ein’s exact sequence.

Remark (2.16). From the above proof it is clear that bounds on h1(TX⊗L−m) do follow as

soon as one has a good bound on h0(Nϕ
C
⊗L−m|C ). As is well-known the latter cohomology

is just the corank of a suitable Gaussian map. For example if X is a Calabi-Yau threefold

one has h0(Nϕ
C
⊗ L−m|C ) = corkΦL|C ,Lm+1

|C
, for m ≥ 2. However the known results about

Gaussian maps do not apply nicely here to give better estimates than (2.8), mainly because

of the fact that the degree of L|C is g + 1.

Remark (2.17). The above Proposition is the only place (besides of course its several

applications) in the article where the hypothesis that the curve C has at most ordinary

singularities is used. In fact it is possible to give similar bounds both on h1(TX ⊗ L−m)

and on the Euler number also in the case the curve C does not have ordinary singularities.

On the other hand, as these bounds get progressively worst, we will omit them.

3. THE BOUND FOR CALABI-YAU THREEFOLDS

We now let X be a smooth irreducible Calabi-Yau threefold and L a globally generated

line bundle on X such that the map ϕ : X → IPN = IPH0(L) is birational. Again we

choose S ∈ |L| and C ∈ |L|S | general elements and denote by X = ϕ(X), C a general curve

section of X,N + 1 = h0(L) and d = L3 . We start with some bounds on the cohomologies

of the twists of the tangent sheaf of S.
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Lemma (3.1). With notation as above we have the following bounds

(3.2) h1(TS) ≤ 10N + 11;

(3.3) h1(TS ⊗ L−1|S ) ≤ 11N + 10;

(3.4) h1(TS ⊗ L|S) ≤ 2d+ 10N + 12;

(3.5)
m−1∑
j=0

h0(Lj|S) +
m∑
j=1

h0(Ω1
S ⊗ L

j
|S) ≤

{
18d+ 4N + 4 if m = 3
7d+ 2N + 2 if m = 2

.

If in addition C has at most ordinary singularities then also

(3.6)
5∑
j=0

h1(TS ⊗ L−j|S ) ≤ min{d+ 30N + 41 + 3ε1 + 2ε2, 4d+ 15N + 47 + 4ε1 + 3ε2}.

Proof: By [C, Theorem C], we have h1(TS) ≤ 10χ(OS) + 1 = 10N + 11. From

0→ TS ⊗ L−1|S → TS → TS|C → 0

and

0→ L−2|C → TS|C → L|C → 0

we easily deduce h1(TS ⊗ L−1|S ) ≤ h1(TS) + h0(TS|C ) ≤ 11N + 10. Similarly, we get the

bounds (3.4) and (3.6) by restricting to C and using (2.4), (2.5), (2.12) and (2.13). The

bound (3.5) is obtained in the same way by using Riemann-Roch.

We will now prove our bounds on the Euler number of X.

Proof of Theorem (1.1):

By Riemann-Roch, we have 1
2e(X) = χ(TX) ≤ h2(TX) = ρ(X) = h1(Ω1

X). Consider the

exact sequences

(3.7) 0→ Ω1
X ⊗ L−1 → Ω1

X → Ω1
X|S → 0

and

(3.8) 0→ L−1|S → Ω1
X|S → Ω1

S → 0.

By a theorem of L. Migliorini [Mi, Theorem 4.6], we have, under the hypothesis (1.4),

that H1(Ω1
X ⊗ L−1) = 0. Also H1(L−1|S ) = 0 by Kawamata-Viehweg. Hence h1(Ω1

X) ≤

h1(Ω1
X|S ) ≤ h1(Ω1

S) = h1(TS ⊗ L|S) ≤ 2d+ 10N + 12 by (3.4) and we get (1.4). To prove

(1.5) we show instead that h1(TS ⊗ L|S) ≤ 11d − 12N + 34 + ε1 + ε2. From the exact

sequence

0→ TS ⊗ L|S → ϕ∗STIPN−1 ⊗ L|S → Nϕ
S
⊗ L|S → 0
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and H0(TS ⊗ L|S) = H1(OS) = 0 (since L|S = ωS) we deduce

h1(TS ⊗ L|S) ≤ h0(Nϕ
S
⊗ L|S) + h1(ϕ∗STIPN−1 ⊗ L|S)− h0(ϕ∗STIPN−1 ⊗ L|S).

Now by the Euler sequence

0→ ϕ∗SΩ1
IPN−1 → H0(L|S)⊗ L−1|S → OS → 0

we get H0(ϕ∗SΩ1
IPN−1) = 0, h1(ϕ∗STIPN−1 ⊗ L|S)− h0(ϕ∗STIPN−1 ⊗ L|S) = −χ(ϕ∗SΩ1

IPN−1) =

−N2−Nd+ 1. By (2.12) and (2.13) we also have h0(Nϕ
S
⊗L|S) ≤

1∑
i=−5

h0(Nϕ
C
⊗Li|C) ≤

(N + 11)d+N2 − 12N + 33 + ε1 + ε2 and (1.5) is proved.

To see (1.2) we use the exact sequences

(3.9) 0→ TX ⊗ L−1 → TX → TX|S → 0

and

(3.10) 0→ TS → TX|S → L|S → 0.

By (2.9) and (3.9), we deduce h1(TX) ≤
5∑
i=0

h1(TX|S ⊗ L−i|S ). As h1(Lj|S) = 0 for all j

by Kawamata-Viehweg, (3.10) gives h1(TX) ≤
5∑
i=0

h1(TS ⊗ L−i|S ) and this, together with

Lemma (3.1) and 1
2e(X) = ρ(X)− h1(TX), implies (1.2).

Finally, to prove (1.3), we have

(3.11)

χ(TX⊗L−m) = −1

2
(m3 +3m)d+9m(N +1)+

1

2
e(X) ≥ −h1(TX⊗L−m)−h3(TX⊗L−m).

For h3(TX ⊗ L−m) = h0(Ω1
X ⊗ Lm) notice that, by (3.7) and (3.8), we deduce

h0(Ω1
X ⊗ Lm) ≤

m∑
j=1

h0(Ω1
X|S ⊗ L

j
|S) ≤

m−1∑
j=0

h0(Lj|S) +

m∑
j=1

h0(Ω1
S ⊗ L

j
|S).

Applying (2.9) and (3.5) to (3.11), for m = 2, 3, we get (1.3).

Remark (3.12). In the cases N = 4, N = 5 and dimSing(X) = 0, it follows that X is a

complete intersection in IPN (for N = 5 it is a consequence of [BC]). However, as there is
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no further requirement on the singularities of X, it seems interesting to give a bound on

the Euler number even in these cases.

4. THE BOUNDS FOR THREEFOLDS OF GENERAL TYPE.

We let X be a smooth irreducible threefold with the property that there exists an integer

r ≥ 1 such that rKX is globally generated and defines a birational morphism. We set

L = rKX , ϕL : X → IPN = IPH0(L), X = ϕL(X), C a general curve section of X and

choose general sections S ∈ |L| and C ∈ |Im{H0(L)→ H0(L|S)}|. Let χ = χ(OX), χS =

χ(OS), q = q(X), d = L3 and Mi as defined above Proposition (2.7). As in section 3, we

have

Lemma (4.1). With the above notation and hypotheses, the following bounds hold

(4.2) χS ≤
1

2
(1 +

2

r
+

1

r2
)d+ 3− q;

(4.3) If (r + 1)KX is also globally generated and birational then

χS ≤
1

3
(1 +

2

r
+

1

r2
)d− q +

10

3
;

(4.4) h2(TS) ≤ (3 + 3
r )d + N +

{
q − 2 if r ≥ 2
3q if r = 1

; if (r + 1)KX is also globally generated

then h2(TS) ≤ (2 + 4
r + 2

r2 )d+ q + 1;

(4.5) h1(TS) = 10χS − (2 + 4
r + 2

r2 )d+ h2(TS);

(4.6) h1(TS ⊗ L−1|S ) ≤ 10χS − (2 + 4
r + 2

r2 )d+ h2(TS) +N + 2q − 1;

(4.7) h1(TS ⊗ L−2|S ) ≤ 10χS − (2 + 4
r + 2

r2 )d+ h2(TS) +N + 2q.

If, in addition, C has at most ordinary singularities, we also have

(4.8) h1(TS ⊗L−3|S ) ≤ min{10χS − (2 + 4
r + 2

r2 )d+h2(TS) +N + 2q,M6 +M5 +M4 +M3};

(4.9) h1(TS ⊗ L−4|S ) ≤ min{10χS − (2 + 4
r + 2

r2 )d+ h2(TS) +N + 2q,M6 +M5 +M4};

(4.10) h1(TS ⊗ L−5|S ) ≤M6 +M5;

(4.11) h1(TS ⊗ L−6|S ) ≤M6.

Proof: As S is minimal of general type we have Noether’s inequality χS ≤ 1
2 (1 + 2

r +

1
r2 )d+ 3− q. Under the hypothesis in (4.3), KS = (r + 1)KX |S is globally generated and
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birational, hence, by [Ca], [B], we have pg(S) ≤ 1
3K

2
S + 7

3 = (r+1)2

3r2 d + 7
3 . To see the first

inequality of (4.4) notice that h2(TS) = h0(Ω1
S((r + 1)KX |S )). Now from

0→ Ω1
S(KX |S )→ Ω1

S((r + 1)KX |S )→ Ω1
S |C ((r + 1)KX |C )→ 0

and

0→ OC(KX |C )→ Ω1
S |C ((r + 1)KX |C )→ OC((3r + 2)KX |C )→ 0

we deduce h2(TS) ≤ h0(Ω1
S(KX |S )) + h0(OC(KX |C )) + 4r+3

2r d. By

0→ Ω1
S((1− r)KX |S )→ Ω1

S(KX |S )→ Ω1
S |C (KX |C )→ 0

0→ OC((1− r)KX |C )→ Ω1
S |C (KX |C )→ OC((2r + 2)KX |C )→ 0

and h0(Ω1
S((1− r)KX |S )) ≤ q, we see that h0(Ω1

S(KX |S )) ≤ q+ 2r+3
2r d+

{
0 if r ≥ 2
1 if r=1

and

applying it above, together with (2.15), we get the first part of (4.4). The second inequality

of (4.4) is in [C, Theorem C]. (4.5) is just Riemann-Roch and the fact that h0(TS) = 0 for

a minimal surface of general type. All the other inequalities are obtained in the same way

as Proposition (3.1). Their proof is left to the reader.

We now give our result about the Euler number of X.

Theorem (4.12). Let X be a smooth irreducible threefold such that there exists an

integer r ≥ 1 for which rKX is globally generated and birational. Set N = dim|rKX |, q =

q(X), χ = χ(OX), S ∈ |rKX | a general section and η =

{
8 if r ≥ 2
2− 2q if r = 1

. Denote by

X = ϕrKX
(X), C a general curve section of X. Then the following bounds hold for the

Euler number of X:

If (∗) C has at most ordinary singularities we have the two lower bounds

(4.13) (r ≥ 2)

e(X) ≥ max{1

3
(10r3+45r2+35r+3)K3

X−10N+(200r+36)χ−12h2(TS)−2M5−22q+8,

1

3
(8r3 + 36r2 + 28r + 3)K3

X − 8N + (160r + 36)χ− 10h2(TS)− 4M5 − 2M4 − 18q + 8,

(2r3 + 9r2 + 7r + 1)K3
X − 6N + (120r + 36)χ− 8h2(TS)− 6M5 − 4M4 − 2M3 − 14q + 8}
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(r = 1) e(X) ≥ max{31K3
X −12N + 234χ−12h2(TS)−4M6−2M5−24q,

25K3
X − 10N + 194χ− 10h2(TS)− 6M6 − 4M5 − 2M4 − 20q,

19K3
X − 8N + 154χ− 8h2(TS)− 8M6 − 6M5 − 4M4 − 2M3 − 16q};

(4.14) e(X) ≥

max{1

6
(22r3 +87r2 +71r+6)K3

X −10N +(196r+38)χ−12h2(TS)−4M6−2M5−20q+η,

1

2
(6r3 + 23r2 + 19r+ 2)K3

X −8N + (156r+ 38)χ−10h2(TS)−6M6−4M5−2M4−16q+η,

1

6
(14r3+51r2+43r+6)K3

X−6N+(116r+38)χ−8h2(TS)−8M6−6M5−4M4−2M3−12q+η}.

If (∗∗) some multiple of KX does not contract divisors to points then

(4.15)

e(X) ≤ 1

3
(10r3−7r+3)K3

X +2N+(38−40r)χ+2h2(TS)+

{
−4 if r ≥ 2
2h1,1(X) + 6q − 2 if r = 1

.

If (∗) and (∗∗) hold then

(4.16)

e(X) ≤ 1

6
[−(2N +46)r3 +(3N +21)r2− (N −1)r+6]K3

X +[38+4r(N −1)]χ+2

6∑
i=−1

Mi+

+4(N − 4)(N + q) +

{
0 if r ≥ 2
2(N − 4)(2q + 1) + 2h1,1(X) + 2q if r = 1

.

Note that χS = 1
12 (2r3 + 3r2 + r)K3

X − 2rχ hence by Lemma (4.1) we can deduce bounds

on K3
X in terms of χ and similarly for h2(TS). Also applying Yau-Tsuji’s inequality ([Y],

[T]) c2 · KX ≥ 3
8K

3
X , one easily gets that K3

X ≤ −64χ (in particular χ < 0) and K3
X ≤

192
32r3−48r2+22r−3 (N + 1) +

{
0 if r ≥ 2
1− q if r = 1

. The bound in (4.16) is better than the one in

(4.15) only in a few cases.

Proof of Theorem (4.12): By Riemann-Roch we have

χ(TX) = − d

2r3
− 19χ+

e(X)

2
≤ h0(TX) + h2(TX) = h3(Ω1

X(KX)) + h1(Ω1
X(KX)).

By the hypothesis in (4.15) and Migliorini’s version of Kodaira vanishing [Mi, Theorem

4.6], we have h3(Ω1
X(KX)) = 0 and h1(Ω1

X((1 − r)KX)) = 0 for r ≥ 2. By the exact

sequences

0→ Ω1
X((1− r)KX)→ Ω1

X(KX)→ Ω1
X(KX)|S → 0



CHANG - LOPEZ 16

and

0→ OS((1− r)KX|S )→ Ω1
X(KX)|S → Ω1

S(KX|S )→ 0

we deduce h1(Ω1
X(KX)) ≤ h1(Ω1

X(KX)|S) + p1, where p1 =

{
0 if r ≥ 2
h1,1(X) if r = 1

and

similarly h1(Ω1
X(KX)|S) ≤ h1(TS(rKX|S )) + p2, where p2 =

{
0 if r ≥ 2
q if r = 1

. (This is

because q = h1(OX) = h1(OS) and h1(OS((1 − r)KX|S )) = 0 for r ≥ 2, by Kawamata-

Viehweg). The bound (4.15) is now a consequence of the above inequalities and

(4.17) h1(TS(rKX|S )) ≤ (2 +
3

2r
)d+ h1(TS) +

{
N − 2 if r ≥ 2
N + 2q − 1 if r = 1

.

To see (4.17) we consider the exact sequences

0→ TS → TS(rKX|S )→ TS|C (rKX|C )→ 0

and

0→ TC(rKX|C )→ TS|C (rKX|C )→ OC(2rKX|C )→ 0.

We get h1(TS(rKX|S )) ≤ h1(TS) +h0(KX|C ) +h0((3r+ 2)KX|C ) and h0((3r+ 2)KX|C ) =

(3r + 2)KX · C − g + 1 = 4r+3
2r d by Riemann-Roch. Combining this with (2.15), we have

(4.17). Hence (4.15) is proved. To prove (4.16) we give instead the upper bound

h1(TS(rKX|S )) ≤ (N − 8r + 3)
d

2r
− (N − 1)χS +

6∑
i=−1

Mi + 2(N − 4)(N + q)+

+

{
0 if r ≥ 2
(N − 4)(2q + 1) if r = 1

.

The latter is proved much in the same way as we did for (1.5) and we just outline the

proof, leaving the easy details to the reader. Twisting by OS(rKX|S ) the pull-back by ϕS

of the normal bundle sequence and of the Euler sequence we get

h1(TS(rKX|S )) ≤ h0(Nϕ
S

(rKX|S ))− χ(ϕ∗SΩ1
IPN−1(KX|S )).

Now χ(ϕ∗SΩ1
IPN−1(KX|S )) = −(N−1)χS−(2N(r−1)+1) d2r . Applying (2.12), (2.14) and the

easy inequality pg(X) ≤
{
N − 2 if r ≥ 2
N if r = 1

(this is as in (2.15)), we deduce h0(Nϕ
S
⊗L|S) ≤

6∑
i=−1

h0(Nϕ
C
⊗L−i|C ) ≤

6∑
i=−1

Mi+(N−4)(2q+2N+ 2r−1
2r d+

{
0 if r ≥ 2
2q + 1 if r = 1

), and (4.16)

is proved.
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To get the lower bound in (4.13), we recall that by [CKN, Lemma 1] and (2.10) we have

(4.18) h1(TX) ≤
6∑
i=0

h1(TS ⊗ L−i|S ) + q + h1(L|S)

and

(4.19) h3(TX) ≤ q + h2(TS) +
{

0 if r ≥ 2
1 if r = 1

.

As h1(L) = h1(OX(rKX)) =

{
0 if r ≥ 2
h2(OX) if r = 1

from the exact sequence

0→ OX → L→ L|S → 0

we deduce

(4.20) h1(L|S) ≤
{
h2(OX) if r ≥ 2
2h2(OX) if r = 1

.

Note that h2(OX) = χ + pg + q − 1. Applying these together with (4.18), (4.19), (4.20)

and Lemma (4.1) in

− d

2r3
− 19χ+

e(X)

2
= χ(TX) ≥ −h1(TX)− h3(TX)

we get (4.13).

Finally to prove (4.14), we use the inequality

(4.21) − d

4r3
(2m3r3 + 5m2r2 + 5mr + 2)− (19 + 18mr)χ+

e(X)

2
=

= χ(TX ⊗ L−m) ≥ −h1(TX ⊗ L−m)− h3(TX ⊗ L−m)

form = 3, 4, 5. An upper bound on h1(TX⊗L−m) is given in (2.10). As for h3(TX⊗L−m) =

h0(Ω1
X(KX)⊗Lm) we proceed exactly as in the proof of (1.3) by restricting to S and C. As

most of the calculations are the same, we will limit ourselves to give the bounds obtained,

leaving the easy proof to the reader. We get

(4.22) h3(TX⊗L−5) ≤ 18d+42(g−1)−2q+4h1(L|C)+6h2(TS)+4pg(S)+6+h2(L|S)+p

(4.23) h3(TX ⊗L−4) ≤ 6d+24(g−1)− q+3h1(L|C)+5h2(TS)+3pg(S)+4+h2(L|S)+p
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(4.24) h3(TX ⊗ L−3) ≤ d+ 11(g − 1) + 2h1(L|C) + 4h2(TS) + 2pg(S) + 2 + h2(L|S) + p

where p =
{

0 if r ≥ 2
1 if r = 1

. Applying the easy bounds

(4.25) h1(L|C) ≤ d

2r
+N + 2q − 1, h2(L|S) = h0(KX|S ) ≤

{
N − 2 if r ≥ 2
N + q if r = 1

together with (2.10), (4.22), (4.23) and (4.24) to (4.21), we get (4.14).

Rewriting the bounds in terms of Chern numbers leads to the boundedness of the Chern

ratios.

Proof of Corollary (1.10): Let r ≥ 2 be such that L = rKX is very ample (r ≤ 10 by Lee’s

results). By Riemann-Roch we get N + 1 = − 1
24 (2r − 1)c1c2 − 1

12 (2r3 − 3r2 + r)c31. By

(4.4) we have h2(TS) ≤ − 1
24 (2r− 1)c1c2− 1

12 (38r3 + 33r2 + r)c31 + q− 3 and q = h1(OS) ≤

h1(OC) = g = − 1
2 (2r3 + r2)c31 + 1. Now the first bound in (4.13) gives an inequality of

type c3 ≥ Ac31 +Bc1c2 while the bound in (4.15) leads to c3 ≤ −Cc31 −Dc1c2 − 10, where

A,B,C,D are polynomials in r positive for some large explicit r. As c1c2 = 24χ < 0 and

c31
c1c2
≤ 8

3 ([Y], [T]), it is clear that the region described by the Chern ratios c3
c1c2

,
c31
c1c2

is

bounded.

We now give the upper bound on the number of nodes of a complete intersection threefold of

type (d1, . . . , dn) in IPn+3. As the bound depends on Chern numbers it is more convenient

and clear to express it in terms of Newton functions. For i = 1, . . . , n let ai = di − 1 and

set, for 1 ≤ j ≤ 3, sj = sj(d1, . . . , dn) =
n∑
i=1

aji .

Theorem (4.26). Let X ⊂ IPn+3, n ≥ 1, be an irreducible complete intersection threefold

of type (d1, . . . , dn) having δ nodes and no other singularities. Then δ ≤ B(d1, . . . , dn)

where

B(d1, . . . , dn) =
1

48
d1d2 · · · dn

[
13s31+5s1s2+16s3−128s21+548s1 +50s2−720

]
+n2+7n+

+12−
n∑
j=1

(
dj + n

n

)
+

n∑
j=1

n∑
h=1

(−1)h+1
∑

1≤i1<...<ih≤n

h0(OIPn(dj − di1 − . . .− dih)).

Remark (4.27). The above bound is worst than Varchenko’s bound for hypersurfaces. In

the case of complete intersection threefolds, though not explicitly stated in the literature,
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there is already an upper bound on the number of nodes δ. In fact generalizing Teissier’s

formula Kleiman [K] proved that the class c of X ⊂ IPn satisfies

c = d1 · · · dn(
s3
3

+
s1s2

2
+
s31
6

)−
∑

x∈Sing(X)

b(x)

where b(x) denotes the Buchsbaum-Rim multiplicity of the Jacobian map. But Gaffney

[Ga] proved that b(x) is the sum of the Milnor numbers of X and of a general hyperplane

section at x. Hence for a node we have b(x) = 2 and Kleiman’s formula gives

δ ≤ d1 · · · dn(
s3
6

+
s1s2

4
+
s31
12

).

Our bound improves the above in many cases.

Proof of Theorem (4.26): Let Xt ⊂ IPn be a smoothing of X (that is Xt ⊂ IPn is a

smooth complete intersection threefold of type (d1, . . . , dn)) and X̃ a small resolution of

X. Let L be the line bundle on X̃ that defines the birational map to X and note that

this map is an isomorphism away from the curves contracted to the nodes. In particular

a general S ∈ |L| is just (isomorphic to) a smooth complete intersection surface of type

(d1, . . . , dn) in IPn+2. Set k = s1 − 4, d = d1d2 · · · dn. We have K
X̃

= kL, L3 = d and

the Chern classes of Xt are c1 = (4 − s1)H, c2 = 1
2 (s21 + s2 − 6s1 + 12)H2, c3 = e(Xt) =

− 1
6 (s31 +3s1s2 +2s3−6s21−6s2 +18s1−24)d where H is the hyperplane divisor. It follows

that χ = χ(OX) = χ(O
X̃

) = χ(OXt
) = − 1

24kH · c2(Xt) = d
48 (4 − s1)(s21 + s2 − 6s1 + 12)

and, by Riemann-Roch, for every integer l we have χ(OXt
(l)) = h0(OXt

(l))−h3(OXt
(l)) =

d
48 (4−s1+2l)(s21+s2−6s1+12+4l2+16l−4ls1). By a standard topological fact (see [Hi])

it follows that e(X̃) = e(Xt) + 2δ hence a bound on δ follows from a bound on e(X̃). As

χ(T
X̃

) = − 1
2K

3

X̃
− 19χ+ e(X̃)

2 again we need to bound h0(T
X̃

) +h2(T
X̃

). First notice that

h0(T
X̃

) = h3(Ω1

X̃
(K

X̃
)) = 0 and similarly h1(Ω1

X̃
(−L)) = 0 both by Migliorini’s result [Mi,

Theorem 4.6] (note that X̃ is in general only a compact complex Moishezon threefold, as

it may not be projective [Hi], but the theorem of Migliorini does apply to this case to the

line bundle L (note that we need [D])). Finally h2(T
X̃

) = h1(Ω1

X̃
(kL)) which we bound by

restricting to S. By the exact sequences

0→ Ω1

X̃
((i− 1)L)→ Ω1

X̃
(iL)→ Ω1

X̃
(iL)|S → 0
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and

0→ OS(i− 1)→ Ω1

X̃
(iL)|S → Ω1

S(i)→ 0

we deduce h1(Ω1

X̃
(kL)) ≤

k∑
i=0

h1(Ω1
S(i)). But now the Euler and normal bundle sequences

of S give h1(Ω1
S) = 1 +

n∑
j=1

h0(OS(k+ 1 + dj))− nh0(OS(k+ 2)) + h0(OS(k+ 1)) and, for

i ≥ 1, h1(Ω1
S(i)) =

n∑
j=1

h0(OS(k + 1 + dj − i)) − nh0(OS(k + 2 − i)) + h0(OS(k + 1 − i)).

Notice that
l∑
i=0

h0(OS(i)) = h0(OXt
(l)) (these numbers depend only on d1, . . . , dn) and the

latter, for l ≥ k+1, can be calculated by the above formula for χ(OXt(l)) and the fact that

h3(OXt
(l)) = 0. Similarly

k∑
i=0

h0(OS(k+ 1 +dj − i)) = h0(OXt
(k+ 1 +dj))−h0(OXt

(dj)).

Calculating the latter by the Koszul resolution of the ideal sheaf of Xt we get the function

B(d1, . . . , dn) and the proof is complete.

Remark (4.28). It is clear that the methods of the above proof also allow to give a bound

on the number of nodes of a smoothable nodal Calabi-Yau threefold (for example when it

is nodal and Q-factorial [N]).
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