Sulla coomologia $L^2 - \overline{\partial}$ di certe metriche Kähleriane complete

Francesco Bei

Giornate di Geometria Algebrica e Argomenti Correlati Genova, 29 maggio-1 giugno 2018

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

• A brief reminder on the $L^2 - \overline{\partial}$ -cohomology

イロト イポト イヨト イヨト

ъ

- A brief reminder on the $L^2 \overline{\partial}$ -cohomology
- A brief reminder on the Cheeger-Goresky-MacPherson conjecture and MacPherson conjecture

- A brief reminder on the $L^2 \overline{\partial}$ -cohomology
- A brief reminder on the Cheeger-Goresky-MacPherson conjecture and MacPherson conjecture
- A theorem for the *L*²-*∂*-cohomology of certain complete Kähler metrics

- A brief reminder on the $L^2 \overline{\partial}$ -cohomology
- A brief reminder on the Cheeger-Goresky-MacPherson conjecture and MacPherson conjecture
- A theorem for the *L*²-*∂*-cohomology of certain complete Kähler metrics
- Applications to Saper-type Kähler metrics

- A brief reminder on the $L^2 \overline{\partial}$ -cohomology
- A brief reminder on the Cheeger-Goresky-MacPherson conjecture and MacPherson conjecture
- A theorem for the *L*²-*∂*-cohomology of certain complete Kähler metrics
- Applications to Saper-type Kähler metrics
- Applications to pinched negatively curved Kähler manifolds of finite volume

Let (M, h) be an possibly incomplete complex Hermitian manifold.

<ロ> (日) (日) (日) (日) (日)

Let (M, h) be an possibly incomplete complex Hermitian manifold.

Consider the following complex:

$$0 \to \Omega^{p,0}_c(M) \stackrel{\overline{\partial}_{p,0}}{\to} \Omega^{p,1}_c(M) \stackrel{\overline{\partial}_{p,1}}{\to} ... \stackrel{\overline{\partial}_{p,m-1}}{\to} \Omega^{p,m}_c(M) \to 0$$

イロト イポト イヨト イヨト

Let (M, h) be an possibly incomplete complex Hermitian manifold.

Consider the following complex:

$$0 \to \Omega^{p,0}_c(M) \xrightarrow{\overline{\partial}_{p,0}} \Omega^{p,1}_c(M) \xrightarrow{\overline{\partial}_{p,1}} ... \xrightarrow{\overline{\partial}_{p,m-1}} \Omega^{p,m}_c(M) \to 0$$

Goal: Turn the above complex into an L^2 -complex.

▲ (型) ▲ 注) →

Let (M, h) be an possibly incomplete complex Hermitian manifold.

Consider the following complex:

$$0 \to \Omega^{p,0}_c(M) \stackrel{\overline{\partial}_{p,0}}{\to} \Omega^{p,1}_c(M) \stackrel{\overline{\partial}_{p,1}}{\to} ... \stackrel{\overline{\partial}_{p,m-1}}{\to} \Omega^{p,m}_c(M) \to 0$$

Goal: Turn the above complex into an L^2 -complex.

We replace $\Omega_c^{p,q}(M)$ with $L^2\Omega^{p,q}(M,h)$

Let (M, h) be an possibly incomplete complex Hermitian manifold.

Consider the following complex:

$$0 \to \Omega^{p,0}_c(M) \stackrel{\overline{\partial}_{p,0}}{\to} \Omega^{p,1}_c(M) \stackrel{\overline{\partial}_{p,1}}{\to} ... \stackrel{\overline{\partial}_{p,m-1}}{\to} \Omega^{p,m}_c(M) \to 0$$

Goal: Turn the above complex into an L^2 -complex.

We replace $\Omega_c^{p,q}(M)$ with $L^2\Omega^{p,q}(M,h)$

We need to specify a closed extension

$$\overline{D}_{p,q}:\Omega^{p,q}_c(M)\to\Omega^{p,q+1}_c(M)$$

of $\overline{\partial}_{p,q}: \Omega^{p,q}_{c}(M) \to \Omega^{p,q+1}_{c}(M).$

Maximal closure

Let $\omega \in L^2\Omega^{p,q}(M,h)$; then $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\max})$ if there exists $\alpha \in L^2\Omega^{p,q+1}(M,h)$ such that

(日) (四) (日) (日) (日)

Maximal closure

Let $\omega \in L^2\Omega^{p,q}(M,h)$; then $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\max})$ if there exists $\alpha \in L^2\Omega^{p,q+1}(M,h)$ such that

$$\langle \omega, \overline{\partial}_{\rho,q}^t \phi \rangle_{L^2\Omega^{p,q}(M,h)} = \langle \alpha, \phi \rangle_{L^2\Omega^{p,q+1}(M,h)}$$

for each $\phi \in \Omega_c^{p,q+1}(M)$. We set

 $\overline{\partial}_{p,q,\max}\omega=\alpha.$

・ロト ・四ト ・ヨト ・ヨト ・

Maximal closure

Let $\omega \in L^2\Omega^{p,q}(M,h)$; then $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\max})$ if there exists $\alpha \in L^2\Omega^{p,q+1}(M,h)$ such that

$$\langle \omega, \overline{\partial}_{p,q}^t \phi \rangle_{L^2\Omega^{p,q}(M,h)} = \langle \alpha, \phi \rangle_{L^2\Omega^{p,q+1}(M,h)}$$

for each $\phi \in \Omega_c^{p,q+1}(M)$. We set

$$\overline{\partial}_{\boldsymbol{p},\boldsymbol{q},\max}\omega=\alpha.$$

 $\overline{\partial}_{\rho,q,\text{max}} \circ \overline{\partial}_{\rho,q+1,\text{max}} = \mathbf{0} \Rightarrow (\mathcal{D}(\overline{\partial}_{\rho,q,\text{max}}), \overline{\partial}_{\rho,q,\text{max}}) \text{ is a complex},$

$$H^{p,q}_{2,\overline{\partial},\max}(M,h)$$

denotes its cohomology (maximal $L^2 - \overline{\partial}$ -cohomology.)

 $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\min})$ if there is a sequence $\{\phi_j\} \subset L^2 \Omega^{p,q}(M,h)$ and an element α in $L^2 \Omega^{p,q+1}(M,h)$ such that

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

 $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\min})$ if there is a sequence $\{\phi_j\} \subset L^2 \Omega^{p,q}(M,h)$ and an element α in $L^2 \Omega^{p,q+1}(M,h)$ such that

 $\phi_j \to \omega \text{ in } L^2\Omega^{p,q}(M,g) \text{ and } \overline{\partial}_{p,q}\phi_j \to \alpha \text{ in } L^2\Omega^{p,q+1}(M,h).$

We set

$$\overline{\partial}_{\boldsymbol{p},\boldsymbol{q},\min}\omega=\alpha.$$

ヘロト ヘアト ヘビト ヘビト

 $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\min})$ if there is a sequence $\{\phi_j\} \subset L^2 \Omega^{p,q}(M,h)$ and an element α in $L^2 \Omega^{p,q+1}(M,h)$ such that

 $\phi_j \to \omega$ in $L^2\Omega^{p,q}(M,g)$ and $\overline{\partial}_{p,q}\phi_j \to \alpha$ in $L^2\Omega^{p,q+1}(M,h)$.

We set

$$\overline{\partial}_{\boldsymbol{p},\boldsymbol{q},\min}\omega=lpha.$$

$$\overline{\partial}_{
ho,q,\max} \circ \overline{\partial}_{
ho,q+1,\max} = \mathbf{0} \Rightarrow (\mathcal{D}(\overline{\partial}_{
ho,q,\min}), \overline{\partial}_{
ho,q,\min})$$
 is a complex

 $H^{p,q}_{2,\overline{\partial},\min}(M,h)$

denotes its cohomology (minimal $L^2 - \overline{\partial}$ -cohomology).

<ロ> <問> <問> < 回> < 回> < □> < □> <

 $\omega \in \mathcal{D}(\overline{\partial}_{p,q,\min})$ if there is a sequence $\{\phi_j\} \subset L^2\Omega^{p,q}(M,h)$ and an element α in $L^2\Omega^{p,q+1}(M,h)$ such that

 $\phi_j \to \omega$ in $L^2\Omega^{p,q}(M,g)$ and $\overline{\partial}_{p,q}\phi_j \to \alpha$ in $L^2\Omega^{p,q+1}(M,h)$.

We set

$$\overline{\partial}_{p,q,\min}\omega = \alpha.$$

$$\overline{\partial}_{
ho,q,\max} \circ \overline{\partial}_{
ho,q+1,\max} = \mathbf{0} \Rightarrow (\mathcal{D}(\overline{\partial}_{
ho,q,\min}), \overline{\partial}_{
ho,q,\min})$$
 is a complex

 $H^{p,q}_{2,\overline{\partial},\min}(M,h)$

denotes its cohomology (minimal $L^2 - \overline{\partial}$ -cohomology).

If (M, h) is complete then

$$\overline{\partial}_{p,q,\max} = \overline{\partial}_{p,q,\min}$$
 and $H^{p,q}_{2,\overline{\partial},\min}(M,h) = H^{p,q}_{2,\overline{\partial},\max}(M,h)$

We can also consider the de Rham complex $(\Omega_c^k(M), d_k)$. Analogously to the previous case we have the maximal de Rham complex

 $(L^2\Omega^k(M,h), d_{k,\max})$

the maximal de Rham cohomology

$$H_{2,\max}^k(M,h) := \ker(d_{k,\max}) / \operatorname{im}(d_{k-1,\max})$$

the minimal de Rham complex

 $(L^2\Omega^k(M,h), d_{k,\min})$

and the minimal de Rham cohomology

$$H^k_{2,\min}(M,h) := \ker(d_{k,\min}) / \operatorname{im}(d_{k-1,\min}).$$

If (M, h) is complete we have

$$d_{k,\max}=d_{k,\min}$$
 and $H^k_{2,\max}(M,h)=H^k_{2,\min}(M,h).$

Why do we need L^2 -cohomology?

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

・ロト ・回ト ・ヨト ・ヨト

• Heuristic principle: if *h* is a suitable metric then $H_{2,\overline{\partial}}^{p,q}(M,h)$ and $H_2^k(M,h)$ contain geometric/topological informations of \overline{M} , where \overline{M} is a compactification of M.

• Heuristic principle: if *h* is a suitable metric then $H_{2,\overline{\partial}}^{p,q}(M,h)$ and $H_2^k(M,h)$ contain geometric/topological informations of \overline{M} , where \overline{M} is a compactification of M.

Examples:

• Heuristic principle: if *h* is a suitable metric then $H_{2,\overline{\partial}}^{p,q}(M,h)$ and $H_2^k(M,h)$ contain geometric/topological informations of \overline{M} , where \overline{M} is a compactification of M.

Examples:

 \overline{M} compact manifold with boundary; *h* Riemannian metric on \overline{M} . *M* interior of \overline{M} . Then

$$H_{2,\max}^k(M,h|_M) \cong H^k(\overline{M}), \ H_{2,\min}^k(M,h|_M) \cong H_c^k(M).$$

• Heuristic principle: if *h* is a suitable metric then $H_{2,\overline{\partial}}^{p,q}(M,h)$ and $H_2^k(M,h)$ contain geometric/topological informations of \overline{M} , where \overline{M} is a compactification of M.

Examples:

 \overline{M} compact manifold with boundary; *h* Riemannian metric on \overline{M} . *M* interior of \overline{M} . Then

$$H_{2,\max}^k(M,h|_M) \cong H^k(\overline{M}), \ H_{2,\min}^k(M,h|_M) \cong H_c^k(M).$$

X compact Thom-Mather stratified pseudomanifold; h conic metric on reg(X) (the regular part of X). Then

$$H^k_{2,\max}(\operatorname{reg}(X),h)\cong I^{\underline{m}}H^k(X,\mathbb{R})$$

and

$$H^k_{2,\min}(\operatorname{reg}(X),h)\cong I^{\overline{m}}H^k(X,\mathbb{R}).$$

In general Poincaré duality is not longer true for the singular homology of *V*.

For this and other reasons it is convenient to replace the singular homology with the Goresky-MacPherson's intersection homology.

In general Poincaré duality is not longer true for the singular homology of *V*.

For this and other reasons it is convenient to replace the singular homology with the Goresky-MacPherson's intersection homology.

The intersection complex $I^{\underline{m}}S_{\bullet}(V,\mathbb{R})$ is a suitable subcomplex of $S_{\bullet}(V,\mathbb{R})$

 $I^{\underline{m}}S_{\bullet}(V,\mathbb{R})\subset S_{\bullet}(V,\mathbb{R})$

Using its homology, the middle perversity intersection homology, we can restore Poincaré duality on *V*:

$$I^{\underline{m}}H_k(V,\mathbb{Q}) \times I^{\underline{m}}H_{2\nu-k}(V,\mathbb{Q}) \to \mathbb{Q}.$$

(日)

In general Poincaré duality is not longer true for the singular homology of *V*.

For this and other reasons it is convenient to replace the singular homology with the Goresky-MacPherson's intersection homology.

The intersection complex $I^{\underline{m}}S_{\bullet}(V,\mathbb{R})$ is a suitable subcomplex of $S_{\bullet}(V,\mathbb{R})$

 $I^{\underline{m}}S_{\bullet}(V,\mathbb{R})\subset S_{\bullet}(V,\mathbb{R})$

Using its homology, the middle perversity intersection homology, we can restore Poincaré duality on *V*:

$$I^{\underline{m}}H_k(V,\mathbb{Q}) \times I^{\underline{m}}H_{2\nu-k}(V,\mathbb{Q}) \to \mathbb{Q}.$$

Moreover when v = 2l we have a well defined signature:

$$I^{\underline{m}}H_{2l}(V,\mathbb{Q}) \times I^{\underline{m}}H_{2l}(V,\mathbb{Q}) \to \mathbb{Q}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Question: on a compact Kähler manifold (M, h) we have the well known decomposition:

$$H^k(M) \cong \bigoplus_{p+q=m} H^{p,q}_{\overline{\partial}}(M)$$

Question: on a compact Kähler manifold (M, h) we have the well known decomposition:

$$H^k(M) \cong \bigoplus_{p+q=m} H^{p,q}_{\overline{\partial}}(M)$$

- Can we construct a pure Hodge decomposition on I^mH^k(V, ℚ)?
- Can we do it using L²-methods?

This questions led Cheeger-Goresky-MacPherson in 1982 to formulate the following strategies (known nowadays as the Cheeger-Goresky-MacPherson's Conjecture).

This questions led Cheeger-Goresky-MacPherson in 1982 to formulate the following strategies (known nowadays as the Cheeger-Goresky-MacPherson's Conjecture).

• Approach through incomplete metrics:

Let *g* be the Kähler metric induced on reg(*V*), the regular part of *V*, by the Fubini-Study metric of \mathbb{CP}^n . Then:

$$d_{k,max} = d_{k,min}$$

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R})$$

and the previous isomorphism induces a Hodge decomposition on $I^{\underline{m}}H^k(V,\mathbb{R})$ in terms of $L^2 \cdot \overline{\partial}$ -cohomology groups.

ヘロア 人間 アメヨア 人口 ア

This questions led Cheeger-Goresky-MacPherson in 1982 to formulate the following strategies (known nowadays as the Cheeger-Goresky-MacPherson's Conjecture).

• Approach through incomplete metrics:

Let *g* be the Kähler metric induced on reg(*V*), the regular part of *V*, by the Fubini-Study metric of \mathbb{CP}^n . Then:

$$d_{k,max} = d_{k,min}$$

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R})$$

and the previous isomorphism induces a Hodge decomposition on $I^{\underline{m}}H^k(V, \mathbb{R})$ in terms of $L^2 \cdot \overline{\partial}$ -cohomology groups. Advantages: Natural candidate for the Kähler metric.

・ロト ・ 同ト ・ ヨト ・ ヨト

This questions led Cheeger-Goresky-MacPherson in 1982 to formulate the following strategies (known nowadays as the Cheeger-Goresky-MacPherson's Conjecture).

• Approach through incomplete metrics:

Let *g* be the Kähler metric induced on reg(*V*), the regular part of *V*, by the Fubini-Study metric of \mathbb{CP}^n . Then:

$$d_{k,max} = d_{k,min}$$

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R})$$

and the previous isomorphism induces a Hodge decomposition on $I^{\underline{m}}H^k(V,\mathbb{R})$ in terms of $L^2 \cdot \overline{\partial}$ -cohomology groups. Advantages: Natural candidate for the Kähler metric. Disadvantages: The metric is incomplete. The L^2 -Stokes theorem is hard to prove. $L^2 \cdot \overline{\partial}$ -cohomolology is not well understood.

• Approach through complete metrics:

Prove the existence of a complete Kähler metric g on reg(V) such that

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R}).$$

イロト イポト イヨト イヨト

• Approach through complete metrics:

Prove the existence of a complete Kähler metric g on reg(V) such that

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R}).$$

Advantages: The metric (if exists) is complete. The Hodge Laplacian Δ_k is essentially self-adjoint. Automatic pure Hodge structure on $I^{\underline{m}}H^k(V, \mathbb{C})$:

$$I^{\underline{m}}H^k(V,\mathbb{C})\cong H^k_2(\operatorname{reg}(V),g)\cong \ker(\Delta_k)\cong igoplus_{p+q}\ker(\Delta_{\overline{\partial},p,q})\cong igoplus_{p+q}H^{p,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g)$$

• Approach through complete metrics:

Prove the existence of a complete Kähler metric g on reg(V) such that

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R}).$$

Advantages: The metric (if exists) is complete. The Hodge Laplacian Δ_k is essentially self-adjoint. Automatic pure Hodge structure on $I^{\underline{m}}H^k(V, \mathbb{C})$:

$$I^{\underline{m}}H^k(V,\mathbb{C})\cong H^k_2(\operatorname{reg}(V),g)\cong \ker(\Delta_k)\cong igoplus_{p+q}\ker(\Delta_{\overline{\partial},p,q})\cong igoplus_{p+q}H^{p,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g)$$

Disadvantages: No natural candidate.

Moreover in both approaches the following question remains open:

Prove the existence of a complete Kähler metric g on reg(V) such that

$$H_2^k(\operatorname{reg}(V),g)\cong I^{\underline{m}}H^k(V,\mathbb{R}).$$

Advantages: The metric (if exists) is complete. The Hodge Laplacian Δ_k is essentially self-adjoint. Automatic pure Hodge structure on $I^{\underline{m}}H^k(V, \mathbb{C})$:

$$I^{\underline{m}}H^k(V,\mathbb{C})\cong H^k_2(\operatorname{reg}(V),g)\cong \ker(\Delta_k)\cong igoplus_{p+q}\ker(\Delta_{\overline{\partial},p,q})\cong igoplus_{p+q}H^{p,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g)$$

Disadvantages: No natural candidate.

Moreover in both approaches the following question remains open:

Provide a geometric interpretation for $H_{2\overline{a}}^{p,q}(\operatorname{reg}(V),g)$.

To my best knowledge only results for (0, q) are available. This last problem is related to the so called MacPherson's conjecture.

MacPherson's conjecture, 1983

Conjecture

Let $V \subset \mathbb{CP}^n$ be a complex projective variety, $\pi : \tilde{V} \longrightarrow V$ a Hironaka resolution of V and let g be the Kähler metric on reg(V) induced by the Fubini-Study metric. Then:

Conjecture

Let $V \subset \mathbb{CP}^n$ be a complex projective variety, $\pi : \tilde{V} \longrightarrow V$ a Hironaka resolution of V and let g be the Kähler metric on reg(V) induced by the Fubini-Study metric. Then:

$$\chi_2(\operatorname{reg}(V), g) = \chi(V, \mathcal{O}_{\tilde{V}})$$

where $\chi_2(\operatorname{reg}(V), g)) = \sum (-1)^q \dim(H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V), g))$ and $\chi(\tilde{V}) = \sum (-1)^q \dim(H^{0,q}_{\overline{\partial}}(\tilde{V})).$

Conjecture

Let $V \subset \mathbb{CP}^n$ be a complex projective variety, $\pi : \tilde{V} \longrightarrow V$ a Hironaka resolution of V and let g be the Kähler metric on reg(V) induced by the Fubini-Study metric. Then:

$$\chi_2(\operatorname{reg}(V),g) = \chi(V,\mathcal{O}_{\tilde{V}})$$

where
$$\chi_2(\operatorname{reg}(V), g)) = \sum (-1)^q \dim(H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V), g))$$
 and $\chi(\tilde{V}) = \sum (-1)^q \dim(H^{0,q}_{\overline{\partial}}(\tilde{V})).$

First work by Brüning-Peyerimhoff-Schröder, Haskell, Pardon for curves and surfaces. Solved by Pardon and Stern proving a stronger result:

$$H^{0,q}_{2,\overline{\partial}_{\mathsf{min}}}(\mathsf{reg}(\mathit{V}),g)\cong H^{0,q}_{\overline{\partial}}(\widetilde{\mathit{V}}),\;q=0,...,\mathit{v}$$

State of art concerning the C-G-M Conjecture

• Approach through incomplete metrics

Partial results for projective varieties with isolated singularities: Cheeger, Hsiang-Pati, Nagase, Pardon-Stern and Ohsawa.

$$\begin{aligned} H_{2,\max}^{k}(\operatorname{reg}(V),h) &\cong I^{\underline{m}}H^{k}(V,\mathbb{R}) \\ d_{k,\max} &= d_{k,\min}, \ k \neq v-1, v, v+1 \\ \overline{\partial}_{p,q,\max} &= \overline{\partial}_{p,q,\min}, \ p+q \neq v-1, v, v+1 \\ H_{2}^{k}(\operatorname{reg}(V),h) &\cong \bigoplus_{p+q=k} H_{2,\overline{\partial}}^{p,q}(\operatorname{reg}(V),h), \ p+q \neq v-1, v, v+1 \end{aligned}$$

decomposition of the L^2 -cohomology in term of L^2 - $\overline{\partial}$ -cohomology for $k \neq v - 1, v, v + 1$.

F

State of art concerning the C-G-M Conjecture

• Approach through incomplete metrics

Partial results for projective varieties with isolated singularities: Cheeger, Hsiang-Pati, Nagase, Pardon-Stern and Ohsawa.

$$\begin{aligned} H_{2,\max}^{k}(\operatorname{reg}(V),h) &\cong I^{\underline{m}}H^{k}(V,\mathbb{R}) \\ d_{k,\max} &= d_{k,\min}, \ k \neq v-1, v, v+1 \\ \overline{\partial}_{p,q,\max} &= \overline{\partial}_{p,q,\min}, \ p+q \neq v-1, v, v+1 \\ H_{2}^{k}(\operatorname{reg}(V),h) &\cong \bigoplus_{p+q=k} H_{2,\overline{\partial}}^{p,q}(\operatorname{reg}(V),h), \ p+q \neq v-1, v, v+1 \end{aligned}$$

decomposition of the *L*²-cohomology in term of L^2 - $\overline{\partial}$ -cohomology for $k \neq \nu - 1, \nu, \nu + 1$. If dim(sing(*V*)) > 0

F

$$d_{0,max} = d_{0,min}$$

Quite complete picture in the case of isolated singularities due to Saper.

∃⇒

Quite complete picture in the case of isolated singularities due to Saper. Indeed in 1992 Saper proved the following theorem:

Quite complete picture in the case of isolated singularities due to Saper. Indeed in 1992 Saper proved the following theorem:

Theorem (Saper 1992)

Let $V \subset \mathbb{CP}^n$ be a complex projective variety with only isolated singularities. There exists a complete Kähler metric g on reg(V) such that:

Quite complete picture in the case of isolated singularities due to Saper. Indeed in 1992 Saper proved the following theorem:

Theorem (Saper 1992)

Let $V \subset \mathbb{CP}^n$ be a complex projective variety with only isolated singularities. There exists a complete Kähler metric g on reg(V) such that:

•
$$H_2^k(\operatorname{reg}(V), g) \cong I^{\underline{m}} H^k(V, \mathbb{R})$$

Quite complete picture in the case of isolated singularities due to Saper. Indeed in 1992 Saper proved the following theorem:

Theorem (Saper 1992)

Let $V \subset \mathbb{CP}^n$ be a complex projective variety with only isolated singularities. There exists a complete Kähler metric g on reg(V) such that:

•
$$H_2^k(\operatorname{reg}(V), g) \cong I^{\underline{m}}H^k(V, \mathbb{R})$$

$$I H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g) \cong H^{0,q}_{\overline{\partial}}(\tilde{V})$$

Quite complete picture in the case of isolated singularities due to Saper. Indeed in 1992 Saper proved the following theorem:

Theorem (Saper 1992)

Let $V \subset \mathbb{CP}^n$ be a complex projective variety with only isolated singularities. There exists a complete Kähler metric g on reg(V) such that:

• $H_2^k(\operatorname{reg}(V),g) \cong I^{\underline{m}}H^k(V,\mathbb{R})$

$$H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g) \cong H^{0,q}_{\overline{\partial}}(\tilde{V})$$

Solution The pure L²-Hodge structure on I^mH^k(V, ℝ) coincides with the structure defined by Saito. (Saper-Zucker)

Definition (Gromov 1990)

A Kähler manifold (M, h) with fundamental form ω is said to be *d*-bounded if

$$d\eta = \omega$$

for some $\eta \in L^{\infty}\Omega^{1}(M, h) \cap \Omega^{1}(M)$.

イロト イポト イヨト イヨト

Definition (Gromov 1990)

A Kähler manifold (M, h) with fundamental form ω is said to be *d*-bounded if

$$d\eta = \omega$$

for some $\eta \in L^{\infty}\Omega^{1}(M, h) \cap \Omega^{1}(M)$.

Theorem (Gromov 1990)

(M, h) Kähler, complete and d-bounded of complex dimension m. Then

$$H^{p,q}_{2,\overline{\partial}}(M,h)=0$$

for $p + q \neq m$ and

 $H_2^k(M,h)=0$

for $k \neq m$.

イロト イポト イヨト イヨト

Definition (Gromov 1990)

A Kähler manifold (M, h) with fundamental form ω is said to be *d*-bounded if

$$d\eta = \omega$$

for some $\eta \in L^{\infty}\Omega^{1}(M, h) \cap \Omega^{1}(M)$.

Theorem (Gromov 1990)

(M, h) Kähler, complete and d-bounded of complex dimension m. Then

$$H^{p,q}_{2,\overline{\partial}}(M,h)=0$$

for $p + q \neq m$ and

$$H_2^k(M,h)=0$$

for $k \neq m$.

The notion of *d*-boundedness can be relaxed. It is enough $\omega = d\eta$ in the distributional sense for some $\eta \in L^{\infty}_{\infty}\Omega^{1}(M)$.

Theorem (Bei-Piazza 2017)

Let V be a compact and irreducible complex space of complex dimension v. Let $\pi : M \to V$ be a resolution of V with $D := \pi^{-1}(sing(V))$ a normal crossings divisor of M. Let h be a complete Hermitian metric on reg(V) and let σ be the complete Hermitian metric on $M \setminus D$ defined as $\sigma := (\pi|_{M \setminus D})^*h$.

ヘロマ ヘビマ ヘビマ

Theorem (Bei-Piazza 2017)

Let V be a compact and irreducible complex space of complex dimension v. Let $\pi : M \to V$ be a resolution of V with $D := \pi^{-1}(sing(V))$ a normal crossings divisor of M. Let h be a complete Hermitian metric on reg(V) and let σ be the complete Hermitian metric on $M \setminus D$ defined as $\sigma := (\pi|_{M \setminus D})^*h$. Assume that:

- $\pi_* C_{D,\sigma}^{\nu,q}$ is a fine sheaf for each $q = 0, ..., \nu$,
- for each p ∈ sing(V) there is an open neighborhood U of p and a d-bounded Kähler metric g_U on reg(U) such that h|_{reg(U)} and g_U are quasi-isometric.

ヘロマ ヘビマ ヘビマ

Theorem (Bei-Piazza 2017)

Let V be a compact and irreducible complex space of complex dimension v. Let $\pi : M \to V$ be a resolution of V with $D := \pi^{-1}(sing(V))$ a normal crossings divisor of M. Let h be a complete Hermitian metric on reg(V) and let σ be the complete Hermitian metric on $M \setminus D$ defined as $\sigma := (\pi|_{M \setminus D})^*h$. Assume that:

- $\pi_* C_{D,\sigma}^{\nu,q}$ is a fine sheaf for each $q = 0, ..., \nu$,
- for each p ∈ sing(V) there is an open neighborhood U of p and a d-bounded Kähler metric g_U on reg(U) such that h|_{reg(U)} and g_U are quasi-isometric.

Then we have the following isomorphism for each q = 0, ..., v:

$$H^{v,q}_{2,\overline{\partial}}(\operatorname{reg}(V),h)\cong H^{v,q}_{\overline{\partial}}(M)$$

$$H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V),h)\cong H^{0,q}_{\overline{\partial}}(M).$$

イロト イポト イヨト イヨト

Let *M* be a compact complex manifold. Let $D \subset M$ a normal crossings divisor and let *h* be a Hermitian metric on $M \setminus D$.

ヘロト ヘアト ヘヨト ヘ

.≣⇒

Let *M* be a compact complex manifold. Let $D \subset M$ a normal crossings divisor and let *h* be a Hermitian metric on $M \setminus D$.

Consider the preasheaves $C_{D,h}^{p,q}$ on *M* given by the assignments

$$C^{
ho,q}_{D,h}(U) := \{\mathcal{D}(\overline{\partial}_{
ho,q,\max}) \text{ on } (U \setminus U \cap D, h|_{U \setminus U \cap D})\};$$

in other words to every open subset U of M we assign the maximal domain of $\overline{\partial}_{p,q}$ over $U \setminus (U \cap D)$ with respect to the Hermitian metric $h|_{U \setminus U \cap D}$.

Let *M* be a compact complex manifold. Let $D \subset M$ a normal crossings divisor and let *h* be a Hermitian metric on $M \setminus D$.

Consider the preasheaves $C_{D,h}^{p,q}$ on *M* given by the assignments

$$C^{p,q}_{D,h}(U) := \{\mathcal{D}(\overline{\partial}_{p,q,\max}) \text{ on } (U \setminus U \cap D, h|_{U \setminus U \cap D})\};$$

in other words to every open subset U of M we assign the maximal domain of $\overline{\partial}_{p,q}$ over $U \setminus (U \cap D)$ with respect to the Hermitian metric $h|_{U \setminus U \cap D}$.

The sheafification of $C_{D,h}^{p,q}$ is denoted by $\mathcal{C}_{D,h}^{p,q}$ and its sections over an open subset $U \subset M$ are:

 $\mathcal{C}^{p,q}_{D,h}(U) := \{ s \in L^2_{loc} \Omega^{p,q}(U \setminus U \cap D, h|_{U \setminus U \cap D}) \text{ such that for each } p \in U \text{ there exists an open neighborhood } W \text{ with } p \in W \subset U \text{ such that } s|_{W \setminus W \cap D} \in \mathcal{D}(\overline{\partial}_{p,q,\max}) \text{ on } (W \setminus W \cap D, h|_{W \setminus W \cap D}) \}.$

• $\pi_* \mathcal{C}^{\nu,q}_{D,\sigma}$ is a fine sheaf for each $q=0,...,\nu$

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

• $\pi_* C_{D,\sigma}^{\nu,q}$ is a fine sheaf for each $q = 0, ..., \nu$

Proposition

Assume that given any open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of V there exists a continuous partition of unity $\{\lambda_j\}_{j \in J}$ subordinate to \mathcal{U} such that for each $j \in J$

• $\lambda_j|_{\operatorname{reg}(V)}$ is smooth and $\|d(\lambda_j|_{\operatorname{reg}(V)})\|_{L^{\infty}\Omega^1(M,h)} < \infty$. Then $\pi_* \mathcal{C}_{D,\sigma}^{v,q}$ is a fine sheaf for each q = 0, ..., v.

• $\pi_* C_{D,\sigma}^{\nu,q}$ is a fine sheaf for each $q = 0, ..., \nu$

Proposition

Assume that given any open cover $\mathcal{U} = \{U_i\}_{i \in I}$ of V there exists a continuous partition of unity $\{\lambda_j\}_{j \in J}$ subordinate to \mathcal{U} such that for each $j \in J$

• $\lambda_j|_{\operatorname{reg}(V)}$ is smooth and $\|d(\lambda_j|_{\operatorname{reg}(V)})\|_{L^{\infty}\Omega^1(M,h)} < \infty$. Then $\pi_* C_{D,\sigma}^{v,q}$ is a fine sheaf for each q = 0, ..., v.

Proposition

Assume that for each $p \in sing(V)$ there is an open neighborhood U, a holomorphic embedding $\phi : U \to \mathbb{C}^N$ and a positive constant c such that, with g the euclidean metric on \mathbb{C}^N , we have

$$(\phi|_{\mathsf{reg}(U)})^*g \leq ch|_{\mathsf{reg}(U)}.$$

Then $\pi_* C_{D,\sigma}^{\nu,q}$ is a fine sheaf for each $q = 0, ..., \nu$.

Let *K_M* be the sheaf of holomorphic (*v*, 0) forms on *M*. Let *K_V* := π_{*}*K_M* on *V*. The Takegoshi vanishing theorem tells us that

$$R^k \pi_* \mathcal{K}_M = \mathsf{0}, \; k > \mathsf{0}$$

and therefore we have

$$H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V)$$

ヘロト ヘアト ヘヨト ヘ

Let *K_M* be the sheaf of holomorphic (*v*, 0) forms on *M*. Let *K_V* := *π*_{*}*K_M* on *V*. The Takegoshi vanishing theorem tells us that

$$R^k \pi_* \mathcal{K}_M = \mathsf{0}, \; k > \mathsf{0}$$

and therefore we have

$$H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V)$$

We show that the complex {π_∗C^{ν,q}_{D,σ}, q ≥ 0} is a fine resolutions of K_ν.

<<p>(日)

Let *K_M* be the sheaf of holomorphic (*ν*, 0) forms on *M*. Let *K_V* := *π*_{*}*K_M* on *V*. The Takegoshi vanishing theorem tells us that

$$R^k \pi_* \mathcal{K}_M = \mathsf{0}, \; k > \mathsf{0}$$

and therefore we have

$$H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V)$$

- We show that the complex {π_∗C^{ν,q}_{D,σ}, q ≥ 0} is a fine resolutions of K_V.
- $H^{v,q}(M) \cong H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V) \cong H^q(V, \pi_* \mathcal{C}^{v,q}_{D,\sigma}) \cong H^{v,q}_{2,\overline{\partial}}(\operatorname{reg}(V), h)$

イロト イポト イヨト イヨト

Let *K_M* be the sheaf of holomorphic (*v*, 0) forms on *M*. Let *K_V* := π_∗*K_M* on *V*. The Takegoshi vanishing theorem tells us that

$$R^k \pi_* \mathcal{K}_M = \mathsf{0}, \; k > \mathsf{0}$$

and therefore we have

$$H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V)$$

- We show that the complex {π_∗C^{ν,q}_{D,σ}, q ≥ 0} is a fine resolutions of K_ν.
- $H^{v,q}(M) \cong H^q(M, \mathcal{K}_M) \cong H^q(V, \mathcal{K}_V) \cong H^q(V, \pi_* \mathcal{C}^{v,q}_{D,\sigma}) \cong H^{v,q}_{2,\overline{\partial}}(\operatorname{reg}(V), h)$
- Using the L^2 -Serre duality we have: $H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V),h) \cong H^{v,v-q}_{2,\overline{\partial}}(\operatorname{reg}(V),h) \cong H^{v,v-q}_{\overline{\partial}}(M) \cong H^{0,q}_{\overline{\partial}}(M).$

If $p \in \text{reg}(V)$ it follows by standard arguments. The delicate point is when $p \in \text{sing}(V)$. In this case we need to construct an auxiliary Kähler metric. Let $p \in \text{sing}(V)$.

<ロ> <問> <問> < 回> < 回> < □> < □> <

If $p \in \text{reg}(V)$ it follows by standard arguments. The delicate point is when $p \in \text{sing}(V)$. In this case we need to construct an auxiliary Kähler metric. Let $p \in \text{sing}(V)$.

There exists p ∈ U ⊂ V such that h|_{reg(U)} ~ g|_U, local, quasi-isometric model. The metric g_U is Kähler and *d*-bounded.

If $p \in \text{reg}(V)$ it follows by standard arguments. The delicate point is when $p \in \text{sing}(V)$. In this case we need to construct an auxiliary Kähler metric. Let $p \in \text{sing}(V)$.

There exists p ∈ U ⊂ V such that h|_{reg(U)} ~ g|_U, local, quasi-isometric model. The metric g_U is Kähler and *d*-bounded.

Let $\phi : U \to \mathbb{B}(0, c) \subset \mathbb{C}^N$ a proper holomorphic embedding. Define $\psi : \mathbb{B}(0, c) \to \mathbb{R}$ as

$$\psi:=-(\log(c^2-|z|^2)).$$

Let β be the Kähler metric on $\mathbb{B}(0, c)$ whose fundamental form is $-i\partial\overline{\partial}\psi$ and let $\rho_U := (\phi|_{\mathsf{reg}(U)})^*\beta$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

If $p \in \text{reg}(V)$ it follows by standard arguments. The delicate point is when $p \in \text{sing}(V)$. In this case we need to construct an auxiliary Kähler metric. Let $p \in \text{sing}(V)$.

There exists p ∈ U ⊂ V such that h|_{reg(U)} ~ g|_U, local, quasi-isometric model. The metric g_U is Kähler and *d*-bounded.

Let $\phi : U \to \mathbb{B}(0, c) \subset \mathbb{C}^N$ a proper holomorphic embedding. Define $\psi : \mathbb{B}(0, c) \to \mathbb{R}$ as

$$\psi:=-(\log(c^2-|z|^2)).$$

Let β be the Kähler metric on $\mathbb{B}(0, c)$ whose fundamental form is $-i\partial\overline{\partial}\psi$ and let $\rho_U := (\phi|_{\mathsf{reg}(U)})^*\beta$.

Define the following Kähler metric on reg(U):

$$\gamma_U := \rho_U + g_U.$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

• Complete, Kähler metric on reg(U).

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

<ロト <回 > < 注 > < 注 > 、

э

- Complete, Kähler metric on reg(U).
- d-bounded condition is satisfied.

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

(日) (四) (日) (日) (日)

- Complete, Kähler metric on reg(U).
- I d-bounded condition is satisfied.
- $h|_{\text{reg}(U)} \le k\gamma_U$ for some constant k > 0 and they are quasi-isometric on any open subset $A \subset U$ with $\overline{A} \subset U$.

▲ @ ▶ ▲ ⊇ ▶

The metric γ_U is

- Complete, Kähler metric on reg(U).
- I d-bounded condition is satisfied.
- $h|_{reg(U)} \le k\gamma_U$ for some constant k > 0 and they are quasi-isometric on any open subset $A \subset U$ with $\overline{A} \subset U$.

The first two conditions imply that

$$H^{\mathbf{v},\mathbf{q}}_{\mathbf{2},\overline{\partial}}(\operatorname{reg}(U),\gamma_U)=\mathbf{0},\ \mathbf{q}>\mathbf{0}$$

ヘロト ヘヨト ヘヨト

The metric γ_U is

- Complete, Kähler metric on reg(U).
- I d-bounded condition is satisfied.
- $h|_{\text{reg}(U)} \le k\gamma_U$ for some constant k > 0 and they are quasi-isometric on any open subset $A \subset U$ with $\overline{A} \subset U$.

The first two conditions imply that

$$H^{v,q}_{2,\overline{\partial}}(\operatorname{reg}(U),\gamma_U)=0, \ q>0$$

By the first part of third condition we have

$$L^2\Omega^{\nu,0}(\operatorname{reg}(U),h|_{\operatorname{reg}(U)}) = L^2\Omega^{\nu,0}(\operatorname{reg}(U),\gamma_U)$$

and

$$L^{2}\Omega^{\nu,q}(\operatorname{reg}(U),h|_{\operatorname{reg}(U)}) \hookrightarrow L^{2}\Omega^{\nu,q}(\operatorname{reg}(U),\gamma_{U})$$

・ロト ・ 一 ト ・ ヨ ト

The metric γ_U is

- Complete, Kähler metric on reg(U).
- I d-bounded condition is satisfied.
- $h|_{reg(U)} \le k\gamma_U$ for some constant k > 0 and they are quasi-isometric on any open subset $A \subset U$ with $\overline{A} \subset U$.

The first two conditions imply that

$$H^{\mathbf{v},\mathbf{q}}_{\mathbf{2},\overline{\partial}}(\operatorname{reg}(U),\gamma_U)=\mathbf{0},\ \mathbf{q}>\mathbf{0}$$

By the first part of third condition we have

$$L^2\Omega^{\nu,0}(\operatorname{reg}(U),h|_{\operatorname{reg}(U)}) = L^2\Omega^{\nu,0}(\operatorname{reg}(U),\gamma_U)$$

and

$$L^2\Omega^{v,q}(\operatorname{reg}(U),h|_{\operatorname{reg}(U)}) \hookrightarrow L^2\Omega^{v,q}(\operatorname{reg}(U),\gamma_U)$$

 $\Rightarrow \eta \in \ker(\overline{\partial}_{\nu,q,\max}) \subset L^2 \Omega^{\nu,0}(\operatorname{reg}(U),h|_{\operatorname{reg}(U)}) \Rightarrow \eta|_W \text{ is exact}$ for any $\overline{W} \subset U \Rightarrow \{\pi_* \mathcal{C}_{D,\sigma}^{p,q}, q \ge 0\}$ is exact for q > 0.

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus(U\cap D)}) = \mathcal{K}_M(U).$$

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

イロン イロン イヨン イヨン

ъ

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus(U\cap D)}) = \mathcal{K}_M(U).$$

This can be seen as consequence of the following properties:

A B > 4
 B > 4
 B

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus (U\cap D)}) = \mathcal{K}_{\mathcal{M}}(U).$$

This can be seen as consequence of the following properties:

$$L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \sigma|_{U \setminus (U \cap D)}) = L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$$

with λ any Hermitian metric on *M*.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus (U\cap D)}) = \mathcal{K}_{\mathcal{M}}(U).$$

This can be seen as consequence of the following properties:

$$L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \sigma|_{U \setminus (U \cap D)}) = L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$$

with λ any Hermitian metric on *M*.

2 L²-extension theorem: α ∈ L²Ω^{ν,0}(U \ (U ∩ D), λ|_{U\(U∩D)})
 and is holomorphic ⇒ α is holomorphic on W.

$$\mathsf{ker}(\overline{\partial}_{\mathsf{v},0,\mathsf{max}}) ext{ on } L^2\Omega^{\mathsf{v},0}(U,\sigma|_{U\setminus (U\cap D)}) = \mathcal{K}_{M}(U).$$

This can be seen as consequence of the following properties:

$$L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \sigma|_{U \setminus (U \cap D)}) = L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$$

with λ any Hermitian metric on *M*.

2 *L*²-extension theorem: $\alpha \in L^2\Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$ and is holomorphic $\Rightarrow \alpha$ is holomorphic on *W*.

Therefore

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus(U\cap D)}) = \mathcal{K}_M(U).$$

$$\mathsf{ker}(\overline{\partial}_{\mathsf{v},0,\mathsf{max}}) ext{ on } L^2\Omega^{\mathsf{v},0}(U,\sigma|_{U\setminus (U\cap D)}) = \mathcal{K}_{M}(U).$$

This can be seen as consequence of the following properties:

$$L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \sigma|_{U \setminus (U \cap D)}) = L^{2}\Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$$

with λ any Hermitian metric on *M*.

2 *L*²-extension theorem: $\alpha \in L^2 \Omega^{\nu,0}(U \setminus (U \cap D), \lambda|_{U \setminus (U \cap D)})$ and is holomorphic $\Rightarrow \alpha$ is holomorphic on *W*.

Therefore

$$\ker(\overline{\partial}_{\nu,0,\max}) \text{ on } L^2\Omega^{\nu,0}(U,\sigma|_{U\setminus(U\cap D)}) = \mathcal{K}_M(U).$$

In conclusion we proved that $\{\pi_* C^{p,q}_{D,\sigma}, q \ge 0\}$ is a fine resolutions of \mathcal{K}_V .

Applications to Saper type Kähler metrics

Let $V \subset M$ be an analytic subvariety of a compact complex manifold M and let ω be the fundamental (1, 1)-form of a hermitian metric on M. Let $V \subset M$ be an analytic subvariety of a compact complex manifold M and let ω be the fundamental (1, 1)-form of a hermitian metric on M.

Let $\pi: \tilde{M} \to M$ be a holomorphic map of a compact complex manifold \tilde{M} to M whose exceptional set E is a divisor with normal crossings in \tilde{M} and such that the restriction

$$\pi|_{\tilde{M}\setminus E}: \tilde{M}\setminus E \longrightarrow M\setminus \operatorname{sing}(V)$$

is a biholomorphism.

Example: $\pi: \tilde{M} \to M$ resolution of singularities

Let $V \subset M$ be an analytic subvariety of a compact complex manifold M and let ω be the fundamental (1, 1)-form of a hermitian metric on M.

Let $\pi: \tilde{M} \to M$ be a holomorphic map of a compact complex manifold \tilde{M} to M whose exceptional set E is a divisor with normal crossings in \tilde{M} and such that the restriction

$$\pi|_{\tilde{M}\setminus E}: \tilde{M}\setminus E \longrightarrow M\setminus \operatorname{sing}(V)$$

is a biholomorphism.

Example: $\pi : \tilde{M} \to M$ resolution of singularities

Let L_E be the line bundle on \tilde{M} associated to E and let τ be a hermitian metric on L_E .

Let $s : \tilde{M} \to L_E$ be a global holomorphic section whose associated divisor (*s*) equals *E* (in particular *s* vanishes exactly on *E*) and let $||s||_{\tau}$ be the norm of *s* with respect to τ .

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

・ロト ・聞 ト ・ ヨト ・ ヨト

Let $s : \tilde{M} \to L_E$ be a global holomorphic section whose associated divisor (*s*) equals *E* (in particular *s* vanishes exactly on *E*) and let $||s||_{\tau}$ be the norm of *s* with respect to τ .

A Hermitian metric on $\tilde{M} \setminus E$ which is quasi-isometric to a metric with fundamental (1, 1)-form

$$I\pi^*\omega - rac{\sqrt{-1}}{2\pi}\partial\overline{\partial}\log(\log\|s\|_h^2)^2$$

for *I* a positive integer, will be called a Saper-type metric, distinguished with respect to the map π .

The corresponding metric on $M \setminus \text{sing } V \cong \tilde{M} \setminus E$ and its restriction to $V \setminus \text{sing } V$ are also called Saper-type metric.

ヘロト ヘワト ヘビト ヘビト

Let $s : \tilde{M} \to L_E$ be a global holomorphic section whose associated divisor (*s*) equals *E* (in particular *s* vanishes exactly on *E*) and let $||s||_{\tau}$ be the norm of *s* with respect to τ .

A Hermitian metric on $\tilde{M} \setminus E$ which is quasi-isometric to a metric with fundamental (1, 1)-form

$$I\pi^*\omega - rac{\sqrt{-1}}{2\pi}\partial\overline{\partial}\log(\log\|s\|_h^2)^2$$

for *I* a positive integer, will be called a Saper-type metric, distinguished with respect to the map π .

The corresponding metric on $M \setminus \text{sing } V \cong \tilde{M} \setminus E$ and its restriction to $V \setminus \text{sing } V$ are also called Saper-type metric.

Concerning the existence Grant Melles and Milman proved the following theorem.

ヘロト ヘワト ヘビト ヘビト

Theorem (Grant Melles-Milman 2006)

Let V be an analytic subvariety of a compact Kähler manifold M and let ω be the Kähler (1,1)-form of a Kähler metric on M.

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

Theorem (Grant Melles-Milman 2006)

Let V be an analytic subvariety of a compact Kähler manifold M and let ω be the Kähler (1,1)-form of a Kähler metric on M.

There exists a C^{∞} function F on M, vanishing only on sing(V), such that the (1,1)-form

$$\omega_{\mathcal{S}} = \omega - rac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log(\log F)^2$$

is the Kähler form of a complete Saper-type metric on $M \setminus sing(V)$ and hence on $V \setminus sing(V)$.

In the general case (no assumptions on sing(*V*)) we have the following result for the L^2 - $\overline{\partial}$ -cohomology of a Saper type metric:

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

イロト イポト イヨト イヨト

In the general case (no assumptions on sing(*V*)) we have the following result for the $L^2 - \overline{\partial}$ -cohomology of a Saper type metric:

Theorem

Let M be a compact Kähler manifold with Kähler form ω and let $V \subset M$ be an analytic subvariety in M of complex dimension v.

< □ > < □ > < □ > < □ > <

In the general case (no assumptions on sing(V)) we have the following result for the $L^2 - \overline{\partial}$ -cohomology of a Saper type metric:

Theorem

Let M be a compact Kähler manifold with Kähler form ω and let $V \subset M$ be an analytic subvariety in M of complex dimension v.

Let $\pi: \widetilde{V} \to V$ be a resolution of V. Finally let g_S be a Saper-type metric on reg(V) as constructed by Grant Melles-Milman.

イロト イポト イヨト イヨト

In the general case (no assumptions on sing(*V*)) we have the following result for the $L^2 - \overline{\partial}$ -cohomology of a Saper type metric:

Theorem

Let M be a compact Kähler manifold with Kähler form ω and let $V \subset M$ be an analytic subvariety in M of complex dimension v.

Let $\pi: \widetilde{V} \to V$ be a resolution of V. Finally let g_S be a Saper-type metric on reg(V) as constructed by Grant Melles-Milman.

Then the following isomorphisms hold:

$$H^{
u,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g_{\mathcal{S}})\cong H^{
u,q}_{\overline{\partial}}(\widetilde{V})$$

and

$$H^{0,q}_{2,\overline{\partial}}(\operatorname{reg}(V),g_{\mathcal{S}})\cong H^{0,q}_{\overline{\partial}}(\widetilde{V})$$

for every q = v, ..., n.

イロト イポト イヨト イヨト

ъ

Sketch of the proof

The theorem follows combining the following properties:

イロン イロン イヨン イヨン

• Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves

ヘロト ヘ回ト ヘヨト ヘヨト

- Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves
- For any p ∈ sing(V) there is an open neighborhood U and a metric g_U on reg(U) such that g_U is Kähler, d-bounded and quasi-isometric to h|_{reg(U)}, Grant Melles-Milman 2006.

- Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves
- For any p ∈ sing(V) there is an open neighborhood U and a metric g_U on reg(U) such that g_U is Kähler, d-bounded and quasi-isometric to h|_{reg(U)}, Grant Melles-Milman 2006.
- Theorem B.-Piazza

Applications to negatively curved Kähler manifolds

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

★週 → ★ 注 → ★ 注 →

Theorem (Siu-Yau, 1982)

(M, h) complete Kähler manifold of finite volume and $-a^2 \leq \sec_h \leq -b^2 < 0$. Then there exists a complex projective variety $V \subset \mathbb{CP}^N$ with only isolated singularities and a biholomorphism $\phi : M \to \operatorname{reg}(V)$.

Theorem (Siu-Yau, 1982)

(M, h) complete Kähler manifold of finite volume and $-a^2 \leq \sec_h \leq -b^2 < 0$. Then there exists a complex projective variety $V \subset \mathbb{CP}^N$ with only isolated singularities and a biholomorphism $\phi : M \to \operatorname{reg}(V)$.

Theorem

Let (M, h) be as in the previous theorem. Let V be the Siu-Yau compactification and let $\pi : N \to V$ be a resolution of V. Then

$$H^{m,q}_{2,\overline{\partial}}(M,h)\cong H^{m,q}_{\overline{\partial}}(N)$$

and

$$H^{0,q}_{2,\overline{\partial}}(M,h)\cong H^{0,q}_{\overline{\partial}}(N).$$

Sketch of the proof

The theorem follows combining the following properties:

イロン イロン イヨン イヨン

• Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves

ヘロト ヘ回ト ヘヨト ヘヨト

- Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves
- For any p ∈ sing(V) there is an open neighborhood U and a metric g_U on reg(U) such that g_U is Kähler, d-bounded and quasi-isometric to h|_{reg(U)}, Yeganefar 2005.

ヘロト ヘアト ヘヨト

- Existence of partitions of unity with bounded differential on $V \Rightarrow \pi_* C_{D,\sigma}^{m,q}$ are fine sheaves
- For any p ∈ sing(V) there is an open neighborhood U and a metric g_U on reg(U) such that g_U is Kähler, d-bounded and quasi-isometric to h|_{reg(U)}, Yeganefar 2005.
- Theorem B.-Piazza

ヘロト ヘヨト ヘヨト

Grazie per l'attenzione!

Francesco Bei Sulla coomologia $L^2 \cdot \overline{\partial}$ di certe metriche Kähleriane complete

(人間) とくほう くほう