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Set-up

X smooth projective variety of dimension n over C.
ci ∈ H2i(X ,Z) the Chern classes of the tangent bundle TX .

c1 = −KX ∈ H2(X ,Z), cn ∈ Z is the Euler characteristic of
X .
The product of Chern classes of total degree 2n are called
Chern numbers.

Hirzebruch (1954)
Which linear combinations of Chern numbers are topologically
invariant?
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The main problem

Theorem (Kotshick, 2012)
A rational linear combination of Chern numbers is a topological
invariant iff it is a multiple of the Euler characteristic cn.

dim X = 2. c2
1 has two possible values.

dim X = 3. By Hirzebruch-Riemann-Roch we have

| 1
24

c1c2| = |χ(OX )| = |1−h1,0+h2,0−h3,0| ≤ 1+b1+b2+b3.

Question (Kotshick)

Does K 3
X = −c3

1 take only finitely many values on projective
algebraic structures with the same underlying 6-manifold?
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The volume

If X is a variety of dimension n, then the volume of X is defined
as

vol(X ) := lim sup
m→+∞

n!h0(X ,mKX )

mn ,

and X is called of general type if vol(X ) > 0.

The volume is a birational invariant, but not a topological
invariant if dim X ≥ 2.

Theorem 1

Let X be a smooth projective 3-fold of general type. Then

vol(X ) ≤ 64(b1(X ) + b3(X ) + b2(X )).

The volume takes finitely many values on projective algebraic
structures of general type with the same underlying 6-manifold.
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MMP

Let X be a smooth 3-fold of general type. Then there exists a
sequence of birational maps

X = X099KX199K · · · 99KXm = Y

such that each Xi has terminal Q-factorial singularities,

each
map φi : Xi99KXi+1 is either

a divisorial contraction to a point or
a divisorial contraction to a curve or
a flip (which is an isomorphism in codimension 2)

and KY is nef, that is
KY .C ≥ 0,

for any curve C in Y .
Y is called a minimal model of X . Note that

vol(KY ) = K 3
Y .
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Proof of Theorem 1 I

Let X = X099KX199K · · · 99KXm = Y be an MMP for X .

B.M.Y. inequality for minimal model of general type
(Tian-Wang 2011):

K n−2
Y .

(
K 2

Y − 2
n + 1

n
c2(Y )

)
≤ 0 ⇒ K 3

Y ≤
8
3

KY .c2(Y )

Riemann-Roch for terminal 3-folds (Kawamata, Reid):

χ(Y ,OY ) = − 1
24

KY .c2(Y ) +
∑

p∈B(Y )

r(p)2 − 1
24r(p)
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Proof of Theorem 1 II

Hence

vol(X ) = vol(Y ) = K 3
Y ≤

8
3

KY .c2(Y )

=
8
3

−χ(Y ,OY ) +
∑

p∈B(Y )

r(p)2 − 1
24r(p)

 .

−χ(Y ,OY ) = −χ(X ,OX ) ≤ b1(X ) + b3(X ).
Topological bound on the singularities of Y
(Cascini-Zhang, 2012):

∑
p∈B(Y )

r(p)2 − 1
r(p)

≤ 2b2(X ).
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The main theorem

To any threefold X we can associate an integral cubic form
FX ∈ Z[x1, . . . , xb], which comes from the trilinear intersection
form

H2(X ,Z)× H2(X ,Z)× H2(X ,Z)→ Z.

Denote by ∆FX the discriminant of FX .

Theorem 2

Let X be a smooth 3-fold of general type. Assume that ∆FX 6= 0
and that there is an MMP for X composed only by divisorial
contractions to points and blow-downs to smooth curves.
Then there exists a topological invariant DX such that

|K 3
X | ≤ DX .
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Strategy

Let X = X0 → X1 → · · · → Xm = Y be an MMP as in Theorem
2.

K 3
Y ≤ 64(b1(X ) + b3(X ) + b2(X )).

At each step we want to bound

|K 3
Xi
− K 3

Xi+1
|

with a topological invariant of X .
The number of steps in bounded by b2. (With flips it is
bounded by 2b2.)
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A quick remark

Z = P3 and C a smooth rational curve of degree d .

π : W → Z be blow-up along C.

b1(W ) = b3(W ) = b5(W ) = 0, b2(W ) = b4(W ) = 2.

K 3
W = K 3

Z − 2KZ .C + 2− 2g(C) = −62 + 8d

The Betti numbers are in general not enough to bound K 3
X .
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Divisorial contractions to curves I

Let f : W → Z be a blow-down to a smooth curve with
exceptional divisor E .

KW = f ∗KZ + E and H2(W ,Z) ∼= Z[E ]
⊕

H2(Z ,Z).

Let E1, . . . ,En be the pull-back of a basis of H2(Z ,Z).
E .Ei .Ej = Ei |E .Ej |E = 0 and K 3

W −K 3
Z = −2E3 + 6− 6g(C).

Let x0, . . . , xn be coordinates on H2(W ,Z) with respect to
E ,E1, . . . ,En. Then

FW (x0, . . . , xn) = ax3
0 + 3x2

0 (
n∑

i=1

bixi) + FZ (x1, . . . , xn),

where a = E3 and bi ∈ Z.
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An arithmetic result

Theorem 3
Let F ∈ Z[x0, . . . , xn] be a cubic form such that ∆F 6= 0. Then,
modulo the action of GL(Z,n) on (x1, . . . , xn), there are only
finitely many triples (a, (b1, . . . ,bn),G) such that a,bi ∈ Z,
G(x1, . . . , xn) is a cubic form and F can be written as

F = ax3
0 + (

∑
bixi)x2

0 + G(x1, . . . , xn).

Moreover ∆G 6= 0.

Define the Skansen number of X as

SX := sup{|a| : FX may be written in reduced form w.r.t. (a,b,G)}.
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Divisorial contractions to curves II

Let f : W → Z be a blow-down to a smooth curve C of genus g.

χ(W \ E) = χ(Z \ C) ⇒ b3(W ) = b3(Z ) + 2g.

Then

|K 3
W − K 3

Z | = | − 2E3 + 6− 6g| ≤ 2SW + 6(b3(W ) + 1).

The cubic form on Z is determined (up to finitely many
possibilities) by the cubic form on W .
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Divisorial contractions to points I

Let f : W → Z be a divisorial contraction to a point in a minimal
model program for X .

KW = f ∗KZ + dE , where E is the exceptional divisor and d
is a positive rational number.

K 3
W − K 3

Z = d3E3

Using Kawakita’s classification, we can prove that

0 < K 3
W − K 3

Z ≤ 28b2b2
2 ,

where b2 = b2(X ).
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Divisorial contractions to points II

f : W → Z divisorial contraction to a point.

H2(W ,Q) ∼= Q[E ]
⊕

H2(Z ,Q), but H2(W ,Z)/H2(Z ,Z)
may have torsion.

This torsion depends on the singularities of W and Z .

Admitting rational coefficients with bounded denominators
we have something like

FW (x0, . . . , xn) = ax3
0 + FZ (x1, . . . , xn).
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Reduced forms

Let F be a cubic form such that ∆F 6= 0. We want to prove that
there are only finitely many possible reduced forms for F .

1 By proving that VF = {p ∈ Pn : rkHF (p) ≤ 2} ∩ {F 6= 0} is
a finite union of points, line, plane conics and plane cubics,
we reduce the problem to binary and ternary cubics.

2 To prove our result for binary and ternary cubics we need
Siegel and Faltings theorems on the finiteness of integral
and rational points on algebraic curves.
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Siegel and Faltings theorems on the finiteness of integral
and rational points on algebraic curves.
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A basic case I

Let F ∈ Z[x , y , z] be a ternary cubic such that ∆ 6= 0. The
algebra of the invariants of F (under the action of SL(3,Z)) is
generated by two polynomials S and T in the coefficients of F
and

∆ = T 2 − 64S3.

Assume that S 6= 0 and write F = Ax3 + (By + Cz)x2 + G(y , z).
1 We can assume that G (modulo SL(2,Z)) is fixed.
2 Passing to a number field K and acting with SL(2,K ) on

(y , z) we may assume that G = dy3 + z3 and

F = Ax3 + (B1y + C1z)x2 + G(y , z).

3 We need to prove that there are only finitely many
a,b, c ∈ K such that

F = ax3 + (by + cz)x2 + G.
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A basic case II

4 We get S = bcd and T = 27a2d2 + 4b3d + 4c3d2.

5 Consider the curve C ⊆ P3 given by the ideal

I = (Sx2
3 − dx1x2,Tx3

3 − 27d2x2
0 x3 − 4dx3

1 − 4d2x3
2 ).

6 Since pg(C) = 3, by Faltings theorem we have only a finite
number of K -rational points [a,b, c,1] on C.
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Flops

Theorem (Chen-Hacon, 2012)
Any MMP of X can be factored into a sequence of divisorial
contractions to points (or their inverses), blow-downs to smooth
curves and flops.

Let f : W99KZ be a flop.

W and Z have the same singularities and the same Betti
numbers (Kollár).
K 3

W = K 3
Z .

What happens to the cubic form?
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