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Università degli Studi di Torino
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Introduction

Term-ordering free involutive bases comes from the union of two
different souls:

• an involutive soul;

• a term-ordering free soul.

Let us examine properly each of them.
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Riquier

Riquier interprets derivatives 1
α1!···αn!

∂α1+α2+...+αn

∂x
α1
1 ∂x

α2
2 ...∂xαnn

, as terms

τ = xα1
1 xα2

2 . . . xαn
n ∈ T , transforming the problem of solving

differential partial equations in terms of ideal membership.

He introduced the concept (but not the notion) of S-polynomials
and proved that if the normal form (Gauss-Buchberger reduction)
of each S-polynomial among the elements of the basis G
generating the system goes to zero then

• the given basis G generates the related ideal and the related
problem could be solvable;

• a solution of the PDE is determined (and computed) as series
in terms of initial conditions, formulated in terms of a
decomposition of the related escalier N;
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If the normal form computation produces conflicts among the data
then the PED has no solution.

Example
The problem ∂u

∂y = f , ∂u∂x = g has no solution unless ∂f
∂x = ∂g

∂y ;

If no conflict arose and not all normal forms are 0, then, exactly as
in Buchberger Algorithm, the non-zero normal forms are included
in the basis and the procedure is repeated.

Deglex ordering induced by x1 > x2 > · · · > xn, + large class of
term-orderings to which his theory was applicable: characterization
of all term-orderings!
Convergency: degree-compatible term-orderings.
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Janet I.

Janet, spured on by Hadamard, dedicated his doctorial thesis to a
reformulation of Riquier’s results in terms of Hilbert’s results.
Given M ⊂ T , |M| <∞, ∀τ ∈ M he associates a set of
multiplicative variables and a subset of terms in (M) (class or
cone) and considered M complete when the cones of M are a
partition of (M).

Procédé régulier pour obtenir un système complet base d’un
module donné, que ne pourra se prolonger indéfiniment: enlarge M
with the elements xτ, τ ∈ M, x non-multiplicative for τ , not
already in the union of cones.
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Procédé régulier pour obtenir un système complet base d’un
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Completeness...

x2, y2 x2, xy , y2
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Janet II.

Homogeneous case, adapting his approach to

• the solution of partial differential equation given by Cartan;

• the introduction by Delassus of the concept of generic initial
ideal and its precise description given by Robinson and
Gunther.

I ⊂ k[x1, x2, . . . , xn] homogeneous (variables assumed generic). For
each 1 ≤ i ≤ n, and p ∈ N:

σ
(p)
i := # {τ ∈ N(I ), deg(τ) = p,min(τ) = i}

fixes a value p and denotes σi := σ
(p)
i , and σ′i := σ

(p+1)
i .
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Definition (Janet)

A finite set E ⊂ P of forms of degree at most p generating the
ideal I ⊂ P, is said to be involutive if it satisfies the formula

n∑
i=1

σ
(p+1)
i =

n∑
i=1

iσ
(p)
i . (1)

The minimal degree p̄ for which the formula is satisfied is
Castelnuovo-Mumford regularity, and this was first noted by
Malgrange.
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First studies: there is a term order

J / P := k[x1, ..., xn] a monomial ideal.

Notari-Spreafico
Stratum St(J,≺): family of all ideals of P whose initial ideal
w.r.t. the term order ≺ is J.

The homogeneous stratum is denoted Sth(J,≺).

M.Roggero-L.Terracini, 2010

St(J,≺) and Sth(J,≺) have a natural structure of affine schemes.

A smooth stratum is always isomorphic to an affine space; strata
and homogeneous strata w.r.t. any term ordering ≺ of every
saturated Lex-segment ideal J are smooth.
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No term-ordering, please!

Admissible Hilbert polynomial p(t) in Pn, deg(p(t)) = d .
Hilbert scheme Hilbn

p(t) realized as closed subscheme of a
Grassmannian G, so “globally defined by homogeneous equations
in the Plucker coordinates of G” + “covered by open subsets
(non-vanishing of a Plucker coordinate), embedded as closed
subschemes of AD ,D = dim(G)”.
Too many Plucker coordinates: computations impossible!
→ (Bertone,Lella, Roggero, 2013) new open cover, marked
schemes over Borel-fixed ideals: really a few!
→ constructive proofs and use a polynomial reduction process,
similar to the one for Groebner bases, but are term-ordering free.
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The problem for strongly stable ideals

Strongly stable: monomial ideal J / k[x1, ..., xn] s.t. ∀τ ∈ J and
∀xi , xj s.t. xi |τ and xi < xj , then

τxj
xi
∈ J.

Example
J = (x3, y) / k[x , y ], x < y :

x3

x
y = x2y ∈ J

Let J be a strongly stable monomial ideal in P := k[x1, ..., xn]:
characterization of the family Mf (J) of all homogeneous ideals
I / P such that the set of all terms outside J is a k-vector basis of
the quotient P/I .
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Main Results

• I ∈ Mf (J) if and only if it is generated by a J-marked basis
(Cioffi-Roggero, 2013) → generalization of Groebner bases;

• Buchberger-like criterion for J-marked bases (Cioffi-Roggero,
2013);

• Mf (J) can be endowed with a structure of affine scheme:
J-marked scheme (Cioffi-Roggero, 2013);

• superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
→ fast!

• division algorithm which works in an affine context:
[J,m]−marked bases (Bertone, Cioffi, Roggero, 2012);

• functorial foundation (Lella, Roggero, 2014).
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The problem.

J / P monomial ideal → characterization for Mf (J), family of all
homogeneous ideals I / P s.t. P/I free A-module with basis N(J).

I s.t. J = In<(I ) : proper subset of Mf (J) ⇒ overcome Groebner
framework.

Whole family Mf (J) for J strongly stable → limiting condition.
However, they are optimal for the effective study of the Hilbert
scheme.
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Riquier-Janet decomposition

We recall Janet’s decomposition for terms in the semigroup ideal
generated by M into disjoint classes.
Each of them contains:

1. a term τ ∈ M;

2. the set of monomials obtained multiplying τ by products of
multiplicative variables, that we call cone of and denote
C ({τ}).

The decomposition by Janet and Riquier we present here has been
generalized by Stanley . The generalized decomposition has been
employed to study Stanley depth, being more suitable than the
original one.
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We remove the finiteness condition on M.
Let M ⊂ T be a set of terms and τ = xα1

1 · · · xαn
n be an element of

M. A variable xj is called Janet-multiplicative (or J-multiplicative)
for τ w.r.t. M if there is no term in M of the form
τ ′ = xβ11 · · · x

βj
j x

αj+1

j+1 · · · xαn
n with βj > αj .

We denote by MJ(τ,M) the set of J-multiplicative variables for τ
w.r.t. M.

The J-cone of τ w.r.t. M is the set

C ({τ}) := {τxλ1
1 · · · x

λn
n |where λj 6= 0 only if xj ∈ MJ(τ,M)}.
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Example (1)

Take M = {x3
1 , x

3
2 , x

4
1x2x3, x

2
3} ⊆ k[x1, x2, x3]

Then: MJ(x3
1 ,M) = {x1} : no xh

1 x0
2x0

3 , h > 3, but we have x0
1x3

2x0
3

and x4
1x2x3

MJ(x3
2 ,M) = {x1, x2} : no xh

1 x3
2x0

3 , h ≥ 1, no xk
2 x0

3 , k ≥ 4, but we
have x4

1x2x3
MJ(x4

1x2x3,M) = {x1, x2} : no xh
1 x2x3, h ≥ 5, no xk

2 x3, k ≥ 2, but
we have x2

3

MJ(x2
3 ,M) = {x1, x2, x3} : no xh

1 x0
2x2

3 , h ≥ 1, no xk
2 x2

3 , k ≥ 1, no
x l
3, l ≥ 3.
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Example (2)

C ({x3
1}) = {xh

1 , h ≥ 3}
C ({x3

2}) = {xh
1 xk

2 , h ≥ 0, k ≥ 3}
C ({x4

1x2x3}) = {xh
1 xk

2 x3, h ≥ 4, k ≥ 1}
C ({x2

3}) = {xh
1 xk

2 x l
3, h ≥ 0, k ≥ 0, l ≥ 2}

Observe that, by definition of multiplicative variable, the only
element in C ({τ}) ∩M is τ itself.
Indeed, if τ ∈ M and also τσ ∈ M for a non constant term σ, then
max(σ) cannot be multiplicative for τ , hence τσ /∈ C ({τ}).
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In 1924, Janet defines multiplicative variables as before and he
provides both a decomposition for the semigroup ideal T(M)
generated by a finite set of terms M and a decomposition for the
complementary set N(M).
On the other hand, in 1927, he defines multiplicative variables in
the following way

Definition
A variable xj is Pommaret-multiplicative or P-multiplicative for
τ ∈ T if and only if xj ≤ min(τ).

The P-cone of τ is the set

C ({τ}) := {τxλ1
1 · · · x

λn
n |where λj 6= 0 only if xj ∈ MP(τ,M)}.
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The two definitions of multiplicative variables appear to be very
different (but they are equivalent in Janet’s context).
In the first formulation, the set of multiplicative variables for a
term in M depends on the whole set M, whereas in the second it is
completely independent on the set M: the two notions are not
equivalent for a general M:

Example
In k[x1, x2, x3] consider the ideal I = (x2

1x2, x1x2
2 ) and let M be its

monomial basis. Then, MJ(x2
1x2,M) = {x1, x3} and

MJ(x1x2
2 ,M) = {x1, x2, x3}, whereas only x1 is P-multiplicative.

Clearly also Janet and Pommaret cones do not coincide:
CJ(x2

1x2) = {xh
1 x2x l

3, h ≥ 2, l ≥ 0}
CP(x2

1x2) = {xh
1 x2, h ≥ 2}

CJ(x1x2
2 ) = {xh

1 xk
2 x l

3, h ≥ 1, k ≥ 2, l ≥ 0}
CP(x1x2

2 ) = {xh
1 x2

2 , h ≥ 1}
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M ⊂ T is called complete if for every τ ∈ M and xj /∈ MJ(τ,M),
there exists τ ′ ∈ M such that xjτ ∈ CJ({τ ′}).

Example
All singletons are complete!

M is stably complete if it is complete and for every τ ∈ M it holds
MJ(τ,M) = {xi | xi ≤ min(τ)}.

If M is stably complete and finite, then it is the Pommaret basis
H(J) of J = (M).

Example
M = {x2, xy , y2} ⊂ k[x , y ], x < y .
MJ(x2,M) = MP(x2,M) = {x}, MJ(xy ,M) = MP(xy ,M) = {x},
MJ(y2,M) = MP(y2,M) = {x , y}.
Moreover, x2y ∈ C ({xy}), xy2 ∈ C ({y2}).
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Example
Let M be the set of terms {x , y2} in k[x , y ], with x < y .
The multiplicative variables for every term in M are those lower
than or equal to its minimal one:

MJ(x ,M) = {x}

MJ(y2,M) = {x , y}.

However, M is not complete since yx does not belong to the
J-cone of any term in M.
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Let M be a set of terms (possibly infinite).
If τ, τ ′ ∈ M and τ 6= τ ′, then C ({τ}) ∩ CJ({τ ′}) = ∅.
If, moreover, M is complete and T(M) is the semigroup ideal it
generates, then ∀γ ∈ T(M), ∃τ ∈ M such that γ ∈ CJ({τ}).
Hence, the J-cones of the elements in M give a partition of T(M).

Each term in T(M) can be written in a unique way as a product of

1. an element τ ∈ M;

2. a term xη = xηii · · · x
ηj
j , with xi , ..., xj ∈ MJ(τ,M).

Definition
Let M be a complete system of terms. The star decomposition of
every term γ ∈ (M) w.r.t. M, is the unique couple of terms (τ, η),
with τ ∈ M, such that γ = τη and γ ∈ CJ({τ}). If (τ, η) is the
star decomposition of γ w.r.t. M, we will write γ = τ ∗M η.

→ term ordering free version of the decomposition of terms
defined by Eliahou and Kervaire.
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The star set

Given a monomial ideal J / P we define the star set as

F(J) := {xα ∈ T \ N(J) | xα

min(xα)
∈ N(J)}.

For every monomial ideal J, the star set F(J) is the unique stably
complete system of generators of J. Hence, if M is stably
complete, M = F((M)).

In this context we have

multiplicative ∼= P-multiplicative
J-cones ∼= P-cones
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For an arbitrary monomial ideal J, F(J) can be infinite.
For example, if J = (x) / k[x , y ], x < y , then
F(J) = {xyn | n ∈ N}.

1 x

y

y2

y3

...
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Not all the complete systems turn out to be of the form of a star
set.
For example, the complete system M = {xhy , h ≥ 1} ⊆ k[x , y ] is
not the star set of the ideal J := (M).
Indeed, N(J) = {xm, m ≥ 0} ∪ {y l , l > 0} and all the terms of the
form xyk , k > 1, do not belong to M, even if

xyk

min(xyk )
= yk ∈ N(M).

Moreover, for h > 1, xhy
x = xh−1y ∈ M, so xhy /∈ F(J).

1 x

y

y2

y3

...

x2 x3 ···

xy x2y x3y ···
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A monomial ideal J is

1. stable if τ ∈ J, xj > min(τ)⇒ xjτ
min(τ) ∈ J

2. quasi stable if τ ∈ J, xj > min(τ)⇒ ∃t ≥ 0 :
x tj τ

min(τ) ∈ J.

J monomial ideal,TFAE:

i) J stable

ii) F(J) = G(J)

A) J quasi stable

B) |F(J)| <∞
C) F(J) Pommaret basis
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In k[x , y , z ] with x < y < z :

• considered J = (z , y2), we get M = F(J) = G(J) = {z , y2},
since J is stable;

• taken the ideal J ′ = (z2, y), we get
M = F(J) = {z2, yz , y} ⊃ G(J).
In fact, J is quasi stable, but it is not stable;

• given J = (y), the star set is M = F(J) = {zky | k ≥ 0}, and
it holds |F(J)| =∞, since J is not stable.



The involutive soul. The Term-ordering free soul. Term-ordering free involutive bases.

We generalize the notions of J-marked polynomial, J-marked basis
and J-marked family given for J strongly stable.

Definition
Let M be a complete system of terms and J be the ideal it
generates.

• A M-marked set is a set G, not necessarily finite, containing,
∀xα ∈ M, a homogeneous (monic) marked polynomial
fα = xα −

∑
cαγxγ , with Ht(fα) = xα and

Supp(fα − xα) ⊂ N(J), so that |Supp(f ) ∩ J| = 1.

• A M-marked basis G is a M-marked set such that N(J) is a
basis of P/(G) as A-module, i.e. P = (G)⊕ 〈N(J)〉 as an
A-module.

• The M-marked family Mf (M) is the set of all homogeneous
ideals I that are generated by a M-marked basis.
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Defining the reduction

Definition
Let M be a complete system and G a M-marked set.

G−→ transitive

closure of the relation h
G−→ h− cfαxη, where xαxη = xα ∗M xη is a

term appearing in h with a non-zero coefficient c .
G−→ noetherian if the length r of any sequence

h = h0
G−→ h1

G−→ . . .
G−→ hr

is bounded by an integer number m = m(h) (NOT in general).
Equivalently, if we continue rewriting terms in this way we obtain,
after a finite number of reductions, a polynomial with support in
N(J).

The relation
G−→ generalizes to a term-ordering free context, the

concept of involutive polynomial reduction by Blinkov and Gerdt.
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Let M := {xz , yz , y2} a set of terms in k[x , y , z ] with x < y < z .
We find the following sets of multiplicative variables:

• MJ(xz ,M) = {x , z}
• MJ(y2,M) = {x , y}
• MJ(yz ,M) = {x , y , z}

and one can check that M is complete.
Let G the M-marked set {fxz = xz − xy , fyz = yz − z2, fy2 = y2}.
Then we have the infinite sequence of reductions:

xz2 = xz ∗M z
G−→ xz2 − fxzz = xyz = yz ∗M x

G−→ xyz − fyzx = xz2



The involutive soul. The Term-ordering free soul. Term-ordering free involutive bases.

Quest for noetherianity

We define the following special subset of the ideal (G) in order to

prove that the reduction
G−→ is always noetherian if G is marked on

a stably complete system.

Definition
Let G be a M-marked set on a complete system of terms M and
let J := (M). For each degree s, we denote by G(s) the set of
homogeneous polynomial

G(s) := {fαxη | xα ∗M xη ∈ (M)s}

marked on the terms of Js in the natural way Ht(fαxη) = xαxη.
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Let G be a complete M-marked set on the stably system of terms
M = F(J).

1. Every term in Supp(xβxε − fβxε) either belongs to N((M)) or
is of the type xα ∗M xη with xη <Lex xε.

2. If fβ ∈ G, then all the polynomials fαi x
ηi ∈ G(s) used in the

reduction of xβxε (except fβxε if it belongs to G(s)) are such
that xε >Lex xηi .

3. If g =
∑m

i=1 ci fαi x
ηi , with ci ∈ k − {0} and fαi x

ηi ∈ G(s)
pairwise different, then g 6= 0 and its support contains some
term of the ideal J.
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The reduction theorem

Let G be a M-marked set on a stably complete system of terms M
and let J be the ideal generated by M.

Then the reduction process
G−→ is noetherian and, for every integer

s, Ps = 〈G(s)〉 ⊕ 〈N(J)s〉.

Indeed, for every h ∈ Ps

h = f +g with f ∈ 〈G(s)〉 and g ∈ 〈N(J)s〉 ⇐⇒ h
G−→∗ g and f = h−g
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Marked Basis

Theorem
Let G be a F(J)-marked set. Then:

(G) ∈Mf (J)⇐⇒ ∀fβ ∈ G, ∀xi > min(xβ) : fβxi
G−→∗ 0

This is a term-ordering free generalization of the concept of local
involutivity, defined by Blinkov and Gerdt → general theory for
involutivity.
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First reduction step of fβxi : rewrite xβxi throughout fαxη with
xβxi = xαxη ∈ CJ({xα}).

We get fβxi
G−→ fβxi − fαxη, the S-polynomial

S(fβ, fα) := lcm(xβ ,xα)
xβ

fβ − lcm(xβ ,xα)
xα fα.

The reduction theorem becomes

(G) ∈Mf (J)⇐⇒ ∀fα, fβ ∈ G : S(fα, fβ)
G−→∗ 0.

But it is sufficient to check a special subset of the S-polynomials.
If J is quasi stable (|F(J)| <∞) this subset corresponds to the
basis for the first syzygies of the terms in F(J).
The maximal degree of these special S-polynomials cannot exceed
1 + max{deg(xα) | xα ∈ F(J)}.
Indeed, if J is quasi stable, reg(J) = max{deg(τ), τ ∈ F(J)}.
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If G M-marked set, but not M-marked basis, then ∃fα, fβ ∈ G, s.t.

S(fα, fβ) = xηfα − xγfβ
G−→∗ h 6= 0.

Take xηfα, 2 different terminating reduction processes, leading to:

1. the reduction xηfα
fα−→ 0, w.r.t. the polynomial fα, different

from our reduction procedure;

2. the reduction process described above

xηfα
G−→ xηfα − xγfβ

G−→∗ h 6= 0.

On the other hand, if G is a M-marked basis,
∀f ∈ P, ∃!h ∈ 〈N(J)〉, such that f − h ∈ (G). Any reduction
process, applied to f , either gives h as outcome or it does not
terminate.
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Not all Marked bases are Groebner bases!!

Let J be the monomial ideal (x3, xy , y3) in k[x , y ] with x < y . Its
star set is F(J) = {x3, xy , xy2, y3}.
The F(J)-marked set
G := {f1 := x3, f2 := xy − x2 − y2, f3 := xy2, f4 = y3} is a
F(J)-market basis:

• yf1 = xf1 + x2f2 + xf3
G−→∗ 0,

• yf2 = f1 − xf2 − f4
G−→∗ 0

• yf3 = xf4
G−→∗ 0.

This is a simple example of a marked basis which is not a Gröbner
basis. In fact, it is obvious that Ht(f2) = xy cannot be the leading
term of f2 with respect to any term-ordering and, more generally,
that J cannot be the initial ideal of the ideal (G), even though
(G)⊕ N(J) = k[x , y ].
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Our bases are involutive!

With the notation due to Janet, if J is a quasi stable monomial
ideal, then

n∑
i=1

σ
(p+1)
i (J) =

n∑
i=1

iσ
(p)
i (J).

The same equality holds if I is a homogeneous ideal generated by a
J-marked basis G with J quasi stable.
Therefore G is an involutive basis.

Note that for an ideal I generated by a J-marked set G which is

not a marked basis, only the inequality
∑n

i=1 σ
(p+1)
i ≤

∑n
i=1 iσ

(p)
i

holds true.
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The structure of scheme

Let M = {xα1 , ..., xαs } and consider B := A[C ], where C is a
compact notation for the set of variables Ci ,β i = 1, . . . , s and
xβ ∈ N(J)|αi |.
M-marked set in B[x1, ..., xn]

G := {fαi := xαi +
∑

Ci ,βxβ | xβ ∈ N(J)|αi |,Ht(fαi ) = xαi}.

Each M-marked set can be obtained specializing G, as φ(G) for a
suitable morphism of A-algebras φ : A[C ]→ A.
By the uniqueness of the M-marked basis generating each ideal in
Mf (J), ∀I ∈Mf (J), ∃!φ s.t. (φ(G)) = I .
Construct a set of polynomials R that will define the scheme we
associate to M. If g ∈ B[x1, ..., xn], coeffx(g) is the set of
coefficients of g w.r.t. x1, . . . , xn; hence coeffx(g) ⊂ B = A[C ] is a
set of polynomials in the variables C .
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∀xαi ∈ M and xj > min(xαi ), let gαi ,j ∈ B[x1, . . . , xn] be such that

fαi xj
G−→∗ gαi ,j .

Definition
Let M be a stably complete system in T , A be any ring, and R be
the union of coeffx(gαi ,j) for every xαi ∈ M and xj > min(xαi ).
We will call M-marked scheme over the ring A, and denote with
MfM(A) the affine scheme Spec(A[C ]/(R)).

Every M-marked set in A[x1, . . . , xn] is a M-marked basis if and
only if the coefficients of the terms in the tails satisfy the
conditions given by R.
In particular, if A = k is an algebraically closed field, then the
closed points of MfM(A) correspond to the ideals in the marked
family Mf (J) where J is the ideal in k[x1, . . . , xn] generated by M.
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The above construction of R is in fact independent from the fixed
commutative ring A, in the sense that it is preserved by extension
of scalars. We can first choose Z as the coefficient ring and then
apply the standard map Z→ A.
More formally, for every stably complete set of terms M we can
define a functor between the category of rings to the category of
sets

MfM : Rings → Set

that associates to any ring A the set
MfM(A) :=Mf (MA[x1, . . . , xn]) and to any morphism φ : A→ B
the map

MfJ(φ) : MfM(A) −→ MfM(B)

I 7−→ I ⊗A B.

Moreover, it is possible to prove that MfM is a representable
functor represented by the scheme MfM(Z) = Spec(Z[C ]/(R)).
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Thanks for your attention!
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