Giornate di Geometria Algebrica ed Argomenti Correlati XII (Torino, 2014)

Numeri di Chern fra topologia e geometria birazionale (Work in progress with P. Cascini)

Luca Tasin (Max Planck Institute for Mathematics)

- X smooth projective variety of dimension n over \mathbb{C} .
- $c_i \in H^{2i}(X, \mathbb{Z})$ the Chern classes of the tangent bundle T_X .

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Set-up

- X smooth projective variety of dimension n over \mathbb{C} .
- $c_i \in H^{2i}(X, \mathbb{Z})$ the Chern classes of the tangent bundle T_X .
- $c_1 = -K_X \in H^2(X, \mathbb{Z}), c_n \in \mathbb{Z}$ is the Euler characteristic of X.
- The product of Chern classes of total degree 2*n* are called Chern numbers.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Set-up

- X smooth projective variety of dimension n over \mathbb{C} .
- $c_i \in H^{2i}(X, \mathbb{Z})$ the Chern classes of the tangent bundle T_X .
- $c_1 = -K_X \in H^2(X, \mathbb{Z}), c_n \in \mathbb{Z}$ is the Euler characteristic of X.
- The product of Chern classes of total degree 2*n* are called Chern numbers.

Hirzebruch (1954)

Which linear combinations of Chern numbers are topologically invariant?

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Kotshick, 2012)

A rational linear combination of Chern numbers is a topological invariant iff it is a multiple of the Euler characteristic c_n .

э

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Kotshick, 2012)

A rational linear combination of Chern numbers is a topological invariant iff it is a multiple of the Euler characteristic c_n .

• dim X = 2. c_1^2 has two possible values.

ヘロト ヘアト ヘビト ヘビト

Theorem (Kotshick, 2012)

A rational linear combination of Chern numbers is a topological invariant iff it is a multiple of the Euler characteristic c_n .

- dim X = 2. c_1^2 has two possible values.
- dim X = 3. By Hirzebruch-Riemann-Roch we have

$$|rac{1}{24}c_1c_2| = |\chi(\mathcal{O}_X)| = |1-h^{1,0}+h^{2,0}-h^{3,0}| \le 1+b_1+b_2+b_3.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Kotshick, 2012)

A rational linear combination of Chern numbers is a topological invariant iff it is a multiple of the Euler characteristic c_n .

- dim X = 2. c_1^2 has two possible values.
- dim X = 3. By Hirzebruch-Riemann-Roch we have

$$|\frac{1}{24}c_1c_2| = |\chi(\mathcal{O}_X)| = |1-h^{1,0}+h^{2,0}-h^{3,0}| \le 1+b_1+b_2+b_3.$$

Question (Kotshick)

Does $K_X^3 = -c_1^3$ take only finitely many values on projective algebraic structures with the same underlying 6-manifold?

The volume

If X is a variety of dimension n, then the volume of X is defined as

$$\operatorname{vol}(X) := \limsup_{m \to +\infty} \frac{n! h^0(X, mK_X)}{m^n},$$

and X is called of general type if vol(X) > 0.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

The volume

If X is a variety of dimension n, then the volume of X is defined as

$$\operatorname{vol}(X) := \limsup_{m \to +\infty} \frac{n! h^0(X, mK_X)}{m^n},$$

and X is called of general type if vol(X) > 0. The volume is a birational invariant, but not a topological invariant if dim $X \ge 2$.

ヘロト ヘアト ヘビト ヘビト

ъ

The volume

If X is a variety of dimension n, then the volume of X is defined as

$$\operatorname{vol}(X) := \limsup_{m \to +\infty} \frac{n! h^0(X, mK_X)}{m^n},$$

and X is called of general type if vol(X) > 0. The volume is a birational invariant, but not a topological invariant if dim $X \ge 2$.

Theorem 1

Let X be a smooth projective 3-fold of general type. Then

 $vol(X) \le 64(b_1(X) + b_3(X) + b_2(X)).$

The volume takes finitely many values on projective algebraic structures of general type with the same underlying 6-manifold.

Let X be a smooth 3-fold of general type. Then there exists a sequence of birational maps

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$

such that each X_i has terminal \mathbb{Q} -factorial singularities,

くロト (過) (目) (日)

э

Let X be a smooth 3-fold of general type. Then there exists a sequence of birational maps

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$

such that each X_i has terminal \mathbb{Q} -factorial singularities, each map $\phi_i : X_{i--} X_{i+1}$ is either

- a divisorial contraction to a point or
- a divisorial contraction to a curve or
- a flip (which is an isomorphism in codimension 2)

くロト (過) (目) (日)

Let X be a smooth 3-fold of general type. Then there exists a sequence of birational maps

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$

such that each X_i has terminal \mathbb{Q} -factorial singularities, each map $\phi_i : X_{i--} X_{i+1}$ is either

- a divisorial contraction to a point or
- a divisorial contraction to a curve or
- a flip (which is an isomorphism in codimension 2) and *K*_Y is nef, that is

$$K_{Y}.C \geq 0,$$

for any curve C in Y.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let X be a smooth 3-fold of general type. Then there exists a sequence of birational maps

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$

such that each X_i has terminal \mathbb{Q} -factorial singularities, each map $\phi_i : X_{i^{--}} X_{i+1}$ is either

- a divisorial contraction to a point or
- a divisorial contraction to a curve or
- a flip (which is an isomorphism in codimension 2) and *K*_Y is nef, that is

$$K_{Y}.C \geq 0,$$

for any curve C in Y.

Y is called a minimal model of X. Note that

$$\operatorname{vol}(K_Y) = K_Y^3.$$

Proof of Theorem 1 I

Let $X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$ be an MMP for X.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proof of Theorem 1 I

Let
$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$
 be an MMP for X .

• B.M.Y. inequality for minimal model of general type (Tian-Wang 2011):

$$\mathcal{K}_{Y}^{n-2}.\left(\mathcal{K}_{Y}^{2}-2\frac{n+1}{n}c_{2}(Y)\right)\leq 0 \ \Rightarrow \ \mathcal{K}_{Y}^{3}\leq \frac{8}{3}\mathcal{K}_{Y}.c_{2}(Y)$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Proof of Theorem 1 I

Let
$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_m = Y$$
 be an MMP for X .

• B.M.Y. inequality for minimal model of general type (Tian-Wang 2011):

$$\mathcal{K}^{n-2}_{Y}.\left(\mathcal{K}^{2}_{Y}-2rac{n+1}{n}c_{2}(Y)
ight)\leq 0 \ \Rightarrow \ \mathcal{K}^{3}_{Y}\leq rac{8}{3}\mathcal{K}_{Y}.c_{2}(Y)$$

Riemann-Roch for terminal 3-folds (Kawamata, Reid):

$$\chi(Y, \mathcal{O}_Y) = -\frac{1}{24} K_Y \cdot c_2(Y) + \sum_{p \in \mathcal{B}(Y)} \frac{r(p)^2 - 1}{24r(p)}$$

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Proof of Theorem 1 II

Hence

$$\operatorname{vol}(X) = \operatorname{vol}(Y) = K_Y^3 \le \frac{8}{3} K_Y \cdot c_2(Y)$$
$$= \frac{8}{3} \left(-\chi(Y, \mathcal{O}_Y) + \sum_{p \in \mathcal{B}(Y)} \frac{r(p)^2 - 1}{24r(p)} \right).$$

ヘロト 人間 とくほとくほとう

Proof of Theorem 1 II

Hence

$$\operatorname{vol}(X) = \operatorname{vol}(Y) = K_Y^3 \leq \frac{8}{3} K_Y \cdot c_2(Y)$$

 $= \frac{8}{3} \left(-\chi(Y, \mathcal{O}_Y) + \sum_{p \in \mathcal{B}(Y)} \frac{r(p)^2 - 1}{24r(p)} \right).$

• $-\chi(Y, \mathcal{O}_Y) = -\chi(X, \mathcal{O}_X) \leq b_1(X) + b_3(X).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proof of Theorem 1 II

Hence

$$\operatorname{vol}(X) = \operatorname{vol}(Y) = K_Y^3 \le \frac{8}{3} K_Y \cdot c_2(Y)$$
$$= \frac{8}{3} \left(-\chi(Y, \mathcal{O}_Y) + \sum_{p \in \mathcal{B}(Y)} \frac{r(p)^2 - 1}{24r(p)} \right)$$

- $-\chi(Y, \mathcal{O}_Y) = -\chi(X, \mathcal{O}_X) \leq b_1(X) + b_3(X).$
- Topological bound on the singularities of Y (Cascini-Zhang, 2012):

$$\sum_{\boldsymbol{p}\in\mathcal{B}(Y)}\frac{r(\boldsymbol{p})^2-1}{r(\boldsymbol{p})}\leq 2b_2(X).$$

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The main theorem

To any threefold *X* we can associate an integral cubic form $F_X \in \mathbb{Z}[x_1, \ldots, x_b]$, which comes from the trilinear intersection form

$$H^2(X,\mathbb{Z}) imes H^2(X,\mathbb{Z}) imes H^2(X,\mathbb{Z}) o \mathbb{Z}.$$

Denote by Δ_{F_X} the discriminant of F_X .

・ロト ・四ト ・ヨト ・ヨト ・

æ

The main theorem

To any threefold *X* we can associate an integral cubic form $F_X \in \mathbb{Z}[x_1, \ldots, x_b]$, which comes from the trilinear intersection form

$$H^2(X,\mathbb{Z}) imes H^2(X,\mathbb{Z}) imes H^2(X,\mathbb{Z}) o \mathbb{Z}.$$

Denote by Δ_{F_X} the discriminant of F_X .

Theorem 2

Let X be a smooth 3-fold of general type. Assume that $\Delta_{F_X} \neq 0$ and that there is an MMP for X composed only by divisorial contractions to points and blow-downs to smooth curves. Then there exists a topological invariant D_X such that

$$|K_X^3| \leq D_X.$$

ヘロン 人間 とくほとく ほう

Strategy

Let $X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_m = Y$ be an MMP as in Theorem 2.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Strategy

Let
$$X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_m = Y$$
 be an MMP as in Theorem 2.

- $K_Y^3 \leq 64(b_1(X) + b_3(X) + b_2(X)).$
- At each step we want to bound

$$|K_{X_i}^3 - K_{X_{i+1}}^3|$$

with a topological invariant of X.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Strategy

Let
$$X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_m = Y$$
 be an MMP as in Theorem 2.

- $K_Y^3 \leq 64(b_1(X) + b_3(X) + b_2(X)).$
- At each step we want to bound

$$|K_{X_i}^3 - K_{X_{i+1}}^3|$$

with a topological invariant of X.

• The number of steps in bounded by *b*₂. (With flips it is bounded by 2*b*₂.)

< 🗇 🕨 <

프 🖌 🖌 프 🕨

A quick remark

- $Z = \mathbb{P}^3$ and *C* a smooth rational curve of degree *d*.
- $\pi: W \to Z$ be blow-up along *C*.

•
$$b_1(W) = b_3(W) = b_5(W) = 0, b_2(W) = b_4(W) = 2.$$

ヘロト 人間 ト ヘヨト ヘヨト

3

10/19

A quick remark

- $Z = \mathbb{P}^3$ and *C* a smooth rational curve of degree *d*.
- $\pi: W \to Z$ be blow-up along *C*.

•
$$b_1(W) = b_3(W) = b_5(W) = 0, b_2(W) = b_4(W) = 2.$$

•
$$K_W^3 = K_Z^3 - 2K_Z \cdot C + 2 - 2g(C) = -62 + 8d$$

• The Betti numbers are in general not enough to bound K_{χ}^3 .

ヘロト ヘ戸ト ヘヨト ヘヨト

Divisorial contractions to curves I

Let $f: W \to Z$ be a blow-down to a smooth curve with exceptional divisor *E*.

• $K_W = f^*K_Z + E$ and $H^2(W, \mathbb{Z}) \cong \mathbb{Z}[E] \bigoplus H^2(Z, \mathbb{Z})$.

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Divisorial contractions to curves I

Let $f: W \to Z$ be a blow-down to a smooth curve with exceptional divisor *E*.

- $K_W = f^*K_Z + E$ and $H^2(W, \mathbb{Z}) \cong \mathbb{Z}[E] \bigoplus H^2(Z, \mathbb{Z}).$
- Let E_1, \ldots, E_n be the pull-back of a basis of $H^2(\mathbb{Z}, \mathbb{Z})$.

•
$$E.E_i.E_j = E_{i|E}.E_{j|E} = 0$$
 and $K_W^3 - K_Z^3 = -2E^3 + 6 - 6g(C)$.

(雪) (ヨ) (ヨ)

11/19

Divisorial contractions to curves I

Let $f: W \to Z$ be a blow-down to a smooth curve with exceptional divisor *E*.

- $K_W = f^*K_Z + E$ and $H^2(W, \mathbb{Z}) \cong \mathbb{Z}[E] \bigoplus H^2(Z, \mathbb{Z}).$
- Let E_1, \ldots, E_n be the pull-back of a basis of $H^2(Z, \mathbb{Z})$.
- $E.E_i.E_j = E_{i|E}.E_{j|E} = 0$ and $K_W^3 K_Z^3 = -2E^3 + 6 6g(C)$.
- Let x₀,..., x_n be coordinates on H²(W, ℤ) with respect to E, E₁,..., E_n. Then

$$F_W(x_0,\ldots,x_n) = ax_0^3 + 3x_0^2(\sum_{i=1}^n b_i x_i) + F_Z(x_1,\ldots,x_n),$$

where $a = E^3$ and $b_i \in \mathbb{Z}$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

An arithmetic result

Theorem 3

Let $F \in \mathbb{Z}[x_0, ..., x_n]$ be a cubic form such that $\Delta_F \neq 0$. Then, modulo the action of $GL(\mathbb{Z}, n)$ on $(x_1, ..., x_n)$, there are only finitely many triples $(a, (b_1, ..., b_n), G)$ such that $a, b_i \in \mathbb{Z}$, $G(x_1, ..., x_n)$ is a cubic form and F can be written as

$$F = ax_0^3 + (\sum b_i x_i)x_0^2 + G(x_1, \ldots, x_n).$$

Moreover $\Delta_G \neq 0$ *.*

ъ

ヘロン 人間 とくほ とくほ とう

An arithmetic result

Theorem 3

Let $F \in \mathbb{Z}[x_0, ..., x_n]$ be a cubic form such that $\Delta_F \neq 0$. Then, modulo the action of $GL(\mathbb{Z}, n)$ on $(x_1, ..., x_n)$, there are only finitely many triples $(a, (b_1, ..., b_n), G)$ such that $a, b_i \in \mathbb{Z}$, $G(x_1, ..., x_n)$ is a cubic form and F can be written as

$$F = ax_0^3 + (\sum b_i x_i)x_0^2 + G(x_1, \ldots, x_n).$$

Moreover $\Delta_G \neq 0$.

Define the Skansen number of X as

 $S_X := \sup\{|a| : F_X \text{ may be written in reduced form w.r.t. } (a, b, G)\}.$

ヘロン 人間 とくほ とくほ とう

3

Divisorial contractions to curves II

Let $f : W \to Z$ be a blow-down to a smooth curve *C* of genus *g*. • $\chi(W \setminus E) = \chi(Z \setminus C) \Rightarrow b_3(W) = b_3(Z) + 2g.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Divisorial contractions to curves II

Let $f: W \to Z$ be a blow-down to a smooth curve *C* of genus *g*.

• $\chi(W \setminus E) = \chi(Z \setminus C) \Rightarrow b_3(W) = b_3(Z) + 2g.$

Then

$$|\mathcal{K}^3_W - \mathcal{K}^3_Z| = |-2E^3 + 6 - 6g| \le 2S_W + 6(b_3(W) + 1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Divisorial contractions to curves II

Let $f: W \to Z$ be a blow-down to a smooth curve *C* of genus *g*.

• $\chi(W \setminus E) = \chi(Z \setminus C) \Rightarrow b_3(W) = b_3(Z) + 2g.$

Then

$$|K_W^3 - K_Z^3| = |-2E^3 + 6 - 6g| \le 2S_W + 6(b_3(W) + 1).$$

• The cubic form on *Z* is determined (up to finitely many possibilities) by the cubic form on *W*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

13/19

Divisorial contractions to points I

Let $f: W \to Z$ be a divisorial contraction to a point in a minimal model program for *X*.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Divisorial contractions to points I

Let $f: W \to Z$ be a divisorial contraction to a point in a minimal model program for *X*.

• $K_W = f^*K_Z + dE$, where *E* is the exceptional divisor and *d* is a positive rational number.

•
$$K_W^3 - K_Z^3 = d^3 E^3$$

ヘロト ヘアト ヘビト ヘビト

14/19

Divisorial contractions to points I

Let $f: W \to Z$ be a divisorial contraction to a point in a minimal model program for *X*.

• $K_W = f^*K_Z + dE$, where *E* is the exceptional divisor and *d* is a positive rational number.

•
$$K_W^3 - K_Z^3 = d^3 E^3$$

Using Kawakita's classification, we can prove that

$$0 < K_W^3 - K_Z^3 \le 2^8 b_2^{2b_2},$$

where $b_2 = b_2(X)$.

ヘロン 人間 とくほ とくほ とう

Divisorial contractions to points II

- $f: W \rightarrow Z$ divisorial contraction to a point.
 - $H^2(W, \mathbb{Q}) \cong \mathbb{Q}[E] \bigoplus H^2(Z, \mathbb{Q})$, but $H^2(W, \mathbb{Z})/H^2(Z, \mathbb{Z})$ may have torsion.

ヘロン 人間 とくほ とくほ とう

3

Divisorial contractions to points II

- $f: W \rightarrow Z$ divisorial contraction to a point.
 - $H^2(W, \mathbb{Q}) \cong \mathbb{Q}[E] \bigoplus H^2(Z, \mathbb{Q})$, but $H^2(W, \mathbb{Z})/H^2(Z, \mathbb{Z})$ may have torsion.
 - This torsion depends on the singularities of *W* and *Z*.
 - Admitting rational coefficients with bounded denominators we have something like

$$F_W(x_0,\ldots,x_n)=ax_0^3+F_Z(x_1,\ldots,x_n).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Reduced forms

Let *F* be a cubic form such that $\Delta_F \neq 0$. We want to prove that there are only finitely many possible reduced forms for *F*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *F* be a cubic form such that $\Delta_F \neq 0$. We want to prove that there are only finitely many possible reduced forms for *F*.

By proving that V_F = {p ∈ Pⁿ : rkH_F(p) ≤ 2} ∩ {F ≠ 0} is a finite union of points, line, plane conics and plane cubics, we reduce the problem to binary and ternary cubics.

Let *F* be a cubic form such that $\Delta_F \neq 0$. We want to prove that there are only finitely many possible reduced forms for *F*.

- By proving that V_F = {p ∈ ℙⁿ : rkH_F(p) ≤ 2} ∩ {F ≠ 0} is a finite union of points, line, plane conics and plane cubics, we reduce the problem to binary and ternary cubics.
- To prove our result for binary and ternary cubics we need Siegel and Faltings theorems on the finiteness of integral and rational points on algebraic curves.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $F \in \mathbb{Z}[x, y, z]$ be a ternary cubic such that $\Delta \neq 0$. The algebra of the invariants of F (under the action of $SL(3, \mathbb{Z})$) is generated by two polynomials S and T in the coefficients of F and

$$\Delta = T^2 - 64S^3.$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Let $F \in \mathbb{Z}[x, y, z]$ be a ternary cubic such that $\Delta \neq 0$. The algebra of the invariants of F (under the action of $SL(3, \mathbb{Z})$) is generated by two polynomials S and T in the coefficients of F and

$$\Delta = T^2 - 64S^3.$$

Assume that $S \neq 0$ and write $F = Ax^3 + (By + Cz)x^2 + G(y, z)$.

ヘロト ヘアト ヘビト ヘビト

17/19

Let $F \in \mathbb{Z}[x, y, z]$ be a ternary cubic such that $\Delta \neq 0$. The algebra of the invariants of F (under the action of $SL(3, \mathbb{Z})$) is generated by two polynomials S and T in the coefficients of F and

$$\Delta = T^2 - 64S^3.$$

Assume that $S \neq 0$ and write $F = Ax^3 + (By + Cz)x^2 + G(y, z)$.

• We can assume that G (modulo $SL(2,\mathbb{Z})$) is fixed.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $F \in \mathbb{Z}[x, y, z]$ be a ternary cubic such that $\Delta \neq 0$. The algebra of the invariants of F (under the action of $SL(3, \mathbb{Z})$) is generated by two polynomials S and T in the coefficients of F and

$$\Delta = T^2 - 64S^3.$$

Assume that $S \neq 0$ and write $F = Ax^3 + (By + Cz)x^2 + G(y, z)$.

- We can assume that G (modulo $SL(2,\mathbb{Z})$) is fixed.
- Passing to a number field K and acting with SL(2, K) on (y, z) we may assume that $G = dy^3 + z^3$ and

$$F = Ax^3 + (B_1y + C_1z)x^2 + G(y, z).$$

ヘロン 人間 とくほ とくほ とう

Let $F \in \mathbb{Z}[x, y, z]$ be a ternary cubic such that $\Delta \neq 0$. The algebra of the invariants of F (under the action of $SL(3, \mathbb{Z})$) is generated by two polynomials S and T in the coefficients of F and

$$\Delta = T^2 - 64S^3.$$

Assume that $S \neq 0$ and write $F = Ax^3 + (By + Cz)x^2 + G(y, z)$.

- We can assume that G (modulo $SL(2,\mathbb{Z})$) is fixed.
- Passing to a number field K and acting with SL(2, K) on (y, z) we may assume that $G = dy^3 + z^3$ and

$$F = Ax^3 + (B_1y + C_1z)x^2 + G(y, z).$$

Solution We need to prove that there are only finitely many $a, b, c \in K$ such that

$$F = ax^3 + (by + cz)x^2 + G.$$

• We get S = bcd and $T = 27a^2d^2 + 4b^3d + 4c^3d^2$.

イロト イポト イヨト イヨト

- We get S = bcd and $T = 27a^2d^2 + 4b^3d + 4c^3d^2$.
- **(**) Consider the curve $C \subseteq \mathbb{P}^3$ given by the ideal

$$I = (Sx_3^2 - dx_1x_2, Tx_3^3 - 27d^2x_0^2x_3 - 4dx_1^3 - 4d^2x_2^3).$$

ヘロト 人間 ト ヘヨト ヘヨト

- We get S = bcd and $T = 27a^2d^2 + 4b^3d + 4c^3d^2$.
- **(**) Consider the curve $C \subseteq \mathbb{P}^3$ given by the ideal

$$I = (Sx_3^2 - dx_1x_2, Tx_3^3 - 27d^2x_0^2x_3 - 4dx_1^3 - 4d^2x_2^3).$$

Since $p_g(C) = 3$, by Faltings theorem we have only a finite number of *K*-rational points [*a*, *b*, *c*, 1] on *C*.

イロト イ押ト イヨト イヨトー

Theorem (Chen-Hacon, 2012)

Any MMP of X can be factored into a sequence of divisorial contractions to points (or their inverses), blow-downs to smooth curves and flops.

э

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Chen-Hacon, 2012)

Any MMP of X can be factored into a sequence of divisorial contractions to points (or their inverses), blow-downs to smooth curves and flops.

Let $f: W \rightarrow Z$ be a flop.

• *W* and *Z* have the same singularities and the same Betti numbers (Kollár).

•
$$K_W^3 = K_Z^3$$
.

ヘロト ヘアト ヘビト ヘビト

э

Theorem (Chen-Hacon, 2012)

Any MMP of X can be factored into a sequence of divisorial contractions to points (or their inverses), blow-downs to smooth curves and flops.

Let $f: W \rightarrow Z$ be a flop.

- *W* and *Z* have the same singularities and the same Betti numbers (Kollár).
- $K_W^3 = K_Z^3$.
- What happens to the cubic form?

ヘロン 人間 とくほ とくほ とう