Direct images of pluricanonical bundles

Mihnea Popa

University of Illinois, Chicago

Torino June 5, 2014

Joint work with Christian Schnell – arXiv:1405.6125.

• X smooth projective variety, $\dim_{\mathbf{C}} X = n$; L ample line bundle on X.

Joint work with Christian Schnell - arXiv:1405.6125.

- X smooth projective variety, $\dim_{\mathbf{C}} X = n$; L ample line bundle on X.
- Fujita Conjecture: $\omega_X \otimes L^{\otimes m}$ is globally generated for all $m \geq n + 1$.

Joint work with Christian Schnell – arXiv:1405.6125.

- X smooth projective variety, $\dim_{\mathbf{C}} X = n$; L ample line bundle on X.
- Fujita Conjecture: $\omega_X \otimes L^{\otimes m}$ is globally generated for all $m \geq n+1$.
- Known only in dimension up to four (Reider, Ein-Lazarsfeld, Kawamata), but ok when L is very ample. More generally:

Joint work with Christian Schnell - arXiv:1405.6125.

- X smooth projective variety, $\dim_{\mathbf{C}} X = n$; L ample line bundle on X.
- Fujita Conjecture: $\omega_X \otimes L^{\otimes m}$ is globally generated for all $m \geq n+1$.
- Known only in dimension up to four (Reider, Ein-Lazarsfeld, Kawamata), but ok when L is very ample. More generally:

Proposition

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n.
- L ample and globally generated line bundle on Y. Then

$$R^i f_* \omega_X \otimes L^{\otimes n+1}$$

is globally generated for all $i \geq 0$.

• Kodaira Vanishing: L ample $\implies H^i(X, \omega_X \otimes L) = 0$ for all i > 0.

• Kodaira Vanishing: L ample $\implies H^i(X, \omega_X \otimes L) = 0$ for all i > 0.

Theorem (Kollár Vanishing)

- $f: X \rightarrow Y$ morphism of projective varieties, X smooth
- L ample line bundle on Y. Then

$$H^{j}(Y, R^{i}f_{*}\omega_{X} \otimes L) = 0$$
 for all i and all $j > 0$.

• Kodaira Vanishing: L ample $\implies H^i(X, \omega_X \otimes L) = 0$ for all i > 0.

Theorem (Kollár Vanishing)

- $f: X \to Y$ morphism of projective varieties, X smooth
- L ample line bundle on Y. Then

$$H^{j}(Y, R^{i}f_{*}\omega_{X} \otimes L) = 0$$
 for all i and all $j > 0$.

ullet $\mathcal{F} \in \mathrm{Coh}(Y)$ is 0-regular w.r.t. L ample and globally generated if

$$H^i(Y,\mathcal{F}\otimes L^{\otimes -i})=0\ \text{ for all }i>0.$$

• Kodaira Vanishing: L ample $\implies H^i(X, \omega_X \otimes L) = 0$ for all i > 0.

Theorem (Kollár Vanishing)

- $f: X \to Y$ morphism of projective varieties, X smooth
- L ample line bundle on Y. Then

$$H^{j}(Y, R^{i}f_{*}\omega_{X} \otimes L) = 0$$
 for all i and all $j > 0$.

ullet $\mathcal{F} \in \mathrm{Coh}(Y)$ is 0-regular w.r.t. L ample and globally generated if

$$H^i(Y,\mathcal{F}\otimes L^{\otimes -i})=0\ \text{ for all }i>0.$$

Theorem (Castelnuovo-Mumford Lemma)

 ${\mathcal F}$ 0-regular sheaf on $Y \implies {\mathcal F}$ globally generated.

• Kodaira Vanishing: L ample $\implies H^i(X, \omega_X \otimes L) = 0$ for all i > 0.

Theorem (Kollár Vanishing)

- $f: X \rightarrow Y$ morphism of projective varieties, X smooth
- L ample line bundle on Y. Then

$$H^{j}(Y, R^{i}f_{*}\omega_{X} \otimes L) = 0$$
 for all i and all $j > 0$.

ullet $\mathcal{F} \in \mathrm{Coh}(Y)$ is 0-regular w.r.t. L ample and globally generated if

$$H^i(Y, \mathcal{F} \otimes L^{\otimes -i}) = 0 \text{ for all } i > 0.$$

Theorem (Castelnuovo-Mumford Lemma)

 ${\mathcal F}$ 0-regular sheaf on $Y \implies {\mathcal F}$ globally generated.

• Kollár Vanishing $\implies R^i f_* \omega_X \otimes L^{\otimes n+1}$ is 0-regular.

• Question: How about powers $\omega_X^{\otimes k}$, $k \geq 2$?

- Question: How about powers $\omega_X^{\otimes k}$, $k \geq 2$?
- Motivation: Say X smooth projective, L ample on $X \stackrel{MMP}{\Longrightarrow} \omega_X \otimes L^{\otimes n+1}$ is nef.

- Question: How about powers $\omega_X^{\otimes k}$, $k \geq 2$?
- Motivation: Say X smooth projective, L ample on $X \stackrel{MMP}{\Longrightarrow} \omega_X \otimes L^{\otimes n+1}$ is nef.
- By Kodaira Vanishing, this implies

$$H^{i}(X, \omega_{X}^{\otimes k} \otimes L^{\otimes k(n+1)-n}) = 0 \text{ for all } i > 0.$$

since

$$kK_X + (k(n+1) - n)L = K_X + (k-1)(K_X + (n+1)L) + L.$$

- Question: How about powers $\omega_X^{\otimes k}$, $k \geq 2$?
- Motivation: Say X smooth projective, L ample on $X \stackrel{MMP}{\Longrightarrow} \omega_X \otimes L^{\otimes n+1}$ is nef.
- By Kodaira Vanishing, this implies

$$H^{i}(X, \omega_{X}^{\otimes k} \otimes L^{\otimes k(n+1)-n}) = 0 \text{ for all } i > 0.$$

since

$$kK_X + (k(n+1) - n)L = K_X + (k-1)(K_X + (n+1)L) + L.$$

• This is the type of effective vanishing statement we would like for $f_*\omega_X^{\otimes k}$.

• How about effective global generation?

• How about effective global generation?

Conjecture

- $f: X \to Y$ morphism of smooth projective varieties, dim Y = n
- L ample on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is globally generated for $m \ge k(n+1)$.

• How about effective global generation?

Conjecture

- $f: X \rightarrow Y$ morphism of smooth projective varieties, dim Y = n
- L ample on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is globally generated for $m \ge k(n+1)$.

• Would follow immediately from Fujita when f = Id.

• How about effective global generation?

Conjecture

- $f: X \to Y$ morphism of smooth projective varieties, dim Y = n
- L ample on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is globally generated for $m \ge k(n+1)$.

- Would follow immediately from Fujita when f = Id.
- When k = 1, proved by Kawamata in dimension up to 4 when the branch locus of f is an SNC divisor.

• The conjecture holds when Y = C = smooth projective curve; very special methods though.

- The conjecture holds when Y = C = smooth projective curve; very special methods though.
- Say $f: X \to C$ surjective, C of genus g. Write

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}\simeq f_*\omega_{X/C}^{\otimes k}\otimes \omega_C^{\otimes k}\otimes L^{\otimes m}.$$

The statement follows from the following facts:

- The conjecture holds when Y = C = smooth projective curve; very special methods though.
- Say $f: X \to C$ surjective, C of genus g. Write

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}\simeq f_*\omega_{X/C}^{\otimes k}\otimes \omega_C^{\otimes k}\otimes L^{\otimes m}.$$

The statement follows from the following facts:

• Viehweg: $f_*\omega_{X/C}^{\otimes k}$ is a nef vector bundle on C for all k.

- The conjecture holds when Y = C = smooth projective curve; very special methods though.
- Say $f: X \to C$ surjective, C of genus g. Write

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}\simeq f_*\omega_{X/C}^{\otimes k}\otimes \omega_C^{\otimes k}\otimes L^{\otimes m}.$$

The statement follows from the following facts:

- Viehweg: $f_*\omega_{X/C}^{\otimes k}$ is a nef vector bundle on C for all k.
- Lemma: E nef vector bundle, L line bundle of degree $\geq 2g \implies E \otimes L$ globally generated.

Uses:

• Hartshorne: A vector bundle E on C is nef \iff E has no line bundle quotients of negative degree.

Extension of Kollár's result for i = 0

Theorem

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n.
- L ample and globally generated line bundle on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is 0-regular, and therefore globally generated, for $m \ge k(n+1)$.

Extension of Kollár's result for i = 0

Theorem

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n.
- L ample and globally generated line bundle on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is 0-regular, and therefore globally generated, for $m \ge k(n+1)$.

• Effectivity of the result is crucial in applications; explained later. Also, equally useful:

Extension of Kollár's result for i = 0

Theorem

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n.
- L ample and globally generated line bundle on Y, $k \ge 1$. Then

$$f_*\omega_X^{\otimes k}\otimes L^{\otimes m}$$

is 0-regular, and therefore globally generated, for $m \ge k(n+1)$.

 Effectivity of the result is crucial in applications; explained later. Also, equally useful:

Variant

The same holds if f is a fibration (i.e. its fibers are irreducible) and ω_X is replaced by $\omega_X \otimes M$, where M is a nef and f-big line bundle.

Extension to log-canonical pairs

• Important to extend to pairs; recall that (X, Δ) is log-canonical if $K_X + \Delta$ is **Q**-Cartier and on a log-resolution $\mu : \tilde{X} \to X$ we have

$$K_{\tilde{X}} - \mu^*(K_X + \Delta) = P - N$$

with: • P, N effective, P exceptional, no common components.

• $N = \sum a_i E_i$ with all $a_i \leq 1$.

Extension to log-canonical pairs

• Important to extend to pairs; recall that (X, Δ) is log-canonical if $K_X + \Delta$ is **Q**-Cartier and on a log-resolution $\mu : \tilde{X} \to X$ we have

$$K_{\tilde{X}} - \mu^*(K_X + \Delta) = P - N$$

with: • P, N effective, P exceptional, no common components.

- $N = \sum a_i E_i$ with all $a_i \leq 1$.
- Extension of Kollár vanishing:

Theorem (Ambro-Fujino Vanishing)

- Same setting; let (X, Δ) be a log-canonical pair such that Δ is a **Q**-divisor with SNC support
- B line bundle on X such that $B \sim_{\mathbf{Q}} K_X + \Delta + f^*H$, with H ample **Q**-Cartier **Q**-divisor on Y. Then

$$H^{j}(Y, R^{i}f_{*}B) = 0$$
 for all i and all $j > 0$.

• The main technical result is a vanishing theorem partially extending Ambro-Fujino vanishing in the case i = 0.

• The main technical result is a vanishing theorem partially extending Ambro-Fujino vanishing in the case i = 0.

Theorem

- $f: X \to Y$ morphism of projective varieties, X normal, dim Y = n.
- (X, Δ) log-canonical **Q**-pair on X.
- B line bundle on X such that $B \sim_{\mathbf{Q}} k(K_X + \Delta + f^*H)$ for some $k \geq 1$, H ample \mathbf{Q} -Cartier \mathbf{Q} -divisor on Y.
- L ample and globally generated line bundle on Y. Then:

$$\begin{split} &H^i(Y,f_*B\otimes L^{\otimes m})=0 \ \text{ for all } i>0 \ \text{ and } \ m\geq (k-1)(n+1-t)-t+1,\\ &\text{where } t:=\sup\big\{s\in \mathbf{Q}\mid H-sL \text{ is ample}\big\}. \end{split}$$

• The main technical result is a vanishing theorem partially extending Ambro-Fujino vanishing in the case i = 0.

Theorem

- $f: X \to Y$ morphism of projective varieties, X normal, dim Y = n.
- (X, Δ) log-canonical **Q**-pair on X.
- B line bundle on X such that $B \sim_{\mathbf{Q}} k(K_X + \Delta + f^*H)$ for some $k \geq 1$, H ample \mathbf{Q} -Cartier \mathbf{Q} -divisor on Y.
- L ample and globally generated line bundle on Y. Then:

$$\begin{split} &H^i(Y,f_*B\otimes L^{\otimes m})=0 \ \text{ for all } i>0 \ \text{ and } \ m\geq (k-1)(n+1-t)-t+1,\\ &\text{where } t:=\sup\big\{s\in \mathbf{Q}\mid H-sL \text{ is ample}\big\}. \end{split}$$

• Special case: If $k(K_X + \Delta)$ is Cartier, can take H = L and t = 1, so:

$$H^{i}(Y, f_{*}\mathcal{O}_{X}(k(K_{X} + \Delta)) \otimes L^{\otimes m}) = 0 \text{ for } m \geq k(n+1) - n.$$

• Theorem implies the main global generation result (and an extension to log-canonical pairs) via 0-regularity.

- Theorem implies the main global generation result (and an extension to log-canonical pairs) via 0-regularity.
- Idea of proof: a combination of Viehweg-style methods towards weak positivity and the use of Kollár and Ambro-Fujino vanishing. Recall:

- Theorem implies the main global generation result (and an extension to log-canonical pairs) via 0-regularity.
- Idea of proof: a combination of Viehweg-style methods towards weak positivity and the use of Kollár and Ambro-Fujino vanishing. Recall:
- $B \sim_{\mathbf{Q}} k(K_X + \Delta + f^*H)$, $k \ge 1$, (X, Δ) log-canonical, $f: X \to Y$.

- Theorem implies the main global generation result (and an extension to log-canonical pairs) via 0-regularity.
- Idea of proof: a combination of Viehweg-style methods towards weak positivity and the use of Kollár and Ambro-Fujino vanishing. Recall:
- $B \sim_{\mathbf{Q}} k(K_X + \Delta + f^*H)$, $k \ge 1$, (X, Δ) log-canonical, $f: X \to Y$.
- Consider adjunction morphism

$$f^*f_*B \rightarrow B$$

Log-resolution arguments \implies reduce to X smooth, the image is $B \otimes \mathcal{O}_X(-E)$, and $E + \Delta$ divisor with SNC support.

- Theorem implies the main global generation result (and an extension to log-canonical pairs) via 0-regularity.
- Idea of proof: a combination of Viehweg-style methods towards weak positivity and the use of Kollár and Ambro-Fujino vanishing. Recall:
- $B \sim_{\mathbf{Q}} k(K_X + \Delta + f^*H)$, $k \ge 1$, (X, Δ) log-canonical, $f: X \to Y$.
- Consider adjunction morphism

$$f^*f_*B \rightarrow B$$

Log-resolution arguments \implies reduce to X smooth, the image is $B \otimes \mathcal{O}_X(-E)$, and $E + \Delta$ divisor with SNC support.

• Consider smallest $p \ge 0$ such that $f_*B \otimes L^{\otimes p}$ globally generated

Idea of proof:

Obtain

$$B + pf^*L \sim k(K_X + \Delta + f^*H) + pf^*L \sim D + E$$

with D smooth and transverse to the support of $E + \Delta$.

Obtain

$$B + pf^*L \sim k(K_X + \Delta + f^*H) + pf^*L \sim D + E$$

with D smooth and transverse to the support of $E + \Delta$.

Interesting reduction leads to

$$B-E'+mf^*L\sim_{\mathbf{Q}}K_X+\Delta'+f^*H',$$

where Δ' is log-canonical with SNC support, E' is contained in the relative base locus of B, and

$$H'$$
 ample $\iff m+t-\frac{k-1}{k}\cdot p>0.$

Obtain

$$B + pf^*L \sim k(K_X + \Delta + f^*H) + pf^*L \sim D + E$$

with D smooth and transverse to the support of $E + \Delta$.

Interesting reduction leads to

$$B-E'+mf^*L\sim_{\mathbf{Q}}K_X+\Delta'+f^*H',$$

where Δ' is log-canonical with SNC support, E' is contained in the relative base locus of B, and

$$H'$$
 ample $\iff m+t-\frac{k-1}{k}\cdot p>0.$

Ambro-Fujino Vanishing then implies in this range:

$$H^i(Y, f_*B \otimes L^{\otimes m}) = 0$$
 for all $i > 0$.

• Get that $f_*B\otimes L^{\otimes m}$ is 0-regular, hence globally generated, for

$$m > \frac{k-1}{k} \cdot p - t + n.$$

ullet Get that $f_*B\otimes L^{\otimes m}$ is 0-regular, hence globally generated, for

$$m > \frac{k-1}{k} \cdot p - t + n.$$

• But we've chosen *p* minimal with this same property, which then implies all the effective inequalities we're looking for:

$$m \le k(n+1) - n$$
 and $p \le k(n+1)$.

The effective statements above govern different types of applications:

The effective statements above govern different types of applications:

• Vanishing theorems for direct images of pluricanonical bundles.

The effective statements above govern different types of applications:

- Vanishing theorems for direct images of pluricanonical bundles.
- (Effective) weak positivity, and subadditivity of litaka dimension.

The effective statements above govern different types of applications:

- Vanishing theorems for direct images of pluricanonical bundles.
- (Effective) weak positivity, and subadditivity of litaka dimension.
- Generic vanishing for direct images of pluricanonical bundles.

 We have seen that the key result is a partial extension of Ambro-Fujino. It implies:

 We have seen that the key result is a partial extension of Ambro-Fujino. It implies:

Corollary

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n
- ullet L ample and globally generated on Y, $k\geq 1$. Then

$$H^i(Y, f_*\omega_X^{\otimes k} \otimes L^{\otimes m}) = 0 \text{ for all } i > 0 \text{ and } m \geq k(n+1) - n.$$

 We have seen that the key result is a partial extension of Ambro-Fujino. It implies:

Corollary

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n
- ullet L ample and globally generated on Y, $k\geq 1$. Then

$$H^i(Y, f_*\omega_X^{\otimes k} \otimes L^{\otimes m}) = 0 \text{ for all } i > 0 \text{ and } m \geq k(n+1) - n.$$

• Relative Fujita: Case k=1 of the main conjecture says that $f_*\omega_X\otimes L^{\otimes m}$ is globally generated for $m\geq n+1$, L ample.

 We have seen that the key result is a partial extension of Ambro-Fujino. It implies:

Corollary

- $f: X \to Y$ morphism of projective varieties, X smooth, dim Y = n
- L ample and globally generated on Y, $k \ge 1$. Then

$$H^i(Y, f_*\omega_X^{\otimes k} \otimes L^{\otimes m}) = 0 \text{ for all } i > 0 \text{ and } m \geq k(n+1) - n.$$

• Relative Fujita: Case k=1 of the main conjecture says that $f_*\omega_X\otimes L^{\otimes m}$ is globally generated for $m\geq n+1$, L ample.

Corollary

If Relative Fujita holds, then the Corollary above holds with L only assumed to be ample.

Fundamental notion introduced by Viehweg:

Definition: A torsion-free \mathcal{F} on X projective is weakly positive on a non-empty open set $U \subseteq X$ if for every ample A on X and $a \in \mathbf{N}$, the sheaf $S^{[ab]}\mathcal{F} \otimes A^{\otimes b}$ is generated by global sections over U for $b \gg 0$. $(S^{[p]}\mathcal{F} := \text{reflexive hull of } S^p\mathcal{F}.)$

- Fundamental notion introduced by Viehweg:
 - Definition: A torsion-free \mathcal{F} on X projective is weakly positive on a non-empty open set $U\subseteq X$ if for every ample A on X and $a\in \mathbf{N}$, the sheaf $S^{[ab]}\mathcal{F}\otimes A^{\otimes b}$ is generated by global sections over U for $b\gg 0$. $(S^{[p]}\mathcal{F}:=$ reflexive hull of $S^p\mathcal{F}.)$
- Intuition: higher rank generalization of pseudo-effective line bundles; very roughly, there exists a fixed line bundle A such that $\mathcal{F}^{\otimes a} \otimes A$ is globally generated over a fixed open set U, for all $a \geq 0$.

Fundamental notion introduced by Viehweg:

Definition: A torsion-free \mathcal{F} on X projective is weakly positive on a non-empty open set $U\subseteq X$ if for every ample A on X and $a\in \mathbf{N}$, the sheaf $S^{[ab]}\mathcal{F}\otimes A^{\otimes b}$ is generated by global sections over U for $b\gg 0$. $(S^{[p]}\mathcal{F}:=$ reflexive hull of $S^p\mathcal{F}.)$

• Intuition: higher rank generalization of pseudo-effective line bundles; very roughly, there exists a fixed line bundle A such that $\mathcal{F}^{\otimes a} \otimes A$ is globally generated over a fixed open set U, for all $a \geq 0$.

Theorem (Viehweg)

If $f: X \to Y$ is a surjective morphism of smooth projective varieties, then $f_*\omega_{X/Y}^{\otimes k}$ is weakly positive for every $k \ge 1$.

• Case k=1 typically uses Hodge theory (Fujita, Kawamata) – however Kollár provided effective version using vanishing theorems.

- Case k=1 typically uses Hodge theory (Fujita, Kawamata) however Kollár provided effective version using vanishing theorems.
- Results above allow us to do the same for k > 1.

- Case k = 1 typically uses Hodge theory (Fujita, Kawamata) however Kollár provided effective version using vanishing theorems.
- Results above allow us to do the same for k > 1.

Theorem

- $f: X \rightarrow Y$ surjective "mild" morphism of smooth projective varieties,
- L ample and globally generated on Y, $A := \omega_Y \otimes L^{\otimes n+1}$, $s \ge 1$. Then

$$f_*(\omega_{X/Y}^{\otimes k})^{[\otimes s]} \otimes A^{\otimes k}$$

is globally generated on fixed open set \ensuremath{U} containing the smooth locus of f .

- Case k = 1 typically uses Hodge theory (Fujita, Kawamata) however Kollár provided effective version using vanishing theorems.
- Results above allow us to do the same for k > 1.

Theorem

- $f: X \rightarrow Y$ surjective "mild" morphism of smooth projective varieties,
- L ample and globally generated on Y, $A := \omega_Y \otimes L^{\otimes n+1}$, $s \ge 1$. Then

$$f_*(\omega_{X/Y}^{\otimes k})^{[\otimes s]} \otimes A^{\otimes k}$$

is globally generated on fixed open set U containing the smooth locus of f.

• Implies Viehweg's result via semistable reduction.

 Another advantage: vanishing theorems method extends the picture to adjoint bundles.

 Another advantage: vanishing theorems method extends the picture to adjoint bundles.

Theorem

 $f: X \to Y$ fibration between smooth projective varieties, M nef and f-big line bundle on $X \implies f_*(\omega_{X/Y} \otimes M)^{\otimes k}$ is weakly positive for every $k \ge 1$.

 Another advantage: vanishing theorems method extends the picture to adjoint bundles.

Theorem

 $f: X \to Y$ fibration between smooth projective varieties, M nef and f-big line bundle on $X \implies f_*(\omega_{X/Y} \otimes M)^{\otimes k}$ is weakly positive for every $k \ge 1$.

• Using argument of Viehweg, get subadditivity of litaka dimension over a base of general type:

Corollary

In the situation of the Theorem, denote by F the general fiber of f, and by M_F the restriction of M to F. If Y is of general type, then

$$\kappa(\omega_X \otimes M) = \kappa(\omega_F \otimes M_F) + \dim Y.$$

• Definition: A abelian variety, $\mathcal{F} \in \operatorname{Coh}(A) \implies \mathcal{F}$ is a GV-sheaf if for all $i \geq 0$:

$$\operatorname{\mathsf{codim}}_{\operatorname{Pic}^0(A)}\{\alpha\in\operatorname{Pic}^0(A)\mid H^i(A,\mathcal{F}\otimes\alpha)\neq 0\}\geq i$$

• Definition: A abelian variety, $\mathcal{F} \in \operatorname{Coh}(A) \implies \mathcal{F}$ is a GV-sheaf if for all $i \geq 0$:

$$\mathsf{codim}_{\mathrm{Pic}^0(A)}\{\alpha\in\mathrm{Pic}^0(A)\mid H^i(A,\mathcal{F}\otimes\alpha)\neq 0\}\geq i$$

• Generic vanishing theorems address this property, especially for ω_X ; crucial for studying the birational geometry of X with $b_1(X) \neq 0$.

• Definition: A abelian variety, $\mathcal{F} \in \operatorname{Coh}(A) \implies \mathcal{F}$ is a GV-sheaf if for all $i \geq 0$:

$$\mathsf{codim}_{\mathsf{Pic}^0(A)}\{\alpha\in \mathsf{Pic}^0(A)\mid H^i(A,\mathcal{F}\otimes\alpha)\neq 0\}\geq i$$

- Generic vanishing theorems address this property, especially for ω_X ; crucial for studying the birational geometry of X with $b_1(X) \neq 0$.
- Green-Lazarsfeld: If $f: X \to A$ is generically finite onto its image, then $f_*\omega_X$ is a GV-sheaf.

• Definition: A abelian variety, $\mathcal{F} \in \operatorname{Coh}(A) \implies \mathcal{F}$ is a GV-sheaf if for all $i \geq 0$:

$$\mathsf{codim}_{\mathsf{Pic}^0(A)}\{\alpha\in \mathsf{Pic}^0(A)\mid H^i(A,\mathcal{F}\otimes\alpha)\neq 0\}\geq i$$

- Generic vanishing theorems address this property, especially for ω_X ; crucial for studying the birational geometry of X with $b_1(X) \neq 0$.
- Green-Lazarsfeld: If $f: X \to A$ is generically finite onto its image, then $f_*\omega_X$ is a GV-sheaf.
 - Statement in fact stronger, but anyway generalized as follows:
- Hacon: If $f: X \to A$ arbitrary morphism, then $R^i f_* \omega_X$ is a GV-sheaf, for all i.

Theorem

Let $f: X \to A$ be a morphism from a smooth projective variety to an abelian variety. Then $f_*\omega_X^{\otimes k}$ is a GV-sheaf for every $k \ge 1$.

Theorem

Let $f: X \to A$ be a morphism from a smooth projective variety to an abelian variety. Then $f_*\omega_X^{\otimes k}$ is a GV-sheaf for every $k \ge 1$.

• Idea: Depends on the fact that via pullback by multiplication maps

$$\cdot m: A \longrightarrow A$$

 $f_*\omega_X^{\otimes k}$ remains of the same form, while $(\cdot m)^*L\equiv L^{\otimes m^2}$.

Theorem

Let $f: X \to A$ be a morphism from a smooth projective variety to an abelian variety. Then $f_*\omega_X^{\otimes k}$ is a GV-sheaf for every $k \ge 1$.

• Idea: Depends on the fact that via pullback by multiplication maps

$$\cdot m: A \longrightarrow A$$

 $f_*\omega_X^{\otimes k}$ remains of the same form, while $(\cdot m)^*L\equiv L^{\otimes m^2}.$

• For $m \gg 0$, apply the effective vanishing theorems discussed above + criterion of Hacon.

• The original statements for k=1 (e.g. Kollár or Ambro-Fujino vanishing, Hacon's generic vanishing) hold for higher direct images as well. However, the Viehweg-style methods do not.

- The original statements for k=1 (e.g. Kollár or Ambro-Fujino vanishing, Hacon's generic vanishing) hold for higher direct images as well. However, the Viehweg-style methods do not.
- Question: Are there analogues of these effective results for $R^i f_* \omega_X^{\otimes k}$ with i > 0?

- The original statements for k=1 (e.g. Kollár or Ambro-Fujino vanishing, Hacon's generic vanishing) hold for higher direct images as well. However, the Viehweg-style methods do not.
- Question: Are there analogues of these effective results for $R^i f_* \omega_X^{\otimes k}$ with i > 0?

For instance, for all i and k:

• Is $R^i f_* \omega_X^{\otimes k} \otimes L^{k(n+1)}$ globally generated?

- ullet The original statements for k=1 (e.g. Kollár or Ambro-Fujino vanishing, Hacon's generic vanishing) hold for higher direct images as well. However, the Viehweg-style methods do not.
- Question: Are there analogues of these effective results for $R^i f_* \omega_X^{\otimes k}$ with i > 0?

For instance, for all i and k:

- Is $R^i f_* \omega_X^{\otimes k} \otimes L^{k(n+1)}$ globally generated?
- Is $R^i f_* \omega_X^{\otimes k}$ a GV-sheaf?
- etc...

- ullet The original statements for k=1 (e.g. Kollár or Ambro-Fujino vanishing, Hacon's generic vanishing) hold for higher direct images as well. However, the Viehweg-style methods do not.
- Question: Are there analogues of these effective results for $R^i f_* \omega_X^{\otimes k}$ with i > 0?

For instance, for all i and k:

- Is $R^i f_* \omega_X^{\otimes k} \otimes L^{k(n+1)}$ globally generated?
- Is $R^i f_* \omega_X^{\otimes k}$ a GV-sheaf?
- etc...

No obvious reason why these shouldn't hold, but would require an interesting new idea!

Thank you! Grazie!