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Let C be a smooth complex projective curve of genus g ≥ 2, and let
Mg denote the moduli space of smooth curves of genus g.

A theta-characteristic on C is a line bundle L such that L⊗2 ∼= ωC .

We are interested in studying theta-characteristics from two
viewpoints at once:

1 the dimension h0 (C,L) = dimH0 (C,L) of the space of global
sections;

2 the vanishing of some global section in H0 (C,L).

The parity of a theta-characteristic L is the residue modulo 2 of the
dimension h0 (C,L) := dimH0 (C,L) of the space of global sections.
So a theta-characteristic L is said to be even (resp. odd) if h0 (C,L) is.

In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.

Theorem (Mumford - 1971)

Let C ψ−→ B be a family of smooth curves Cb = ψ−1(b), and let L be a
line bundle on C such that the restriction L|Cb

is a theta-characteristic
on Cb.
Then the function b 7−→ h0

(
Cb,L|Cb

)
is constant modulo 2.



Let C be a smooth complex projective curve of genus g ≥ 2, and let
Mg denote the moduli space of smooth curves of genus g.

A theta-characteristic on C is a line bundle L such that L⊗2 ∼= ωC .

We are interested in studying theta-characteristics from two
viewpoints at once:

1 the dimension h0 (C,L) = dimH0 (C,L) of the space of global
sections;

2 the vanishing of some global section in H0 (C,L).

The parity of a theta-characteristic L is the residue modulo 2 of the
dimension h0 (C,L) := dimH0 (C,L) of the space of global sections.
So a theta-characteristic L is said to be even (resp. odd) if h0 (C,L) is.

In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.

Theorem (Mumford - 1971)

Let C ψ−→ B be a family of smooth curves Cb = ψ−1(b), and let L be a
line bundle on C such that the restriction L|Cb

is a theta-characteristic
on Cb.
Then the function b 7−→ h0

(
Cb,L|Cb

)
is constant modulo 2.



Let C be a smooth complex projective curve of genus g ≥ 2, and let
Mg denote the moduli space of smooth curves of genus g.

A theta-characteristic on C is a line bundle L such that L⊗2 ∼= ωC .

We are interested in studying theta-characteristics from two
viewpoints at once:

1 the dimension h0 (C,L) = dimH0 (C,L) of the space of global
sections;

2 the vanishing of some global section in H0 (C,L).

The parity of a theta-characteristic L is the residue modulo 2 of the
dimension h0 (C,L) := dimH0 (C,L) of the space of global sections.
So a theta-characteristic L is said to be even (resp. odd) if h0 (C,L) is.

In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.

Theorem (Mumford - 1971)

Let C ψ−→ B be a family of smooth curves Cb = ψ−1(b), and let L be a
line bundle on C such that the restriction L|Cb

is a theta-characteristic
on Cb.
Then the function b 7−→ h0

(
Cb,L|Cb

)
is constant modulo 2.



Let C be a smooth complex projective curve of genus g ≥ 2, and let
Mg denote the moduli space of smooth curves of genus g.

A theta-characteristic on C is a line bundle L such that L⊗2 ∼= ωC .

We are interested in studying theta-characteristics from two
viewpoints at once:

1 the dimension h0 (C,L) = dimH0 (C,L) of the space of global
sections;

2 the vanishing of some global section in H0 (C,L).

The parity of a theta-characteristic L is the residue modulo 2 of the
dimension h0 (C,L) := dimH0 (C,L) of the space of global sections.
So a theta-characteristic L is said to be even (resp. odd) if h0 (C,L) is.

In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.

Theorem (Mumford - 1971)

Let C ψ−→ B be a family of smooth curves Cb = ψ−1(b), and let L be a
line bundle on C such that the restriction L|Cb

is a theta-characteristic
on Cb.
Then the function b 7−→ h0

(
Cb,L|Cb

)
is constant modulo 2.



Along these lines, Harris investigated the lociMr
g inMg of curves

admitting a large theta-characteristic L, that is

Mr
g :=

{
[C] ∈Mg

∣∣∣∣ ∃ a theta-characteristic L on C such that
h0 (C,L) ≥ r + 1 and h0 (C,L) ≡ r + 1 (mod 2)

}
where r ≥ 0 is a fixed integer.

Theorem (Harris’ Bound - 1982)

EitherMr
g is empty, or any irreducible component Z ⊂Mr

g satisfies

codimMg
Z ≤ r(r + 1)

2
.

It is a classical result that any curve [C] ∈Mg admits 2g−1(2g − 1)
theta-characteristics with r = 0, and thatM1

g is a divisor ofMg.
Besides, the sharpness in the cases r = 2 and r = 3 had been showed
by Teixidor i Bigas.
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Moreover, Farkas achieved sharpness of Harris’ bound for r ≤ 9 and
r = 11, by means of the following resut.

Theorem (Farkas - 2005)

Let r ≥ 2 and g(r) be integers. Assume thatMr
g(r) has an irreducible

component of codimension r(r+1)
2 inMg(r).

Then, for any g ≥ g(r),Mr
g has an irreducible component of

codimension r(r+1)
2 inMg.

Finally, Benzo used the latter theorem to prove the sharpness for any
integer r.

Theorem (Benzo - 2014 and 2015)

For any r ≥ 2, there exists an integer g(r) such thatMr
g(r) has an

irreducible component of codimension r(r+1)
2 inMg(r).
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On the other hand, let Hg be the moduli space of abelian differentials,
which parameterizes isomorphism classes of pairs (C,ω) consisting of
a smooth curve C of genus g endowed with a non-zero holomorphic
form ω ∈ H0(C,ωC).

Definition
A partition of g − 1 is a sequence k = (k1, . . . , kn) of integers such

that k1 ≥ · · · ≥ kn > 0 and
n∑
i=1

ki = g − 1.

Given a partition k as above, Kontsevich and Zorich approached
theta-characteristics by studying connected components of the locus

Hg(2k) :=
{
[C,ω] ∈ Hg

∣∣∣∣ (ω)0 = 2(k1p1 + · · ·+ knpn)
for some p1, . . . , pn ∈ C

}
.

In particular, for any such a divisor 2(k1p1 + · · ·+ knpn), we have that

L := OC (
∑n
i=1 kipi) is a theta-characteristic on C.
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LetMg,n be the moduli spaces of (n+ 1)-tuples [C, p1, . . . , pn], such
that [C] ∈Mg and p1, . . . pn ∈ C are distinct points.

We are interested in studying the following objects.

Definition
For an integer r ≥ 0 and a partition k = (k1, . . . , kn) of g − 1, we
define the locus Grg(k) ⊂Mg,n given by

Grg(k) :=

[C, p1, . . . , pn] ∈Mg,n

∣∣∣∣∣∣
L := OC (

∑n
i=1 kipi) satisfies

L⊗2 ∼= ωC , h
0 (C,L) ≥ r + 1

and h0 (C,L) ≡ r + 1 (mod 2)

 .

The forgetful morphism πn :Mg,n −→Mg maps any Grg(k) toMr
g.

When k = (1, . . . , 1), the locus Grg(k) dominatesMr
g, and

dimGrg(k) ≥ dimMr
g + r as the fibre over [C] ∈Mr

g is described by
the complete linear series |L| associated to large theta-characteristics
on C.
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If k = (g − 1), then

Grg(g − 1) :=

[C, p] ∈Mg,1

∣∣∣∣∣∣
L := OC ((g − 1)p) satisfies
L⊗2 ∼= ωC , h

0 (C,L) ≥ r + 1
and h0 (C,L) ≡ r + 1 (mod 2)


are the loci of subcanonical points, which recently gained renewed
interest.
Moreover, they shall play a crucial role in the proofs of our results.

Finally, we note that the description of the loci Grg(k) led to various
applications in

1 Enumerative and Projective Geometry ([Harris - 1982]),

2 Differential Geometry ([Pirola - 1998] and [B., Pirola - 2015],

3 Dynamical Systems ([Kontsevich, Zorich - 2003]).
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By means of Harris’ bound, we prove the following.

Theorem 1
For any r ≥ 0 and for any a partition k = (k1, . . . , kn) of g − 1, either
Grg(k) is empty, or the codimension inMg,n of each irreducible
component Z of Grg(k) satisfies

codimMg,n
Z ≤ g − 1 +

r(r − 1)

2
.

Accordingly, we say that an irreducible component Z ⊂ Grg(k) has
expected dimension if it satisfies equality in the latter bound, that is
dimZ = 2g − 2 + n− r(r−1)

2 .

When k = (1, . . . , 1), our bound agrees with Harris’ one, as it gives
dimZ ≥

(
3g − 3− r(r+1)

2

)
+ r.

The assertion for k = (g − 1) had been proved in a joint work with
Gian Pietro Pirola, and the proof of the theorem above relies on a
similar argument.
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For any r ≥ 0, let g(r) be the integer defined as

g(r) :=


2 for r = 0
3r for 1 ≤ r ≤ 3⌊
r2+14r−11

4

⌋
for r ≥ 4.

Theorem 2
For any genus g ≥ g(r), and for any partition k = (k1, . . . , kn) of
g − 1, the locus Grg(k) is non-empty, and there exists an irreducible
component Z ⊂ Grg(k) having expected dimension.
In particular, at a general point [C, p1, . . . , pn] ∈ Z, the large
theta-characteristic OC (

∑n
i=1 kipi) possesses exactly r + 1

independent global sections and, apart from the cases (r, g) = (0, 2)
and (1, 3), the curve C is non-hyperelliptic.

When k = (1, . . . , 1), is covered by the results on Harris’ bound, and
the value of g(r) can be slightly lowered.

Our bound is meaningful as long as g ≥
⌊
r2−r+4

4

⌋
, which is

hypothetically the best value for g(r) when r >> 0.
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g=2

In this case g − 1 = 1 and k = (1) and r = 0. So we look for pairs
(C, p) such that OC(p)⊗2 ∼= ωC , that is |2p| ∼= |ωC | ∼= g1

2. Therefore

G0
2(1) =

{
[C, p] ∈M2,1| |2p| ∼= g1

2

}
which has dimension 2g − 2 + n− r(r−1)

2 = 3.

g=3

In this case g − 1 = 2, k ∈ {(1, 1), (2)}, r ∈ {0, 1} and any Grg(k) has
expected dimension. When C is non-hyperelliptic, its canonical model
is a plane quartic, and theta-characteristics are cut out by bitangent
lines. So

G0
3(1, 1) = { [C, p1, p2] ∈M3,2| p1, p2 have the same tangent line} ,

G0
3(2) = { [C, p] ∈M3,1| p is a 4-inflection point} ,

G1
3(1, 1) =

{
[C, p1, p2] ∈M3,2|C hyperelliptic, |p1 + p2| ∼= g1

2

}
,

G1
3(2) =

{
[C, p] ∈M3,1|C hyperelliptic, |2p| ∼= g1

2

}
.
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g=6 and r=2

The general point [C] ∈M2
6 ⊂M6 parameterizes a smooth curve C

admitting a g2
5, which maps C to a smooth plane quintic curve.

Conversely, if C ⊂ P2 is a smooth curve of degree 5, then ωC ∼= OC(2)
and L := OC(1) is the only theta-characteristic on C with
h0 (C,L) = 3. In particular, [C] ∈M2

6 ⊂M6.
Therefore, given any partition k = (k1, . . . , kn) of g − 1 = 5, we have
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We prove the following.

Theorem 1
Either Grg(k) is empty, or the codimension inMg,n of each irreducible
component Z of Grg(k) satisfies

codimMg,nZ ≤ g − 1 +
r(r − 1)

2
.

Proof. Let Sg,n be the moduli space of n-pointed spin curves, which
consists of classes [C, p1, . . . , pn, L] such that [C, p1, . . . , pn] ∈Mg,n

and L is a theta-characteristic on C.
Assume that for some partition k = (k1, . . . , kn) of g − 1, the locus
Grg(k) is non-empty, and let [C, p1, . . . , pn] ∈ Grg(k).
Hence L := OC (

∑n
i=1 kipi) is a theta-characteristic on C, with

h0(C,L) ≥ r + 1 and h0(C,L) ≡ r + 1 (mod 2).
We want to prove that any irreducible component Z of Grg(k) passing
through [C, p1, . . . , pn] has dimension dimZ ≥ 2g − 2 + n− r(r−1)

2 .
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Consider a versal deformation family
(
C φ−→ U,L −→ C, U ρi−→ C

)
of

the n-pointed curve (C, p1, . . . , pn, L) in Sg,n. In particular,
U is an analitic open set of dimension 3g − 3 + n, endowed with a
finite map U −→ Sg,n;
the fibres Ct := φ−1(t) are smooth curves of genus g;
the line bundle L −→ C restricts to a theta-characteristics
Lt := L|Ct

on each fibre;
for i = 1, . . . , n, the maps ρi : U −→ C are sections of φ with
pi,t := ρi(t) ∈ Ct;
(C0, p1,0, . . . , pn,0, L0) = (C, p1, . . . , pn, L) for some point 0 ∈ U .

Then we restrict the versal deformation to the locus

Ur :=
{
t ∈ U

∣∣h0(Ct, Lt) ≥ r + 1 and h0(Ct, Lt) ≡ r + 1 (mod 2)
}
,

and we consider the (g − 1)-fold relative symmetric product
C(g−1) Φ−→ Ur of the family C, so that the fibre over each t is the
(g − 1)-fold symmetric product C(g−1)

t of the curve Ct.
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We define two subvarieties of C(g−1) as

P :=
{
k1p1,t + · · ·+ knpn,t ∈ C(g−1)

t

∣∣∣ t ∈ Ur},
which restricts to a point of the k-diagonal on each fibre C(g−1)

t , and

Y :=
{
q1 + · · ·+ qg−1 ∈ C(g−1)

t

∣∣∣ t ∈ Ur and OCt (q1 + · · ·+ qg−1) ∼= Lt

}
,

which parameterizes effective divisors in the linear systems |Lt|.

If k1p1,t + · · ·+ knpn,t ∈ P ∩ Y, then Lt ∼= OCt (
∑n
i=1 kipi,t). Thus

[Ct, p1,t, . . . , pn,t] ∈ Grg(k).

Moreover, composing the map U −→ Sg,n and the forgetful morphism
Sg,n −→Mg,n of degree 22g, we obtain a finite map

Ur −→ Mg,n

t 7−→ [Ct, p1,t . . . , pn,t].
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Therefore each irreducible component Z ⊂ Grg(k) passing through
[C, p1, . . . , pn] has dimension at least equal to the minimal dimension
of any irreducible component of P ∩ Y, that is

dimZ ≥ dimP + dimY − dim C(g−1).

Finally, we point out that

dimP = dimUr ≥ dimU − r(r+1)
2 = 3g − 3 + n− r(r+1)

2 ,
dimY ≥ dimUr + r,
dim C(g−1) = dimUr + g − 1.

Thus
dimZ ≥ 2g − 2 + n− r(r − 1)

2

as claimed.



Now, given r ≥ 0 and

g(r) :=


2 for r = 0
3r for 1 ≤ r ≤ 3⌊
r2+14r−11

4

⌋
for r ≥ 4,

we want to scketch the proof of the following.

Theorem 2
For any genus g ≥ g(r), and for any partition k = (k1, . . . , kn) of
g − 1, the locus Grg(k) is non-empty, and there exists an irreducible
component Z ⊂ Grg(k) having expected dimension.
In particular, at a general point [C, p1, . . . , pn] ∈ Z, the large
theta-characteristic OC (

∑n
i=1 kipi) possesses exactly r + 1

independent global sections and, apart from the cases (r, g) = (0, 2)
and (1, 3), the curve C is non-hyperelliptic.

The proof consists of three main steps.



The first step is to assure that it is enoungh to prove the assertion for
the locus Grg(g − 1) of subcanonical points.

Proposition (Reduction to the case k = (g − 1))

Assume that there exists an irreducible component Z ⊂ Grg(g − 1)
having expected dimension. Then for any partition k = (k1, . . . , kn) of
g − 1, there exists an irreducible component Z ′ ⊂ Grg(k) having
expected dimension.
Furthermore, if the general point [C, p] ∈ Z consists of a
non-hyperelliptic curve C such that h0(C,OC ((g − 1)p) = r + 1,
then the general point [C ′, p′1, . . . , p′n] ∈ Z ′ parameterizes a
non-hyperelliptic curve C ′ such that h0 (C ′,OC′ (

∑n
i=1 kip

′
i)) = r + 1.

The argument of the proof is similar to the one used to achieve the
bound.
Roughly speaking, the result depends on the fact that each irreducible
component of the subcanonical locus Grg(g − 1) may be thought as a
degeneration of any Grg(k).
In the light of the Proposition, the assertion of the theorem for low
values of r follows from known results on subcanonical points.
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The second step is to show that for any r ≥ 2, it suffices to prove the
assertion for g = g(r).

Theorem (B., Pirola - 2015)

Let r ≥ 2 and assume that there exists an integer g(r) such that
Grg(r) (g(r)− 1) admits an irreducible component Zg(r) having expected
dimension.
Then for any g ≥ g(r), there exists an irreducible component Zg of
Grg(g − 1) having expected dimension, as well.
Furthermore, if the general point [C, p] ∈ Zg(r) satisfies
h0 (C,OC ((g(r)− 1)p)) = r + 1, then h0 (C ′, OC′ ((g − 1)p′)) = r + 1
for general [C ′, p′] ∈ Zg.

In order to prove this result, we apply Eisenbud-Harris’ theory of
limit linear series in the setting of Cornalba’s compactification Sg of
the moduli space of spin curves, and we extend the notion of
’subcanonical point’ in these terms.

Since dimZg = 2g − 1− r(r−1)
2 < 2g − 1 = dimGhyp

g , the general point
of Zg does not consists of a hyperelliptic curve.
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Then the last result to prove is the following.

Proposition (Existence of base cases)

For any r ≥ 2, there exists an irreducible component Zg(r) of
Grg(r)(g(r)− 1) having expected dimension 2g(r)− 1− r(r−1)

2 , and such
that its general point [C, p] ∈ Zg(r) satisfies
h0 (C,OC ((g(r)− 1) p)) = r + 1.

Idea of the Proof. Let Hilbrg(r),g(r)−1 be the Hilbert scheme of curves
C ⊂ Pr having arithmetic genus pa(C) = g(r), degree
degC = g(r)− 1, and at most nodal singularities.

For any r ≥ 2, there exists an irreducible component W r of
Hilbrg(r),g(r)−1, such that any smooth curve parameterized over W r is
a linearly normal curve C ⊂ Pr, and L := OC(1) is a theta-
characteristic, with h0(C,L) ≥ r + 1 and h0(C,L) ≡ r + 1 (mod 2).

We denote by W r
sm the non-empty open subset of W r described by

smooth curves.
The locus W r

sm dominates an irreducible component ofMr
g having

expected dimension, under the natural modular map W r
sm −→Mg.
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Given [C] ∈W r
sm and a point p ∈ C, we have that

OC ((g(r)− 1)p) ∼= OC(1) ⇐⇒
∃ a hyperplane M ⊂ Pr :
multp(C,M) = g(r)− 1

In this case, p ∈ C is a subcanonical point and [C, p] ∈ Grg(r) (g(r)− 1).

Then we extend in this terms the notion of ’subcanonical point’ to
each curve parameterized by W r.

Definition
Given [C] ∈W r and a point p ∈ C, we say that p is a limit
subcanonical point if there exists a hyperplane M ⊂ Pr cutting out on
C a 0-dimensional scheme of length g(r)− 1 supported at p, i.e.

multp(C,M) = g(r)− 1.

Moreover, fixing a hyperplane M ⊂ Pr, we define the locus

Qr(M) := {[C] ∈W r | ∃ p ∈M such that multp(C,M) = g(r)− 1} .

of curves with a limit subcanonical point cut out by M .
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subcanonical point if there exists a hyperplane M ⊂ Pr cutting out on
C a 0-dimensional scheme of length g(r)− 1 supported at p, i.e.

multp(C,M) = g(r)− 1.

Moreover, fixing a hyperplane M ⊂ Pr, we define the locus

Qr(M) := {[C] ∈W r | ∃ p ∈M such that multp(C,M) = g(r)− 1} .

of curves with a limit subcanonical point cut out by M .
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We want to prove that for any r ≥ 2, and for any hyperplane M ⊂ Pr,
there exists an irreducible component Zg(r) of Qr(M) ∩W r

sm having
dimension

dimZg(r) = 2g(r)− 2− r(r − 1)

2
+ (r + 1)2 − r.

Indeed, if such a component exists, the image of the modular map

µ : Zg(r) −→ Mg,1

[C] 7−→ [C, p]

(where p is the point cut out by M on C) is an irreducible component
of Zg(r) ⊂ Grg of dimension dimZg(r) = 2g(r)− 1− r(r−1)

2 .

The example of plane quintic curves assures that Zg(r) does exist
when r = 2.

Then we argue by induction on r, and we assume that Zg(r−1) exists.
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For any r ≥ 3, W r admits a divisorial component W r
h , whose general

point is a nodal reducible curve X = C ∪ E such that
C is contained in a hyperplane H ∼= Pr−1, with [C] ∈W r−1

sm ;
E is an elliptic normal curve of degree h := g(r)− g(r − 1) into a
(h− 1)-plane H ′ ⊂ Pr;
C and E meet transversally at h points lying the (h− 2)-plane
H ∩H ′ ⊂ Pr.

Then [X] ∈W r
h ∩Qr(M) for some hyperplane M ⊂ Pr

⇐⇒ ∃ p ∈ X : multp(X,M) = g(r)− 1
⇐⇒ p ∈ C ∩ E, multp(C,M) = g(r − 1)− 1 and multp(E,M) = h.

In particular,

C ⊂ H has a subcanonical point at p, so that [C] ∈ Qr−1(M ∩H);
E ⊂ H ′ has an inflection point of order h at p, whose osculating
(h− 2)-plane is M ∩H ′.
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Conversely, for any [C] ∈ Zg(r−1), we can embed C ⊂ Pr−1 into a
hyperplane H ⊂ Pr, and construct curves X = C ∪ E such that
[X] ∈W r

h ∩Qr(M).

By means of this construction, we obtain an irreducible component
Yg(r) of W r

h ∩Qr(M) having dimension

dimYg(r) = 2g(r)− 2− r(r − 1)

2
+ (r + 1)2 − r − 1.

Using Ran’s description of Hilbert schemes of points on nodal curves,
and arguing as in the proof of Theorem 1, we deduce that each
irreducible component of Qr(M) has dimension at least dimYg(r) + 1.

Hence Qr(M) ∩W r
sm is non-empty, and it admits an irreducible

component Zg(r) such that Yg(r) ⊂ Zg(r) ∩W r
h .

In particular, since W r
h is a divisor in W r, we deduce that

dimZg(r) = dimYg(r) + 1, as wanted.
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