Algebraic model of local period map and Yukawa coupling.

Ruggero Bandiera

Sapienza Università di Roma

May 28, 2016
Joint work in progress with Marco Manetti. For detailed formulas and precise signs see arXiv:1506.05753.
Joint work in progress with Marco Manetti. For detailed formulas and precise signs see arXiv:1506.05753.

Part 0. Introduction

Let X be a complex manifold, $\dim X = n \geq 2$. We denote by Θ_X the sheaf of holomorphic vector fields, Ω^i_X the sheaves of holomorphic differential forms,

$$i: \Theta_X \to \prod_i \text{Hom}(\Omega^i_X, \Omega^{i-1}_X), \quad i_\xi(\omega) = \xi \lrcorner \omega,$$

$$l: \Theta_X \to \prod_i \text{Hom}(\Omega^i_X, \Omega^i_X), \quad l_\xi = [\partial, i_\xi],$$

the usual contraction map and holomorphic Lie derivative respectively.
Joint work in progress with Marco Manetti. For detailed formulas and precise signs see arXiv:1506.05753.

Part 0. Introduction
Let X be a complex manifold, $\dim X = n \geq 2$. We denote by Θ_X the sheaf of holomorphic vector fields, Ω^i_X the sheaves of holomorphic differential forms,

$$i: \Theta_X \to \prod_i \text{Hom}(\Omega^i_X, \Omega^{i-1}_X), \quad i_\xi(\omega) = \xi \lrcorner \omega,$$

$$l: \Theta_X \to \prod_i \text{Hom}(\Omega^i_X, \Omega^i_X), \quad l_\xi = [\partial, i_\xi],$$

the usual contraction map and holomorphic Lie derivative respectively.

Lemma (Cartan formulas)
Every i_ξ is a derivation of degree -1 of the graded algebra Ω^*_X, and:

$$[i_\xi, i_\eta] = 0, \quad i_{[\xi, \eta]} = [i_\xi, l_\eta], \quad l_{[\xi, \eta]} = [l_\xi, l_\eta].$$
The composition of i with cup product gives maps

$$i: H^p(\Theta_X) \to \text{Hom}(H^q(\Omega^i_X), H^{q+p}(\Omega^{i-1}_X))$$

Definition (Yukawa coupling)

$$\Phi: H^1(X, \Theta_X)^\wedge n \to \text{Hom}(H^0(\Omega^n_X), H^n(\Omega^0_X)),$$

$$\Phi(\xi_1, \ldots, \xi_n) = i_{\xi_1} \circ \cdots \circ i_{\xi_n}.$$
The composition of i with cup product gives maps

$$i: H^p(\Theta_X) \to \text{Hom}(H^q(\Omega^i_X), H^{q+p}(\Omega^{i-1}_X))$$

Definition (Yukawa coupling)

$$\Phi: H^1(X, \Theta_X)^\wedge n \to \text{Hom}(H^0(\Omega^n_X), H^n(\Omega^0_X)),$$

$$\Phi(\xi_1, \ldots, \xi_n) = i_{\xi_1} \circ \cdots \circ i_{\xi_n}.$$

Goal: understand Φ from the point of view of deformation theory; more precisely we want to interpret Φ as a “primary” obstruction for some geometrically meaningful deformation problem.
The model that we have in mind to imitate is the interpretation of the bracket

$$H^1(X, \Theta_X)^2 \xrightarrow{[\cdot, \cdot]} H^2(X, \Theta_X)$$

as a primary obstruction:

Theorem (Kodaira-Spencer-Kuranishi)

*Let X be a compact complex manifold, $\mathcal{X} \to B$ its semiuniversal deformation. Then $B = q^{-1}(0)$ where

$$q: H^1(X, \Theta_X) \to H^2(X, \Theta_X),$$

is a germ of holomorphic map

$$q(\xi) = \frac{1}{2} [\xi, \xi] + \text{higher order terms}.$$*
There are formulas for the higher order terms depending on a certain Green’s operator, but in practice they are unknown. To overcome (partially) this difficulty we can work directly with the Kodaira-Spencer DG Lie algebra

$$KS_X = (A^{0,*}(\Theta_X), d = -\bar{\partial}, [-,-])$$

where $A^{p,q}$ is the space of differentiable forms of type (p, q). The deformations of X are controlled by KS_X in the usual way, i.e., via Maurer-Cartan equation modulus gauge action.
From now on we assume X compact Kähler of dimension $n \geq 2$. Under this assumption the Hodge filtration

$$F^p_X = \bigoplus_{i \geq p} A^{i,*}$$

induces a filtration in cohomology $H^*(F^p_X) \subset H^*(X, \mathbb{C})$ such that

$$\frac{H^*(F^p_X)}{H^*(F^{p+1}_X)} = H^*(\Omega^p_X)[−p] .$$
From now on we assume X compact Kähler of dimension $n \geq 2$. Under this assumption the Hodge filtration

$$F_X^p = \bigoplus_{i \geq p} A_i^{i,*}$$

induces a filtration in cohomology $H^*(F_X^p) \subset H^*(X, \mathbb{C})$ such that

$$\frac{H^*(F_X^p)}{H^*(F_X^{p+1})} = H^*(\Omega_X^p)[-p].$$

To every small deformation $\mathcal{X} \to T$ (T contractible) there is a local period map

$$P^n: T \to \text{Grass}(H^*(X, \mathbb{C})), \quad P^n(t) = H^*(F_X^n_t) \subset H^*(X, \mathbb{C})$$

which is holomorphic (Griffiths).
One can consider deformations of X in which the image of the period map belongs to some closed subset of the Grassmannian. For instance: consider deformations $\mathcal{X} \to (T, 0)$ such that $H(F^n_{X_t}) \subseteq H(F^1_{X_0})$ for every $t \in T$ sufficiently near to 0.
One can consider deformations of X in which the image of the period map belongs to some closed subset of the Grassmannian. For instance: consider deformations $\chi \to (T, 0)$ such that $H(F^n_{\chi_t}) \subseteq H(F^1_{\chi_0})$ for every $t \in T$ sufficiently near to 0.

Theorem

Let X compact Kähler of dimension n such that $H^1(\Omega^n_X) = 0$, then the above deformation problem admits a semiuniversal family $\chi \to Y$, where $Y = q^{-1}(0)$

$$q = (q_1, q_2): H^1(X, \Theta_X) \to H^2(X, \Theta_X) \times \text{Hom}(H^0(\Omega^n_X), H^n(\Omega^0_X)),$$

is a germ of holomorphic map

$$q_1(\xi) = \frac{1}{2} [\xi, \xi] + \text{higher order terms},$$

$$q_2(\xi) = \frac{1}{n!} \Phi(\xi, \ldots, \xi) + \text{higher order terms}.$$
The assumption $H^1(\Omega^1_X) = 0$ in not essential, but in general the statement is a little more tricky. We will get a better grasp at the higher order terms, which are practically unknown as they depend on certain Green’s operators, after we introduce L_∞ algebras. The above theorem is not surprising and can be probably proved also by classical methods, as in Bryant and Griffiths paper “Some observations on the infinitesimal period relations...” (1982), so what’s the point of having an L_∞ algebra model?

One motivation is that it provides a systematic way to organize the large amount of algebraic data associated to the deformation problem (hidden in the higher order terms of the previous theorems), such as higher obstructions and Massey operations; another important motivation comes from derived geometry, and more precisely derived deformation theory, more on this later.
The assumption $H^1(\Omega^n_X) = 0$ is not essential, but in general the statement is a little more tricky. We will get a better grasp at the higher order terms, which are practically unknown as they depend on certain Green’s operators, after we introduce L_∞ algebras. The above theorem is not surprising and can be probably proved also by classical methods, as in Bryant and Griffiths paper “Some observations on the infinitesimal period relations...” (1982), so what’s the point of having an L_∞ algebra model? One motivation is that it provides a systematic way to organize the large amount of algebraic data associated to the deformation problem (hidden in the higher order terms of the previous theorems), such as higher obstructions and Massey operations; another important motivation comes from derived geometry, and more precisely derived deformation theory, more on this later.
Part 1. L_∞ algebras and deformation theory.
Recall that a DG Lie algebra structure $(L, d, [-,-])$ on a graded space $L = \bigoplus_{i \in \mathbb{Z}} L^i$ is the datum of a differential $d : L^i \to L^{i+1}$ and a graded antisymmetric bracket

$$x \in L^i, \; y \in L^j \implies [x, y] = (-1)^{ij+1}[y, x] \in L^{i+j}$$

satisfying the Leibniz and Jacobi identities (in the graded sense)

$$d[x, y] = [dx, y] + (-1)^i[x, dy],$$

$$[x, [y, z]] = [[x, y], z] + (-1)^{ij}[y, [x, z]].$$
The set of solutions

\[\text{MC}(L) = \{ x \in L^1 \text{ s.t. } dx + \frac{1}{2}[x, x] = 0 \} \]

of the \textit{Maurer-Cartan equation} is stable under the \textit{Gauge action}

\[\exp(L^0) \times \text{MC}(L) \rightarrow \text{MC}(L): (e^a, x) \rightarrow e^a \ast x, \]

\[e^a \ast x = x + \sum_{k \geq 0} \frac{[a, -]^k}{(k + 1)!} ([a, x] - da) \]

We denote by Def(L) the set of Maurer-Cartan elements modulo Gauge equivalence.
This makes sense under suitable hypotheses ensuring convergence, in particular, it is always defined a functor of Artin rings

\[\text{Def}_L : \textbf{Art} \to \textbf{Set} : A \to \text{Def}(L \otimes m_A). \]
This makes sense under suitable hypotheses ensuring convergence, in particular, it is always defined a functor of Artin rings

$$\text{Def}_L : \text{Art} \to \text{Set} : A \to \text{Def}(L \otimes \mathfrak{m}_A).$$

Conversely, a formal moduli problem may be considered as a functor of Artin rings satisfying certain conditions, known as the Schlessinger conditions. These are always satisfied by the functor Def_L associated to a DG Lie algebra. We say that L controls a formal moduli problem $M : \text{Art} \to \text{Set}$ if there exist natural (in $A \in \text{Art}$) isomorphisms $\text{Def}_L(A) \simeq M(A)$.
In our motivating example of deformations of the complex structure on X, the associated functor Def_X sends $A \in \text{Art}$ to the set of isomorphism classes of deformations

$$
\begin{array}{cccc}
X & \longrightarrow & X_A \\
\downarrow & & \downarrow \\
\text{Spec}(\mathbb{C}) & \longrightarrow & \text{Spec}(A)
\end{array}
$$

of X over $\text{Spec}(A)$.

Ruggero Bandiera

Algebraic model of local period map and Yukawa coupling.
In our motivating example of deformations of the complex structure on X, the associated functor Def_X sends $A \in \text{Art}$ to the set of isomorphism classes of deformations

\[
\begin{array}{ccc}
X & \longrightarrow & X_A \\
\downarrow & & \downarrow \\
\text{Spec}(\mathbb{C}) & \longrightarrow & \text{Spec}(A)
\end{array}
\]

of X over $\text{Spec}(A)$. Given a local Artin algebra A, together with a Maurer-Cartan element

\[
\xi \in \text{MC}_{KS_X}(A) = \{ x \in A^{0,1}(\Theta_X) \otimes m_A \mid dx + \frac{1}{2} [x, x] = 0 \},
\]

the corresponding deformation $X_A \to \text{Spec}(A)$ is given by the structure sheaf of flat A-modules

\[
\mathcal{O}_{X_A} = \ker(\bar{\partial} + \iota_{\xi} : A^{0,0}_X \otimes A \to A^{0,1}_X \otimes A).
\]
To better understand the connection with the theorems in the introduction we have to consider L_∞ algebras. Recall that an L_∞ algebra structure on L is the data of a differential d on L and graded antisymmetric brackets $[-,\cdots,-] : L^\wedge n \to L$, $n \geq 2$, of total degree $(2 - n)$, satisfying ”higher Jacobi identities”.

Ruggero Bandiera

Algebraic model of local period map and Yukawa coupling.
To better understand the connection with the theorems in the introduction we have to consider L_{∞} algebras. Recall that an L_{∞} algebra structure on L is the data of a differential d on L and graded antisymmetric brackets $[−, ⋅ ⋅ ⋅, −] : L^{\wedge n} \to L$, $n \geq 2$, of total degree $(2 − n)$, satisfying ”higher Jacobi identities”. The first ones read

$$d[x, y] = [dx, y] + (−1)^{|x|}[x, dy],$$

$$Jac(x, y, z) = d[x, y, z]−[dx, y, z]−(−1)^{|x|}[x, dy, z]−(−1)^{|x|+|y|}[x, y, dz].$$
Under suitable hypotheses ensuring convergence, it makes sense to consider the Maurer-Cartan equation

$$dx + \sum_{n \geq 1} \frac{1}{n!} [x, \cdots, x] = 0, \quad x \in L^1,$$

on L, in particular, it is well defined the associated functor $\text{Def}_L : \textbf{Art} \to \textbf{Set}$ of Maurer-Cartan elements modulus an appropriate notion of gauge/homotopy equivalence.
Why to consider L_∞ algebras? ...
Why to consider L_∞ algebras? ... (essentially, because they have better homotopical properties).
Why to consider L_∞ algebras? ... (essentially, because they have better homotopical properties).

The correspondence between DG Lie algebras, or more in general L_∞ algebras, and deformation theory, is fully realized in the derived setting. Very briefly, in derived deformation theory we deal with derived formal moduli functors, that is, functors $\tilde{M} : \text{dgArt} \to \text{Kan}$ satisfying Schlessinger-like conditions.

The underlying philosophy is that an ordinary formal moduli functor should be regarded as a classical truncation of a more fundamental derived one. There is a natural notion of weak equivalence between derived moduli functors (defined pointwise), and the corresponding homotopy category is equivalent to the one of DG Lie algebras, or more in general L_∞ algebras, modulus quasi-isomorphisms (Lurie-Pridham).
Why to consider L_∞ algebras? ... (essentially, because they have better homotopical properties).
The correspondence between DG Lie algebras, or more in general L_∞ algebras, and deformation theory, is fully realized in the derived setting. Very briefly, in derived deformation theory we deal with derived formal moduli functors, that is, functors $\tilde{M} : \mathrm{dgArt} \to \mathrm{Kan}$ satisfying Schlessinger-like conditions. The underlying philosophy is that an ordinary formal moduli functor should be regarded as a classical truncation of a more fundamental derived one.
Why to consider L_∞ algebras? ... (essentially, because they have better homotopical properties).

The correspondence between DG Lie algebras, or more in general L_∞ algebras, and deformation theory, is fully realized in the derived setting. Very briefly, in derived deformation theory we deal with derived formal moduli functors, that is, functors $\tilde{M} : \text{dgArt} \to \text{Kan}$ satisfying Schlessinger-like conditions. The underlying philosophy is that an ordinary formal moduli functor should be regarded as a classical truncation of a more fundamental derived one. There is a natural notion of weak equivalence between derived moduli functors (defined pointwise), and the corresponding homotopy category is equivalent to the one of DG Lie algebras, or more in general L_∞ algebras, modulus quasi-isomorphisms (Lurie-Pridham).

Ruggero Bandiera
Algebraic model of local period map and Yukawa coupling.
Even in we stick with DG Lie algebras models, it is convenient to enlarge the class of morphisms by considering the L_∞ ones. These are collections of maps $f_n : L \wedge^n \to M$, $n \geq 1$, of total degree $1 - n$, satisfying higher coherence relations with the brackets.
Even in we stick with DG Lie algebras models, it is convenient to enlarge the class of morphisms by considering the L_∞ ones. These are collections of maps $f_n : L^n \to M, \ n \geq 1$, of total degree $1 - n$, satisfying higher coherence relations with the brackets. The first ones read

$$df_1(x) = f_1(dx)$$

$$f_1([x,y]) - [f_1(x), f_1(y)] =$$

$$= \pm (df_2(x \wedge y) + f_2(dx) \wedge y + (-1)^{|x|} f_2(x \wedge dy)).$$
Even in we stick with DG Lie algebras models, it is convenient to enlarge the class of morphisms by considering the L_∞ ones. These are collections of maps $f_n : L^n \to M$, $n \geq 1$, of total degree $1 - n$, satisfying higher coherence relations with the brackets. The first ones read

$$df_1(x) = f_1(dx)$$

$$f_1([x, y]) - [f_1(x), f_1(y)] =
= \pm(df_2(x \wedge y) + f_2(dx) \wedge y + (-1)^{|x|} f_2(x \wedge dy)).$$

While it is always possible to represent a morphism in the homotopy category by an L_∞ morphism $F : L \to M$, in general it is only represented by a zig-zag of DG Lie algebra morphisms

$$L \xleftarrow{\sim} N \longrightarrow M,$$
As another motivation, a fundamental result, the homotopy transfer theorem, says that L_∞ algebra structures can be transferred along quasi-isomorphism. In particular, given a contraction of complexes

$$H \xleftarrow{\iota} \xrightarrow{\pi} L \xleftarrow{K}$$

and an L_∞ algebra structure on L, there are induced L_∞ structures on H, ι, π: furthermore, explicit recursive formulas are available from homological perturbation theory.
Over a field of characteristic zero, it is always possible to define a contraction as above where $H = H(L)$, considered as a complex with trivial differential. The induced L_∞ algebra structure on $H(L)$ is \textit{minimal} (which means precisely that the differential is trivial), conversely, it can be proved that a \textit{minimal model} of L is well defined up to L_∞ isomorphism. The binary bracket on $H(L)$ is the induced one: the higher brackets $[-,\cdots,-]: H(L)^\wedge n \to H(L)$ are related to the higher Massey brackets on L.

Ruggero Bandiera

Algebraic model of local period map and Yukawa coupling.
Over a field of characteristic zero, it is always possible to define a contraction as above where $H = H(L)$, considered as a complex with trivial differential. The induced L_∞ algebra structure on $H(L)$ is \textit{minimal} (which means precisely that the differential is trivial), conversely, it can be proved that a \textit{minimal model} of L is well defined up to L_∞ isomorphism. The binary bracket on $H(L)$ is the induced one: the higher brackets $[−, ⋅ ⋅ ⋅ , −] : H(L)^\wedge n \to H(L)$ are related to the higher Massey brackets on L. The germ of holomorphic function $q : H^1 \to H^2$ in the claim of the previous theorems, where $(H, 0, [−, −], \ldots, [−, ⋅ ⋅ ⋅ , −], \ldots)$ will be a minimal controlling L_∞ algebra, is precisely the germ at 0 of

$$q(x) = \sum_{n \geq 2} \frac{1}{n!} [x, ⋅ ⋅ ⋅ , x].$$
A DG-Lie algebra controlling Grassmannian

Let $V = F \oplus B$ a DG-vector space, $d: V \rightarrow V$ differential: assume $dF \subset F$ and write

$$dx = \overline{\partial} x, \quad x \in F$$

$$dy = \overline{\partial} y + \partial y, \quad y, \overline{\partial} y \in B, \quad \partial y \in F.$$
A DG-Lie algebra controlling Grassmannian

Let $V = F \oplus B$ a DG-vector space, $d : V \rightarrow V$ differential: assume $dF \subset F$ and write

$$dx = \bar{\partial}x, \quad x \in F$$

$$dy = \bar{\partial}y + \partial y, \quad y, \bar{\partial}y \in B, \quad \partial y \in F.$$

Consider the DG-Lie algebra $G_{F|V} = (\bigoplus_i G^i_{F|V}, \delta, [-,-])$, where

$$G^i_{F|V} = \text{Hom}^{i-1}(F, B), \quad \delta(\alpha) = -\bar{\partial}\alpha + (-1)^\bar{\alpha} \alpha \bar{\partial}$$

$$[\alpha, \beta] = \alpha \partial \beta - (-1)^{\bar{\alpha} \bar{\beta}} \beta \partial \alpha$$
A DG-Lie algebra controlling Grassmannian

Let $V = F \oplus B$ a DG-vector space, $d: V \to V$ differential: assume $dF \subset F$ and write

$$dx = \bar{\partial}x, \quad x \in F$$

$$dy = \bar{\partial}y + \partial y, \quad y, \bar{\partial}y \in B, \quad \partial y \in F.$$

Consider the DG-Lie algebra $G_{F|V} = (\bigoplus_i G^i_{F|V}, \delta, [-, -])$, where

$$G^i_{F|V} = \text{Hom}^{i-1}(F, B), \quad \delta(\alpha) = -\bar{\partial}\alpha + (-1)^{\bar{\alpha}}\alpha \bar{\partial}\alpha$$

$$[\alpha, \beta] = \alpha \partial \beta - (-1)^{\bar{\alpha}\bar{\beta}}\beta \partial \alpha$$

The Maurer-Cartan equation is

$$\alpha \bar{\partial} - \bar{\partial} \alpha + \alpha \partial \alpha = 0, \quad \alpha \in \text{Hom}^0(F, B).$$
Lemma

The DG-Lie algebra $G_{F|V}$ controls deformations up to ambient homotopy of the subcomplex F inside V.

Idea of proof: let $\alpha \in \text{Hom}_0(F, B)$, then the graded subspace $(\text{Id} + \alpha)(F)$ is a subcomplex if and only if for every $x \in F$ we have $(\text{Id} - \alpha) d (\text{Id} + \alpha) x \in F$. The B-component of the above quantity is precisely $- \alpha \partial x + \partial \alpha(x) - \alpha \partial \alpha(x)$ which is trivial for every $x \in F$ if and only if α is Maurer-Cartan.
Lemma
The DG-Lie algebra $G_{F|V}$ controls deformations up to ambient homotopy of the subcomplex F inside V.

Idea of proof: let $\alpha \in \text{Hom}^0(F, B)$, then the graded subspace $(\text{Id} + \alpha)(F)$ is a subcomplex if and only if for every $x \in F$ we have

$$(\text{Id} - \alpha)d(\text{Id} + \alpha)x \in F$$
Lemma
The DG-Lie algebra $G_{F|V}$ controls deformations up to ambient homotopy of the subcomplex F inside V.

Idea of proof: let $\alpha \in \text{Hom}^0(F, B)$, then the graded subspace $(\text{Id} + \alpha)(F)$ is a subcomplex if and only if for every $x \in F$ we have

$$(\text{Id} - \alpha)d(\text{Id} + \alpha)x \in F$$

The B-component of the above quantity is precisely

$$-\alpha \bar{\partial}x + \bar{\partial}\alpha(x) - \alpha \partial\alpha(x)$$

which is trivial for every $x \in F$ if and only if α is Maurer-Cartan.
Next, two Maurer-Cartan elements α, β are gauge equivalent if and only if there exists an isomorphism of complexes $\phi: V \rightarrow V$, homotopic to the identity such that $(\text{Id} + \alpha)(F) = \phi(\text{Id} + \beta)(F)$. In particular the maps

$$H^*((\text{Id} + \alpha)(F)) \rightarrow H^*(V), \quad H^*((\text{Id} + \beta)(F)) \rightarrow H^*(V)$$

have the same image.
Next, two Maurer-Cartan elements α, β are gauge equivalent if and only if there exists an isomorphism of complexes $\phi: V \to V$, homotopic to the identity such that $(\text{Id} + \alpha)(F) = \phi(\text{Id} + \beta)(F)$. In particular the maps

$$H^*((\text{Id} + \alpha)(F)) \to H^*(V), \quad H^*((\text{Id} + \beta)(F)) \to H^*(V)$$

have the same image. Easy to see: if $(V, F) \to (W, H)$ is a morphism of pairs, such that both $V \to W$ and $F \to H$ are quasi-isomorphism then $G_{F|V}$ is quasi-isomorphic to $G_{H|W}$.
Part 2. Derived local period map.
Consider again X compact Kähler of dimension $n \geq 2$, with the notations from the introduction, our aim is to reproduce the cartesian diagram of formal pointed moduli

$$
\begin{align*}
Y & \longrightarrow Grass(H^*(F^n_X)|H^*(F^1_X)) \\
\downarrow & \\
B & \overset{P}{\longrightarrow} Grass(H^*(F^n_X)|H^*(X;\mathbb{C}))
\end{align*}
$$

in the category of L_∞ algebras and L_∞ morphisms.
Part 2. Derived local period map.

Consider again X compact Kähler of dimension $n \geq 2$, with the notations from the introduction, our aim is to reproduce the cartesian diagram of formal pointed moduli

$$
\begin{align*}
Y & \longrightarrow \text{Grass}(H^*(F^n_X)|H^*(F^1_X)) \\
\downarrow & \\
B & \longrightarrow \text{Grass}(H^*(F^n_X)|H^*(X; \mathbb{C}))
\end{align*}
$$

in the category of L_∞ algebras and L_∞ morphisms.

Theorem

X compact Kähler of dimension n. Then the local period map $t \mapsto H^*(F^n_{X_t})$ is the classical truncation of a morphism of derived deformation theories: it is represented by an L_∞ morphism $P: KS_X \to G_{H^*(F^n_X)|H^*(X)}$, where, with an abuse of notation, we continue to denote by $G_{H^*(F^n_X)|H^*(X)}$ a DG-Lie or L_∞-algebra controlling the local geometry of the Grassmannian at $H^*(F^n_X) \subset H^*(X)$.
Since the Grassmanian $G_{H^*(F_X^n)|H^*(X)}$ is smooth, a minimal controlling L_∞ algebra will be isomorphic to $\text{Hom}(H^n,*(X), H^*<n,*(X))[-1]$ with the trivial L_∞ algebra structure, but using this minimal model it is hard to construct a model of P directly.
Since the Grassmanian $G_{H^*(F^n_X)|H^*(X)}$ is smooth, a minimal controlling L_∞ algebra will be isomorphic to $\text{Hom}(H^{n,*}(X), H^{*<n,*}(X))[-1]$ with the trivial L_∞ algebra structure, but using this minimal model it is hard to construct a model of P directly. We do it in two steps, first by considering the intermediate DG Lie algebra $G_{F^n_X|A^{*,*}_X} = \text{Hom}(A^n_{X,*}, A^{*<n,*}_X)[-1]$ controlling the local geometry of the infinite dimensional Grassmannian $\text{Grass}(F^n_X|A^{*,*}_X)$, where we find simple formulas for an L_∞ model of P, and then by computing explicitly the L_∞ morphism

$$\text{Hom}(A^n_{X,*}, A^{*<n,*}_X)[-1] \to \text{Hom}(H^{n,*}(X), H^{*<n,*}(X))[-1]$$

induced via homotopy transfer.
Having done so, the second technical problem is how to replace the previous cartesian diagram. Since an L_∞ model of P is only well defined up to quasi-isomorphism, it only makes sense to consider homotopy cartesian diagrams. Then our problem becomes to find an explicit L_∞ model Yuk_X fitting into a homotopy cartesian diagram of L_∞ algebras and L_∞ morphisms

\[
Yuk_X \xrightarrow{\partial} \text{Hom}(H^n,^*(X), H^0<^*<^n,^*(X))[−1] \\
\downarrow \quad \downarrow \\
KS_X \xrightarrow{P} \text{Hom}(H^n,^*(X), H^*<^n,^*(X))[−1]
\]
We want to represent the local period map by an L_∞ morphism

$$P : KS_X \rightarrow G_{F^*_X|A^{*,*}_X}$$

where the second DG-Lie algebra is computed via the natural decomposition

$$A^{*,*}_X = F^*_X \oplus A^{*,<n,*}_X.$$

Ruggero Bandiera
Algebraic model of local period map and Yukawa coupling.
We want to represent the local period map by an L_∞ morphism

$$P : KS_X \to G_{F^n_X|A^{*,*}_X}$$

where the second DG-Lie algebra is computed via the natural decomposition

$$A^{*,*}_X = F^n_X \oplus A^{*,<n,*}_X.$$

Theorem

In the above setup, an L_∞ model of P is given in Taylor coefficients by

$$P_i : \bigwedge A^{0,*}(\Theta_X) \to \text{Hom}^{*-i}(F^n_X, A^{*,<n,*}_X)$$

$$P_i(\xi_1, \ldots, \xi_i) = i_{\xi_1} \circ \cdots \circ i_{\xi_i}.$$
Similar results holds with F^p in place of F^n for every $p \leq n$ but the formulas are slightly more complicated.
Similar results holds with F^p in place of F^n for every $p \leq n$ but the formulas are slightly more complicated.

Using the (opposite of the) propagator $h = -\overline{\partial}^* G_{\overline{\partial}}: A^{p,q} \to A^{p,q-1}$ and the harmonic projection $\pi: A^{p,q}_\chi \to H^{p,q}(X)$ and inclusion $\iota: H^{p,q}(X) \to A^{p,q}_\chi$ we have an equivalent smaller model

$$P : KS_X \to G_{H^*(F^n_X)|H^*(X)}$$

with Taylor coefficients

$$P_i: \bigwedge^i A^0,*(\Theta_X) \to \text{Hom}^{*-i}(H^n,*(X), H^{*-n,*}(X))$$

$$P_i(\xi_1, \ldots, \xi_i) = \sum_{k=1}^i \frac{1}{k!} \sum_{\sigma \in \Sigma_k} \pm \pi \xi_{\sigma(1)} \cdots \iota \xi_{\sigma(k)} h\xi_{\sigma(k+1)} \cdots h\xi_{\sigma(i)} \iota.$$
Part 3: L_∞ extensions and homotopy pull-back

Definition
Let I, V be two L_∞ algebras: an extension of V by I is an L_∞ structure on the graded vector space $I \oplus V$ such that both the inclusion $I \to I \oplus V$ and the projection $I \oplus V \to V$ are strict L_∞ morphisms (strict means without Taylor components of degree > 1).

Theorem (Metha, Zambon, Chuang, Lazarev et al.)
There exists a natural bijection between the set of extensions of V by I and L_∞ morphisms

$$\phi: V \to CE(I)$$

where $CE(I)$ is the Chevalley-Eilenberg DG-Lie algebra of I, i.e., the DG-Lie algebra of coderivations of the symmetric coalgebra $S(I[1])$.

Ruggero Bandiera
Algebraic model of local period map and Yukawa coupling.
The above theorem (plus related formulas) implies that there exists pull-backs of extensions along L_∞ morphisms.
The above theorem (plus related formulas) implies that there exists pull-backs of extensions along L_∞ morphisms. If $I \rightarrow I \oplus \phi V \rightarrow V$ is the extension associated to an L_∞-morphism $\phi: V \rightarrow CE(I)$, then every L_∞ morphism $F: W \rightarrow V$ gives a commutative diagram

\[
\begin{array}{ccc}
I & \rightarrow & I \oplus_{F\phi} W \quad \rightarrow \quad W \\
\downarrow & & \downarrow \tilde{F} \\
I & \rightarrow & I \oplus \phi V \quad \rightarrow \quad V
\end{array}
\]

It is not difficult to check that \tilde{F} is a pull-back of F in the category of L_∞ algebras. (recall that this category does not have fibred products in general).
The above theorem (plus related formulas) implies that there exists pull-backs of extensions along L_∞ morphisms. If $I \to I \oplus \phi V \to V$ is the extension associated to an L_∞-morphism $\phi : V \to CE(I)$, then every L_∞ morphism $F : W \to V$ gives a commutative diagram

\[
\begin{array}{ccc}
I & \longrightarrow & I \oplus_{F\phi} W \\
\downarrow & & \downarrow \tilde{F} \\
I & \longrightarrow & I \oplus \phi V
\end{array}
\]

\[
\begin{array}{ccc}
W & \longrightarrow & W \\
\downarrow F & & \downarrow F \\
V & \longrightarrow & V
\end{array}
\]

It is not difficult to check that \tilde{F} is a pull-back of F in the category of L_∞ algebras. (recall that this category does not have fibred products in general).
Let $G: U \rightarrow V$ be an L_∞ morphism: by the above theorem plus a standard argument we can find a factorization

$G: U \xrightarrow{i} I \oplus_\phi V \rightarrow V$ where i is a quasi-isomorphism and $I \oplus_\phi V$ is an extension of V.

Ruggero Bandiera

Algebraic model of local period map and Yukawa coupling.
Let $G : U \to V$ be an L_∞ morphism: by the above theorem plus a standard argument we can find a factorization $G : U \xrightarrow{i} I \oplus \phi V \to V$ where i is a quasi-isomorphism and $I \oplus \phi V$ is an extension of V.

The homotopy pull-back of G along any L_∞ morphism $F : W \to V$ is given by the cartesian diagram

\[
\begin{array}{ccc}
I \oplus_{\phi F} W & \longrightarrow & W \\
\downarrow \bar{F} & & \downarrow F \\
U & \xrightarrow{i} & I \oplus \phi V & \longrightarrow & V
\end{array}
\]
Particular case: $G : L \to M$ inclusion of DG-Lie algebras such that $M = L \oplus C$, C abelian graded Lie subalgebra of M. Let $P : M \to C$ be the projection. We have a morphism (derived brackets)

$$\phi : M \to \text{Coder}(S(C), S(C)) \cong \prod_{n=0}^{\infty} \text{Hom}(C^\otimes n, C)$$

Theorem 1) (Voronov) The above ϕ is a morphism of DG-Lie algebras and there exists a quasi-isomorphism of L_∞ algebras $L \to C[-1] \oplus \phi M$.

2) Therefore for every L_∞ morphism $F : W \to M$, the extension $C[-1] \oplus \phi F W$ is the homotopy fiber product $W \times_h M L$.

Ruggero Bandiera
Algebraic model of local period map and Yukawa coupling.
Particular case: \(G : L \rightarrow M \) inclusion of DG-Lie algebras such that \(M = L \oplus C \), \(C \) abelian graded Lie subalgebra of \(M \). Let \(P : M \rightarrow C \) be the projection. We have a morphism (derived brackets)

\[
\phi : M \rightarrow \text{Coder}(S(C), S(C)) \cong \prod_{n=0}^{\infty} \text{Hom}(C^{\otimes n}, C)
\]

\[
\phi(m)(1) = Pm, \quad \phi(m)(c_1, \ldots, c_n) = P[..[[m, c_1], c_2], \ldots], c_n]
\]
Particular case: \(G : L \to M \) inclusion of DG-Lie algebras such that \(M = L \oplus C \), \(C \) abelian graded Lie subalgebra of \(M \). Let \(P : M \to C \) be the projection. We have a morphism (derived brackets)

\[
\phi : M \to Coder(S(C), S(C)) \cong \prod_{n=0}^{\infty} \text{Hom}(C^{\otimes n}, C)
\]

\[
\phi(m)(1) = Pm, \quad \phi(m)(c_1, \ldots, c_n) = P[..[[m, c_1], c_2], \ldots], c_n]
\]

Theorem

1) (Voronov) The above \(\phi \) is a morphism of DG-Lie algebras and there exists a quasi-isomorphism of \(L_\infty \) algebras \(L \to C[-1] \oplus_{\phi} M \).
Particular case: $G : L \rightarrow M$ inclusion of DG-Lie algebras such that $M = L \oplus C$, C abelian graded Lie subalgebra of M. Let $P : M \rightarrow C$ be the projection. We have a morphism (derived brackets)

$$\phi : M \rightarrow \text{Coder}(S(C), S(C)) \cong \prod_{n=0}^{\infty} \text{Hom}(C^{\otimes n}, C)$$

$$\phi(m)(1) = Pm, \quad \phi(m)(c_1, \ldots, c_n) = P[[[m, c_1], c_2], \ldots], c_n]$$

Theorem

1) (Voronov) The above ϕ is a morphism of DG-Lie algebras and there exists a quasi-isomorphism of L_∞ algebras $L \rightarrow C[-1] \oplus_\phi M$.

2) Therefore for every L_∞ morphism $F : W \rightarrow M$, the extension $C[-1] \oplus_\phi F W$ is the homotopy fiber product $W \times^h_M L$.

Ruggero Bandiera
Algebraic model of local period map and Yukawa coupling.
Part 4: Models for the “Yukawa algebra”

X compact Kähler of dimension $n \geq 2$. The morphism of Grassmannians $\text{Grass}(H^*(F^1_X)) \rightarrow \text{Grass}(H^*(F^0_X))$ is induced by the inclusion of DG-Lie algebras

$$G : \text{Hom}^*(A^n_X, A^{0<\ast<\ast}_{<n}X)[−1] \rightarrow \text{Hom}^*(A^n_X, A^{\ast<n}_{<n}X)[−1]$$
Part 4: Models for the “Yukawa algebra”

X compact Kähler of dimension $n \geq 2$. The morphism of Grassmannians $\text{Grass}(H^*(F^1_X)) \to \text{Grass}(H^*(F^0_X))$ is induced by the inclusion of DG-Lie algebras

$$G : \text{Hom}^*(A^n_X, A^0_X)[-1] \to \text{Hom}^*(A^n_X, A^*_{<n^n})[-1]$$

Notice that

$$C := \text{Hom}^*(A^n_X, A^0_X)[-1] \subset \text{Hom}^*(A^n_X, A^*_{<n^n})[-1]$$

is an abelian graded Lie subalgebra, and an algebraic complement of the image of G.
Part 4: Models for the “Yukawa algebra”

X compact Kähler of dimension $n \geq 2$. The morphism of Grassmannians $Grass(H^*(F^1_X)) \to Grass(H^*(F^0_X))$ is induced by the inclusion of DG-Lie algebras

$$G : \text{Hom}^*(A_{X}^{n,*}, A_X^{0\ll \ll n,*})[-1] \to \text{Hom}^*(A_{X}^{n,*}, A_X^{\ll n,*})[-1]$$

Notice that

$$C := \text{Hom}^*(A_{X}^{n,*}, A_X^{0,*})[-1] \subset \text{Hom}^*(A_{X}^{n,*}, A_X^{\ll n,*})[-1]$$

is an abelian graded Lie subalgebra, and an algebraic complement of the image of G. We can apply Voronov’s construction and then we get a quasi-isomorphism

$$\text{Hom}^*(A_{X}^{n,*}, A_X^{0\ll \ll n,*})[-1] \downarrow \text{Hom}^*(A_{X}^{n,*}, A_X^{0,*})[-2] \oplus \phi \text{Hom}^*(A_{X}^{n,*}, A_X^{\ll n,*})[-1]$$
We are now ready to give a first explicit model for \(\text{Yuk}_X \), namely:

\[
\text{Yuk}_X = \text{Hom}^*(A_X^{n,*}, A_X^{0,*})[-2] \oplus_{\phi P} KS_X
\]

the “classifying” map \(\phi P \) annihilates many higher brackets and the \(L_\infty \) structure takes a simple form: the only non trivial brackets of the \(L_\infty \) structure on \(\text{Yuk}_X \) are (up to sign)

\[
[\xi_1, \xi_2], \quad \xi_1, \xi_2 \in KS_X
\]

\[
[\xi, a] \mapsto \pm a \circ [\xi], \quad \xi \in KS_X, a \in \text{Hom}^*(A_X^{n,*}, A_X^{0,*})[-2]
\]

\[
[\xi_1, \cdots, \xi_n] = \pm i_{\xi_1} \cdots i_{\xi_n}, \quad n = \text{dim } X
\]
A second model is obtained using the minimal models of the Grassmannians and the previous considerations, namely, we find the model

\[\text{Yuk}_X = \text{Hom}^*(H^n,*(X), H^0,*(X))[-2] \oplus_{\phi_P} KS_X, \]

where the non trivial brackets are \([\xi_1, \xi_2], \xi_k \in KS_X\), and for \(i \geq n = \text{dim} X\)

\[[\xi_1, \ldots, \xi_i] = \sum_{\sigma \in S(n,1,\ldots,1)} \pm \pi i_{\xi_{\sigma(1)}} \cdots i_{\xi_{\sigma(n)}} h_{\xi_{\sigma(n+1)}} \cdots h_{\xi_{\sigma(i)}}. \]

Using this model we recover the theorem from the introduction.
Thanks for the attention.