Youngook Choi

(Yeungnam University)

Hilbert schemes of smooth curves

Let $\mathcal{M}_{g, d}^{r}$ be the sublocus of \mathcal{M}_{g} whose points correspond to smooth curves possessing g_{d}^{r} and let $\mathcal{I}_{d, g, r}^{\prime}$ be the union of the components of the Hilbert scheme whose general points represent smooth irreducible complex curves of degree d and genus g in \mathbb{P}^{r}.

The aim of this talk is twofolds. First, to state the geometry of $\mathcal{I}_{d, g, r}^{\prime}$ when the Brill-Noether number $\rho(d, g, r):=g-(r+1)(g-d+r)=-1$. Second, to show the existence of an additional component of $\mathcal{I}_{d, g, r}^{\prime}$ whose general elements are double covers of curves of positive genus for some d, g, r with $\rho(d, g, r) \geq 0$.

If the Brill-Noether number $\rho(g, r, d)=-1$, it is known that $\mathcal{M}_{g, d}^{r}$ is irreducible. We prove that if g is odd, and $r, s, d, e(r \neq s)$ are positive integers satisfying $\rho(g, r, d)=\rho(g, s, e)=-1$ and $e \neq 2 g-2-d$, then the supports of $\mathcal{M}_{g, d}^{r}$ and $\mathcal{M}_{g, e}^{s}$ are distinct. As an application, we show that in case $d>g$ there is a unique irreducible component $\mathcal{I}_{d, g, r}^{\prime}$ dominating $\mathcal{M}_{g, d}^{r}$ and that a general member $\mathcal{I}_{d, g, r}^{\prime}$ has no $(d-e)$-secant $(r-s-1)$-plane for $\rho(g, s, e)=-1, e \neq 2 g-2-d$.

On the other hand, Severi claimed that $\mathcal{I}_{d, g, r}^{\prime}$ is irreducible if $d \geq g+r$. His conjecture turned out to be correct for $r=3$ and 4 , while for $r \geq 6$ there have been found counter examples using families of m-sheeted covers of rational curves with $m \geq 3$. In this talk, we show the existence of an additional component of $\mathcal{I}_{d, g, r}^{\prime}$ whose general elements are double covers of curves of positive genus.

