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Introduction

Definition
1 Let V ⊂ (C∗)n be a complex algebraic hypersurface in the

complex torus (C∗)n, where C∗ = C \ {0} and n ∈ Z≥2.

2 Let Vf is the zero locus of a polynomial:

f(z) =
∑

α∈supp(f)
aαzα, zα = zα1

1 zα2
2 . . . zαn

n (1)

where aα ∈ C∗ and supp(f) is a finite subset of Zn, called the
support of the polynomial f, with convex hull, in Rn, the
Newton polytope ∆f of f.
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Introduction

Definition
1 The amoeba Af of an algebraic hypersurface Vf ⊂ (C∗)n is by

definition (M. Gelfand, M.M. Kapranov and A.V. Zelevinsky,
1994) the image of Vf under the map :

Log : (C∗)n −→ Rn

(z1, . . . , zn) 7−→ (log |z1|, . . . , log |zn|).
(2)

2 Amoeba of Vf is defined by Log(Vf) =: Af.
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Introduction

Definition
1 Let K be the field of the Puiseux series with real power, which

is the field of the series a(t) =
∑
j∈Aa

ξjtj with ξj ∈ C∗ and Aa ⊂ R

is a well-ordered set (which means that any subset has a
smallest element).

2 It is well known that the field K is algebraically closed and of
characteristic zero, and it has a non-Archimedean valuation
val(a) = −minAa:{

val(ab) = val(a) + val(b)
val(a+ b) ≤ max{val(a), val(b)},

(3)

and we put val(0) = −∞.
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Introduction

Definition
1 Let f ∈ K[z1 . . . , zn] be a polynomial as in (1) but the coefficients

and the components of z are in K.

2 If < , > denotes the scalar product in Rn, then we have the
following piecewise affine linear convex function

ftrop = max
α∈supp(f)

{val(aα)+ < α, x >},

It is called as the tropical polynomial associated to f.
3 Legendre transform of the function

ν : supp(f)→ R

is defined by ν(α) = −minAaα
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Introduction

Definition
The tropical hypersurface Γf is the set of points in Rn where the
tropical polynomial ftrop is not smooth called the corner locus of
ftrop.

Theorem (Kapranov, 2000)
1 The tropical hypersurface Γf defined by the tropical polynomial

ftrop is the subset of Rn image under the valuation map of the
algebraic hypersurface defined by f.

2 Γf is also called the non-Archimedean amoeba of the zero
locus of f in (K∗)n.

Γf = Val(Vf) = Val(Vf)(∵ Val is surjective)
Val : (K∗)n −→ Rn; (z1, · · · , zn) 7→ (−val(z1), · · · ,−val(zn))
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Introduction

1 For h ∈ R>0, define the self diffeomorphism Hh of (C∗)n by :

Hh : (C∗)n −→ (C∗)n

(z1, . . . , zn) 7−→
(
| z1 |h

z1
| z1 |

, . . . , | zn |h
zn
| zn |

)
.

2 New complex structure on (C∗)n s.t. Jh = (dHh)
−1 ◦ J ◦ (dHh)

where J: standard complex structure.

3 A Jh-holomorphic hypersurface Vh is a hypersurface which is
holomorphic with respect to the Jh complex structure on (C∗)n.

4 Vh = Hh(V) where V ⊂ (C∗)n is an holomorphic hypersurface
for the standard complex structure J on (C∗)n.

5 lim
h→0

Jh = J∞ is not a complex structure, now we call this as
phase tropical structure.
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Introduction

1 Hausdorff distance between two closed subsets A, B of a
metric space (E, d) is defined by:

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A,b)}.

Take E = Rn × (S1)n with the distance defined as product of
the Euclidean metric on Rn & the flat metric on (S1)n.

2 A phase tropical hypersurface V∞ ⊂ (C∗)n is the limit (with
respect to the Hausdorff metric on compact sets in (C∗)n) of a
sequence of a Jh-holomorphic hypersurfaces Vh ⊂ (C∗)n when
h tends to zero.

V∞ = lim
h→0

Vh
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Introduction

1 Let a =
∑

j∈Aa ξjt
j ∈ K∗: Puiseux series, ξj ∈ C∗ and Aa ⊂ R is a

well-ordered set with smallest element. Then we have a
non-Archimedean valuation on K∗ s.t. val(a) = −minAa.

2 Complexify the valuation map as follows

w : K∗ −→ C∗

a 7−→ w(a) = eval(a)+i arg(ξ− val(a))

Arg : K∗ −→ S1

a =
∑

j∈Aa ξjt
j 7−→ ei arg(ξ− val(a))

3 Applying this map coordinatewise, we get W : (K∗)n → (C∗)n

(z1, · · · , zn) 7→
(
eval(z1)+i arg(ξ− val(z1)), · · · ,eval(zn)+i arg(ξ− val(zn))

)
= (w(z1), · · · ,w(zn))
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Introduction

Theorem (Mikhalkin, 2002)
The set V∞ ⊂ (C∗)n is a phase tropical hypersurface
⇔ ∃ an algebraic hypersurface VK ⊂ (K∗)n over K such that

W(VK) = V∞,

where W(VK) is the closure of W(VK) in (C∗)n ≈ Rn × (S1)n as a
Riemannian manifold with metric defined by the standard
Euclidean metric of Rn and the standard flat metric of the torus.
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Main Theorem

Main theorem

Theorem (Y.R. Kim and M. Nisse, 2015)
Let V ⊂ (C∗)n be a smooth complex hypersurface and denote by V∞
the phase tropical hypersurface associated to V (i.e., the limit of
Hh(Vh) when h goes to zero). Then

1 For a sufficently small h we have Vh is homeomorphic to V∞.
2 V∞ has a natural smooth symplectic structure.
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Example Phase tropical line

Example (Phase tropical line)
1 LK := {(z,w) ∈ (K∗)2 | z+w+ 1 = 0}
2 V∞ = W(LK) ⊂ (C∗)2

3 Γ := Log(V∞) := max{x, y, 0}

V∞
Log

V∞

(0, 0)

Γ
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Example Phase tropical line

Example (Phase tropical line - continued)
1 (x, 0) ∈ Γ, x < 0

2 Arg(Log−1(x, 0) ∩ V∞)?

3 Let us parametrize the lines!

4


z(t) = t−xeiα 0 < t < 1

w(t) = −1− t−xeiα

α = arg(z) : fix, βt = arg(w(t))
5 x < 0, lim

x→0
t−x = 0 ⇒ lim

t→0
βt = π.

6 Arg(Log−1(x, 0) ∩ V∞) = {(eiα,eiπ) | 0 ≤ α ≤ 2π} ≃ S1
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Example Phase tropical line

Example (Phase tropical line - continued)
1 (0, y) ∈ Γ, y < 0

2 Arg(Log−1(0, y) ∩ V∞) ≃ S1

3 (x, x) ∈ Γ, x > 0

4 Arg(Log−1(x, x) ∩ V∞) ≃ S1

5 Arg(Log−1(0, 0) ∩ V∞)?
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Example Phase tropical line

Example (Phase tropical line - continued)
1 Arg(Log−1(0, 0) ∩ V∞) =

2 LK := {(z,w) ∈ (K∗)2 | z+w+ 1 = 0} ≃ Lh ≃ CP1\{3 points}
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Example Phase tropical line

V∞
Log

V∞

(0, 0)

Γ

Log
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Example Pair-of-pants

Definition (Pair-of-pants)
1 Let H ⊂ CPn be the union of n+2 generic hyperplanes in CPn.
2 Let U ⊂ CPn be the union of their ϵ-neighborhoods for every

small ϵ > 0.

3 The complement P̄n = CPn\U is a manifold with corners. We
call P̄n the n-dimensional pair-of-pants.

4 We call Pn = CPn\H the n-dimensional open pair-of-pants.

Example
1 P1 = CP1\3 generic hyperplanes in CP1 ≃ CP1\{3 points}
2 P̄1 = CP1\U ≃ a closed disk with 2 holes.
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Example Pair-of-pants

Theorem (Description of the boundary of ∂P̄, Mikhalkin, 2002)

1 ∂P̄ =

n−1∪
j=0

∂jP̄

2 ∂jP̄: (2n− j)-dimensional smooth manifold s.t. each one of its
components is a trivial S1 × · · · × S1︸ ︷︷ ︸ (jth times) fibration over
Pn−j.

3 ∂jP̄n ∩ ∂kP̄n = ∅, if j ̸= k.
4 The closure of ∂jP̄n contains ∂kP̄n for all k ≤ j.
5 The number of connected components of ∂P̄n is

(n+2
j+2

)
.
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Example Pair-of-pants

1 H := {(z1, · · · , zn) ∈ (K∗)n | z1 + · · ·+ zn = 1}
2 H∞
3 n = 2 case. Think of the following picture!

ω1 ω2←→

isometry

reverse the orientation

pair-of-pants
pair-of-pants

4 ω1, ω2 are symplectic forms on each pair-of-pants
5 Get a homeomorphism and a smooth symplectic structure.

Topology are not changed.
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Tropical localization

1 f(z) =
∑

α∈supp(f)
aαzα, zα = zα1

1 zα2
2 . . . zαn

n

2 ∆ its Newton polytope

3 ∆̃ := convexhull{(α, r) ∈ supp(f)× R | r ≥ minAaα}
4 Extend the above function ν:

ν : ∆ −→ R
α 7−→ min{r | (α, r) ∈ ∆̃}.

5 Linearity domains of ν define a convex subdivision
τ = {∆1, . . . ,∆l} of ∆ by taking the linear subsets of the lower
boundary of ∆̃.

6 y =< x, vi > +ri: eq of the hyperplane Qi ⊂ Rn × R containing
the points of coordinates (α, ν(α)) with α ∈ Vert(∆i).
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Tropical localization

1 There is a duality between the subdivision τ and the
subdivision of Rn induced by Γf, where each connected
component of Rn \ Γf is dual to some vertex of τf and each
k-cell of Γf is dual to some (n− k)-cell of τ .

2 Each (n− 1)-cell of Γf is dual to some edge of τ .
3 x ∈ E∗

αβ ⊂ Γf ⇒< α, x > −ν(α) =< β, x > −ν(β)
⇒< α− β, x− vi >= 0.

4 vi is a vertex of Γf dual to some ∆i having Eαβ as edge.
5 suppA = {α1, . . . , αl, αl+1, . . . , αr} ⊂ Zn

A′ = {αl+1, . . . , αr} = Im(ord)
6 ord is the order mapping from the set of complement

components of the amoeba A of V to ∆ ∩ Zn.
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Tropical localization

Theorem (Mikael Passare and Hans Rullgård)
The spine Γ of the amoeba A is given as a non-Archimedean
amoeba defined by the tropical polynomial

ftrop(x) = max
α∈A′
{cα+ < α, x >},

cα = R

(
1

(2πi)n
∫
Log−1(x)

log
∣∣∣∣ f(z)zα

∣∣∣∣ dz1 ∧ . . . ∧ dzn
z1 . . . zn

)
(4)

x ∈ Eα, z = (z1, · · · , zn) ∈ (C∗)n, < , >: scalar product in Rn.

1 The spine of A is defined as the set of points in Rn where the
piecewise affine linear function ftrop is not differentiable, or as
the graph of this function where R is the semi-field
(R;max,+).
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Tropical localization

1 Denote by τ the convex subdivision of ∆ dual to the tropical
variety Γ. Then the set of vertices of τ is precisely the image
of the order mapping (i.e., A′).

2 By duality, this means that the convex subdivision τ =

r∪
i=l+1

∆vi

of ∆ is determined by a piecewise affine linear map ν : ∆ −→ R
so that:
(i) ν|∆vi

is affine linear for each vi,
(ii) if ν|U is affine linear for some open set U ⊂ ∆, then there exists

vi such that U ⊂ ∆vi .
(iii) ν(α) = −cα for any α ∈ Im(ord).
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Tropical localization

Definition (Generalized s-Passare-Rullgård function)
Let s = (s1, . . . , sl) ∈ Rl

+ and νsPR : A −→ R be the function, called
the generalized s-Passare-Rullgård function, is defined by:

νsPR(α) =

{
−cα if α ∈ Im(ord)
< αj,av > +bv + sj if α = αj for j = 1, . . . , l,

where αj ∈ ∆v, ∆v ∈ τ and y =< x,av > +bv is the equation of the
hyperplane in Rn × R containing the points of coordinates (β,−cβ)
with β ∈ Vert(∆v).
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Tropical localization

1 Assume that we have a hypersurface V ⊂ (C∗)n defined by the
polynomial f(z) =

∑
α∈A

aαzα with aα ∈ C∗, A is a finite subset of

Zn and zα = zα1
1 zα2

2 . . . zαn
n .

2 Denote by ∆ the convex hull of A in Rn which is the Newton
polytope of f.

3 Consider now the family of hypersurfaces Vf(t; s) ⊂ (C∗)n defined
by the following family of polynomials :

f(t; s)(z) =
∑
α∈A

ξαtν
s
PR(α)zα, (5)

with ξα = aαeν
s
PR(α).
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Tropical localization

1 ν be the piecewise affine linear map.
2 ∆̃ be the extended polyhedron of ∆ associated to ν, that is the

convex hull of the set {(α,u) ∈ ∆× R |u ≥ ν(α)}.

3 For any ∆vi ∈ τ , let λ(x) =< x,avi > +bvi be the affine linear
map defined on ∆ such that λ|∆vi

= ν|∆vi
where < , > is the

scalar product in Rn, avi = (avi, 1, . . . ,avi,n) ∈ Rn (which is the
coordinates of the vertex of the spine Γ, dual to ∆vi), and bvi is
a real number.

4 s ∈ Rl
+ as above and put ν ′ = ν

(s)
PR − λ and we define the family

of polynomials {f′(t; s)}t∈(0, 1
e ]
by:

f′t(z) =
∑
α∈A

ξαtν
′(α)zα

where ξα ∈ C.
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Tropical localization

1

f′t(z) = t−bv
∑
α∈A

ξαtν
(s)
PR (α)(z1t−avi, 1)α1 . . . (znt−avi, n)αn

= t−bvf(t; s) ◦ Φ−1
∆vi , t

(z)

2 f(t; s) is the polynomial defined in (5)
3

Φ∆vi , t : (C∗)n −→ (C∗)n : diffeomorphism
(z1, . . . , zn) 7−→ (z1tavi, 1 , . . . , zntavi, n).

4 This means that the polynomials f′(t; s) and f(t; s) ◦ Φ−1
∆vi , t

define
the same hypersurface.

5 Vf′(t; s) = Vf(t; s)◦Φ−1
∆vi , t

= Φ∆vi , t(Vf(t; s))
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Tropical localization

1 Let U(vi) be a small ball in Rn with center the vertex of Γ(t; s)
dual to ∆vi where Γ(t; s) is the spine of the amoeba AHt(Vf(t; s) )

where Ht denotes the self diffeomorphism of (C∗)n defined by
Hh with h = − 1

log t and Logt = Log ◦Ht.

2 Let f∆vi
(t; s) be the truncation of f(t; s) to ∆vi , and V∞,∆vi

be the
complex tropical hypersurface with tropical coefficients of
index α ∈ ∆vi (i.e., V∞,∆vi

= lim
t→0

Ht(Vf∆vi
(t; s)

)).

3 Using Kapranov’s theorem, we obtain the following Theorem
called a tropical localization by Mikhalkin.
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Tropical localization

Theorem (Tropical localization, Y.R. Kim and M. Nisse, 2015)
Let s ∈ Rl

+, then for any ε > 0 there exists t0 such that if t ≤ t0 then
the image under

Φ∆vi , t ◦ H
−1
t of Ht(Vf(t; s)) ∩ Log

−1(U(vi))

is contained in the ε-neighborhood of the image under

Φ∆vi , t ◦ H
−1
t

of the complex tropical hypersurface

V∞,∆vi
,

with respect to the product metric in (C∗)n ≈ Rn × (S1)n.
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Tropical localization

Idea of proof:

1 By decomposition of f′t, we obtain:

f′t(z) = t−bv
∑

α∈∆v∩A
ξαtν(α)−<α,av>zα +

∑
α∈A\∆v

ξαtν(α)−<α,av>−bvzα

(6)
2

(C∗)n
Φ∆v,t //

Logt
��

(C∗)n

Logt
��

Rn ϕ∆v // Rn

(7)

3 More words.
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Tropical localization

Theorem (Y.R. Kim and M. Nisse, 2015)
A phase tropical hyperplane H ⊂ (C∗)n is homeomorphic to the
complex projective space CPn−1 minus a tubular neighborhood of
the union H of n+ 1 generic hyperplanes in CPn−1.

Theorem (Y.R. Kim and M. Nisse, 2015)
Let V ⊂ (C∗)n be a smooth complex hypersurface and denote by V∞
the phase tropical hypersurface associated to V (i.e., the limit of
Hh(Vh) when h goes to zero). Then

1 For a sufficently small h we have Vh is homeomorphic to V∞.
2 V∞ has a natural smooth symplectic structure.
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Theorem (Y.R. Kim and M. Nisse, 2015)
Let V ⊂ (C∗)n be a smooth complex hypersurface and denote by V∞
the phase tropical hypersurface associated to V (i.e., the limit of
Hh(Vh) when h goes to zero). Then

1 For a sufficently small h we have Vh is homeomorphic to V∞.
2 V∞ has a natural smooth symplectic structure.
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Grazie!

감사합니다! Thank you very much!
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