On large theta-characteristics with prescribed vanishing

Francesco Bastianelli

Dipartimento di Matematica e Fisica Università degli Studi Roma Tre
(joint work with Edoardo Ballico and Luca Benzo)
INdAM Italian-Korean Meeting on Algebraic Geometry
Cortona, June $29^{\text {th }}$ - July $3^{\text {rd }}, 2015$
(1) Introduction
(2) Results
(3) Examples
(4) Proofs
(1) Introduction
(2) Results
(3) Examples
(4) Proofs

Let C be a smooth complex projective curve of genus $g \geq 2$, and let \mathcal{M}_{g} denote the moduli space of smooth curves of genus g. A theta-characteristic on C is a line bundle L such that $L^{\otimes 2} \cong \omega_{C}$.

```
We are interested in studying theta-characteristics from two
viewpoints at once:
    (1) the dimension }\mp@subsup{h}{}{0}(C,L)=\operatorname{dim}\mp@subsup{H}{}{0}(C,L) of the space of global
        sections;
    (2) the vanishing of some global section in }\mp@subsup{H}{}{0}(C,L)
The parity of a theta-characteristic }L\mathrm{ is the residue modulo 2 of the
dimension }\mp@subsup{h}{}{0}(C,L):=\operatorname{dim}\mp@subsup{H}{}{0}(C,L) of the space of global sections
So a theta-characteristic L is said to be even (resp. odd) if h}\mp@subsup{h}{}{0}(C,L) i
In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.
Theorem (Mumford - 1971)
Let C }\xrightarrow{}{w}B\mathrm{ be a famity of smooth curves }\mp@subsup{C}{b}{}=\mp@subsup{\psi}{}{-1}(b)\mathrm{ , and let }\mathcal{L}\mathrm{ be }
line bundle on \mathcal{C}}\mathrm{ such that the restriction }\mp@subsup{\mathcal{L}}{|\mp@subsup{C}{b}{}}{}\mathrm{ is a theta-characteristic
on Cb
Then the function b\longmapsto \longmapstoh0}(\mp@subsup{C}{b}{},\mp@subsup{\mathcal{L}}{1}{}))\mathrm{ is constant modulo 2.
```

Let C be a smooth complex projective curve of genus $g \geq 2$, and let \mathcal{M}_{g} denote the moduli space of smooth curves of genus g. A theta-characteristic on C is a line bundle L such that $L^{\otimes 2} \cong \omega_{C}$. We are interested in studying theta-characteristics from two viewpoints at once:
(1) the dimension $h^{0}(C, L)=\operatorname{dim} H^{0}(C, L)$ of the space of global sections;
(2) the vanishing of some global section in $H^{0}(C, L)$.
\square

Let C be a smooth complex projective curve of genus $g \geq 2$, and let \mathcal{M}_{g} denote the moduli space of smooth curves of genus g.
A theta-characteristic on C is a line bundle L such that $L^{\otimes 2} \cong \omega_{C}$.
We are interested in studying theta-characteristics from two viewpoints at once:
(1) the dimension $h^{0}(C, L)=\operatorname{dim} H^{0}(C, L)$ of the space of global sections;
(2) the vanishing of some global section in $H^{0}(C, L)$.

The parity of a theta-characteristic L is the residue modulo 2 of the dimension $h^{0}(C, L):=\operatorname{dim} H^{0}(C, L)$ of the space of global sections. So a theta-characteristic L is said to be even (resp. odd) if $h^{0}(C, L)$ is.
In 1971, Mumford introduced a purely algebraic approach to
theta-characteristics, and proved the following.
\square

Let C be a smooth complex projective curve of genus $g \geq 2$, and let \mathcal{M}_{g} denote the moduli space of smooth curves of genus g.
A theta-characteristic on C is a line bundle L such that $L^{\otimes 2} \cong \omega_{C}$.
We are interested in studying theta-characteristics from two viewpoints at once:
(1) the dimension $h^{0}(C, L)=\operatorname{dim} H^{0}(C, L)$ of the space of global sections;
(2) the vanishing of some global section in $H^{0}(C, L)$.

The parity of a theta-characteristic L is the residue modulo 2 of the dimension $h^{0}(C, L):=\operatorname{dim} H^{0}(C, L)$ of the space of global sections. So a theta-characteristic L is said to be even (resp. odd) if $h^{0}(C, L)$ is.
In 1971, Mumford introduced a purely algebraic approach to theta-characteristics, and proved the following.

Theorem (Mumford - 1971)

Let $\mathcal{C} \xrightarrow{\psi} B$ be a family of smooth curves $C_{b}=\psi^{-1}(b)$, and let \mathcal{L} be a line bundle on \mathcal{C} such that the restriction $\mathcal{L}_{\mid C_{b}}$ is a theta-characteristic on C_{b}.
Then the function $b \longmapsto h^{0}\left(C_{b}, \mathcal{L}_{\mid C_{b}}\right)$ is constant modulo 2 .

Along these lines, Harris investigated the loci \mathcal{M}_{g}^{r} in \mathcal{M}_{g} of curves admitting a large theta-characteristic L, that is

$$
\mathcal{M}_{g}^{r}:=\left\{\begin{array}{l|l}
{[C] \in \mathcal{M}_{g}} & \begin{array}{l}
\exists \text { a theta-characteristic } L \text { on } C \text { such that } \\
h^{0}(C, L) \geq r+1 \text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\}
$$

where $r \geq 0$ is a fixed integer.

Theorem (Harris' Bound - 1982)
 Either \mathcal{M}_{g}^{r} is empty, or any irreducible component $\mathcal{Z} \subset \mathcal{M}_{g}^{r}$ satisfies

theta-characteristics with $r=0$, and that \mathcal{M}_{g}^{1} is a divisor of \mathcal{M}_{g}.
Besides, the sharpness in the cases $r=2$ and $r=3$ had been showed by Teixidor i Bigas.

Along these lines, Harris investigated the loci \mathcal{M}_{g}^{r} in \mathcal{M}_{g} of curves admitting a large theta-characteristic L, that is
$\mathcal{M}_{g}^{r}:=\left\{\begin{array}{l|l}{[C] \in \mathcal{M}_{g}} & \begin{array}{l}\exists \text { a theta-characteristic } L \text { on } C \text { such that } \\ h^{0}(C, L) \geq r+1 \text { and } h^{0}(C, L) \equiv r+1(\bmod 2)\end{array}\end{array}\right\}$
where $r \geq 0$ is a fixed integer.

Theorem (Harris' Bound - 1982)

Either \mathcal{M}_{g}^{r} is empty, or any irreducible component $\mathcal{Z} \subset \mathcal{M}_{g}^{r}$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g}} \mathcal{Z} \leq \frac{r(r+1)}{2}
$$

theta-characteristics with $r=0$, and that \mathcal{M}_{g}^{1} is a divisor of \mathcal{M}_{g}.
Besides, the sharpness in the cases $r=2$ and $r=3$ had been showed by Teixidor i Bigas.

Along these lines, Harris investigated the loci \mathcal{M}_{g}^{r} in \mathcal{M}_{g} of curves admitting a large theta-characteristic L, that is
$\mathcal{M}_{g}^{r}:=\left\{\begin{array}{l|l}{[C] \in \mathcal{M}_{g}} & \begin{array}{l}\exists \text { a theta-characteristic } L \text { on } C \text { such that } \\ h^{0}(C, L) \geq r+1 \text { and } h^{0}(C, L) \equiv r+1(\bmod 2)\end{array}\end{array}\right\}$
where $r \geq 0$ is a fixed integer.

Theorem (Harris' Bound - 1982)

Either \mathcal{M}_{g}^{r} is empty, or any irreducible component $\mathcal{Z} \subset \mathcal{M}_{g}^{r}$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g}} \mathcal{Z} \leq \frac{r(r+1)}{2}
$$

It is a classical result that any curve $[C] \in \mathcal{M}_{g}$ admits $2^{g-1}\left(2^{g}-1\right)$ theta-characteristics with $r=0$, and that \mathcal{M}_{g}^{1} is a divisor of \mathcal{M}_{g}. Besides, the sharpness in the cases $r=2$ and $r=3$ had been showed by Teixidor i Bigas.

Moreover, Farkas achieved sharpness of Harris' bound for $r \leq 9$ and $r=11$, by means of the following resut.

Theorem (Farkas - 2005)

Let $r \geq 2$ and $g(r)$ be integers. Assume that $\mathcal{M}_{g(r)}^{r}$ has an irreducible component of codimension $\frac{r(r+1)}{2}$ in $\mathcal{M}_{g(r)}$.
Then, for any $g \geq g(r), \mathcal{M}_{g}^{r}$ has an irreducible component of codimension $\frac{r(r+1)}{2}$ in \mathcal{M}_{g}.

Finally, Benzo used the latter theorem to prove the sharpness for any integer r

Moreover, Farkas achieved sharpness of Harris' bound for $r \leq 9$ and $r=11$, by means of the following resut.

Theorem (Farkas - 2005)

Let $r \geq 2$ and $g(r)$ be integers. Assume that $\mathcal{M}_{g(r)}^{r}$ has an irreducible component of codimension $\frac{r(r+1)}{2}$ in $\mathcal{M}_{g(r)}$.
Then, for any $g \geq g(r), \mathcal{M}_{g}^{r}$ has an irreducible component of codimension $\frac{r(r+1)}{2}$ in \mathcal{M}_{g}.

Finally, Benzo used the latter theorem to prove the sharpness for any integer r.

Theorem (Benzo - 2014 and 2015)

For any $r \geq 2$, there exists an integer $g(r)$ such that $\mathcal{M}_{g(r)}^{r}$ has an irreducible component of codimension $\frac{r(r+1)}{2}$ in $\mathcal{M}_{g(r)}$.

On the other hand, let \mathcal{H}_{g} be the moduli space of abelian differentials, which parameterizes isomorphism classes of pairs (C, ω) consisting of a smooth curve C of genus g endowed with a non-zero holomorphic form $\omega \in H^{0}\left(C, \omega_{C}\right)$.

Defmition

A partition of $g-1$ is a sequence $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of integers such

Given a partition \underline{k} as above, Kontsevich and Zorich approached theta-characteristics by studying connected components of the locus

In particular, for any such a divisor $2\left(k_{1} p_{1}+\cdots+k_{n} p_{n}\right)$, we have that
$L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C.

On the other hand, let \mathcal{H}_{g} be the moduli space of abelian differentials, which parameterizes isomorphism classes of pairs (C, ω) consisting of a smooth curve C of genus g endowed with a non-zero holomorphic form $\omega \in H^{0}\left(C, \omega_{C}\right)$.

Definition

A partition of $g-1$ is a sequence $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of integers such that $k_{1} \geq \cdots \geq k_{n}>0$ and $\sum_{i=1}^{n} k_{i}=g-1$.

Given a partition \underline{k} as above, Kontsevich and Zorich approached theta-characteristics by studying connected components of the locus

In particular, for any such a divisor $2\left(k_{1} p_{1}+\cdots+k_{n} p_{n}\right)$, we have that
$L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C.

On the other hand, let \mathcal{H}_{g} be the moduli space of abelian differentials, which parameterizes isomorphism classes of pairs (C, ω) consisting of a smooth curve C of genus g endowed with a non-zero holomorphic form $\omega \in H^{0}\left(C, \omega_{C}\right)$.

Definition

A partition of $g-1$ is a sequence $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of integers such that $k_{1} \geq \cdots \geq k_{n}>0$ and $\sum_{i=1}^{n} k_{i}=g-1$.

Given a partition \underline{k} as above, Kontsevich and Zorich approached theta-characteristics by studying connected components of the locus

$$
\mathcal{H}_{g}(2 \underline{k}):=\left\{\begin{array}{l|l}
{[C, \omega] \in \mathcal{H}_{g}} & \begin{array}{l}
(\omega)_{0}=2\left(k_{1} p_{1}+\cdots+k_{n} p_{n}\right) \\
\text { for some } p_{1}, \ldots, p_{n} \in C
\end{array}
\end{array}\right\} .
$$

In particular, for any such a divisor $2\left(k_{1} p_{1}+\cdots+k_{n} p_{n}\right)$, we have that $L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C.

Let $\mathcal{M}_{g, n}$ be the moduli spaces of $(n+1)$-tuples [C, p_{1}, \ldots, p_{n}], such that $[C] \in \mathcal{M}_{g}$ and $p_{1}, \ldots p_{n} \in C$ are distinct points.

We are interested in studying the following objects.

Definition

For an integer $r \geq 0$ and a partition $k=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, we define the locus $\mathcal{G}_{g}^{r}(\underline{k}) \subset \mathcal{M}_{g, n}$ given by

The forgetful morphism $\pi_{n}: \mathcal{M}_{g, n} \longrightarrow \mathcal{M}_{g}$ maps any $\mathcal{G}_{g}^{r}(\underline{k})$ to \mathcal{M}_{g}^{r}.
When $k=(1, \ldots, 1)$, the locus $\mathcal{G}_{r}^{r}(k)$ dominates \mathcal{M}_{r}^{r}, and
$\operatorname{dim} \mathcal{G}_{g}^{r}(\underline{k}) \geq \operatorname{dim} \mathcal{M}_{g}^{r}+r$ as the fibre over $[C] \in \mathcal{M}_{g}^{r}$ is described by the complete linear series $|L|$ associated to large theta-characteristics on C.

Let $\mathcal{M}_{g, n}$ be the moduli spaces of $(n+1)$-tuples [C, p_{1}, \ldots, p_{n}], such that $[C] \in \mathcal{M}_{g}$ and $p_{1}, \ldots p_{n} \in C$ are distinct points.

We are interested in studying the following objects.

Definition

For an integer $r \geq 0$ and a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, we define the locus $\mathcal{G}_{g}^{r}(\underline{k}) \subset \mathcal{M}_{g, n}$ given by

$$
\mathcal{G}_{g}^{r}(\underline{k}):=\left\{\begin{array}{l|l}
{\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}} & \begin{array}{l}
L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right) \text { satisfies } \\
L^{\otimes 2} \cong \omega_{C}, h^{0}(C, L) \geq r+1 \\
\text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\} .
$$

The forgetful morphism $\pi_{n}: \mathcal{M}_{g, n} \longrightarrow \mathcal{M}_{g}$ maps any $\mathcal{G}_{g}^{r}(\underline{k})$ to \mathcal{M}_{g}^{r} When $\underline{k}=(1, \ldots, 1)$, the locus $\mathcal{G}_{q}^{r}(\underline{k})$ dominates \mathcal{M}_{q}^{r}, and $\operatorname{dim} \mathcal{G}_{g}^{r}(\underline{k}) \geq \operatorname{dim} \mathcal{M}_{g}^{r}+r$ as the fibre over $[C] \in \mathcal{M}_{g}^{r}$ is described by the complete linear series $|L|$ associated to large theta-characteristics on C.

Let $\mathcal{M}_{g, n}$ be the moduli spaces of $(n+1)$-tuples [C, p_{1}, \ldots, p_{n}], such that $[C] \in \mathcal{M}_{g}$ and $p_{1}, \ldots p_{n} \in C$ are distinct points.
We are interested in studying the following objects.

Definition

For an integer $r \geq 0$ and a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, we define the locus $\mathcal{G}_{g}^{r}(\underline{k}) \subset \mathcal{M}_{g, n}$ given by

$$
\mathcal{G}_{g}^{r}(\underline{k}):=\left\{\begin{array}{l|l}
{\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}} & \begin{array}{l}
L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right) \text { satisfies } \\
L^{\otimes 2} \cong \omega_{C}, h^{0}(C, L) \geq r+1 \\
\text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\} .
$$

The forgetful morphism $\pi_{n}: \mathcal{M}_{g, n} \longrightarrow \mathcal{M}_{g}$ maps any $\mathcal{G}_{g}^{r}(\underline{k})$ to \mathcal{M}_{g}^{r}.
\square $\operatorname{dim} \mathcal{G}_{g}^{r}(\underline{k}) \geq \operatorname{dim} \mathcal{M}_{g}^{r}+r$ as the fibre over $[C] \in \mathcal{M}_{g}^{r}$ is described by
the complete linear series $|L|$ associated to large theta-characteristics on C.

Let $\mathcal{M}_{g, n}$ be the moduli spaces of $(n+1)$-tuples [C, p_{1}, \ldots, p_{n}], such that $[C] \in \mathcal{M}_{g}$ and $p_{1}, \ldots p_{n} \in C$ are distinct points.

We are interested in studying the following objects.

Definition

For an integer $r \geq 0$ and a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, we define the locus $\mathcal{G}_{g}^{r}(\underline{k}) \subset \mathcal{M}_{g, n}$ given by

$$
\mathcal{G}_{g}^{r}(\underline{k}):=\left\{\begin{array}{l|l}
{\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}} & \begin{array}{l}
L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right) \text { satisfies } \\
L^{\otimes 2} \cong \omega_{C}, h^{0}(C, L) \geq r+1 \\
\text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\} .
$$

The forgetful morphism $\pi_{n}: \mathcal{M}_{g, n} \longrightarrow \mathcal{M}_{g}$ maps any $\mathcal{G}_{g}^{r}(\underline{k})$ to \mathcal{M}_{g}^{r}.
When $\underline{k}=(1, \ldots, 1)$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ dominates \mathcal{M}_{g}^{r}, and $\operatorname{dim} \mathcal{G}_{g}^{r}(\underline{k}) \geq \operatorname{dim} \mathcal{M}_{g}^{r}+r$ as the fibre over $[C] \in \mathcal{M}_{g}^{r}$ is described by the complete linear series $|L|$ associated to large theta-characteristics on C.

If $\underline{k}=(g-1)$, then

$$
\mathcal{G}_{g}^{r}(g-1):=\left\{\begin{array}{l|l}
{[C, p] \in \mathcal{M}_{g, 1}} & \begin{array}{l}
L:=\mathcal{O}_{C}((g-1) p) \text { satisfies } \\
L^{\otimes 2} \cong \omega_{C}, h^{0}(C, L) \geq r+1 \\
\text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\}
$$

are the loci of subcanonical points, which recently gained renewed interest.
Moreover, they shall play a crucial role in the proofs of our results.
Finally, we note that the description of the loci $\mathcal{G}_{g}^{r}(\underline{k})$ led to various applications in
© Enumerative and Projective Geometry ([Harris - 1982]),
© Differential Geometry ([Pirola - 1998] and [B., Pirola - 2015],
© Dynamical Systems ([Kontsevich, Zorich - 2003]).

If $\underline{k}=(g-1)$, then

$$
\mathcal{G}_{g}^{r}(g-1):=\left\{\begin{array}{l|l}
{[C, p] \in \mathcal{M}_{g, 1}} & \begin{array}{l}
L:=\mathcal{O}_{C}((g-1) p) \text { satisfies } \\
L^{\otimes 2} \cong \omega_{C}, h^{0}(C, L) \geq r+1 \\
\text { and } h^{0}(C, L) \equiv r+1(\bmod 2)
\end{array}
\end{array}\right\}
$$

are the loci of subcanonical points, which recently gained renewed interest.
Moreover, they shall play a crucial role in the proofs of our results.
Finally, we note that the description of the loci $\mathcal{G}_{g}^{r}(\underline{k})$ led to various applications in
(1) Enumerative and Projective Geometry ([Harris - 1982]),
(2) Differential Geometry ([Pirola - 1998] and [B., Pirola - 2015],
© Dynamical Systems ([Kontsevich, Zorich - 2003]).
(1) Introduction
(2) Results
(3) Examples
(4) Proofs

By means of Harris' bound, we prove the following.

Theorem 1

For any $r \geq 0$ and for any a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Accordingly, we say that an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ has expected dimension if it satisfies equality in the latter bound, that is $\operatorname{dim} \mathcal{Z}=2 g-2+n-\frac{r(r-1)}{2}$
When $\underline{k}=(1, \ldots, 1)$, our bound agrees with Harris' one, as it gives $\operatorname{dim} \mathcal{Z} \geq\left(3 g-3-\frac{r(r+1)}{2}\right)+r$.

The assertion for $\underline{k}=(g-1)$ had been proved in a joint work with Gian Pietro Pirola, and the proof of the theorem above relies on a similar argument.

By means of Harris' bound, we prove the following.

Theorem 1

For any $r \geq 0$ and for any a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Accordingly, we say that an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ has expected dimension if it satisfies equality in the latter bound, that is $\operatorname{dim} \mathcal{Z}=2 g-2+n-\frac{r(r-1)}{2}$.
When $\underline{k}=(1, \ldots, 1)$, our bound agrees with Harris' one, as it gives $\operatorname{dim} \mathcal{Z} \geq\left(3 g-3-\frac{r(r+1)}{2}\right)+r$

The assertion for $k=(g-1)$ had been proved in a joint work with Gian Pietro Pirola, and the proof of the theorem above relies on a similar argument.

By means of Harris' bound, we prove the following.

Theorem 1

For any $r \geq 0$ and for any a partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Accordingly, we say that an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ has expected dimension if it satisfies equality in the latter bound, that is $\operatorname{dim} \mathcal{Z}=2 g-2+n-\frac{r(r-1)}{2}$.
When $\underline{k}=(1, \ldots, 1)$, our bound agrees with Harris' one, as it gives $\operatorname{dim} \mathcal{Z} \geq\left(3 g-3-\frac{r(r+1)}{2}\right)+r$.
The assertion for $\underline{k}=(g-1)$ had been proved in a joint work with Gian Pietro Pirola, and the proof of the theorem above relies on a similar argument.

For any $r \geq 0$, let $g(r)$ be the integer defined as

$$
g(r):= \begin{cases}2 & \text { for } r=0 \\ 3 r & \text { for } 1 \leq r \leq 3 \\ \left\lfloor\frac{r^{2}+14 r-11}{4}\right\rfloor & \text { for } r \geq 4\end{cases}
$$

Theorem 2

ror any gemus $g \geq g(r)$, and for any partition $k=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
In particular, at a general point $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{Z}$, the large theta-characteristic $\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ possesses exactly $r+1$ independent global sections and, apart from the cases $(r, g)=(0,2)$ and $(1,3)$, the curve C is non-hyperelliptic.

When $\underline{k}=(1, \ldots, 1)$, is covered by the results on Harris' bound, and the value of $g(r)$ can be slightly lowered.
Our bound is meaningful as long as $g \geq\left|\frac{r^{2}-r+4}{4}\right|$, which is hypothetically the best value for $g(r)$ when $r \gg 0$.

For any $r \geq 0$, let $g(r)$ be the integer defined as

$$
g(r):= \begin{cases}2 & \text { for } r=0 \\ 3 r & \text { for } 1 \leq r \leq 3 \\ \left\lfloor\frac{r^{2}+14 r-11}{4}\right\rfloor & \text { for } r \geq 4\end{cases}
$$

Theorem 2

For any genus $g \geq g(r)$, and for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.

When $\underline{k}=(1, \ldots, 1)$, is covered by the results on Harris' bound, and the value of $g(r)$ can be slightly lowered.
Our bound is meaningful as long as $g \geq\left|\frac{r^{2}-r+4}{4}\right|$, which is hypothetically the best value for $g(r)$ when $r \gg 0$.

For any $r \geq 0$, let $g(r)$ be the integer defined as

$$
g(r):= \begin{cases}2 & \text { for } r=0 \\ 3 r & \text { for } 1 \leq r \leq 3 \\ \left\lfloor\frac{r^{2}+14 r-11}{4}\right\rfloor & \text { for } r \geq 4\end{cases}
$$

Theorem 2

For any genus $g \geq g(r)$, and for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
In particular, at a general point $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{Z}$, the large theta-characteristic $\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ possesses exactly $r+1$ independent global sections and, apart from the cases $(r, g)=(0,2)$ and $(1,3)$, the curve C is non-hyperelliptic.

When $\underline{k}=(1, \ldots, 1)$, is covered by the results on Harris' bound, and the value of $g(r)$ can be slightly lowered.

Our bound is meaningful as long as $g \geq$

For any $r \geq 0$, let $g(r)$ be the integer defined as

$$
g(r):= \begin{cases}2 & \text { for } r=0 \\ 3 r & \text { for } 1 \leq r \leq 3 \\ \left\lfloor\frac{r^{2}+14 r-11}{4}\right\rfloor & \text { for } r \geq 4\end{cases}
$$

Theorem 2

For any genus $g \geq g(r)$, and for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
In particular, at a general point $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{Z}$, the large theta-characteristic $\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ possesses exactly $r+1$ independent global sections and, apart from the cases $(r, g)=(0,2)$ and $(1,3)$, the curve C is non-hyperelliptic.

When $\underline{k}=(1, \ldots, 1)$, is covered by the results on Harris' bound, and the value of $g(r)$ can be slightly lowered.
Our bound is meaningful as long as $g \geq\left\lfloor\frac{r^{2}-r+4}{4}\right\rfloor$, which is hypothetically the best value for $g(r)$ when $r \gg 0$.
(1) Introduction
(2) Results
(3) Examples
(4) Proofs

In this case $g-1=1$ and $\underline{k}=(1)$ and $r=0$. So we look for pairs (C, p) such that $O_{C}(p)^{\otimes 2} \cong \omega_{C}$, that is $|2 p| \cong\left|\omega_{C}\right| \cong \mathfrak{g}_{2}^{1}$. Therefore

$$
\mathcal{G}_{2}^{0}(1)=\left\{[C, p] \in \mathcal{M}_{2,1}| | 2 p \mid \cong \mathfrak{g}_{2}^{1}\right\}
$$

which has dimension $2 g-2+n-\frac{r(r-1)}{2}=3$.

$\mathrm{g}=2$

In this case $g-1=1$ and $\underline{k}=(1)$ and $r=0$. So we look for pairs (C, p) such that $O_{C}(p)^{\otimes 2} \cong \omega_{C}$, that is $|2 p| \cong\left|\omega_{C}\right| \cong \mathfrak{g}_{2}^{1}$. Therefore

$$
\mathcal{G}_{2}^{0}(1)=\left\{[C, p] \in \mathcal{M}_{2,1}| | 2 p \mid \cong \mathfrak{g}_{2}^{1}\right\}
$$

which has dimension $2 g-2+n-\frac{r(r-1)}{2}=3$.

$\mathrm{g}=3$

In this case $g-1=2, \underline{k} \in\{(1,1),(2)\}, r \in\{0,1\}$ and any $\mathcal{G}_{g}^{r}(\underline{k})$ has expected dimension. When C is non-hyperelliptic, its canonical model is a plane quartic, and theta-characteristics are cut out by bitangent lines. So

$$
\begin{gathered}
\mathcal{G}_{3}^{0}(1,1)=\left\{\left[C, p_{1}, p_{2}\right] \in \mathcal{M}_{3,2} \mid p_{1}, p_{2} \text { have the same tangent line }\right\}, \\
\mathcal{G}_{3}^{0}(2)=\left\{[C, p] \in \mathcal{M}_{3,1} \mid p \text { is a 4-inflection point }\right\} \\
\mathcal{G}_{3}^{1}(1,1)=\left\{\left[C, p_{1}, p_{2}\right] \in \mathcal{M}_{3,2} \mid C \text { hyperelliptic, }\left|p_{1}+p_{2}\right| \cong \mathfrak{g}_{2}^{1}\right\}, \\
\mathcal{G}_{3}^{1}(2)=\left\{[C, p] \in \mathcal{M}_{3,1} \mid C \text { hyperelliptic, }|2 p| \cong \mathfrak{g}_{2}^{1}\right\} .
\end{gathered}
$$

$\mathrm{g}=6$ and $\mathrm{r}=2$

The general point $[C] \in \mathcal{M}_{6}^{2} \subset \mathcal{M}_{6}$ parameterizes a smooth curve C admitting a \mathfrak{g}_{5}^{2}, which maps C to a smooth plane quintic curve. Conversely, if $C \subset \mathbb{P}^{2}$ is a smooth curve of degree 5 , then $\omega_{C} \cong \mathcal{O}_{C}(2)$ and $L:=\mathcal{O}_{C}(1)$ is the only theta-characteristic on C with $h^{0}(C, L)=3$. In particular, $[C] \in \mathcal{M}_{6}^{2} \subset \mathcal{M}_{6}$.
Therefore, given any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1=5$, we have that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{G}_{6}^{2}(\underline{k})$ if and only if the divisor $k_{1} p_{1}+\cdots+k_{n} p_{n}$ is cut out on C by some line $\ell \subset \mathbb{P}^{2}$.
$\mathrm{k}=$ ($\mathrm{g}-\mathrm{I})$ and hyperelliptic curves
If C is a hyperelliptic curve of genus g, then $[C, p] \in \mathcal{G}_{g}^{r}(g-1)$ if and only if $|2 p| \cong g_{2}^{1}$ and $r \equiv\left\lfloor\frac{g-1}{2}\right\rfloor(\bmod 2)$. In particular $\mathcal{G}_{g}^{\text {hyp }}=\left\{[C, p] \mid C\right.$ is hyperelliptic and $\left.|2 p| \cong \mathfrak{g}_{2}^{1}\right\}$ is the only irreducible component of $\mathcal{G}_{q}^{r}(g-1)$ consisting of hyperelliptic curves.

$\mathrm{g}=6$ and $\mathrm{r}=2$

The general point $[C] \in \mathcal{M}_{6}^{2} \subset \mathcal{M}_{6}$ parameterizes a smooth curve C admitting a \mathfrak{g}_{5}^{2}, which maps C to a smooth plane quintic curve.
Conversely, if $C \subset \mathbb{P}^{2}$ is a smooth curve of degree 5 , then $\omega_{C} \cong \mathcal{O}_{C}(2)$ and $L:=\mathcal{O}_{C}(1)$ is the only theta-characteristic on C with $h^{0}(C, L)=3$. In particular, $[C] \in \mathcal{M}_{6}^{2} \subset \mathcal{M}_{6}$.
Therefore, given any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1=5$, we have that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{G}_{6}^{2}(\underline{k})$ if and only if the divisor $k_{1} p_{1}+\cdots+k_{n} p_{n}$ is cut out on C by some line $\ell \subset \mathbb{P}^{2}$.

$\mathrm{k}=(\mathrm{g}-1)$ and hyperelliptic curves

If C is a hyperelliptic curve of genus g, then $[C, p] \in \mathcal{G}_{g}^{r}(g-1)$ if and only if $|2 p| \cong \mathfrak{g}_{2}^{1}$ and $r \equiv\left\lfloor\frac{g-1}{2}\right\rfloor(\bmod 2)$. In particular,

$$
\mathcal{G}_{g}^{\text {hyp }}=\left\{[C, p] \mid C \text { is hyperelliptic and }|2 p| \cong \mathfrak{g}_{2}^{1}\right\}
$$

is the only irreducible component of $\mathcal{G}_{g}^{r}(g-1)$ consisting of hyperelliptic curves.
(1) Introduction
(2) Results
(3) Examples
(4) Proofs

We prove the following.

Theorem 1

Either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Proof. Let $\mathcal{S}_{g, n}$ be the moduli space of n-pointed spin curves, which consists of classes $\left[C, p_{1}, \ldots, p_{n}, L\right]$ such that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}$ and L is a theta-characteristic on C.
Assume that for some partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus
$\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and let $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{G}_{g}^{r}(\underline{k})$.
Hence $L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C, with
$h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$.
We want to prove that any irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ passing through $\left[C, p_{1}, \ldots, p_{n}\right]$ has dimension $\operatorname{dim} \mathcal{Z} \geq 2 g-2+n-\frac{r(r-1)}{2}$.

We prove the following.

Theorem 1

Either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Proof. Let $\mathcal{S}_{g, n}$ be the moduli space of n-pointed spin curves, which consists of classes $\left[C, p_{1}, \ldots, p_{n}, L\right]$ such that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}$ and L is a theta-characteristic on C.

We prove the following.

Theorem 1

Either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Proof. Let $\mathcal{S}_{g, n}$ be the moduli space of n-pointed spin curves, which consists of classes $\left[C, p_{1}, \ldots, p_{n}, L\right]$ such that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}$ and L is a theta-characteristic on C.
Assume that for some partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and let $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{G}_{g}^{r}(\underline{k})$.
Hence $L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C, with $h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$.
We want to prove that any irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ passing through $\left[C, p_{1}, \ldots, p_{n}\right]$ has dimension $\operatorname{dim} \mathcal{Z} \geq 2 g-2+n-\frac{r(r-1)}{2}$.

We prove the following.

Theorem 1

Either $\mathcal{G}_{g}^{r}(\underline{k})$ is empty, or the codimension in $\mathcal{M}_{g, n}$ of each irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ satisfies

$$
\operatorname{codim}_{\mathcal{M}_{g, n}} \mathcal{Z} \leq g-1+\frac{r(r-1)}{2}
$$

Proof. Let $\mathcal{S}_{g, n}$ be the moduli space of n-pointed spin curves, which consists of classes $\left[C, p_{1}, \ldots, p_{n}, L\right]$ such that $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}$ and L is a theta-characteristic on C.
Assume that for some partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and let $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{G}_{g}^{r}(\underline{k})$.
Hence $L:=\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ is a theta-characteristic on C, with $h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$.
We want to prove that any irreducible component \mathcal{Z} of $\mathcal{G}_{g}^{r}(\underline{k})$ passing through $\left[C, p_{1}, \ldots, p_{n}\right]$ has dimension $\operatorname{dim} \mathcal{Z} \geq 2 g-2+n-\frac{r(r-1)}{2}$.

Consider a versal deformation family $\left(\mathcal{C} \xrightarrow{\phi} U, \mathcal{L} \longrightarrow \mathcal{C}, U \xrightarrow{\rho_{i}} \mathcal{C}\right)$ of the n-pointed curve $\left(C, p_{1}, \ldots, p_{n}, L\right)$ in $\mathcal{S}_{g, n}$. In particular,

- U is an analitic open set of dimension $3 g-3+n$, endowed with a finite map $U \longrightarrow \mathcal{S}_{g, n}$;
- the fibres $C_{t}:=\phi^{-1}(t)$ are smooth curves of genus g;
- the line bundle $\mathcal{L} \longrightarrow \mathcal{C}$ restricts to a theta-characteristics $L_{t}:=\mathcal{L}_{\mid C_{t}}$ on each fibre;
- for $i=1, \ldots, n$, the maps $\rho_{i}: U \longrightarrow \mathcal{C}$ are sections of ϕ with $p_{i, t}:=\rho_{i}(t) \in C_{t} ;$
- $\left(C_{0}, p_{1,0}, \ldots, p_{n, 0}, L_{0}\right)=\left(C, p_{1}, \ldots, p_{n}, L\right)$ for some point $0 \in U$.

Then we restrict the versal deformation to the locus
\square
and we consider the ($g-1$)-fold relative symmetrie product $(g-1)$-fold symmetric product $C_{t}^{(g-1)}$ of the curve C_{t}.

Consider a versal deformation family $\left(\mathcal{C} \xrightarrow{\phi} U, \mathcal{L} \longrightarrow \mathcal{C}, U \xrightarrow{\rho_{i}} \mathcal{C}\right)$ of the n-pointed curve ($C, p_{1}, \ldots, p_{n}, L$) in $\mathcal{S}_{g, n}$. In particular,

- U is an analitic open set of dimension $3 g-3+n$, endowed with a finite map $U \longrightarrow \mathcal{S}_{g, n}$;
- the fibres $C_{t}:=\phi^{-1}(t)$ are smooth curves of genus g;
- the line bundle $\mathcal{L} \longrightarrow \mathcal{C}$ restricts to a theta-characteristics $L_{t}:=\mathcal{L}_{\mid C_{t}}$ on each fibre;
- for $i=1, \ldots, n$, the maps $\rho_{i}: U \longrightarrow \mathcal{C}$ are sections of ϕ with

$$
p_{i, t}:=\rho_{i}(t) \in C_{t}
$$

- $\left(C_{0}, p_{1,0}, \ldots, p_{n, 0}, L_{0}\right)=\left(C, p_{1}, \ldots, p_{n}, L\right)$ for some point $0 \in U$.

Then we restrict the versal deformation to the locus

$$
U^{r}:=\left\{t \in U \mid h^{0}\left(C_{t}, L_{t}\right) \geq r+1 \text { and } h^{0}\left(C_{t}, L_{t}\right) \equiv r+1(\bmod 2)\right\},
$$

and we consider the $(g-1)$-fold relative symmetric product $\mathcal{C}^{(g-1)} \xrightarrow{\Phi} U^{r}$ of the family \mathcal{C}, so that the fibre over each t is the $(g-1)$-fold symmetric product $C_{t}^{(g-1)}$ of the curve C_{t}.

We define two subvarieties of $\mathcal{C}^{(g-1)}$ as

$$
\mathcal{P}:=\left\{k_{1} p_{1, t}+\cdots+k_{n} p_{n, t} \in C_{t}^{(g-1)} \mid t \in U^{r}\right\},
$$

which restricts to a point of the \underline{k}-diagonal on each fibre $C_{t}^{(g-1)}$, and $\mathcal{Y}:=\left\{q_{1}+\cdots+q_{g-1} \in C_{t}^{(g-1)} \mid t \in U^{r}\right.$ and $\left.\mathcal{O}_{C_{t}}\left(q_{1}+\cdots+q_{g-1}\right) \cong L_{t}\right\}$, which parameterizes effective divisors in the linear systems $\left|L_{t}\right|$.

If $k_{1} p_{1, t}+\cdots+k_{n} p_{n, t} \in \mathcal{P} \cap \mathcal{V}$, then $L_{t} \cong \mathcal{O}_{C_{t}}\left(\sum_{i=1}^{n} k_{i} p_{i, t}\right)$. Thus

$$
\left[C_{t}, p_{1, t}, \ldots, p_{n, t}\right] \in \mathcal{G}_{g}^{r}(\underline{k}) .
$$

Moreover, composing the map $U \longrightarrow \mathcal{S}_{g, n}$ and the forgetful morphism $\mathcal{S}_{g, n} \longrightarrow \mathcal{M}_{g, n}$ of degree $2^{2 g}$, we obtain a finite map

We define two subvarieties of $\mathcal{C}^{(g-1)}$ as

$$
\mathcal{P}:=\left\{k_{1} p_{1, t}+\cdots+k_{n} p_{n, t} \in C_{t}^{(g-1)} \mid t \in U^{r}\right\},
$$

which restricts to a point of the \underline{k}-diagonal on each fibre $C_{t}^{(g-1)}$, and

$$
\mathcal{Y}:=\left\{q_{1}+\cdots+q_{g-1} \in C_{t}^{(g-1)} \mid t \in U^{r} \text { and } \mathcal{O}_{C_{t}}\left(q_{1}+\cdots+q_{g-1}\right) \cong L_{t}\right\},
$$

which parameterizes effective divisors in the linear systems $\left|L_{t}\right|$.
If $k_{1} p_{1, t}+\cdots+k_{n} p_{n, t} \in \mathcal{P} \cap \mathcal{Y}$, then $L_{t} \cong \mathcal{O}_{C_{t}}\left(\sum_{i=1}^{n} k_{i} p_{i, t}\right)$. Thus

$$
\left[C_{t}, p_{1, t}, \ldots, p_{n, t}\right] \in \mathcal{G}_{g}^{r}(\underline{k})
$$

Moreover, composing the map $U \longrightarrow \mathcal{S}_{g, n}$ and the forgetful morphism $\mathcal{S}_{g, n} \longrightarrow \mathcal{M}_{g, n}$ of degree $2^{2 g}$, we obtain a finite map

$$
\begin{aligned}
U^{r} & \longrightarrow \mathcal{M}_{g, n} \\
t & \longmapsto\left[C_{t}, p_{1, t} \ldots, p_{n, t}\right] .
\end{aligned}
$$

Therefore each irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ passing through $\left[C, p_{1}, \ldots, p_{n}\right]$ has dimension at least equal to the minimal dimension of any irreducible component of $\mathcal{P} \cap \mathcal{Y}$, that is

$$
\operatorname{dim} \mathcal{Z} \geq \operatorname{dim} \mathcal{P}+\operatorname{dim} \mathcal{Y}-\operatorname{dim} \mathcal{C}^{(g-1)}
$$

Finally, we point out that

- $\operatorname{dim} \mathcal{P}=\operatorname{dim} U^{r} \geq \operatorname{dim} U-\frac{r(r+1)}{2}=3 g-3+n-\frac{r(r+1)}{2}$,
- $\operatorname{dim} \mathcal{Y} \geq \operatorname{dim} U^{r}+r$,
- $\operatorname{dim} \mathcal{C}^{(g-1)}=\operatorname{dim} U^{r}+g-1$.

Thus

$$
\operatorname{dim} \mathcal{Z} \geq 2 g-2+n-\frac{r(r-1)}{2}
$$

as claimed.

Now, given $r \geq 0$ and

$$
g(r):= \begin{cases}2 & \text { for } r=0 \\ 3 r & \text { for } 1 \leq r \leq 3 \\ \left\lfloor\frac{r^{2}+14 r-11}{4}\right\rfloor & \text { for } r \geq 4,\end{cases}
$$

we want to scketch the proof of the following.

Theorem 2

For any genus $g \geq g(r)$, and for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, the locus $\mathcal{G}_{g}^{r}(\underline{k})$ is non-empty, and there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
In particular, at a general point $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{Z}$, the large theta-characteristic $\mathcal{O}_{C}\left(\sum_{i=1}^{n} k_{i} p_{i}\right)$ possesses exactly $r+1$ independent global sections and, apart from the cases $(r, g)=(0,2)$ and (1,3), the curve C is non-hyperelliptic.

The proof consists of three main steps.

The first step is to assure that it is enoungh to prove the assertion for the locus $\mathcal{G}_{g}^{r}(g-1)$ of subcanonical points.

Proposition (Reduction to the case $k=(g-1)$)

Assume that there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(g-1)$ having expected dimension. Then for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, there exists an irreducible component $\mathcal{Z}^{\prime} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.

[^0]The first step is to assure that it is enoungh to prove the assertion for the locus $\mathcal{G}_{g}^{r}(g-1)$ of subcanonical points.

Proposition (Reduction to the case $k=(g-1)$)

Assume that there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(g-1)$ having expected dimension. Then for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, there exists an irreducible component $\mathcal{Z}^{\prime} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
Furthermore, if the general point $[C, p] \in \mathcal{Z}$ consists of a non-hyperelliptic curve C such that $h^{0}\left(C, \mathcal{O}_{C}((g-1) p)=r+1\right.$, then the general point $\left[C^{\prime}, p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right] \in \mathcal{Z}^{\prime}$ parameterizes a non-hyperelliptic curve C^{\prime} such that $h^{0}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\left(\sum_{i=1}^{n} k_{i} p_{i}^{\prime}\right)\right)=r+1$.

[^1]The first step is to assure that it is enoungh to prove the assertion for the locus $\mathcal{G}_{g}^{r}(g-1)$ of subcanonical points.

Proposition (Reduction to the case $k=(g-1)$)

Assume that there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(g-1)$ having expected dimension. Then for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, there exists an irreducible component $\mathcal{Z}^{\prime} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
Furthermore, if the general point $[C, p] \in \mathcal{Z}$ consists of a non-hyperelliptic curve C such that $h^{0}\left(C, \mathcal{O}_{C}((g-1) p)=r+1\right.$, then the general point $\left[C^{\prime}, p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right] \in \mathcal{Z}^{\prime}$ parameterizes a non-hyperelliptic curve C^{\prime} such that $h^{0}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\left(\sum_{i=1}^{n} k_{i} p_{i}^{\prime}\right)\right)=r+1$.

The argument of the proof is similar to the one used to achieve the bound.
Roughly speaking, the result depends on the fact that each irreducible component of the subcanonical locus $\mathcal{G}_{g}^{r}(g-1)$ may be thought as a degeneration of any $\mathcal{G}_{g}^{r}(\underline{k})$.
In the light of the Proposition, the assertion of the theorem for low
values of r follows from known results on subcanonical points.

The first step is to assure that it is enoungh to prove the assertion for the locus $\mathcal{G}_{g}^{r}(g-1)$ of subcanonical points.

Proposition (Reduction to the case $\underline{k}=(g-1)$)

Assume that there exists an irreducible component $\mathcal{Z} \subset \mathcal{G}_{g}^{r}(g-1)$ having expected dimension. Then for any partition $\underline{k}=\left(k_{1}, \ldots, k_{n}\right)$ of $g-1$, there exists an irreducible component $\mathcal{Z}^{\prime} \subset \mathcal{G}_{g}^{r}(\underline{k})$ having expected dimension.
Furthermore, if the general point $[C, p] \in \mathcal{Z}$ consists of a non-hyperelliptic curve C such that $h^{0}\left(C, \mathcal{O}_{C}((g-1) p)=r+1\right.$, then the general point $\left[C^{\prime}, p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right] \in \mathcal{Z}^{\prime}$ parameterizes a non-hyperelliptic curve C^{\prime} such that $h^{0}\left(C^{\prime}, \mathcal{O}_{C^{\prime}}\left(\sum_{i=1}^{n} k_{i} p_{i}^{\prime}\right)\right)=r+1$.

The argument of the proof is similar to the one used to achieve the bound.
Roughly speaking, the result depends on the fact that each irreducible component of the subcanonical locus $\mathcal{G}_{g}^{r}(g-1)$ may be thought as a degeneration of any $\mathcal{G}_{g}^{r}(\underline{k})$.
In the light of the Proposition, the assertion of the theorem for low values of r follows from known results on subcanonical points.

The second step is to show that for any $r \geq 2$, it suffices to prove the assertion for $g=g(r)$.

Theorem (B., Pirola - 2015)

Let $r \geq 2$ and assume that there exists an integer $g(r)$ such that $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ admits an irreducible component $\mathcal{Z}_{g(r)}$ having expected dimension.
Then for any $g \geq g(r)$, there exists an irreducible component \mathcal{Z}_{g} of $\mathcal{G}_{g}^{r}(g-1)$ having expected dimension, as well.

In order to prove this result, we apply Eisenbud-Harris' theory of limit linear series in the setting of Cornalba's compactification $\overline{\mathcal{S}}_{g}$ of the moduli space of spin curves, and we extend the notion of 'subcanonical point' in these terms.
Since $\operatorname{dim} \mathcal{Z}_{g}=2 g-1-\frac{r(r-1)}{2}<2 g-1=\operatorname{dim} \mathcal{G}_{g}^{\text {hyp }}$, the general point of \mathcal{Z}_{g} does not consists of a hyperelliptic curve.

The second step is to show that for any $r \geq 2$, it suffices to prove the assertion for $g=g(r)$.

Theorem (B., Pirola - 2015)

Let $r \geq 2$ and assume that there exists an integer $g(r)$ such that $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ admits an irreducible component $\mathcal{Z}_{g(r)}$ having expected dimension.
Then for any $g \geq g(r)$, there exists an irreducible component \mathcal{Z}_{g} of $\mathcal{G}_{g}^{r}(g-1)$ having expected dimension, as well.
Furthermore, if the general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies $h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$, then $h^{0}\left(C^{\prime}, O_{C^{\prime}}\left((g-1) p^{\prime}\right)\right)=r+1$ for general $\left[C^{\prime}, p^{\prime}\right] \in \mathcal{Z}_{g}$.

In order to prove this result, we apply Eisenbud-Harris' theory of limit linear series in the setting of Cornalba's compactification $\overline{\mathcal{S}}_{g}$ of the moduli space of spin curves, and we extend the notion of 'subcanonical point' in these terms.

The second step is to show that for any $r \geq 2$, it suffices to prove the assertion for $g=g(r)$.

Theorem (B., Pirola - 2015)

Let $r \geq 2$ and assume that there exists an integer $g(r)$ such that $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ admits an irreducible component $\mathcal{Z}_{g(r)}$ having expected dimension.
Then for any $g \geq g(r)$, there exists an irreducible component \mathcal{Z}_{g} of $\mathcal{G}_{g}^{r}(g-1)$ having expected dimension, as well.
Furthermore, if the general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies $h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$, then $h^{0}\left(C^{\prime}, O_{C^{\prime}}\left((g-1) p^{\prime}\right)\right)=r+1$ for general $\left[C^{\prime}, p^{\prime}\right] \in \mathcal{Z}_{g}$.

In order to prove this result, we apply Eisenbud-Harris' theory of limit linear series in the setting of Cornalba's compactification $\overline{\mathcal{S}}_{g}$ of the moduli space of spin curves, and we extend the notion of 'subcanonical point' in these terms.
of \mathcal{Z}_{g} does not consists of a hyperelliptic curve.

The second step is to show that for any $r \geq 2$, it suffices to prove the assertion for $g=g(r)$.

Theorem (B., Pirola - 2015)

Let $r \geq 2$ and assume that there exists an integer $g(r)$ such that $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ admits an irreducible component $\mathcal{Z}_{g(r)}$ having expected dimension.
Then for any $g \geq g(r)$, there exists an irreducible component \mathcal{Z}_{g} of $\mathcal{G}_{g}^{r}(g-1)$ having expected dimension, as well.
Furthermore, if the general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies $h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$, then $h^{0}\left(C^{\prime}, O_{C^{\prime}}\left((g-1) p^{\prime}\right)\right)=r+1$ for general $\left[C^{\prime}, p^{\prime}\right] \in \mathcal{Z}_{g}$.

In order to prove this result, we apply Eisenbud-Harris' theory of limit linear series in the setting of Cornalba's compactification $\overline{\mathcal{S}}_{g}$ of the moduli space of spin curves, and we extend the notion of 'subcanonical point' in these terms.
Since $\operatorname{dim} \mathcal{Z}_{g}=2 g-1-\frac{r(r-1)}{2}<2 g-1=\operatorname{dim} \mathcal{G}_{g}^{\text {hyp }}$, the general point of \mathcal{Z}_{g} does not consists of a hyperelliptic curve.

Then the last result to prove is the following.

Proposition (Existence of base cases)

For any $r \geq 2$, there exists an irreducible component $\mathcal{Z}_{g(r)}$ of $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ having expected dimension $2 g(r)-1-\frac{r(r-1)}{2}$, and such that its general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies $h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$.

Idea of the Proof. Let Hilb ${ }_{g(r), g(r)-1}^{r}$ be the Hilbert scheme of curves $C \subset \mathbb{P}^{r}$ having arithmetic genus $p_{a}(C)=g(r)$, degree $\operatorname{deg} C=g(r)-1$, and at most nodal singularities.
For any $r \geq 2$, there exists an irreducible component W^{r} of Hilb ${ }_{g(r), g(r)-1}^{r}$, such that any smooth curve parameterized over W^{r} is a linearly normal curve $C \subset \mathbb{P}^{r}$, and $L:=\mathcal{O}_{C}(1)$ is a thetacharacteristic, with $h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$. We denote by W_{sm}^{r} the non-empty open subset of W^{r} described by smooth curves
The locus $W_{s m}^{r}$ dominates an irreducible component of $\mathcal{M r}_{g}^{r}$ having expected dimension, under the natural modular map $W_{\mathrm{sm}}^{r} \longrightarrow \mathcal{M}_{g}$

Then the last result to prove is the following.

Proposition (Existence of base cases)

For any $r \geq 2$, there exists an irreducible component $\mathcal{Z}_{g(r)}$ of $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ having expected dimension $2 g(r)-1-\frac{r(r-1)}{2}$, and such that its general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies
$h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$.

Idea of the Proof. Let $\operatorname{Hilb}_{g(r), g(r)-1}^{r}$ be the Hilbert scheme of curves $C \subset \mathbb{P}^{r}$ having arithmetic genus $p_{a}(C)=g(r)$, degree $\operatorname{deg} C=g(r)-1$, and at most nodal singularities.

Then the last result to prove is the following.

Proposition (Existence of base cases)

For any $r \geq 2$, there exists an irreducible component $\mathcal{Z}_{g(r)}$ of $\mathcal{G}_{g(r)}^{r}(g(r)-1)$ having expected dimension $2 g(r)-1-\frac{r(r-1)}{2}$, and such that its general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies
$h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$.

Idea of the Proof. Let $\operatorname{Hilb}_{g(r), g(r)-1}^{r}$ be the Hilbert scheme of curves $C \subset \mathbb{P}^{r}$ having arithmetic genus $p_{a}(C)=g(r)$, degree $\operatorname{deg} C=g(r)-1$, and at most nodal singularities.

For any $r \geq 2$, there exists an irreducible component W^{r} of Hilb $_{g(r), g(r)-1}^{r}$, such that any smooth curve parameterized over W^{r} is a linearly normal curve $C \subset \mathbb{P}^{r}$, and $L:=\mathcal{O}_{C}(1)$ is a thetacharacteristic, with $h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$.
smooth curves.
The locus TVr dominates an irreducible component of M_{q}^{r} having expected dimension, under the natural modular map $W_{s m}^{r} \rightarrow \mathcal{M g}_{g}$

Then the last result to prove is the following.

Proposition (Existence of base cases)

For any $r \geq 2$, there exists an irreducible component $\mathcal{Z}_{g(r)}$ of
$\mathcal{G}_{g(r)}^{r}(g(r)-1)$ having expected dimension $2 g(r)-1-\frac{r(r-1)}{2}$, and such
that its general point $[C, p] \in \mathcal{Z}_{g(r)}$ satisfies
$h^{0}\left(C, O_{C}((g(r)-1) p)\right)=r+1$.

Idea of the Proof. Let $\operatorname{Hilb}_{g(r), g(r)-1}^{r}$ be the Hilbert scheme of curves $C \subset \mathbb{P}^{r}$ having arithmetic genus $p_{a}(C)=g(r)$, degree $\operatorname{deg} C=g(r)-1$, and at most nodal singularities.

For any $r \geq 2$, there exists an irreducible component W^{r} of Hilb $_{g(r), g(r)-1}^{r}$, such that any smooth curve parameterized over W^{r} is a linearly normal curve $C \subset \mathbb{P}^{r}$, and $L:=\mathcal{O}_{C}(1)$ is a thetacharacteristic, with $h^{0}(C, L) \geq r+1$ and $h^{0}(C, L) \equiv r+1(\bmod 2)$.
We denote by W_{sm}^{r} the non-empty open subset of W^{r} described by smooth curves.
The locus W_{sm}^{r} dominates an irreducible component of \mathcal{M}_{g}^{r} having expected dimension, under the natural modular map $W_{\mathrm{sm}}^{r} \longrightarrow \mathcal{M}_{g}$.

Given $[C] \in W_{\mathrm{sm}}^{r}$ and a point $p \in C$, we have that

$$
\mathcal{O}_{C}((g(r)-1) p) \cong \mathcal{O}_{C}(1) \Longleftrightarrow \quad \begin{aligned}
& \exists \text { a hyperplane } M \subset \mathbb{P}^{r}: \\
& \operatorname{mult}_{p}(C, M)=g(r)-1
\end{aligned}
$$

In this case, $p \in C$ is a subcanonical point and $[C, p] \in \mathcal{G}_{g(r)}^{r}(g(r)-1)$.
Then we extend in this terms the notion of 'subcanonical point' to each curve parameterized by W^{r}.

Definition

\square
Moreover, fixing a hyperplane $M \subset \mathbb{P}^{r}$, we define the locus $Q^{r}(M):=\left\{[C] \in W^{r} \mid \exists p \in M\right.$ such that mult $\left.(C, M)=g^{\prime}(r)-1\right\}$

Given $[C] \in W_{\mathrm{sm}}^{r}$ and a point $p \in C$, we have that

$$
\mathcal{O}_{C}((g(r)-1) p) \cong \mathcal{O}_{C}(1) \Longleftrightarrow \quad \begin{aligned}
& \exists \text { a hyperplane } M \subset \mathbb{P}^{r}: \\
& \operatorname{mult}_{p}(C, M)=g(r)-1
\end{aligned}
$$

In this case, $p \in C$ is a subcanonical point and $[C, p] \in \mathcal{G}_{g(r)}^{r}(g(r)-1)$.
Then we extend in this terms the notion of 'subcanonical point' to each curve parameterized by W^{r}.

Definition

Given $[C] \in W^{r}$ and a point $p \in C$, we say that p is a limit subcanonical point if there exists a hyperplane $M \subset \mathbb{P}^{r}$ cutting out on C a 0 -dimensional scheme of length $g(r)-1$ supported at p, i.e.

$$
\operatorname{mult}_{p}(C, M)=g(r)-1
$$

Moreover, fixing a hyperplane $M \subset \mathbb{P}^{r}$, we define the locus
\square

Given $[C] \in W_{\mathrm{sm}}^{r}$ and a point $p \in C$, we have that

$$
\mathcal{O}_{C}((g(r)-1) p) \cong \mathcal{O}_{C}(1) \Longleftrightarrow \begin{aligned}
& \exists \text { a hyperplane } M \subset \mathbb{P}^{r}: \\
& \operatorname{mult}_{p}(C, M)=g(r)-1
\end{aligned}
$$

In this case, $p \in C$ is a subcanonical point and $[C, p] \in \mathcal{G}_{g(r)}^{r}(g(r)-1)$.
Then we extend in this terms the notion of 'subcanonical point' to each curve parameterized by W^{r}.

Definition

Given $[C] \in W^{r}$ and a point $p \in C$, we say that p is a limit subcanonical point if there exists a hyperplane $M \subset \mathbb{P}^{r}$ cutting out on C a 0 -dimensional scheme of length $g(r)-1$ supported at p, i.e.

$$
\operatorname{mult}_{p}(C, M)=g(r)-1
$$

Moreover, fixing a hyperplane $M \subset \mathbb{P}^{r}$, we define the locus

$$
Q^{r}(M):=\left\{[C] \in W^{r} \mid \exists p \in M \text { such that } \operatorname{mult}_{p}(C, M)=g(r)-1\right\} .
$$

of curves with a limit subcanonical point cut out by M.

We want to prove that for any $r \geq 2$, and for any hyperplane $M \subset \mathbb{P}^{r}$, there exists an irreducible component $Z_{g(r)}$ of $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ having dimension

$$
\operatorname{dim} Z_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r .
$$

Indeed, if such a component exists, the image of the modular map
(where p is the point cut out by M on C) is an irreducible component of $\mathcal{Z}_{g(r)} \subset \mathcal{G}_{g}^{r}$ of dimension $\operatorname{dim} \mathcal{Z}_{g(r)}=2 g(r)-1-\frac{r(r-1)}{2}$. The example of plane quintic curves assures that $Z_{g(r)}$ does exist when $r=2$.

We want to prove that for any $r \geq 2$, and for any hyperplane $M \subset \mathbb{P}^{r}$, there exists an irreducible component $Z_{g(r)}$ of $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ having dimension

$$
\operatorname{dim} Z_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r .
$$

Indeed, if such a component exists, the image of the modular map

$$
\begin{aligned}
& \mu:
\end{aligned} \begin{array}{lll}
Z_{g(r)} & \longrightarrow & \mathcal{M}_{g, 1} \\
{[C]} & \longmapsto & \longmapsto C, p]
\end{array}
$$

(where p is the point cut out by M on C) is an irreducible component of $\mathcal{Z}_{g(r)} \subset \mathcal{G}_{g}^{r}$ of dimension $\operatorname{dim} \mathcal{Z}_{g(r)}=2 g(r)-1-\frac{r(r-1)}{2}$.
The example of plane quintic curves assures that $Z_{g(r)}$ does exist when $r=2$.

We want to prove that for any $r \geq 2$, and for any hyperplane $M \subset \mathbb{P}^{r}$, there exists an irreducible component $Z_{g(r)}$ of $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ having dimension

$$
\operatorname{dim} Z_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r
$$

Indeed, if such a component exists, the image of the modular map

$$
\begin{aligned}
& \mu:
\end{aligned} \begin{array}{lll}
Z_{g(r)} & \longrightarrow & \mathcal{M}_{g, 1} \\
{[C]} & \longmapsto & \longmapsto C, p]
\end{array}
$$

(where p is the point cut out by M on C) is an irreducible component of $\mathcal{Z}_{g(r)} \subset \mathcal{G}_{g}^{r}$ of dimension $\operatorname{dim} \mathcal{Z}_{g(r)}=2 g(r)-1-\frac{r(r-1)}{2}$.
The example of plane quintic curves assures that $Z_{g(r)}$ does exist when $r=2$.

Then we argue by induction on r, and we assume that $Z_{g(r-1)}$ exists.

For any $r \geq 3, W^{r}$ admits a divisorial component W_{h}^{r}, whose general point is a nodal reducible curve $X=C \cup E$ such that

- C is contained in a hyperplane $H \cong \mathbb{P}^{r-1}$, with $[C] \in W_{\mathrm{sm}}^{r-1}$;
- E is an elliptic normal curve of degree $h:=g(r)-g(r-1)$ into a ($h-1$)-plane $H^{\prime} \subset \mathbb{P}^{r}$;
- C and E meet transversally at h points lying the $(h-2)$-plane $H \cap H^{\prime} \subset \mathbb{P}^{r}$.

Then $[X$
\qquad $\exists p \in X: \operatorname{mult}_{p}(X, M)=g(r)-1$, for some hyperplane $M \subset \mathbb{P}^{r}$

In particular,

- $E \subset H^{\prime}$ has an inflection point of order h at p, whose osculating ($h-2$)-plane is $M \cap H^{\prime}$.

For any $r \geq 3, W^{r}$ admits a divisorial component W_{h}^{r}, whose general point is a nodal reducible curve $X=C \cup E$ such that

- C is contained in a hyperplane $H \cong \mathbb{P}^{r-1}$, with $[C] \in W_{\mathrm{sm}}^{r-1}$;
- E is an elliptic normal curve of degree $h:=g(r)-g(r-1)$ into a $(h-1)$-plane $H^{\prime} \subset \mathbb{P}^{r}$;
- C and E meet transversally at h points lying the $(h-2)$-plane $H \cap H^{\prime} \subset \mathbb{P}^{r}$.

Then $[X] \in W_{h}^{r} \cap Q^{r}(M)$ for some hyperplane $M \subset \mathbb{P}^{r}$
$\Longleftrightarrow \quad \exists p \in X: \operatorname{mult}_{p}(X, M)=g(r)-1$
$\Longleftrightarrow \quad p \in C \cap E, \operatorname{mult}_{p}(C, M)=g(r-1)-1$ and $\operatorname{mult}_{p}(E, M)=h$.
In particular,

- $C \subset H$ has a subcanonical point at p, so that $[C] \in Q^{r-1}(M \cap H)$;
- $E \subset H^{\prime}$ has an inflection point of order h at p, whose osculating ($h-2$)-plane is $M \cap H^{\prime}$.

Conversely, for any $[C] \in Z_{g(r-1)}$, we can embed $C \subset \mathbb{P}^{r-1}$ into a hyperplane $H \subset \mathbb{P}^{r}$, and construct curves $X=C \cup E$ such that $[X] \in W_{h}^{r} \cap Q^{r}(M)$.
By means of this construction, we obtain an irreducible component $Y_{g(r)}$ of $W_{h}^{r} \cap Q^{r}(M)$ having dimension

Using Ran's description of Hilbert schemes of points on nodal curves, and arguing as in the proof of Theorem 1, we deduce that each irreducible component of $Q^{r}(M)$ has dimension at least $\operatorname{dim} Y_{g(r)}+1$.
Hence $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ is non-empty, and it admits an irreducible component $Z_{g(r)}$ such that $Y_{g(r)} \subset \bar{Z}_{g(r)} \cap W_{h}^{r}$.
In particular, since W_{h}^{r} is a divisor in W^{r}, we deduce that
$\operatorname{dim} Z_{g(r)}=\operatorname{dim} Y_{g(r)}+1$, as wanted.

Conversely, for any $[C] \in Z_{g(r-1)}$, we can embed $C \subset \mathbb{P}^{r-1}$ into a hyperplane $H \subset \mathbb{P}^{r}$, and construct curves $X=C \cup E$ such that $[X] \in W_{h}^{r} \cap Q^{r}(M)$.
By means of this construction, we obtain an irreducible component $Y_{g(r)}$ of $W_{h}^{r} \cap Q^{r}(M)$ having dimension

$$
\operatorname{dim} Y_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r-1
$$

Using Ran's description of Hilbert schemes of points on nodal curves, and arguing as in the proof of Theorem 1, we deduce that each irreducible component of $Q^{\prime}(M)$ has dimension at least dim $Y_{g(r)}+1$. Hence $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ is non-empty, and it admits an irreducible component $Z_{g(r)}$ such that $Y_{g(r)} \subset \bar{Z}_{g(r)} \cap W_{h}^{r}$.
In particular, since W_{h}^{r} is a divisor in W^{r}, we deduce that $\operatorname{dim} Z_{g(r)}=\operatorname{dim} Y_{g(r)}+1$, as wanted.

Conversely, for any $[C] \in Z_{g(r-1)}$, we can embed $C \subset \mathbb{P}^{r-1}$ into a hyperplane $H \subset \mathbb{P}^{r}$, and construct curves $X=C \cup E$ such that $[X] \in W_{h}^{r} \cap Q^{r}(M)$.
By means of this construction, we obtain an irreducible component $Y_{g(r)}$ of $W_{h}^{r} \cap Q^{r}(M)$ having dimension

$$
\operatorname{dim} Y_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r-1
$$

Using Ran's description of Hilbert schemes of points on nodal curves, and arguing as in the proof of Theorem 1, we deduce that each irreducible component of $Q^{r}(M)$ has dimension at least $\operatorname{dim} Y_{g(r)}+1$.
Hence $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ is non-empty, and it admits an irreducible component $Z_{g(r)}$ such that $Y_{g(r)} \subset \bar{Z}_{g(r)} \cap W_{h}^{r}$.

In particular, since W_{h}^{r} is a divisor in W^{r}, we deduce that $\operatorname{dim} Z_{g(r)}=\operatorname{dim} Y_{g(r)}+1$, as wanted.

Conversely, for any $[C] \in Z_{g(r-1)}$, we can embed $C \subset \mathbb{P}^{r-1}$ into a hyperplane $H \subset \mathbb{P}^{r}$, and construct curves $X=C \cup E$ such that $[X] \in W_{h}^{r} \cap Q^{r}(M)$.
By means of this construction, we obtain an irreducible component $Y_{g(r)}$ of $W_{h}^{r} \cap Q^{r}(M)$ having dimension

$$
\operatorname{dim} Y_{g(r)}=2 g(r)-2-\frac{r(r-1)}{2}+(r+1)^{2}-r-1
$$

Using Ran's description of Hilbert schemes of points on nodal curves, and arguing as in the proof of Theorem 1, we deduce that each irreducible component of $Q^{r}(M)$ has dimension at least $\operatorname{dim} Y_{g(r)}+1$.
Hence $Q^{r}(M) \cap W_{\mathrm{sm}}^{r}$ is non-empty, and it admits an irreducible component $Z_{g(r)}$ such that $Y_{g(r)} \subset \bar{Z}_{g(r)} \cap W_{h}^{r}$.
In particular, since W_{h}^{r} is a divisor in W^{r}, we deduce that $\operatorname{dim} Z_{g(r)}=\operatorname{dim} Y_{g(r)}+1$, as wanted.

[^0]: The argument of the proof is similar to the one used to achieve the bound.

 Roughly speaking, the result depends on the fact that each irreducible component of the subcanonical locus $\mathcal{G}_{g}^{r}(g-1)$ may be thought as a degeneration of any $\mathcal{G}_{g}^{r}(\underline{k})$.
 In the light of the Proposition, the assertion of the theorem for low values of r follows from known results on subcanonical points.

[^1]: The argument of the proof is similar to the one used to achieve the bound.
 Roughly speaking, the result depends on the fact that each irreducible component of the subcanonical locus $\mathcal{G}_{g}^{r}(g-1)$ may be thought as a degeneration of any $\mathcal{G}_{g}^{r}(\underline{k})$.
 In the light of the Proposition, the assertion of the theorem for low
 values of r follows from known results on subcanonical points.

