Youngook Choi

(Yeungnam University)

Hilbert schemes of smooth curves

Let $\mathcal{M}_{g,d}^r$ be the sublocus of \mathcal{M}_g whose points correspond to smooth curves possessing g_d^r and let $\mathcal{I}_{d,g,r}'$ be the union of the components of the Hilbert scheme whose general points represent smooth irreducible complex curves of degree d and genus g in \mathbb{P}^r .

The aim of this talk is twofolds. First, to state the geometry of $\mathcal{I}'_{d,g,r}$ when the Brill-Noether number $\rho(d,g,r) := g - (r+1)(g-d+r) = -1$. Second, to show the existence of an additional component of $\mathcal{I}'_{d,g,r}$ whose general elements are double covers of curves of positive genus for some d, g, r with $\rho(d, g, r) \ge 0$.

If the Brill-Noether number $\rho(g, r, d) = -1$, it is known that $\mathcal{M}_{g,d}^r$ is irreducible. We prove that if g is odd, and $r, s, d, e \ (r \neq s)$ are positive integers satisfying $\rho(g, r, d) = \rho(g, s, e) = -1$ and $e \neq 2g - 2 - d$, then the supports of $\mathcal{M}_{g,d}^r$ and $\mathcal{M}_{g,e}^s$ are distinct. As an application, we show that in case d > g there is a unique irreducible component $\mathcal{I}_{d,g,r}'$ dominating $\mathcal{M}_{g,d}^r$ and that a general member $\mathcal{I}_{d,g,r}'$ has no (d - e)-secant (r - s - 1)-plane for $\rho(g, s, e) = -1, e \neq 2g - 2 - d$. On the other hand, Severi claimed that $\mathcal{I}_{d,g,r}'$ is irreducible if $d \geq g + r$. His

On the other hand, Severi claimed that $\mathcal{I}'_{d,g,r}$ is irreducible if $d \geq g + r$. His conjecture turned out to be correct for r = 3 and 4, while for $r \geq 6$ there have been found counter examples using families of *m*-sheeted covers of rational curves with $m \geq 3$. In this talk, we show the existence of an additional component of $\mathcal{I}'_{d,g,r}$ whose general elements are double covers of curves of positive genus.