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Fano bundles

A vector bundle E on a smooth complex projective variety X is a
Fano bundle i↵ P

X

(E) is a Fano manifold.

If E is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on Pm and Qm have been classified in the
’90s (Ancona, Peternell, Sols, Szurek, Wísniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano)
manifolds with b

2

= b
4

= 1 (Muñoz, , Solá Conde, 2012).

As a special case we have the classification of Fano manifolds of
Picard number two (and b

4

= 2) with two P1-bundle structures.

Later the assumption on b
4

was removed by Watanabe.
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Varieties with two P1-bundle structures

Theorem (version with Bundles)

A Fano manifold with Picard number 2 and two P1-bundle struc-
tures is isomorphic to one of the following

• PP1(O �O)

• PP2(TP2)

• PP3(N ) = PQ3(S) - N Null-correlation , S Spinor

• PQ5(C) = P
K(G2)(Q) - C Cayley, Q universal quotient.

This result can be reformulated as follows:

Theorem (version with Flags)

A Fano manifold with Picard number 2 and two P1-bundle struc-
tures is rational homogeneous and it is isomorphic to a complete
flag manifold of type A

1

⇥A
1

, A
2

, B
2

or G
2

.
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A generalization

• Classify Fano manifolds whose elementary contractions are
P1-bundles - or just smooth P1-fibrations.

• The vector bundle approach seems di�cult to apply to this
more general situation.

• Is it possible to prove the homogeneity directly, or at least
recover features of the complete flags using the P1-fibrations?

Theorem

X is a Fano manifold whose elementary contractions are smooth
P1-fibrations (Flag Type manifold) if and only if X is a com-
plete flag manifold.
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Rational Homogeneous Manifolds
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Lie Algebras
Root systems

G semisimple Lie group, g Lie algebra, h ⇢ g Cartan subalgebra.

The action of h on g defines an eigenspace decomposition, called
Cartan decomposition of g:

g = h�
M

↵2h_\{0}

g
↵

.

The spaces g
↵

are defined by

g
↵

= {g 2 g | [h, g] = ↵(h)g, for every h 2 h} ;

↵ 6= 0 such that g
↵

6= 0 is called a root of g.

The (finite) set � of such elements is called root system of g.

A set of simple roots � = {↵
1

, . . . ,↵
n

} ⇢ � is a basis of h_ such
that the coordinates of root are integers, all � 0 or all  0 .
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Lie Algebras
Weyl group

(E, ) real vector space generated by the roots, with a symmetric
bilinear positive form  induced by the Killing form of g.

The reflections with respect to the roots:

�
↵

(x) = x- hx,↵i↵, where hx,↵i := 2
(x,↵)

(↵,↵)
,

fix the root system and generate a finite group W ⇢ Gl(E), called
the Weyl group of g.

Example (n=2)
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Cartan matrix

Given a set of simple roots {↵
1

, . . . ,↵
n

} of g, the Cartan matrix A
of g is the n⇥ n matrix whose entries are the Cartan integers

h↵
i

,↵
j

i = 2
(↵

i

,↵
j

)

(↵
j

,↵
j

)
.

A and all its principal minors are positive definite and moreover

• a
ii

= 2 for every i,

• a
ij

= 0 i↵ a
ji

= 0,

• if a
ij

6= 0, i 6= j, then a
ij

, a
ji

2 Z- and a
ij

a
ji

= 1, 2 or 3.

Example (n=2)

The Cartan matrices of rank 2 Lie algebras are

✓
2 0
0 2

◆ ✓
2 -1
-1 2

◆ ✓
2 -1
-2 2

◆ ✓
2 -1
-3 2

◆
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Rational homogeneous manifolds

Subgroups P ⇢ G s.t. G/P is projective are called parabolic.

A parabolic subgroup is given by the choice of a set of simple
roots, i.e. by I ⇢ D, and the variety G/P is denoted by marking
the nodes of I.

G = SL(4)

P3 G(1, 3) (P3)⇤

F(0, 1) F(1, 2) F(0, 2)

F(0, 1, 2)

So a rational homogeneous (RH) manifold is given by a marked
Dynkin diagram (D, I).
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Cone and contractions

X RH given by (D, I ).

1 X is a Fano manifold;

2 The Picard number ⇢
X

of X is #I;

3 The cone NE(X) is simplicial, and its faces correspond to
proper subsets J ( I;

4 Every contraction ⇡ : X ! Y is of fiber type and smooth.

5 Y is RH with marked Dynkin diagram (D,J ),

6 Every fiber is RH with marked Dynkin diagram (D\J , I \J ).

Example

F(0, 1, 2)

'

✏✏

P(TP2)

P3
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Complete flag manifolds

A complete flag manifold is a RH manifold with a diagram in
which all the nodes are marked. The corresponding parabolic
subgroup B is called a Borel subgroup.

• Every RH manifold is dominated by a complete flag manifold.

• p
i

: G/B ! G/Pi contractions corresponding to the
unmarking of one node are P1-bundles.

• If �
i

is a fiber of p
i

, and K
i

the relative canonical, the
intersection matrix [-K

i

· �
j

] is the Cartan matrix.

Example (A
n

)

If D = A
n

, then G/B is the manifold parametrizing complete flags
of linear subspaces in Pn.
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Fano manifolds whose elementary
contractions are smooth P1-fibrations
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Relative duality

⇡ : M ! Y smooth P1-fibration. � fiber, K relative canonical

Lemma

Let D be a divisor on M and set l := D · � + 1. Then, 8i 2 Z

Hi(M,D) ⇠= Hi-1(M,D+ lK) if l < 0

Hi(M,D) ⇠= {0} if l = 0

Hi(M,D) ⇠= Hi+1(M,D+ lK) if l > 0

In particular

�(M,D) = -�(M,D+ lK) for any D.
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Idea of Proof
I - Finding a homogeneous model

Theorem

X is Flag Type manifold if and only if X is a complete flag manifold.

• X Fano manifold with Picard number n.

• ⇡
i

: X ! X
i

elementary contration.

• K
i

relative canonical, �
i

fiber of ⇡
i

.

• �
X

: Pic(X) ! Z such that �
X

(L) = �(X, L).

Given L
1

, . . . , L
n

basis of Pic(X),

�
X

(m
1

, . . . ,m
n

) = �(X,m
1

L
1

+ · · ·+m
n

L
n

)

is a numerical polynomial of degree dimX, so we can extend it to
�
X

: N
1

(X) ! R.
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By the Lemma the a�ne involutions r 0
i

: N1(X) ! N1(X)

r 0
i

(D) := D+ (D · �
i

+ 1)K
i

,

satisfy
�
X

(D) = -�
X

(r 0
i

(D)).

Since K
X

· �
i

= -2 for every i, setting

T(D) := D+ K
X

/2

r
i

:= T-1 � r 0
i

� T
�T := �

X

� T

we have that the map r
i

is a linear involution of N1(X) given by

r
i

(D) = D+ (D · �
i

)K
i

,

which fixes pointwise the hyperplane M
i

:= {D |D · �
i

= 0} and
satisfies

r
i

(K
i

) = -K
i

�T (D) = -�T (r
i

(D));

in particular �T vanishes on M
i

for every i.
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Weyl group

Let W ⇢ Gl(N1(X)) be the group generated by the r
i

’s.

Theorem

The group W is finite and the set

� := {w(-K
i

) | w 2 W, i = 1, . . . , n } ⇢ N1(X),

is a root system, whose Weyl group is W
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Idea of proof

For every divisor D and every w 2 W

�T (D) = ±�T (w(D)),

so �T
X

vanishes on the hyperplanes w(M
i

); therefore the number
of these hyperplanes is bounded by the dimension of X.

Then one proves that the isotropy subgroup of M
i

is finite
(by considering the induced action on N

1

(X), and writing the
elements of W is a suitable basis).

By the finiteness there is a scalar product ( , ) on N1(X), which is
W-invariant. In particular the r

i

’s are euclidean reflections.

Using that r
i

(K
i

) = -K
i

is then straightforward (but tedious) to
prove that � is a root system with Weyl group W.
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Homogeneous model

Since ( , ) is W-invariant, (K
j

, K
i

) = (r
i

(K
j

),-K
i

) which gives

-K
j

· �
i

= 2
(K

j

, K
i

)

(K
i

, K
i

)
= hK

j

, K
i

i,

so the intersection matrix [-K
j

· �
i

] is the Cartan matrix of �.

In particular the intersection matrix of X is the intersection matrix
of a complete flag manifold G/B, the homogeneous model of X.

Define  : N1(X) ! N1(G/B), by setting  (K
i

) = K
i

.

Proposition

⇤ ⇢ Pic(X) generated by the K
i

’s.

• hi(X,D) = hi(G/B, (D)) for every D 2 ⇤, i 2 Z.
• dimX = dimG/B;
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i

) = K
i

.

Proposition

⇤ ⇢ Pic(X) generated by the K
i

’s.

• hi(X,D) = hi(G/B, (D)) for every D 2 ⇤, i 2 Z.
• dimX = dimG/B;
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Idea of Proof
II - Proving the isomorphism

• X Flag Type manifold of Picard number n, x 2 X point;

• ` = (l
1

, . . . ,l
t

), list of indices in {1, . . . ,n},

• `[1] = (l
1

, . . . ,l
t-1

).

The Bott-Samelson variety Z
`

, with a morphism f
`

: Z
`

! X,
associated with the sequence `, is constructed in the following way:

If ` = ; we set Z
`

:= {x} and f
`

: {x} ! X is the inclusion.

Inductively we build Z
`

on Z
`[1]:

Z
`

f`
//

p`[1]

✏✏

X

Z
`[1]

f`[1]

==

g`[1]

// X
lr
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The image of Z
`

in X is the set of points belonging to chains of
rational curves �

l1
, �

l2
. . . , �

lt starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list ` it is associated an element w(`) of the Weyl group:

w = r
l1

� · · · � r
lt ;

if there is no expression of w(`) which contains less than t
reflections, then w(`) and ` are called reduced.

The length �(w(`)) is the number of reflections appearing in a
reduced expression of w(`).

If w(`) is reduced then f
`

: Z
`

! f
`

(Z
`

) is birational, hence

dim f
`

(Z
`

) = dimZ
`

= #(`) = �(w(`)).

In W there exists a unique longest element w
0

, of length dimX.

If `
0

is a reduced list such that w(`
0

) = w
0

then f
`

: Z
`0

! X is
surjective and birational.
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X Flag Type manifold, G/B homogeneus model of X

Find a list `
0

such that w(`
0

) = w
0

and prove that

Z
`0

' Z
`0

f
`0

= f
`0

The idea is to show inductively that Z
`0

depends only on the list
and on the intersection matrix.

Assume that Z
`[1] ' Z

`[1];

Z
`

J

f`
//

✏✏

X

⇡lr

✏✏

Z
`[1]

�`[1]

II

f`[1]

==

// X
lr

f
`[1] factors via Z

`

, giving a section �
`[1], hence an extension

0 ! O
Z`[1]

( f⇤
`[1]Klr) �! F

`

�! O
Z`[1]

! 0.
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One shows easily that the following are equivalent

• The extension is split;

• h1(Z
`[1], f

⇤
`

(K
lr)) = 0;

• the index l
r

does not appear in `[1].

It is enough to show that if the index l
r

appears in `[1] then

h1(Z
`[1], f

⇤
`

(K
lr))  1.

This can be done except for G
2

, (already known from the n = 2
case) and F

4

, for which an ad hoc argument is needed.
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X smooth complex projective variety.

Theorem [Mori (1979)]

T
X

ample , X = Pm.

• T
X

nef ) ??

• Examples:

Abelian

Homogeneous manifolds

55

(( Rational

Theorem [Demailly, Peternell and Schneider (1994)]

T
X

nef )

8
<

:
X X 0étale
oo

F

// A

A Abelian, F Fano, T
F

nef
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Campana-Peternell Conjecture

Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is
homogeneous.

Results:

2� dimX = 3 [Campana & Peternell(1991)]

2� dimX = 4 [CP (1993), Mok (2002), Hwang (2006)]

2� dimX = 5 and ⇢
X

> 1 [Watanabe (2012)]

2� T
X

big and 1-ample [Solá-Conde & Wísniewski (2004)]

• The above results are obtained by classifying the manifolds
satisfying the required properties;

• homogeneity is checked a posteriori.
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Homogeneity via families of rational curves

• X Fano of Picard number one;

• M dominating family of rational curves of minimal degree;

• U universal family.

U
p

~~

q

��

M X

Theorem

Assume that M is unsplit, q is smooth and that M
x

:= q-1(x)
is RH for every x 2 X. Then X is RH.

Remark

If T
X

is nef then the assumptions on M and q hold.
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Recognizing homogeneous spaces

• X Fano of Picard number one, T
X

nef;

• S = G/P RH space of Picard number one;

• M, L minimal dominating families of rational curves;

Corollary

Assume L
0

is RH. If M
x

' L
0

for every x 2 X then X ' S.

The following are equivalent:

• L
0

is G-homogeneous.

• P is associated to a long simple root.

• There is no arrow in the Dynkin diagram pointing towards
the node corresponding to P.
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Recognizing homogeneous spaces

• X Fano of Picard number one;

• S = G/P RH space of Picard number one;

• M, L minimal dominating families of rational curves;

• C
0

(S) VMRT of S;

• C
x

(X) VMRT of X at a general point;

Theorem [Mok, Hong-Hwang]

If P is associated to a long simple root and C(X)
x

is projectively
equivalent to C(S)

0

, then X ' S.
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If P is associated to a long simple root and C(X)
x

is projectively
equivalent to C(S)

0

, then X ' S.
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Idea of the proof

Given the smooth fibration q : U ! X, with RH fiber F, it is
possible to construct the associated flag bundle over X, whose
fibers over a point are complete flag manifolds.

The fibration q is defined by a cocycle # 2 H1(X,G), where G is
the identity component of Aut(F) - here we use that X is simply
connected.

The cocycle # defines a principal G-bundle U
G

! X

Given a Borel subgroup B ⇢ G we can define the G/B-bundle

U := U
G

⇥G G/B ! X

as a quotient of U
G

⇥G/B by (x, gB) ⇠ (xg 0, g 0-1gB), and we have
a commutative diagram

U ⇡

//

q

��

U

q

��

X
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The flag bundle U has Picard number ⇢(G/B) + 1, and has
⇢(G/B) contractions (over X) which are smooth P1-fibrations.

U
⇡

✏✏

p

oo

M U
p

oo

q

✏✏

Idea: show that the P1- fibration p : U ! M can be lifted to U .
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So U has a number of P1-fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly
stronger version of the main theorem

Theorem

Let X be a smooth projective variety of Picard number n, with n
elementary contractions which are smooth P1-fibrations.
Then X is isomorphic to a complete flag manifold.

and get that U is a complete flag manifold; hence X, being the
image of a contraction of U is homogeneous.

Remark

A similar argument has been used to conclude the proof of CP
conjecture in dimension 5 by Kanemitsu (2015).
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Given a CP-manifold X, we define:

⌧(X) :=
X

R

(`(R)- 2)

where the sum is taken over the extremal rays of NE(X).

In particular ⌧(X) = 0 if and only if X is a Flag Type manifold.

CP conjecture will then follow from:

Conjecture

Given a CP-manifold satisfying ⌧(X) > 0, there exists a contrac-
tion f : X 0 ! X from a CP-manifold X 0 satisfying ⌧(X 0) < ⌧(X).
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