Geometry and topology of phase tropical hypersurfaces

Young Rock Kim

Joint work with Mounir Nisse

INdAM Italian-Korean Meeting on Algebraic Geometry Cortona, June 28 - July 04, 2015

HUFS

July 3, 2015

Young Rock Kim (HUFS)

Contents

Introduction

2 Main Theorem

3 Example

- Phase tropical line
- Pair-of-pants

Tropical localization

• Let $V \subset (\mathbb{C}^*)^n$ be a complex algebraic hypersurface in the complex torus $(\mathbb{C}^*)^n$, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{Z}_{\geq 2}$.

- Let $V \subset (\mathbb{C}^*)^n$ be a complex algebraic hypersurface in the complex torus $(\mathbb{C}^*)^n$, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{Z}_{\geq 2}$.
- 2 Let V_f is the zero locus of a polynomial:

$$f(z) = \sum_{\alpha \in \text{supp}(f)} a_{\alpha} z^{\alpha}, \quad z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_n^{\alpha_n}$$
(1)

where $a_{\alpha} \in \mathbb{C}^*$ and supp(f) is a finite subset of \mathbb{Z}^n , called the support of the polynomial f, with convex hull, in \mathbb{R}^n , the Newton polytope Δ_f of f.

● The amoeba \mathscr{A}_{f} of an algebraic hypersurface $V_{f} \subset (\mathbb{C}^{*})^{n}$ is by definition (M. Gelfand, M.M. Kapranov and A.V. Zelevinsky, 1994) the image of V_{f} under the map :

2 Amoeba of V_f is defined by $Log(V_f) =: \mathscr{A}_f$.

• Let \mathbb{K} be the field of the Puiseux series with real power, which is the field of the series $a(t) = \sum \xi_j t^j$ with $\xi_j \in \mathbb{C}^*$ and $A_a \subset \mathbb{R}$

i∈Aa

is a well-ordered set (which means that any subset has a smallest element).

• Let \mathbb{K} be the field of the Puiseux series with real power, which is the field of the series $a(t) = \sum \xi_j t^j$ with $\xi_j \in \mathbb{C}^*$ and $A_a \subset \mathbb{R}$

i∈Aa

is a well-ordered set (which means that any subset has a smallest element).

It is well known that the field K is algebraically closed and of characteristic zero, and it has a non-Archimedean valuation val(a) = − min A_a:

$$\begin{cases} val(ab) = val(a) + val(b) \\ val(a+b) \leq max\{val(a), val(b)\}, \end{cases}$$
 (3)

and we put $val(0) = -\infty$.

• Let $f \in \mathbb{K}[z_1 \dots, z_n]$ be a polynomial as in (1) but the coefficients and the components of z are in \mathbb{K} .

- **()** Let $f \in \mathbb{K}[z_1..., z_n]$ be a polynomial as in (1) but the coefficients and the components of z are in \mathbb{K} .
- If < , > denotes the scalar product in Rⁿ, then we have the following piecewise affine linear convex function

$$\mathsf{f}_{\mathsf{trop}} = \max_{\alpha \in \mathsf{supp}(\mathsf{f})} \{ \mathsf{val}(\mathsf{a}_{\alpha}) + < \alpha, \mathsf{x} > \},$$

It is called as the tropical polynomial associated to f.

- **()** Let $f \in \mathbb{K}[z_1 \dots, z_n]$ be a polynomial as in (1) but the coefficients and the components of z are in \mathbb{K} .
- If < , > denotes the scalar product in Rⁿ, then we have the following piecewise affine linear convex function

$$\mathsf{f}_{\mathsf{trop}} = \max_{\alpha \in \mathsf{supp}(\mathsf{f})} \{ \mathsf{val}(\mathsf{a}_{\alpha}) + < \alpha, \mathsf{x} > \},$$

It is called as the tropical polynomial associated to f.

Legendre transform of the function

 $\nu: \mathrm{supp}(\mathsf{f}) \to \mathbb{R}$

is defined by
$$u(lpha) = -\min \mathsf{A}_{\mathsf{a}_{lpha}}$$

The tropical hypersurface Γ_f is the set of points in \mathbb{R}^n where the tropical polynomial f_{trop} is not smooth called the corner locus of f_{trop} .

The tropical hypersurface Γ_f is the set of points in \mathbb{R}^n where the tropical polynomial f_{trop} is not smooth called the corner locus of f_{trop} .

Theorem (Kapranov, 2000)

- The tropical hypersurface Γ_f defined by the tropical polynomial f_{trop} is the subset of ℝⁿ image under the valuation map of the algebraic hypersurface defined by f.
- Or f is also called the non-Archimedean amoeba of the zero locus of f in (K*)ⁿ.

The tropical hypersurface Γ_f is the set of points in \mathbb{R}^n where the tropical polynomial f_{trop} is not smooth called the corner locus of f_{trop} .

Theorem (Kapranov, 2000)

- The tropical hypersurface Γ_f defined by the tropical polynomial f_{trop} is the subset of ℝⁿ image under the valuation map of the algebraic hypersurface defined by f.
- Or f is also called the non-Archimedean amoeba of the zero locus of f in (K*)ⁿ.

$$\Gamma_{f} = \overline{Val(V_{f})} = Val(V_{f})(\because Val \text{ is surjective})$$

 $\mathsf{Val}: (\mathbb{K}^*)^n \longrightarrow \mathbb{R}^n; \; (z_1, \cdots, z_n) \mapsto (-\mathsf{val}(z_1), \cdots, -\mathsf{val}(z_n))$

 ${\color{black} 0}$ For $h\in \mathbb{R}_{>0},$ define the self diffeomorphism H_h of $(\mathbb{C}^*)^n$ by :

$$\begin{array}{rcl} H_h & : & (\mathbb{C}^*)^n & \longrightarrow & (\mathbb{C}^*)^n \\ & & (z_1,\ldots,z_n) & \longmapsto & \left(\mid z_1 \mid^h \frac{z_1}{\mid z_1 \mid},\ldots,\mid z_n \mid^h \frac{z_n}{\mid z_n \mid}\right). \end{array}$$

New complex structure on $(\mathbb{C}^*)^n$ s.t. $J_h = (dH_h)^{-1} \circ J \circ (dH_h)$ where J: standard complex structure. **(**) For $h \in \mathbb{R}_{>0}$, define the self diffeomorphism H_h of $(\mathbb{C}^*)^n$ by :

$$\begin{array}{rcl} H_h & : & (\mathbb{C}^*)^n & \longrightarrow & (\mathbb{C}^*)^n \\ & & (z_1,\ldots,z_n) & \longmapsto & \left(\mid z_1 \mid^h \frac{z_1}{\mid z_1 \mid},\ldots,\mid z_n \mid^h \frac{z_n}{\mid z_n \mid}\right). \end{array}$$

- 2 New complex structure on $(\mathbb{C}^*)^n$ s.t. $J_h = (dH_h)^{-1} \circ J \circ (dH_h)$ where J: standard complex structure.
- A J_h-holomorphic hypersurface V_h is a hypersurface which is holomorphic with respect to the J_h complex structure on (C^{*})ⁿ.

() For $h \in \mathbb{R}_{>0}$, define the self diffeomorphism H_h of $(\mathbb{C}^*)^n$ by :

$$\begin{array}{rcl} H_h & : & (\mathbb{C}^*)^n & \longrightarrow & (\mathbb{C}^*)^n \\ & & (z_1,\ldots,z_n) & \longmapsto & \left(\mid z_1 \mid^h \frac{z_1}{\mid z_1 \mid},\ldots,\mid z_n \mid^h \frac{z_n}{\mid z_n \mid}\right). \end{array}$$

- ② New complex structure on $(\mathbb{C}^*)^n$ s.t. $J_h = (dH_h)^{-1} \circ J \circ (dH_h)$ where J: standard complex structure.
- A J_h-holomorphic hypersurface V_h is a hypersurface which is holomorphic with respect to the J_h complex structure on (C^{*})ⁿ.

() For $h \in \mathbb{R}_{>0}$, define the self diffeomorphism H_h of $(\mathbb{C}^*)^n$ by :

$$\begin{array}{rcl} H_h & : & (\mathbb{C}^*)^n & \longrightarrow & (\mathbb{C}^*)^n \\ & & (z_1,\ldots,z_n) & \longmapsto & \left(\mid z_1 \mid^h \frac{z_1}{\mid z_1 \mid},\ldots,\mid z_n \mid^h \frac{z_n}{\mid z_n \mid}\right). \end{array}$$

- ② New complex structure on $(\mathbb{C}^*)^n$ s.t. $J_h = (dH_h)^{-1} \circ J \circ (dH_h)$ where J: standard complex structure.
- A J_h-holomorphic hypersurface V_h is a hypersurface which is holomorphic with respect to the J_h complex structure on (C^{*})ⁿ.
- Iim $J_h = J_\infty$ is not a complex structure, now we call this as phase tropical structure.

Hausdorff distance between two closed subsets A, B of a metric space (E, d) is defined by:

$$d_H(A,B) = max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

Take $E = \mathbb{R}^n \times (S^1)^n$ with the distance defined as product of the Euclidean metric on \mathbb{R}^n & the flat metric on $(S^1)^n$.

Hausdorff distance between two closed subsets A, B of a metric space (E, d) is defined by:

$$d_H(A,B) = max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

Take $E = \mathbb{R}^n \times (S^1)^n$ with the distance defined as product of the Euclidean metric on \mathbb{R}^n & the flat metric on $(S^1)^n$.

A phase tropical hypersurface V_∞ ⊂ (C^{*})ⁿ is the limit (with respect to the Hausdorff metric on compact sets in (C^{*})ⁿ) of a sequence of a J_h-holomorphic hypersurfaces V_h ⊂ (C^{*})ⁿ when h tends to zero.

$$V_{\infty} = \lim_{h \to 0} V_h$$

- Let $a = \sum_{j \in A_a} \xi_j t^j \in \mathbb{K}^*$: Puiseux series, $\xi_j \in \mathbb{C}^*$ and $A_a \subset \mathbb{R}$ is a well-ordered set with smallest element. Then we have a non-Archimedean valuation on \mathbb{K}^* s.t. $val(a) = -\min A_a$.
- ② Complexify the valuation map as follows

$$\begin{array}{rcl} w & : & \mathbb{K}^* & \longrightarrow & \mathbb{C}^* \\ & a & \longmapsto & w(a) = e^{val(a) + i \arg(\xi_{-val(a)})} \\ \\ \text{Arg} & : & \mathbb{K}^* & \longrightarrow & S^1 \\ & a = \sum_{j \in A_a} \xi_j t^j & \longmapsto & e^{i \arg(\xi_{-val(a)})} \end{array}$$

- Let $a = \sum_{j \in A_a} \xi_j t^j \in \mathbb{K}^*$: Puiseux series, $\xi_j \in \mathbb{C}^*$ and $A_a \subset \mathbb{R}$ is a well-ordered set with smallest element. Then we have a non-Archimedean valuation on \mathbb{K}^* s.t. $val(a) = -\min A_a$.
- Omplexify the valuation map as follows

$$\begin{array}{rcl} w & : & \mathbb{K}^* & \longrightarrow & \mathbb{C}^* \\ & a & \longmapsto & w(a) = e^{val(a) + i \arg(\xi_{-val(a)})} \\ \\ \text{Arg} & : & \mathbb{K}^* & \longrightarrow & S^1 \\ & a = \sum_{j \in A_a} \xi_j t^j & \longmapsto & e^{i \arg(\xi_{-val(a)})} \end{array}$$

 ${\mathfrak D}$ Applying this map coordinatewise, we get $W:({\mathbb K}^*)^n\to ({\mathbb C}^*)^n$

$$\begin{split} (z_1,\cdots,z_n) \mapsto \left(e^{\text{val}(z_1) + i \operatorname{arg}(\xi_{-\operatorname{val}(z_1)})}, \cdots, e^{\text{val}(z_n) + i \operatorname{arg}(\xi_{-\operatorname{val}(z_n)})} \right) \\ &= (w(z_1), \cdots, w(z_n)) \end{split}$$

Theorem (Mikhalkin, 2002)

The set $V_{\infty} \subset (\mathbb{C}^*)^n$ is a phase tropical hypersurface $\Leftrightarrow \exists$ an algebraic hypersurface $V_{\mathbb{K}} \subset (\mathbb{K}^*)^n$ over \mathbb{K} such that

$$\overline{W(V_{\mathbb{K}})}=V_{\infty},$$

where $\overline{W(V_{\mathbb{K}})}$ is the closure of $W(V_{\mathbb{K}})$ in $(\mathbb{C}^*)^n \approx \mathbb{R}^n \times (S^1)^n$ as a Riemannian manifold with metric defined by the standard Euclidean metric of \mathbb{R}^n and the standard flat metric of the torus.

Main theorem

Theorem (Y.R. Kim and M. Nisse, 2015)

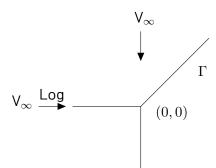
Let $V \subset (\mathbb{C}^*)^n$ be a smooth complex hypersurface and denote by V_∞ the phase tropical hypersurface associated to V (i.e., the limit of $H_h(V_h)$ when h goes to zero). Then

- **(**) For a sufficently small h we have V_h is homeomorphic to V_{∞} .
- **2** V_{∞} has a natural smooth symplectic structure.

Example (Phase tropical line)

$$L_{\mathbb{K}} := \{ (\mathbf{z}, \mathbf{w}) \in (\mathbb{K}^*)^2 \, | \, \mathbf{z} + \mathbf{w} + 1 = 0 \}$$
$$V_{\infty} = \overline{W(L_{\mathbb{K}})} \subset (\mathbb{C}^*)^2$$

 $\textcircled{\ }\Gamma:=\text{Log}(V_{\infty}):=\text{max}\{\textbf{x},\textbf{y},0\}$



$$\textcircled{0} (\mathbf{x},0) \in \Gamma, \ \mathbf{x} < 0$$

 $\ \ \, \hbox{\rm arg}(\hbox{\rm Log}^{-1}(x,0)\cap V_\infty)?$

- $\textcircled{0} (\mathbf{x},0) \in \Gamma, \ \mathbf{x} < 0$

• Let us parametrize the lines! • $\begin{cases} z(t) = t^{-x}e^{i\alpha} & 0 < t < 1 \\ w(t) = -1 - t^{-x}e^{i\alpha} \\ \alpha = \arg(z) : \text{fix}, & \beta_t = \arg(w(t)) \end{cases}$

$$\textcircled{0} (\mathbf{x}, 0) \in \Gamma, \ \mathbf{x} < 0$$

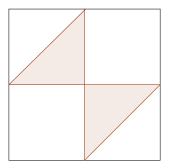
2 Arg(Log^{$$-1$$}(x, 0) \cap V _{∞})?

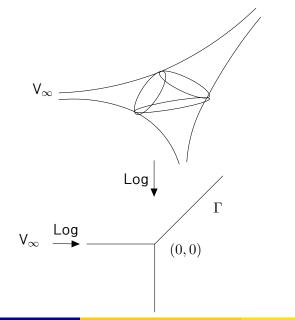
Let us parametrize the lines!
z(t) = t^{-x}e^{iα} 0 < t < 1
w(t) = -1 - t^{-x}e^{iα} α = arg(z) : fix, β_t = arg(w(t))
x < 0, lim t^{-x} = 0 ⇒ lim β_t = π.
Arg(Log⁻¹(x,0) ∩ V_∞) = {(e^{iα}, e^{iπ}) | 0 ≤ α ≤ 2π} ≃ S¹

$$\textcircled{0} (0, \mathbf{y}) \in \Gamma, \ \mathbf{y} < 0$$

- $\textcircled{0} (0,\mathbf{y})\in \Gamma, \ \mathbf{y}<0$
- $\textcircled{3} (\mathbf{x},\mathbf{x}) \in \Gamma, \ \mathbf{x} > 0$
- $\textcircled{\ } \texttt{Arg}(\texttt{Log}^{-1}(x,x) \cap V_\infty) \simeq S^1$

- $\textcircled{0} (0,\mathbf{y})\in \Gamma, \ \mathbf{y}<0$
- $\textcircled{3} (\mathbf{x}, \mathbf{x}) \in \Gamma, \ \mathbf{x} > 0$
- $\textcircled{\ } \texttt{Arg}(\texttt{Log}^{-1}(x,x) \cap V_\infty) \simeq S^1$
- Solution Arg($\mathsf{Log}^{-1}(0,0) \cap \mathsf{V}_{\infty}$)?





Definition (Pair-of-pants)

- **(**) Let $\mathscr{H} \subset \mathbb{CP}^n$ be the union of n + 2 generic hyperplanes in \mathbb{CP}^n .
- ② Let U ⊂ CPⁿ be the union of their e-neighborhoods for every small e > 0.

Definition (Pair-of-pants)

- **(**) Let $\mathscr{H} \subset \mathbb{CP}^n$ be the union of n + 2 generic hyperplanes in \mathbb{CP}^n .
- ② Let U ⊂ CPⁿ be the union of their e-neighborhoods for every small e > 0.
- In the complement P
 n = CPⁿ\𝔄 is a manifold with corners. We call P
 n the n-dimensional pair-of-pants.
- **4** We call $\mathscr{P}_n = \mathbb{CP}^n \setminus \mathscr{H}$ the n-dimensional open pair-of-pants.

Definition (Pair-of-pants)

- **(**) Let $\mathscr{H} \subset \mathbb{CP}^n$ be the union of n + 2 generic hyperplanes in \mathbb{CP}^n .
- ② Let U ⊂ CPⁿ be the union of their e-neighborhoods for every small e > 0.
- In the complement P
 n = CPⁿ\U is a manifold with corners. We call P
 n the n-dimensional pair-of-pants.
- **4** We call $\mathscr{P}_n = \mathbb{CP}^n \setminus \mathscr{H}$ the n-dimensional open pair-of-pants.

Example

- $\ \, \textcircled{P}_1 = \mathbb{CP}^1 \backslash \mathscr{U} \simeq \text{a closed disk with 2 holes.}$

Theorem (Description of the boundary of $\partial \bar{\mathscr{P}}$, Mikhalkin, 2002)

$$\, \mathbf{\hat{P}} = \bigcup_{j=0}^{\mathsf{n}-1} \partial_j \bar{\mathcal{P}}$$

$$\partial \bar{\mathscr{P}} = \bigcup_{j=0}^{\mathsf{n}-1} \partial_j \bar{\mathscr{P}}$$

$$\partial \bar{\mathscr{P}} = \bigcup_{j=0}^{\mathsf{n}-1} \partial_j \bar{\mathscr{P}}$$

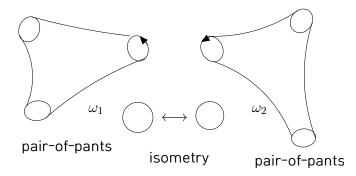
$$\partial \bar{\mathscr{P}} = \bigcup_{j=0}^{\mathsf{n}-1} \partial_j \bar{\mathscr{P}}$$

4 The closure of $\partial_j \overline{\mathscr{P}}_n$ contains $\partial_k \overline{\mathscr{P}}_n$ for all $k \leq j$.

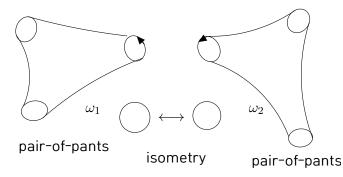
$$\partial \bar{\mathscr{P}} = \bigcup_{j=0}^{\mathsf{n}-1} \partial_j \bar{\mathscr{P}}$$

- **4** The closure of $\partial_j \bar{\mathscr{P}}_n$ contains $\partial_k \bar{\mathscr{P}}_n$ for all $k \leq j$.
- **(a)** The number of connected components of $\partial \bar{\mathscr{P}}_n$ is $\binom{n+2}{i+2}$.

- **(**) $H := \{(z_1, \dots, z_n) \in (\mathbb{K}^*)^n \mid z_1 + \dots + z_n = 1\}$ $2 H_{\infty}$
- n = 2 case. Think of the following picture!

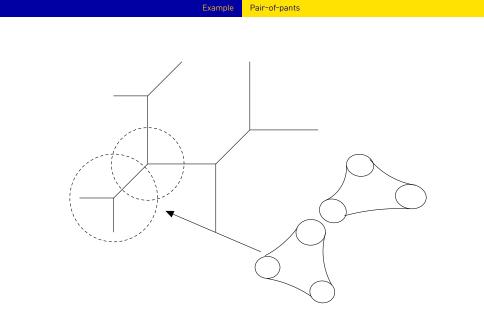


- **(**) $H := \{(z_1, \dots, z_n) \in (\mathbb{K}^*)^n \mid z_1 + \dots + z_n = 1\}$ 2 H_∞
- n = 2 case. Think of the following picture!



- **4** ω_1, ω_2 are symplectic forms on each pair-of-pants
- Get a homeomorphism and a smooth symplectic structure. Topology are not changed.

Young Rock Kim (HUFS)



$$\ \, \bullet \ \, \mathsf{f}(\mathsf{z}) = \sum_{\alpha \in \mathsf{supp}(\mathsf{f})} \mathsf{a}_{\alpha} \mathsf{z}^{\alpha}, \quad \mathsf{z}^{\alpha} = \mathsf{z}_{1}^{\alpha_{1}} \mathsf{z}_{2}^{\alpha_{2}} \dots \mathsf{z}_{\mathsf{n}}^{\alpha_{\mathsf{n}}}$$

2 Δ its Newton polytope

$$\ \, \bullet \ \, f(z) = \sum_{\alpha \in \text{supp}(f)} a_{\alpha} z^{\alpha}, \quad z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_n^{\alpha_n}$$

- 2 Δ its Newton polytope
- $\tilde{\Delta} := \text{convexhull}\{(\alpha, \mathsf{r}) \in \text{supp}(\mathsf{f}) \times \mathbb{R} \mid \mathsf{r} \geq \min \mathsf{A}_{\mathsf{a}_{\alpha}} \}$
- **4** Extend the above function ν :

$$\nu : \Delta \longrightarrow \mathbb{R}$$
$$\alpha \longmapsto \min\{\mathbf{r} \mid (\alpha, \mathbf{r}) \in \tilde{\Delta}\}.$$

- 2 Δ its Newton polytope
- $\ \, \tilde{\Delta} := \mathsf{convexhull}\{(\alpha, \mathsf{r}) \in \mathsf{supp}(\mathsf{f}) \times \mathbb{R} \mid \mathsf{r} \geq \mathsf{min} \, \mathsf{A}_{\mathsf{a}_{\alpha}} \}$
- **4** Extend the above function ν :

$$\nu : \Delta \longrightarrow \mathbb{R}$$
$$\alpha \longmapsto \min\{\mathbf{r} \mid (\alpha, \mathbf{r}) \in \tilde{\Delta}\}.$$

(a) Linearity domains of ν define a convex subdivision $\tau = \{\Delta_1, \dots, \Delta_l\}$ of Δ by taking the linear subsets of the lower boundary of $\tilde{\Delta}$.

[●] y =< x, v_i > +r_i: eq of the hyperplane Q_i ⊂ ℝⁿ × ℝ containing the points of coordinates (α, ν(α)) with α ∈ Vert(Δ_i).

There is a duality between the subdivision τ and the subdivision of Rⁿ induced by Γ_f, where each connected component of Rⁿ \ Γ_f is dual to some vertex of τ_f and each k-cell of Γ_f is dual to some (n – k)-cell of τ.

- There is a duality between the subdivision τ and the subdivision of Rⁿ induced by Γ_f, where each connected component of Rⁿ \ Γ_f is dual to some vertex of τ_f and each k-cell of Γ_f is dual to some (n k)-cell of τ.
- **2** Each (n 1)-cell of Γ_f is dual to some edge of τ .

- There is a duality between the subdivision τ and the subdivision of Rⁿ induced by Γ_f, where each connected component of Rⁿ \ Γ_f is dual to some vertex of τ_f and each k-cell of Γ_f is dual to some (n k)-cell of τ.
- **2** Each (n 1)-cell of Γ_f is dual to some edge of τ .

$$x \in \mathsf{E}^*_{\alpha\beta} \subset \Gamma_{\mathsf{f}} \Rightarrow <\alpha, \mathbf{x} > -\nu(\alpha) = <\beta, \mathbf{x} > -\nu(\beta) \Rightarrow <\alpha - \beta, \mathbf{x} - \mathsf{v}_{\mathsf{i}} >= 0.$$

- There is a duality between the subdivision τ and the subdivision of Rⁿ induced by Γ_f, where each connected component of Rⁿ \ Γ_f is dual to some vertex of τ_f and each k-cell of Γ_f is dual to some (n k)-cell of τ.
- **2** Each (n 1)-cell of Γ_f is dual to some edge of τ .

$$\begin{array}{l} \textcircled{3} \hspace{0.1cm} \mathbf{x} \in \mathsf{E}_{\alpha\beta}^{*} \subset \Gamma_{\mathsf{f}} \Rightarrow <\alpha, \mathbf{x} > -\nu(\alpha) = <\beta, \mathbf{x} > -\nu(\beta) \\ \Rightarrow <\alpha - \beta, \mathbf{x} - \mathsf{v}_{\mathsf{i}} > = 0. \end{array}$$

4 v_i is a vertex of Γ_f dual to some Δ_i having $E_{\alpha\beta}$ as edge.

- There is a duality between the subdivision τ and the subdivision of Rⁿ induced by Γ_f, where each connected component of Rⁿ \ Γ_f is dual to some vertex of τ_f and each k-cell of Γ_f is dual to some (n k)-cell of τ.
- **2** Each (n 1)-cell of Γ_f is dual to some edge of τ .

$$\begin{aligned} & \bullet \mathsf{E}^*_{\alpha\beta} \subset \Gamma_\mathsf{f} \Rightarrow <\alpha, \mathsf{x} > -\nu(\alpha) = <\beta, \mathsf{x} > -\nu(\beta) \\ & \Rightarrow <\alpha - \beta, \mathsf{x} - \mathsf{v}_\mathsf{i} > = 0. \end{aligned}$$

4 v_i is a vertex of Γ_f dual to some Δ_i having $E_{\alpha\beta}$ as edge.

SuppA = {
$$\alpha_1, ..., \alpha_l, \alpha_{l+1}, ..., \alpha_r$$
} ⊂ Zⁿ
A' = { $\alpha_{l+1}, ..., \alpha_r$ } = Im(ord)

(a) ord is the order mapping from the set of complement components of the amoeba \mathscr{A} of V to $\Delta \cap \mathbb{Z}^n$.

Theorem (Mikael Passare and Hans Rullgård)

The spine Γ of the amoeba $\mathscr A$ is given as a non-Archimedean amoeba defined by the tropical polynomial

$$\begin{split} f_{trop}(x) &= \max_{\alpha \in A'} \{ c_{\alpha} + < \alpha, x > \}, \\ c_{\alpha} &= \mathbb{R} \left(\frac{1}{(2\pi i)^{n}} \int_{Log^{-1}(x)} \log \left| \frac{f(z)}{z^{\alpha}} \right| \frac{dz_{1} \wedge \ldots \wedge dz_{n}}{z_{1} \ldots z_{n}} \right) \\ x \in E_{\alpha}, \ z &= (z_{1}, \cdots, z_{n}) \in (\mathbb{C}^{*})^{n}, <, > : \text{ scalar product in } \mathbb{R}^{n}. \end{split}$$
(4)

Theorem (Mikael Passare and Hans Rullgård)

The spine Γ of the amoeba \mathscr{A} is given as a non-Archimedean amoeba defined by the tropical polynomial

$$\begin{split} f_{trop}(x) &= \max_{\alpha \in A'} \{ c_{\alpha} + < \alpha, x > \}, \\ c_{\alpha} &= \mathbb{R} \left(\frac{1}{(2\pi i)^{n}} \int_{Log^{-1}(x)} \log \left| \frac{f(z)}{z^{\alpha}} \right| \frac{dz_{1} \wedge \ldots \wedge dz_{n}}{z_{1} \ldots z_{n}} \right) \\ x \in E_{\alpha}, \ z &= (z_{1}, \cdots, z_{n}) \in (\mathbb{C}^{*})^{n}, <, > : \text{ scalar product in } \mathbb{R}^{n}. \end{split}$$
(4)

The spine of 𝒜 is defined as the set of points in ℝⁿ where the piecewise affine linear function f_{trop} is not differentiable, or as the graph of this function where ℝ is the semi-field (ℝ; max, +).

Denote by τ the convex subdivision of Δ dual to the tropical variety Γ. Then the set of vertices of τ is precisely the image of the order mapping (i.e., A').

- Denote by τ the convex subdivision of Δ dual to the tropical variety Γ. Then the set of vertices of τ is precisely the image of the order mapping (i.e., A').
- 2 By duality, this means that the convex subdivision $\tau = \bigcup_{i=l+1} \Delta_{v_i}$ of Δ is determined by a piecewise affine linear map $\nu : \Delta \longrightarrow \mathbb{R}$ so that:

- Denote by τ the convex subdivision of Δ dual to the tropical variety Γ. Then the set of vertices of τ is precisely the image of the order mapping (i.e., A').
- **2** By duality, this means that the convex subdivision $\tau = \bigcup_{i=l+1} \Delta_{v_i}$ of Δ is determined by a piecewise affine linear map $\nu : \Delta \longrightarrow \mathbb{R}$ so that:

(i) $\nu_{|\Delta_{v_i}}$ is affine linear for each v_i ,

- Denote by τ the convex subdivision of Δ dual to the tropical variety Γ. Then the set of vertices of τ is precisely the image of the order mapping (i.e., A').
- **2** By duality, this means that the convex subdivision $\tau = \bigcup_{i=l+1} \Delta_{v_i}$ of Δ is determined by a piecewise affine linear map $\nu : \Delta \longrightarrow \mathbb{R}$

so that:

- (i) $\nu_{|\Delta_{v_i}}$ is affine linear for each v_i ,
- (ii) if $\nu_{|U}$ is affine linear for some open set $U \subset \Delta$, then there exists v_i such that $U \subset \Delta_{v_i}$.

- Denote by τ the convex subdivision of Δ dual to the tropical variety Γ. Then the set of vertices of τ is precisely the image of the order mapping (i.e., A').
- 2 By duality, this means that the convex subdivision $\tau = \bigcup_{i=l+1} \Delta_{v_i}$

of Δ is determined by a piecewise affine linear map $\nu:\Delta\longrightarrow\mathbb{R}$ so that:

- (i) $\nu_{|\Delta_{v_i}}$ is affine linear for each v_i,
- (ii) if $\nu_{|U}$ is affine linear for some open set $U \subset \Delta$, then there exists v_i such that $U \subset \Delta_{v_i}$.
- (iii) $\nu(\alpha) = -c_{\alpha}$ for any $\alpha \in \text{Im}(\text{ord})$.

Definition (Generalized s-Passare-Rullgård function)

Let $s = (s_1, \dots, s_l) \in \mathbb{R}^l_+$ and $\nu_{PR}^s : A \longrightarrow \mathbb{R}$ be the function, called the generalized s-Passare-Rullgård function, is defined by:

$$\nu_{\mathsf{PR}}^{\mathsf{s}}(\alpha) = \begin{cases} -\mathsf{c}_{\alpha} & \text{if } \alpha \in \mathsf{Im}(\mathsf{ord}) \\ <\alpha_j, \mathsf{a}_{\mathsf{v}} > +\mathsf{b}_{\mathsf{v}} + \mathsf{s}_j & \text{if } \alpha = \alpha_j \text{ for } j = 1, \dots, \mathsf{I}, \end{cases}$$

where $\alpha_j \in \Delta_v$, $\Delta_v \in \tau$ and $y = \langle x, a_v \rangle + b_v$ is the equation of the hyperplane in $\mathbb{R}^n \times \mathbb{R}$ containing the points of coordinates $(\beta, -c_\beta)$ with $\beta \in Vert(\Delta_v)$.

- Assume that we have a hypersurface $V \subset (\mathbb{C}^*)^n$ defined by the polynomial $f(z) = \sum_{\alpha \in A} a_\alpha z^\alpha$ with $a_\alpha \in \mathbb{C}^*$, A is a finite subset of \mathbb{Z}^n and $z^\alpha = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_n^{\alpha_n}$.
- ② Denote by ∆ the convex hull of A in ℝⁿ which is the Newton polytope of f.

- Assume that we have a hypersurface $V \subset (\mathbb{C}^*)^n$ defined by the polynomial $f(z) = \sum_{\alpha \in A} a_\alpha z^\alpha$ with $a_\alpha \in \mathbb{C}^*$, A is a finite subset of \mathbb{Z}^n and $z^\alpha = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_n^{\alpha_n}$.
- **②** Denote by Δ the convex hull of A in \mathbb{R}^n which is the Newton polytope of f.
- Onsider now the family of hypersurfaces V_{f(t;s)} ⊂ (C*)ⁿ defined by the following family of polynomials :

$$f_{(t;s)}(z) = \sum_{\alpha \in \mathsf{A}} \xi_{\alpha} t^{\nu_{\mathsf{PR}}^{s}(\alpha)} z^{\alpha}, \tag{5}$$

with $\xi_{\alpha} = a_{\alpha} e^{\nu_{PR}^{s}(\alpha)}$.

- **(1)** ν be the piecewise affine linear map.
- **2** $\tilde{\Delta}$ be the extended polyhedron of Δ associated to ν , that is the convex hull of the set $\{(\alpha, \mathbf{u}) \in \Delta \times \mathbb{R} \mid \mathbf{u} \ge \nu(\alpha)\}$.

- **(1)** ν be the piecewise affine linear map.
- **2** $\hat{\Delta}$ be the extended polyhedron of Δ associated to ν , that is the convex hull of the set $\{(\alpha, \mathbf{u}) \in \Delta \times \mathbb{R} \mid \mathbf{u} \ge \nu(\alpha)\}$.
- **③** For any $\Delta_{v_i} \in \tau$, let $\lambda(x) = \langle x, a_{v_i} \rangle + b_{v_i}$ be the affine linear map defined on Δ such that $\lambda_{|\Delta_{v_i}} = \nu_{|\Delta_{v_i}}$ where \langle , \rangle is the scalar product in \mathbb{R}^n , $a_{v_i} = (a_{v_i, 1}, \dots, a_{v_i, n}) \in \mathbb{R}^n$ (which is the coordinates of the vertex of the spine Γ , dual to Δ_{v_i}), and b_{v_i} is a real number.

- **(1)** ν be the piecewise affine linear map.
- **2** $\tilde{\Delta}$ be the extended polyhedron of Δ associated to ν , that is the convex hull of the set $\{(\alpha, \mathbf{u}) \in \Delta \times \mathbb{R} \mid \mathbf{u} \ge \nu(\alpha)\}$.
- (a) For any $\Delta_{v_i} \in \tau$, let $\lambda(x) = \langle x, a_{v_i} \rangle + b_{v_i}$ be the affine linear map defined on Δ such that $\lambda_{|\Delta_{v_i}} = \nu_{|\Delta_{v_i}}$ where \langle , \rangle is the scalar product in \mathbb{R}^n , $a_{v_i} = (a_{v_i,1}, \ldots, a_{v_i,n}) \in \mathbb{R}^n$ (which is the coordinates of the vertex of the spine Γ , dual to Δ_{v_i}), and b_{v_i} is a real number.
- s ∈ \mathbb{R}^{l}_{+} as above and put $\nu' = \nu_{\mathsf{PR}}^{(\mathsf{s})} \lambda$ and we define the family of polynomials $\{\mathsf{f}'_{(\mathsf{t};\mathsf{s})}\}_{\mathsf{t}\in(0,\frac{1}{\mathsf{e}}]}$ by:

$$f_t'(z) = \sum_{\alpha \in \mathsf{A}} \xi_\alpha t^{\nu'(\alpha)} z^\alpha$$

where $\xi_{\alpha} \in \mathbb{C}$.

$$\begin{split} f_t'(z) &= t^{-b_v} \sum_{\alpha \in A} \xi_\alpha t^{\nu_{\text{PR}}^{(s)}(\alpha)} (z_1 t^{-a_{v_i,\,1}})^{\alpha_1} \dots (z_n t^{-a_{v_i,\,n}})^{\alpha_n} \\ &= t^{-b_v} f_{(t;\,s)} \circ \Phi_{\Delta_{v_i},\,t}^{-1}(z) \end{split}$$

$$\begin{split} f_t'(z) &= t^{-b_v} \sum_{\alpha \in A} \xi_\alpha t^{\nu_{\mathsf{PR}}^{(s)}(\alpha)} (z_1 t^{-a_{v_i,\,1}})^{\alpha_1} \dots (z_n t^{-a_{v_i,\,n}})^{\alpha_n} \\ &= t^{-b_v} f_{(t;\,s)} \circ \Phi_{\Delta_{v_i},\,t}^{-1}(z) \end{split}$$

$$\begin{split} f_t'(z) &= t^{-b_v} \sum_{\alpha \in A} \xi_\alpha t^{\nu_{\mathsf{PR}}^{(s)}(\alpha)} (z_1 t^{-a_{v_i,\,1}})^{\alpha_1} \dots (z_n t^{-a_{v_i,\,n}})^{\alpha_n} \\ &= t^{-b_v} f_{(t;\,s)} \circ \Phi_{\Delta_{v_i},\,t}^{-1}(z) \end{split}$$

 $\label{eq:constraint} \textbf{@} This means that the polynomials f'_{(t;s)} and f_{(t;s)} \circ \Phi_{\Delta v_i,t}^{-1} \ define the same hypersurface.$

• Let $U(v_i)$ be a small ball in \mathbb{R}^n with center the vertex of $\Gamma_{(t;s)}$ dual to Δ_{v_i} where $\Gamma_{(t;s)}$ is the spine of the amoeba $\mathscr{A}_{H_t(V_{f_{(t;s)}})}$ where H_t denotes the self diffeomorphism of $(\mathbb{C}^*)^n$ defined by H_h with $h = -\frac{1}{\log t}$ and $Log_t = Log \circ H_t$.

- Let $U(v_i)$ be a small ball in \mathbb{R}^n with center the vertex of $\Gamma_{(t;s)}$ dual to Δ_{v_i} where $\Gamma_{(t;s)}$ is the spine of the amoeba $\mathscr{A}_{H_t(V_{f_{(t;s)}})}$ where H_t denotes the self diffeomorphism of $(\mathbb{C}^*)^n$ defined by H_h with $h = -\frac{1}{\log t}$ and $Log_t = Log \circ H_t$.
- 2 Let $f_{(t;s)}^{\Delta_{v_i}}$ be the truncation of $f_{(t;s)}$ to Δ_{v_i} , and $V_{\infty, \Delta_{v_i}}$ be the complex tropical hypersurface with tropical coefficients of index $\alpha \in \Delta_{v_i}$ (i.e., $V_{\infty, \Delta_{v_i}} = \lim_{t \to 0} H_t(V_{f_{(t;s)}^{\Delta_{v_i}}})$).

- Let $U(v_i)$ be a small ball in \mathbb{R}^n with center the vertex of $\Gamma_{(t;s)}$ dual to Δ_{v_i} where $\Gamma_{(t;s)}$ is the spine of the amoeba $\mathscr{A}_{H_t(V_{f_{(t;s)}})}$ where H_t denotes the self diffeomorphism of $(\mathbb{C}^*)^n$ defined by H_h with $h = -\frac{1}{\log t}$ and $Log_t = Log \circ H_t$.
- 2 Let $f_{(t;s)}^{\Delta_{v_i}}$ be the truncation of $f_{(t;s)}$ to Δ_{v_i} , and $V_{\infty, \Delta_{v_i}}$ be the complex tropical hypersurface with tropical coefficients of index $\alpha \in \Delta_{v_i}$ (i.e., $V_{\infty, \Delta_{v_i}} = \lim_{t \to 0} H_t(V_{f_{(t;s)}^{\Delta_{v_i}}})$).
- Using Kapranov's theorem, we obtain the following Theorem called a tropical localization by Mikhalkin.

Theorem (Tropical localization, Y.R. Kim and M. Nisse, 2015) Let $s \in \mathbb{R}^{l}_{+}$, then for any $\varepsilon > 0$ there exists t_{0} such that if $t \leq t_{0}$ then the image under

$$\Phi_{\Delta_{v_i}, t} \circ \mathsf{H}_t^{-1} \text{ of } \mathsf{H}_t(\mathsf{V}_{\mathsf{f}_{(t; s)}}) \cap \mathsf{Log}^{-1}(\mathsf{U}(\mathsf{v}_i))$$

is contained in the ε -neighborhood of the image under

$$\Phi_{\Delta_{v_i}, t} \circ H_t^{-1}$$

of the complex tropical hypersurface

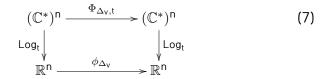
 $V_{\infty, \Delta_{v_i}},$

with respect to the product metric in $(\mathbb{C}^*)^n \approx \mathbb{R}^n \times (S^1)^n$.

Idea of proof:

By decomposition of f'_t, we obtain:

$$f'_{t}(z) = t^{-b_{v}} \sum_{\alpha \in \Delta_{v} \cap \mathsf{A}} \xi_{\alpha} t^{\nu(\alpha) - \langle \alpha, \mathsf{a}_{v} \rangle} z^{\alpha} + \sum_{\alpha \in \mathsf{A} \setminus \Delta_{v}} \xi_{\alpha} t^{\nu(\alpha) - \langle \alpha, \mathsf{a}_{v} \rangle - b_{v}} z^{\alpha}$$
(6)



More words.

Theorem (Y.R. Kim and M. Nisse, 2015)

A phase tropical hyperplane $\mathscr{H} \subset (\mathbb{C}^*)^n$ is homeomorphic to the complex projective space \mathbb{CP}^{n-1} minus a tubular neighborhood of the union \mathscr{H} of n + 1 generic hyperplanes in \mathbb{CP}^{n-1} .

Theorem (Y.R. Kim and M. Nisse, 2015)

A phase tropical hyperplane $\mathscr{H} \subset (\mathbb{C}^*)^n$ is homeomorphic to the complex projective space \mathbb{CP}^{n-1} minus a tubular neighborhood of the union \mathscr{H} of n + 1 generic hyperplanes in \mathbb{CP}^{n-1} .

Theorem (Y.R. Kim and M. Nisse, 2015)

Let $V \subset (\mathbb{C}^*)^n$ be a smooth complex hypersurface and denote by V_∞ the phase tropical hypersurface associated to V (i.e., the limit of $H_h(V_h)$ when h goes to zero). Then

- **(**) For a sufficently small h we have V_h is homeomorphic to V_{∞} .
- **2** V_{∞} has a natural smooth symplectic structure.

Grazie!

Grazie!

Grazie! 감사합니다! Thank you very much!