Università degli Studi di Torino Università degli Studi di Genova

TERM-ORDERING FREE INVOLUTIVE BASES

June 2014 Giornate di Geometria Algebrica ed argomenti correlati

Michela Ceria Teo Mora Margherita Roggero The involutive soul.

The Term-ordering free soul.

TERM-ORDERING FREE INVOLUTIVE BASES.

TABLE OF CONTENTS

THE INVOLUTIVE SOUL.

THE TERM-ORDERING FREE SOUL.

TERM-ORDERING FREE INVOLUTIVE BASES.

INTRODUCTION

Term-ordering free involutive bases comes from the union of two different souls:

- an involutive soul;
- a term-ordering free soul.

Let us examine properly each of them.

RIQUIER

Riquier interprets derivatives $\frac{1}{\alpha_1!\cdots\alpha_n!}\frac{\partial^{\alpha_1+\alpha_2+\cdots+\alpha_n}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\dots\partial x_n^{\alpha_n}}$, as terms $\tau = x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n} \in \mathcal{T}$, transforming the problem of *solving differential partial equations* in terms of *ideal membership*.

He introduced the concept (but not the notion) of S-polynomials and proved that if the normal form (Gauss-Buchberger reduction) of each S-polynomial among the elements of the basis \mathcal{G} generating the system goes to zero then

- the given basis G generates the related ideal and the related problem *could be solvable*;
- a *solution* of the PDE is determined (and computed) as series in terms of initial conditions, formulated in terms of a decomposition of the related *escalier* N;

RIQUIER

Riquier interprets derivatives $\frac{1}{\alpha_1!\cdots\alpha_n!}\frac{\partial^{\alpha_1+\alpha_2+\cdots+\alpha_n}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\dots\partial x_n^{\alpha_n}}$, as terms $\tau = x_1^{\alpha_1}x_2^{\alpha_2}\dots x_n^{\alpha_n} \in \mathcal{T}$, transforming the problem of *solving differential partial equations* in terms of *ideal membership*.

He introduced the concept (but not the notion) of S-polynomials and proved that if the normal form (Gauss-Buchberger reduction) of each S-polynomial among the elements of the basis \mathcal{G} generating the system goes to zero then

- the given basis G generates the related ideal and the related problem *could be solvable*;
- a *solution* of the PDE is determined (and computed) as series in terms of initial conditions, formulated in terms of a decomposition of the related *escalier* N;

EXAMPLE

The problem $\frac{\partial u}{\partial y} = f$, $\frac{\partial u}{\partial x} = g$ has no solution unless $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$;

If *no conflict* arose and *not all normal forms are 0*, then, exactly as in Buchberger Algorithm, the *non-zero normal forms are included in the basis* and the procedure is repeated.

Deglex ordering induced by $x_1 > x_2 > \cdots > x_n$, + large class of term-orderings to which his theory was applicable: *characterization of all term-orderings!*

EXAMPLE

The problem $\frac{\partial u}{\partial y} = f$, $\frac{\partial u}{\partial x} = g$ has no solution unless $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$;

If *no conflict* arose and *not all normal forms are 0*, then, exactly as in Buchberger Algorithm, the *non-zero normal forms are included in the basis* and the procedure is repeated.

Deglex ordering induced by $x_1 > x_2 > \cdots > x_n$, + large class of term-orderings to which his theory was applicable: *characterization of all term-orderings!*

EXAMPLE

The problem $\frac{\partial u}{\partial y} = f$, $\frac{\partial u}{\partial x} = g$ has no solution unless $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$;

If *no conflict* arose and *not all normal forms are 0*, then, exactly as in Buchberger Algorithm, the *non-zero normal forms are included in the basis* and the procedure is repeated.

Deglex ordering induced by $x_1 > x_2 > \cdots > x_n$, + large class of term-orderings to which his theory was applicable: *characterization of all term-orderings!*

EXAMPLE

The problem $\frac{\partial u}{\partial y} = f$, $\frac{\partial u}{\partial x} = g$ has no solution unless $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$;

If *no conflict* arose and *not all normal forms are 0*, then, exactly as in Buchberger Algorithm, the *non-zero normal forms are included in the basis* and the procedure is repeated.

Deglex ordering induced by $x_1 > x_2 > \cdots > x_n$, + large class of term-orderings to which his theory was applicable: *characterization of all term-orderings!*

JANET I.

Janet, spured on by *Hadamard*, dedicated his doctorial thesis to a reformulation of Riquier's results in terms of Hilbert's results. Given $M \subset \mathcal{T}$, $|M| < \infty$, $\forall \tau \in M$ he associates a set of *multiplicative variables* and a subset of terms in (M) (*class* or *cone*) and considered *M complete* when the cones of *M* are a partition of (M).

Procédé régulier pour obtenir un système complet base d'un module donné, que ne pourra se prolonger indéfiniment: enlarge Mwith the elements $x\tau$, $\tau \in M$, x non-multiplicative for τ , not already in the union of cones.

JANET I.

Janet, spured on by *Hadamard*, dedicated his doctorial thesis to a reformulation of Riquier's results in terms of Hilbert's results. Given $M \subset \mathcal{T}$, $|M| < \infty$, $\forall \tau \in M$ he associates a set of *multiplicative variables* and a subset of terms in (M) (*class* or *cone*) and considered *M complete* when the cones of *M* are a partition of (M).

Procédé régulier pour obtenir un système complet base d'un module donné, que ne pourra se prolonger indéfiniment: enlarge Mwith the elements $x\tau$, $\tau \in M$, x non-multiplicative for τ , not already in the union of cones.

JANET II.

Homogeneous case, adapting his approach to

- the solution of partial differential equation given by Cartan;
- the introduction by Delassus of the concept of *generic initial ideal* and its precise description given by Robinson and Gunther.

 $I \subset k[x_1, x_2, ..., x_n]$ homogeneous (variables assumed generic). For each $1 \leq i \leq n$, and $p \in \mathbb{N}$:

 $\sigma_i^{(p)} := \# \{ \tau \in \mathsf{N}(I), \deg(\tau) = p, \min(\tau) = i \}$

fixes a value p and denotes $\sigma_i := \sigma_i^{(p)}$, and $\sigma'_i := \sigma_i^{(p+1)}$.

DEFINITION (JANET)

A finite set $E \subset \mathcal{P}$ of forms of degree at most p generating the ideal $I \subset P$, is said to be *involutive* if it satisfies the formula

$$\sum_{i=1}^{n} \sigma_i^{(p+1)} = \sum_{i=1}^{n} i \sigma_i^{(p)}.$$
 (1)

The minimal degree \bar{p} for which the formula is satisfied is *Castelnuovo-Mumford regularity*, and this was first noted by Malgrange.

FIRST STUDIES: THERE IS A TERM ORDER

$J \triangleleft \mathcal{P} := \mathbf{k}[x_1, ..., x_n]$ a monomial ideal.

NOTARI-SPREAFICO

Stratum $St(J, \prec)$: family of all ideals of \mathcal{P} whose initial ideal w.r.t. the term order \prec is J.

The homogeneous stratum is denoted $St_h(J, \prec)$.

M.Roggero-L.Terracini, 2010

 $\mathcal{S}t(J,\prec)$ and $\mathcal{S}t_h(J,\prec)$ have a natural structure of *affine schemes*.

A smooth stratum is always isomorphic to an affine space; strata and homogeneous strata w.r.t. any term ordering \prec of every saturated Lex-segment ideal J are smooth.

FIRST STUDIES: THERE IS A TERM ORDER

$$J \triangleleft \mathcal{P} := \mathbf{k}[x_1, ..., x_n]$$
 a monomial ideal.

NOTARI-SPREAFICO

Stratum $St(J, \prec)$: family of all ideals of \mathcal{P} whose initial ideal w.r.t. the term order \prec is J.

The homogeneous stratum is denoted $St_h(J, \prec)$.

M.ROGGERO-L.TERRACINI, 2010 $St(J, \prec)$ and $St_h(J, \prec)$ have a natural structure of *affine schemes*.

A smooth stratum is always isomorphic to an affine space; strata and homogeneous strata w.r.t. any term ordering \prec of every saturated Lex-segment ideal J are smooth.

FIRST STUDIES: THERE IS A TERM ORDER

$$J \triangleleft \mathcal{P} := \mathbf{k}[x_1, ..., x_n]$$
 a monomial ideal.

NOTARI-SPREAFICO

Stratum $St(J, \prec)$: family of all ideals of \mathcal{P} whose initial ideal w.r.t. the term order \prec is J.

The homogeneous stratum is denoted $St_h(J, \prec)$.

M.Roggero-L.Terracini, 2010

 $St(J, \prec)$ and $St_h(J, \prec)$ have a natural structure of *affine schemes*.

A smooth stratum is always isomorphic to an affine space; strata and homogeneous strata w.r.t. any term ordering \prec of every saturated Lex-segment ideal J are smooth.

Admissible Hilbert polynomial p(t) in \mathbb{P}^n , deg(p(t)) = d. Hilbert scheme $\mathcal{H}ilb_p^n(t)$ realized as closed subscheme of a Grassmannian \mathbb{G} , so "globally defined by homogeneous equations in the Plucker coordinates of \mathbb{G}^n + "covered by open subsets (non-vanishing of a Plucker coordinate), embedded as closed subschemes of \mathbb{A}^D , $D = dim(\mathbb{G})^n$.

Too many Plucker coordinates: computations *impossible*! → (Bertone,Lella, Roggero, 2013) *new open cover*, marked schemes over Borel-fixed ideals: really a few!

→ constructive proofs and use a polynomial reduction process, similar to the one for Groebner bases, but are *term-ordering free*.

Admissible Hilbert polynomial p(t) in \mathbb{P}^n , deg(p(t)) = d. Hilbert scheme $\mathcal{H}ilb_p^n(t)$ realized as closed subscheme of a Grassmannian \mathbb{G} , so "globally defined by homogeneous equations in the Plucker coordinates of \mathbb{G} " + "covered by open subsets (non-vanishing of a Plucker coordinate), embedded as closed subschemes of \mathbb{A}^D , $D = dim(\mathbb{G})$ ".

Too many Plucker coordinates: computations impossible!

 \rightarrow (Bertone,Lella, Roggero, 2013) *new open cover*, marked schemes over Borel-fixed ideals: really a few!

 \rightarrow constructive proofs and use a polynomial reduction process, similar to the one for Groebner bases, but are *term-ordering free*.

Admissible Hilbert polynomial p(t) in \mathbb{P}^n , deg(p(t)) = d. Hilbert scheme $\mathcal{H}ilb_p^n(t)$ realized as closed subscheme of a Grassmannian \mathbb{G} , so "globally defined by homogeneous equations in the Plucker coordinates of \mathbb{G} " + "covered by open subsets (non-vanishing of a Plucker coordinate), embedded as closed subschemes of \mathbb{A}^D , $D = dim(\mathbb{G})$ ".

Too many Plucker coordinates: computations *impossible*! \rightarrow (Bertone,Lella, Roggero, 2013) *new open cover*, marked schemes over Borel-fixed ideals: really a few!

 \rightarrow constructive proofs and use a polynomial reduction process, similar to the one for Groebner bases, but are *term-ordering free*.

Admissible Hilbert polynomial p(t) in \mathbb{P}^n , deg(p(t)) = d. Hilbert scheme $\mathcal{H}ilb_p^n(t)$ realized as closed subscheme of a Grassmannian \mathbb{G} , so "globally defined by homogeneous equations in the Plucker coordinates of \mathbb{G} " + "covered by open subsets (non-vanishing of a Plucker coordinate), embedded as closed subschemes of \mathbb{A}^D , $D = dim(\mathbb{G})$ ".

Too many Plucker coordinates: computations *impossible*! \rightarrow (Bertone,Lella, Roggero, 2013) *new open cover*, marked schemes over Borel-fixed ideals: really a few!

 \rightarrow constructive proofs and use a polynomial reduction process, similar to the one for Groebner bases, but are *term-ordering free*.

The problem for strongly stable ideals

Strongly stable: monomial ideal $J \triangleleft \mathbf{k}[x_1, ..., x_n]$ s.t. $\forall \tau \in J$ and $\forall x_i, x_j$ s.t. $x_i | \tau$ and $x_i < x_j$, then $\frac{\tau x_j}{x_i} \in J$.

EXAMPLE

$$J = (x^3, y) \triangleleft \mathbf{k}[x, y], \ x < y:$$

 $\frac{x^3}{x}y = x^2y \in J$

Let J be a strongly stable monomial ideal in $\mathcal{P} := \mathbf{k}[x_1, ..., x_n]$: characterization of the family $\mathcal{M}f(J)$ of all homogeneous ideals $I \triangleleft \mathcal{P}$ such that the set of all terms outside J is a **k**-vector basis of the quotient \mathcal{P}/I .

The problem for strongly stable ideals

Strongly stable: monomial ideal $J \triangleleft \mathbf{k}[x_1, ..., x_n]$ s.t. $\forall \tau \in J$ and $\forall x_i, x_j$ s.t. $x_i | \tau$ and $x_i < x_j$, then $\frac{\tau x_j}{x_i} \in J$.

EXAMPLE

$$J = (x^3, y) \triangleleft \mathbf{k}[x, y], \ x < y:$$

 $\frac{x^3}{x}y = x^2y \in J$

Let J be a strongly stable monomial ideal in $\mathcal{P} := \mathbf{k}[x_1, ..., x_n]$: characterization of the family $\mathcal{M}f(J)$ of all homogeneous ideals $I \triangleleft \mathcal{P}$ such that the set of all terms outside J is a **k**-vector basis of the quotient \mathcal{P}/I .

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

- *I* ∈ *Mf*(*J*) if and only if it is generated by a *J*-marked basis (Cioffi-Roggero, 2013) → generalization of Groebner bases;
- *Buchberger-like criterion* for *J*-marked bases (Cioffi-Roggero, 2013);
- $\mathcal{M}f(J)$ can be endowed with a structure of affine scheme: *J-marked scheme* (Cioffi-Roggero, 2013);
- superminimal reduction (Bertone, Cioffi, Lella, Roggero, 2012)
 → fast!
- division algorithm which works in an *affine* context:
 [J, m]-marked bases (Bertone, Cioffi, Roggero, 2012);
- functorial foundation (Lella, Roggero, 2014).

THE PROBLEM.

 $J \triangleleft P$ monomial ideal \rightarrow characterization for $\mathcal{M}f(J)$, family of all homogeneous ideals $I \triangleleft P$ s.t. P/I free A-module with basis N(J).

I s.t. $J = In_{\leq}(I)$: proper *subset* of $Mf(J) \Rightarrow$ overcome Groebner framework.

Whole family $\mathcal{M}f(J)$ for J strongly stable \rightarrow limiting condition. However, they are optimal for the effective study of the Hilbert scheme.

THE PROBLEM.

 $J \triangleleft P$ monomial ideal \rightarrow characterization for $\mathcal{M}f(J)$, family of all homogeneous ideals $I \triangleleft P$ s.t. P/I free A-module with basis N(J).

I s.t. $J = In_{<}(I)$: proper *subset* of $\mathcal{M}f(J) \Rightarrow$ overcome Groebner framework.

Whole family $\mathcal{M}f(J)$ for J strongly stable \rightarrow limiting condition. However, they are optimal for the effective study of the Hilbert scheme.

THE PROBLEM.

 $J \triangleleft P$ monomial ideal \rightarrow characterization for $\mathcal{M}f(J)$, family of all homogeneous ideals $I \triangleleft P$ s.t. P/I free A-module with basis N(J).

I s.t. $J = In_{<}(I)$: proper *subset* of $\mathcal{M}f(J) \Rightarrow$ overcome Groebner framework.

Whole family Mf(J) for J strongly stable \rightarrow limiting condition. However, they are optimal for the effective study of the Hilbert scheme.

RIQUIER-JANET DECOMPOSITION

We recall Janet's decomposition for terms in the semigroup ideal generated by M into disjoint classes. Each of them contains:

- 1. a term $\tau \in M$;
- 2. the set of monomials obtained multiplying τ by products of multiplicative variables, that we call *cone* of and denote $C({\tau})$.

The decomposition by Janet and Riquier we present here has been generalized by Stanley . The generalized decomposition has been employed to study Stanley depth, being more suitable than the original one.

RIQUIER-JANET DECOMPOSITION

We recall Janet's decomposition for terms in the semigroup ideal generated by M into disjoint classes. Each of them contains:

- 1. a term $\tau \in M$;
- 2. the set of monomials obtained multiplying τ by products of multiplicative variables, that we call *cone* of and denote $C({\tau})$.

The decomposition by Janet and Riquier we present here has been generalized by Stanley . The generalized decomposition has been employed to study Stanley depth, being more suitable than the original one.

We remove the finiteness condition on M. Let $M \subset \mathcal{T}$ be a set of terms and $\tau = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ be an element of M. A variable x_j is called *Janet-multiplicative* (or *J*-multiplicative) for τ w.r.t. M if there is no term in M of the form $\tau' = x_1^{\beta_1} \cdots x_j^{\beta_j} x_{j+1}^{\alpha_{j+1}} \cdots x_n^{\alpha_n}$ with $\beta_j > \alpha_j$. We denote by $M_J(\tau, M)$ the set of *J*-multiplicative variables for τ w.r.t. M.

The J-*cone* of τ w.r.t. *M* is the set

 $C(\{\tau\}) := \{\tau x_1^{\lambda_1} \cdots x_n^{\lambda_n} \, | \, \text{where } \lambda_j \neq 0 \text{ only if } x_j \in M_J(\tau, M) \}.$

EXAMPLE (1)

Take $M = \{x_1^3, x_2^3, x_1^4 x_2 x_3, x_3^2\} \subseteq \mathbf{k}[x_1, x_2, x_3]$ Then: $M_J(x_1^3, M) = \{x_1\}$: no $x_1^h x_2^0 x_3^0$, h > 3, but we have $x_1^0 x_2^3 x_3^0$ and $x_1^4 x_2 x_3$ $M_J(x_2^3, M) = \{x_1, x_2\}$: no $x_1^h x_2^3 x_3^0$, $h \ge 1$, no $x_2^k x_3^0$, $k \ge 4$, but we have $x_1^4 x_2 x_3$ $M_J(x_1^4 x_2 x_3, M) = \{x_1, x_2\}$: no $x_1^h x_2 x_3$, $h \ge 5$, no $x_2^k x_3$, $k \ge 2$, but we have x_3^2 $M_J(x_3^2, M) = \{x_1, x_2, x_3\}$: no $x_1^h x_2^0 x_3^2$, $h \ge 1$, no $x_2^k x_3^2$, $k \ge 1$, no x_3^l , $l \ge 3$.
Take $M = \{x_1^3, x_2^3, x_1^4 x_2 x_3, x_3^2\} \subseteq \mathbf{k}[x_1, x_2, x_3]$ Then: $M_J(x_1^3, M) = \{x_1\}$: no $x_1^h x_2^0 x_3^0$, h > 3, but we have $x_1^0 x_2^3 x_3^0$ and $x_1^4 x_2 x_3$ $M_J(x_2^3, M) = \{x_1, x_2\}$: no $x_1^h x_2^3 x_3^0$, $h \ge 1$, no $x_2^k x_3^0$, $k \ge 4$, but we have $x_1^4 x_2 x_3$ $M_J(x_1^4 x_2 x_3, M) = \{x_1, x_2\}$: no $x_1^h x_2 x_3$, $h \ge 5$, no $x_2^k x_3$, $k \ge 2$, but we have x_3^2 $M_J(x_3^2, M) = \{x_1, x_2, x_3\}$: no $x_1^h x_2^0 x_3^2$, $h \ge 1$, no $x_2^k x_3^2$, $k \ge 1$, no x_3^l , $l \ge 3$.

Take $M = \{x_1^3, x_2^3, x_1^4 x_2 x_3, x_3^2\} \subseteq \mathbf{k}[x_1, x_2, x_3]$ Then: $M_J(x_1^3, M) = \{x_1\}$: no $x_1^h x_2^0 x_3^0$, h > 3, but we have $x_1^0 x_2^3 x_3^0$ and $x_1^4 x_2 x_3$ $M_J(x_2^3, M) = \{x_1, x_2\}$: no $x_1^h x_2^3 x_3^0$, $h \ge 1$, no $x_2^k x_3^0$, $k \ge 4$, but we have $x_1^4 x_2 x_3$ $M_J(x_1^4 x_2 x_3, M) = \{x_1, x_2\}$: no $x_1^h x_2 x_3$, $h \ge 5$, no $x_2^k x_3$, $k \ge 2$, but we have x_3^2 $M_J(x_3^2, M) = \{x_1, x_2, x_3\}$: no $x_1^h x_2^0 x_3^2$, $h \ge 1$, no $x_2^k x_3^2$, $k \ge 1$, no x_3^l , $l \ge 3$.

Take $M = \{x_1^3, x_2^3, x_1^4 x_2 x_3, x_3^2\} \subseteq \mathbf{k}[x_1, x_2, x_3]$ Then: $M_J(x_1^3, M) = \{x_1\}$: no $x_1^h x_2^0 x_3^0$, h > 3, but we have $x_1^0 x_2^3 x_3^0$ and $x_1^4 x_2 x_3$ $M_J(x_2^3, M) = \{x_1, x_2\}$: no $x_1^h x_2^3 x_3^0$, $h \ge 1$, no $x_2^k x_3^0$, $k \ge 4$, but we have $x_1^4 x_2 x_3$ $M_J(x_1^4 x_2 x_3, M) = \{x_1, x_2\}$: no $x_1^h x_2 x_3$, $h \ge 5$, no $x_2^k x_3$, $k \ge 2$, but we have x_3^2 $M_J(x_3^2, M) = \{x_1, x_2, x_3\}$: no $x_1^h x_2^0 x_3^2$, $h \ge 1$, no $x_2^k x_3^2$, $k \ge 1$, no x_3^l , $l \ge 3$.

$C(\lbrace x_1^3 \rbrace) = \lbrace x_1^h, h \ge 3 \rbrace$ $C(\lbrace x_2^3 \rbrace) = \lbrace x_1^h x_2^k, h \ge 0, k \ge 3 \rbrace$ $C(\lbrace x_1^4 x_2 x_3 \rbrace) = \lbrace x_1^h x_2^k x_3, h \ge 4, k \ge 1 \rbrace$ $C(\lbrace x_3^2 \rbrace) = \lbrace x_1^h x_2^k x_3^l, h \ge 0, k \ge 0, l \ge 2 \rbrace$

$$C(\{x_1^3\}) = \{x_1^h, h \ge 3\}$$

$$C(\{x_2^3\}) = \{x_1^h x_2^k, h \ge 0, k \ge 3\}$$

$$C(\{x_1^4 x_2 x_3\}) = \{x_1^h x_2^k x_3, h \ge 4, k \ge 1\}$$

$$C(\{x_3^2\}) = \{x_1^h x_2^k x_3^l, h \ge 0, k \ge 0, l \ge 2\}$$

$$C(\{x_1^3\}) = \{x_1^h, h \ge 3\}$$

$$C(\{x_2^3\}) = \{x_1^h x_2^k, h \ge 0, k \ge 3\}$$

$$C(\{x_1^4 x_2 x_3\}) = \{x_1^h x_2^k x_3, h \ge 4, k \ge 1\}$$

$$C(\{x_3^2\}) = \{x_1^h x_2^k x_3^l, h \ge 0, k \ge 0, l \ge 2\}$$

$$C(\{x_1^3\}) = \{x_1^h, h \ge 3\}$$

$$C(\{x_2^3\}) = \{x_1^h x_2^k, h \ge 0, k \ge 3\}$$

$$C(\{x_1^4 x_2 x_3\}) = \{x_1^h x_2^k x_3, h \ge 4, k \ge 1\}$$

$$C(\{x_3^2\}) = \{x_1^h x_2^k x_3^l, h \ge 0, k \ge 0, l \ge 2\}$$

$$C(\{x_1^3\}) = \{x_1^h, h \ge 3\}$$

$$C(\{x_2^3\}) = \{x_1^h x_2^k, h \ge 0, k \ge 3\}$$

$$C(\{x_1^4 x_2 x_3\}) = \{x_1^h x_2^k x_3, h \ge 4, k \ge 1\}$$

$$C(\{x_3^2\}) = \{x_1^h x_2^k x_3^l, h \ge 0, k \ge 0, l \ge 2\}$$

In 1924, Janet defines multiplicative variables as before and he provides both a decomposition for the semigroup ideal T(M) generated by a finite set of terms M and a decomposition for the complementary set N(M).

On the other hand, in 1927, he defines multiplicative variables in the following way

DEFINITION

A variable x_j is *Pommaret-multiplicative* or *P-multiplicative* for $\tau \in \mathcal{T}$ if and only if $x_j \leq \min(\tau)$. The P-*cone* of τ is the set

 $C(\{\tau\}) := \{\tau x_1^{\lambda_1} \cdots x_n^{\lambda_n} \, | \, \text{where } \lambda_j \neq 0 \text{ only if } x_j \in M_P(\tau, M) \}.$

In 1924, Janet defines multiplicative variables as before and he provides both a decomposition for the semigroup ideal T(M) generated by a finite set of terms M and a decomposition for the complementary set N(M).

On the other hand, in 1927, he defines multiplicative variables in the following way

DEFINITION

A variable x_j is *Pommaret-multiplicative* or *P-multiplicative* for $\tau \in \mathcal{T}$ if and only if $x_j \leq \min(\tau)$. The P-cone of τ is the set

 $C(\{\tau\}) := \{\tau x_1^{\lambda_1} \cdots x_n^{\lambda_n} \, | \, \text{where } \lambda_j \neq 0 \text{ only if } x_j \in M_P(\tau, M) \}.$

The two definitions of multiplicative variables appear to be very different (but they are *equivalent* in Janet's context). In the first formulation, the set of multiplicative variables for a term in M depends on the whole set M, whereas in the second it is completely independent on the set M: the two notions are not equivalent for a general M:

EXAMPLE

In $k[x_1, x_2, x_3]$ consider the ideal $I = (x_1^2 x_2, x_1 x_2^2)$ and let M be its monomial basis. Then, $M_J(x_1^2 x_2, M) = \{x_1, x_3\}$ and $M_J(x_1 x_2^2, M) = \{x_1, x_2, x_3\}$, whereas only x_1 is P-multiplicative. Clearly also Janet and Pommaret cones do not coincide: $C_J(x_1^2 x_2) = \{x_1^h x_2 x_3^l, h \ge 2, l \ge 0\}$ $C_P(x_1^2 x_2) = \{x_1^h x_2, h \ge 2\}$ $C_J(x_1 x_2^2) = \{x_1^h x_2^k x_3^l, h \ge 1, k \ge 2, l \ge 0\}$ $C_P(x_1 x_2^2) = \{x_1^h x_2^k, h \ge 1, k \ge 2, l \ge 0\}$ $M \subset \mathcal{T}$ is called *complete* if for every $\tau \in M$ and $x_j \notin M_J(\tau, M)$, there exists $\tau' \in M$ such that $x_j \tau \in C_J(\{\tau'\})$.

EXAMPLE

All singletons are complete!

M is *stably complete* if it is complete and for every $\tau \in M$ it holds $M_J(\tau, M) = \{x_i \mid x_i \leq \min(\tau)\}.$

If *M* is stably complete and finite, then it is the *Pommaret basis* $\mathcal{H}(J)$ of J = (M).

EXAMPLE

$$M = \{x^2, xy, y^2\} \subset \mathbf{k}[x, y], x < y.$$

$$M_J(x^2, M) = M_P(x^2, M) = \{x\}, M_J(xy, M) = M_P(xy, M) = \{x\},$$

$$M_J(y^2, M) = M_P(y^2, M) = \{x, y\}.$$

Moreover, $x^2y \in C(\{xy\}), xy^2 \in C(\{y^2\}).$

EXAMPLE

Let *M* be the set of terms $\{x, y^2\}$ in k[x, y], with x < y. The multiplicative variables for every term in *M* are those lower than or equal to its minimal one:

$$M_J(x, M) = \{x\}$$

 $M_J(y^2, M) = \{x, y\}.$

However, M is *not complete* since yx does not belong to the J-cone of any term in M.

Let M be a set of terms (possibly infinite). If $\tau, \tau' \in M$ and $\tau \neq \tau'$, then $C(\{\tau\}) \cap C_J(\{\tau'\}) = \emptyset$. If, moreover, M is complete and T(M) is the semigroup ideal it generates, then $\forall \gamma \in T(M)$, $\exists \tau \in M$ such that $\gamma \in C_J(\{\tau\})$. Hence, the J-cones of the elements in M give a *partition* of T(M). Each term in T(M) can be written in a *unique way* as a product of

1. an element $\tau \in M$;

2. a term
$$x^{\eta} = x_i^{\eta_i} \cdots x_j^{\eta_j}$$
, with $x_i, ..., x_j \in M_J(\tau, M)$.

DEFINITION

Let *M* be a complete system of terms. The *star decomposition* of every term $\gamma \in (M)$ w.r.t. *M*, is the *unique couple* of terms (τ, η) , with $\tau \in M$, such that $\gamma = \tau \eta$ and $\gamma \in C_J(\{\tau\})$. If (τ, η) is the star decomposition of γ w.r.t. *M*, we will write $\gamma = \tau *_M \eta$.

 \rightarrow term ordering free version of the decomposition of terms defined by Eliahou and Kervaire.

Let *M* be a set of terms (possibly infinite). If $\tau, \tau' \in M$ and $\tau \neq \tau'$, then $C(\{\tau\}) \cap C_J(\{\tau'\}) = \emptyset$. If, moreover, *M* is complete and T(M) is the semigroup ideal it generates, then $\forall \gamma \in T(M), \exists \tau \in M$ such that $\gamma \in C_J(\{\tau\})$. Hence, the J-cones of the elements in *M* give a *partition* of T(M). Each term in T(M) can be written in a *unique way* as a product of

1. an element $\tau \in M$;

2. a term
$$x^{\eta} = x_i^{\eta_i} \cdots x_j^{\eta_j}$$
, with $x_i, ..., x_j \in M_J(\tau, M)$.

DEFINITION

Let *M* be a complete system of terms. The *star decomposition* of every term $\gamma \in (M)$ w.r.t. *M*, is the *unique couple* of terms (τ, η) , with $\tau \in M$, such that $\gamma = \tau \eta$ and $\gamma \in C_J(\{\tau\})$. If (τ, η) is the star decomposition of γ w.r.t. *M*, we will write $\gamma = \tau *_M \eta$.

 \rightarrow term ordering free version of the decomposition of terms defined by Eliahou and Kervaire.

Let *M* be a set of terms (possibly infinite). If $\tau, \tau' \in M$ and $\tau \neq \tau'$, then $C(\{\tau\}) \cap C_J(\{\tau'\}) = \emptyset$. If, moreover, *M* is complete and T(M) is the semigroup ideal it generates, then $\forall \gamma \in T(M), \exists \tau \in M$ such that $\gamma \in C_J(\{\tau\})$. Hence, the J-cones of the elements in *M* give a *partition* of T(M). Each term in T(M) can be written in a *unique way* as a product of

1. an element $\tau \in M$;

2. a term
$$x^\eta = x_i^{\eta_i} \cdots x_j^{\eta_j}$$
, with $x_i, ..., x_j \in M_J(\tau, M)$.

DEFINITION

Let *M* be a complete system of terms. The *star decomposition* of every term $\gamma \in (M)$ w.r.t. *M*, is the *unique couple* of terms (τ, η) , with $\tau \in M$, such that $\gamma = \tau \eta$ and $\gamma \in C_J(\{\tau\})$. If (τ, η) is the star decomposition of γ w.r.t. *M*, we will write $\gamma = \tau *_M \eta$.

 \rightarrow term ordering free version of the decomposition of terms defined by Eliahou and Kervaire.

THE STAR SET

Given a monomial ideal $J \triangleleft P$ we define the *star set* as

$$\mathcal{F}(J) := \{ x^{lpha} \in \mathcal{T} \setminus \mathsf{N}(J) \, | \, rac{x^{lpha}}{\min(x^{lpha})} \in \mathsf{N}(J) \}.$$

For every monomial ideal J, the star set $\mathcal{F}(J)$ is the *unique stably complete* system of generators of J. Hence, if M is stably complete, $M = \mathcal{F}((M))$.

In this context we have

multiplicative \cong *P*-multiplicative J-cones \cong P-cones

THE STAR SET

Given a monomial ideal $J \triangleleft P$ we define the *star set* as

$$\mathcal{F}(J) := \{ x^{lpha} \in \mathcal{T} \setminus \mathsf{N}(J) \, | \, rac{x^{lpha}}{\min(x^{lpha})} \in \mathsf{N}(J) \}.$$

For every monomial ideal J, the star set $\mathcal{F}(J)$ is the *unique stably* complete system of generators of J. Hence, if M is stably complete, $M = \mathcal{F}((M))$.

In this context we have

 $\begin{array}{l} \mbox{multiplicative} \cong \mbox{P-multiplicative} \\ \mbox{J-cones} \cong \mbox{P-cones} \end{array}$

For an arbitrary monomial ideal *J*, $\mathcal{F}(J)$ can be *infinite*. For example, if $J = (x) \triangleleft k[x, y], x < y$, then $\mathcal{F}(J) = \{xy^n \mid n \in \mathbb{N}\}.$

Not all the complete systems turn out to be of the form of a *star set*.

For example, the complete system $M = \{x^h y, h \ge 1\} \subseteq k[x, y]$ is not the star set of the ideal J := (M).

Indeed, $N(J) = \{x^m, m \ge 0\} \cup \{y^l, l > 0\}$ and all the terms of the form $xy^k, k > 1$, do not belong to M, even if

$$\frac{xy}{\min(xy^k)} = y^k \in \mathbb{N}(M)$$

Moreover, for $h>1,\; rac{x^hy}{x}=x^{h-1}y\in M$, so $x^hy\notin \mathcal{F}(J).$

Not all the complete systems turn out to be of the form of a *star set*.

For example, the complete system $M = \{x^h y, h \ge 1\} \subseteq k[x, y]$ is not the star set of the ideal J := (M). Indeed, $N(J) = \{x^m, m \ge 0\} \cup \{y^l, l > 0\}$ and all the terms of the form $xy^k, k > 1$, do not belong to M, even if $\frac{xy^k}{\min(xy^k)} = y^k \in N(M)$. Moreover, for h > 1, $\frac{x^h y}{x} = x^{h-1}y \in M$, so $x^h y \notin \mathcal{F}(J)$.

A monomial ideal J is 1. stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \frac{x_j \tau}{\min(\tau)} \in J$ 2. quasi stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \exists t \ge 0$: $\frac{x_j^t \tau}{\min(\tau)} \in J$. J monomial ideal,TFAE:

I) J stable II) $\mathcal{F}(J) = \mathsf{G}(J)$ A) J quasi stable
B) |F(J)| < ∞
C) F(J) Pommaret basis

A monomial ideal J is 1. stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \frac{x_j \tau}{\min(\tau)} \in J$ 2. quasi stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \exists t \ge 0$: $\frac{x_j^t \tau}{\min(\tau)} \in J$. J monomial ideal,TFAE:

I) J stable II) $\mathcal{F}(J) = G(J)$ A) J quasi stable
B) |F(J)| < ∞
C) F(J) Pommaret basis

A monomial ideal J is 1. stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \frac{x_j \tau}{\min(\tau)} \in J$ 2. quasi stable if $\tau \in J$, $x_j > \min(\tau) \Rightarrow \exists t \ge 0$: $\frac{x_j^t \tau}{\min(\tau)} \in J$. J monomial ideal,TFAE:

I) J stableA) J quasi stableII) $\mathcal{F}(J) = \mathsf{G}(J)$ B) $|\mathcal{F}(J)| < \infty$ C) $\mathcal{F}(J)$ Pommaret basis

In k[x, y, z] with x < y < z:

- considered J = (z, y²), we get M = F(J) = G(J) = {z, y²}, since J is *stable*;
- taken the ideal $J' = (z^2, y)$, we get $M = \mathcal{F}(J) = \{z^2, yz, y\} \supset G(J)$. In fact, J is *quasi stable*, but it is not stable;
- given J = (y), the star set is $M = \mathcal{F}(J) = \{z^k y \mid k \ge 0\}$, and it holds $|\mathcal{F}(J)| = \infty$, since J is *not stable*.

We generalize the notions of J-marked polynomial, J-marked basis and J-marked family given for J strongly stable.

DEFINITION

Let M be a complete system of terms and J be the ideal it generates.

- A *M*-marked set is a set \mathcal{G} , not necessarily finite, containing, $\forall x^{\alpha} \in M$, a homogeneous (monic) marked polynomial $f_{\alpha} = x^{\alpha} - \sum c_{\alpha\gamma} x^{\gamma}$, with $\operatorname{Ht}(f_{\alpha}) = x^{\alpha}$ and $\operatorname{Supp}(f_{\alpha} - x^{\alpha}) \subset \operatorname{N}(J)$, so that $|\operatorname{Supp}(f) \cap J| = 1$.
- A *M*-marked basis G is a *M*-marked set such that N(J) is a basis of P/(G) as A-module, i.e. P = (G) ⊕ ⟨N(J)⟩ as an A-module.
- The *M*-marked family Mf(M) is the set of all homogeneous ideals *I* that are generated by a *M*-marked basis.

DEFINING THE REDUCTION

DEFINITION

Let M be a *complete* system and \mathcal{G} a M-marked set. $\xrightarrow{\mathcal{G}}$ transitive closure of the relation $h \xrightarrow{\mathcal{G}} h - cf_{\alpha}x^{\eta}$, where $x^{\alpha}x^{\eta} = x^{\alpha} *_{M}x^{\eta}$ is a term appearing in h with a non-zero coefficient c. $\xrightarrow{\mathcal{G}}$ noetherian if the length r of any sequence

$$h = h_0 \xrightarrow{\mathcal{G}} h_1 \xrightarrow{\mathcal{G}} \dots \xrightarrow{\mathcal{G}} h_r$$

is bounded by an integer number m = m(h) (*NOT in general*). Equivalently, if we continue rewriting terms in this way we obtain, after a finite number of reductions, a polynomial with support in N(*J*).

The relation → generalizes to a term-ordering free context, the concept of *involutive polynomial reduction* by Blinkov and Gerdt.

DEFINING THE REDUCTION

DEFINITION

Let M be a *complete* system and \mathcal{G} a M-marked set. $\xrightarrow{\mathcal{G}}$ transitive closure of the relation $h \xrightarrow{\mathcal{G}} h - cf_{\alpha}x^{\eta}$, where $x^{\alpha}x^{\eta} = x^{\alpha} *_{M}x^{\eta}$ is a term appearing in h with a non-zero coefficient c. $\xrightarrow{\mathcal{G}}$ noetherian if the length r of any sequence

$$h = h_0 \xrightarrow{\mathcal{G}} h_1 \xrightarrow{\mathcal{G}} \dots \xrightarrow{\mathcal{G}} h_r$$

is bounded by an integer number m = m(h) (*NOT in general*). Equivalently, if we continue rewriting terms in this way we obtain, after a finite number of reductions, a polynomial with support in N(J).

The relation $\xrightarrow{\mathcal{G}}$ generalizes to a term-ordering free context, the concept of *involutive polynomial reduction* by Blinkov and Gerdt.

Let $M := \{xz, yz, y^2\}$ a set of terms in k[x, y, z] with x < y < z. We find the following sets of multiplicative variables:

- $M_J(xz, M) = \{x, z\}$
- $M_J(y^2, M) = \{x, y\}$
- $M_J(yz, M) = \{x, y, z\}$

and one can check that M is complete.

Let \mathcal{G} the *M*-marked set { $f_{xz} = xz - xy$, $f_{yz} = yz - z^2$, $f_{y^2} = y^2$ }. Then we have the *infinite sequence of reductions*:

$$xz^2 = xz *_M z \xrightarrow{G} xz^2 - f_{xz}z = xyz = yz *_M x \xrightarrow{\mathcal{G}} xyz - f_{yz}x = xz^2$$

QUEST FOR NOETHERIANITY

We define the following special subset of the ideal (\mathcal{G}) in order to prove that the reduction $\xrightarrow{\mathcal{G}}$ is always noetherian if \mathcal{G} is marked on a stably complete system.

DEFINITION

Let \mathcal{G} be a *M*-marked set on a complete system of terms *M* and let J := (M). For each degree *s*, we denote by $\mathcal{G}^{(s)}$ the set of homogeneous polynomial

$$\mathcal{G}^{(s)} := \{ f_{\alpha} x^{\eta} \mid x^{\alpha} *_{M} x^{\eta} \in (M)_{s} \}$$

marked on the terms of J_s in the natural way $\operatorname{Ht}(f_{\alpha}x^{\eta}) = x^{\alpha}x^{\eta}$.

Let \mathcal{G} be a complete *M*-marked set on the stably system of terms $M = \mathcal{F}(J)$.

- 1. Every term in $\operatorname{Supp}(x^{\beta}x^{\epsilon} f_{\beta}x^{\epsilon})$ either belongs to N((*M*)) or is of the type $x^{\alpha} *_{M} x^{\eta}$ with $x^{\eta} <_{Lex} x^{\epsilon}$.
- 2. If $f_{\beta} \in \mathcal{G}$, then all the polynomials $f_{\alpha_i} x^{\eta_i} \in \mathcal{G}^{(s)}$ used in the reduction of $x^{\beta} x^{\epsilon}$ (except $f_{\beta} x^{\epsilon}$ if it belongs to $\mathcal{G}^{(s)}$) are such that $x^{\epsilon} >_{Lex} x^{\eta_i}$.
- 3. If $g = \sum_{i=1}^{m} c_i f_{\alpha_i} x^{\eta_i}$, with $c_i \in k \{0\}$ and $f_{\alpha_i} x^{\eta_i} \in \mathcal{G}^{(s)}$ pairwise different, then $g \neq 0$ and its support contains some term of the ideal J.

THE REDUCTION THEOREM

Let G be a *M*-marked set on a *stably complete* system of terms *M* and let *J* be the ideal generated by *M*.

Then the reduction process $\xrightarrow{\mathcal{G}}$ is *noetherian* and, for every integer $s, P_s = \langle \mathcal{G}^{(s)} \rangle \oplus \langle \mathsf{N}(J)_s \rangle$.

Indeed, for every $h \in P_s$

h = f + g with $f \in \langle \mathcal{G}^{(s)} \rangle$ and $g \in \langle \mathsf{N}(J)_s \rangle \iff h \xrightarrow{\mathcal{G}}_* g$ and f = h - g

MARKED BASIS

Theorem

Let \mathcal{G} be a $\mathcal{F}(J)$ -marked set. Then:

$$(\mathcal{G}) \in \mathcal{M}\!f(J) \iff \forall f_{\beta} \in \mathcal{G}, \ \forall x_i > \min(x^{\beta}): \ f_{\beta}x_i \xrightarrow{\mathcal{G}} 0$$

This is a term-ordering free generalization of the concept of *local involutivity*, defined by Blinkov and Gerdt \rightarrow general theory for involutivity.

First reduction step of $f_{\beta}x_i$: rewrite $x^{\beta}x_i$ throughout $f_{\alpha}x^{\eta}$ with $x^{\beta}x_i = x^{\alpha}x^{\eta} \in C_J(\{x^{\alpha}\})$. We get $f_{\beta}x_i \xrightarrow{\mathcal{G}} f_{\beta}x_i - f_{\alpha}x^{\eta}$, the *S*-polynomial $S(f_{\beta}, f_{\alpha}) := \frac{lcm(x^{\beta}, x^{\alpha})}{x^{\beta}}f_{\beta} - \frac{lcm(x^{\beta}, x^{\alpha})}{x^{\alpha}}f_{\alpha}$. The reduction theorem becomes

$$(\mathcal{G})\in\mathcal{M}\!f(J)\Longleftrightarroworall f_lpha,f_eta\in\mathcal{G}:\ S(f_lpha,f_eta)\stackrel{\mathcal{G}}{\to}_*0.$$

But it is sufficient to check a special subset of the S-polynomials. If J is quasi stable $(|\mathcal{F}(J)| < \infty)$ this subset corresponds to the basis for the first syzygies of the terms in $\mathcal{F}(J)$. The maximal degree of these special S-polynomials cannot exceed $1 + \max\{\deg(x^{\alpha}) \mid x^{\alpha} \in \mathcal{F}(J)\}$. Indeed, if J is quasi stable, $reg(J) = \max\{deg(\tau), \tau \in \mathcal{F}(J)\}$. If \mathcal{G} *M*-marked set, but not *M*-marked basis, then $\exists f_{\alpha}, f_{\beta} \in \mathcal{G}$, s.t. $S(f_{\alpha}, f_{\beta}) = x^{\eta} f_{\alpha} - x^{\gamma} f_{\beta} \xrightarrow{\mathcal{G}}_{*} h \neq 0.$

Take $x^{\eta} f_{\alpha}$, 2 different *terminating reduction processes*, leading to:

- 1. the reduction $x^{\eta} f_{\alpha} \xrightarrow{f_{\alpha}} 0$, w.r.t. the polynomial f_{α} , different from our reduction procedure;
- 2. the reduction process described above $x^{\eta} f_{\alpha} \xrightarrow{\mathcal{G}} x^{\eta} f_{\alpha} x^{\gamma} f_{\beta} \xrightarrow{\mathcal{G}} h \neq 0.$

On the other hand, if \mathcal{G} is a *M*-marked basis, $\forall f \in \mathcal{P}, \exists ! h \in \langle N(J) \rangle$, such that $f - h \in (\mathcal{G})$. Any reduction process, applied to f, *either* gives h as outcome *or* it does *not terminate*.

NOT ALL MARKED BASES ARE GROEBNER BASES!!

Let J be the monomial ideal (x^3, xy, y^3) in k[x, y] with x < y. Its star set is $\mathcal{F}(J) = \{x^3, xy, xy^2, y^3\}$. The $\mathcal{F}(J)$ -marked set $\mathcal{G} := \{f_1 := \mathbf{x^3}, f_2 := \mathbf{xy} - x^2 - y^2, f_3 := \mathbf{xy^2}, f_4 = \mathbf{y^3}\}$ is a $\mathcal{F}(J)$ -market basis:

•
$$yf_1 = xf_1 + x^2f_2 + xf_3 \xrightarrow{\mathcal{G}} 0$$

• $yf_2 = f_1 - xf_2 - f_4 \xrightarrow{\mathcal{G}} 0$
• $yf_3 = xf_4 \xrightarrow{\mathcal{G}} 0$.

This is a simple example of a marked basis which is not a Gröbner basis. In fact, it is obvious that $Ht(f_2) = xy$ cannot be the leading term of f_2 with respect to any term-ordering and, more generally, that J cannot be the initial ideal of the ideal (G), even though $(G) \oplus N(J) = k[x, y]$.
OUR BASES ARE INVOLUTIVE!

With the notation due to Janet, if J is a quasi stable monomial ideal, then

$$\sum_{i=1}^{n} \sigma_{i}^{(p+1)}(J) = \sum_{i=1}^{n} i \sigma_{i}^{(p)}(J).$$

The same equality holds if I is a homogeneous ideal generated by a J-marked basis G with J quasi stable.

Therefore \mathcal{G} is an involutive basis.

Note that for an ideal I generated by a J-marked set \mathcal{G} which is not a marked basis, only the inequality $\sum_{i=1}^{n} \sigma_i^{(p+1)} \leq \sum_{i=1}^{n} i \sigma_i^{(p)}$ holds true.

OUR BASES ARE INVOLUTIVE!

With the notation due to Janet, if J is a quasi stable monomial ideal, then

$$\sum_{i=1}^{n} \sigma_{i}^{(p+1)}(J) = \sum_{i=1}^{n} i \sigma_{i}^{(p)}(J).$$

The same equality holds if I is a homogeneous ideal generated by a J-marked basis \mathcal{G} with J quasi stable.

Therefore \mathcal{G} is an involutive basis.

Note that for an ideal I generated by a J-marked set \mathcal{G} which is not a marked basis, only the inequality $\sum_{i=1}^{n} \sigma_{i}^{(p+1)} \leq \sum_{i=1}^{n} i \sigma_{i}^{(p)}$ holds true.

The structure of scheme

Let $M = \{x_1^{\alpha}, ..., x_s^{\alpha}\}$ and consider B := A[C], where C is a compact notation for the set of variables $C_{i,\beta}$ i = 1, ..., s and $x^{\beta} \in N(J)_{|\alpha_i|}$. *M*-marked set in $B[x_1, ..., x_n]$

$$\mathcal{G} := \{f_{\alpha_i} := x^{\alpha_i} + \sum C_{i,\beta} x^{\beta} \mid x^{\beta} \in \mathsf{N}(J)_{|\alpha_i|}, \operatorname{Ht}(f_{\alpha_i}) = x^{\alpha_i}\}.$$

Each *M*-marked set can be obtained specializing \mathcal{G} , as $\phi(\mathcal{G})$ for a suitable morphism of *A*-algebras $\phi : \mathcal{A}[\mathcal{C}] \to \mathcal{A}$.

By the uniqueness of the *M*-marked basis generating each ideal in $\mathcal{M}f(J)$, $\forall I \in \mathcal{M}f(J)$, $\exists ! \phi$ s.t. $(\phi(\mathcal{G})) = I$.

Construct a set of polynomials \mathcal{R} that will define the scheme we associate to M. If $g \in B[x_1, ..., x_n]$, $\operatorname{coeff}_x(g)$ is the set of coefficients of g w.r.t. x_1, \ldots, x_n ; hence $\operatorname{coeff}_x(g) \subset B = A[C]$ is a set of polynomials in the variables C.

The structure of scheme

Let $M = \{x_1^{\alpha}, ..., x_s^{\alpha}\}$ and consider B := A[C], where C is a compact notation for the set of variables $C_{i,\beta}$ i = 1, ..., s and $x^{\beta} \in N(J)_{|\alpha_i|}$. *M*-marked set in $B[x_1, ..., x_n]$

$$\mathcal{G} := \{f_{\alpha_i} := x^{\alpha_i} + \sum C_{i,\beta} x^{\beta} \mid x^{\beta} \in \mathsf{N}(J)_{|\alpha_i|}, \operatorname{Ht}(f_{\alpha_i}) = x^{\alpha_i}\}.$$

Each *M*-marked set can be obtained specializing \mathcal{G} , as $\phi(\mathcal{G})$ for a suitable morphism of *A*-algebras $\phi : A[C] \to A$.

By the uniqueness of the *M*-marked basis generating each ideal in $\mathcal{M}f(J)$, $\forall I \in \mathcal{M}f(J)$, $\exists ! \phi$ s.t. $(\phi(\mathcal{G})) = I$.

Construct a set of polynomials \mathcal{R} that will define the scheme we associate to M. If $g \in B[x_1, ..., x_n]$, $\operatorname{coeff}_x(g)$ is the set of coefficients of g w.r.t. x_1, \ldots, x_n ; hence $\operatorname{coeff}_x(g) \subset B = A[C]$ is a set of polynomials in the variables C.

 $\forall x^{\alpha_i} \in M \text{ and } x_j > \min(x^{\alpha_i}), \text{ let } g_{\alpha_i,j} \in B[x_1, \dots, x_n] \text{ be such that } f_{\alpha_i} x_j \xrightarrow{\mathcal{G}} g_{\alpha_i,j}.$

DEFINITION

Let M be a stably complete system in \mathcal{T} , A be any ring, and \mathcal{R} be the union of $\operatorname{coeff}_x(g_{\alpha_i,j})$ for every $x^{\alpha_i} \in M$ and $x_j > \min(x^{\alpha_i})$. We will call *M*-marked scheme over the ring A, and denote with $\mathbf{Mf}_M(A)$ the affine scheme $\operatorname{Spec}(A[C]/(\mathcal{R}))$.

Every *M*-marked set in $A[x_1, ..., x_n]$ is a *M*-marked basis if and only if the coefficients of the terms in the tails satisfy the conditions given by \mathcal{R} .

In particular, if A = k is an algebraically closed field, then the closed points of $\mathbf{Mf}_M(A)$ correspond to the ideals in the marked family $\mathcal{Mf}(J)$ where J is the ideal in $k[x_1, \ldots, x_n]$ generated by M.

The above construction of \mathcal{R} is in fact *independent* from the fixed commutative ring A, in the sense that it is preserved by extension of scalars. We can first choose \mathbb{Z} as the coefficient ring and then apply the standard map $\mathbb{Z} \to A$.

More formally, for every stably complete set of terms M we can define a functor between the category of rings to the category of sets

 $\underline{\mathbf{Mf}}_{M}: \textit{Rings} \rightarrow \underline{\mathsf{Set}}$

that associates to any ring A the set $\underline{Mf}_{M}(A) := \mathcal{M}f(MA[x_1, \dots, x_n])$ and to any morphism $\phi : A \to B$ the map

Moreover, it is possible to prove that $\underline{\mathbf{Mf}}_{M}$ is a representable functor represented by the scheme $\mathbf{Mf}_{M}(\mathbb{Z}) = \operatorname{Spec}(\mathbb{Z}[C]/(\mathcal{R}))$.

The involutive soul.

The Term-ordering free soul.

TERM-ORDERING FREE INVOLUTIVE BASES.

Thanks for your attention!