Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

A characterization of complete flag manifolds

Gianluca Occhetta

with R. Muñoz, L.E. Solá Conde, K. Watanabe and J. Wiśniewski

Cortona, June 2015

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

1 Introduction

2 Rational Homogeneous Manifolds

3 Main result

4 Campana-Peternell Conjecture

6 An application

Outline

Gianluca Occhetta

Introduction Fano bundles

The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲◎

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Fano bundles

ション ふゆ く は く は く む く む く し く

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

model Bott-Samelson

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Fano bundles

くしゃ 本理 そうや オリマー しょうやく

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Fano bundles

ション ふゆ マ キャット マックシン

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on \mathbb{P}^m and \mathbb{Q}^m have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Fano bundles

うして ふゆう ふほう ふほう ふしつ

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on \mathbb{P}^m and \mathbb{Q}^m have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

related results Idea of proof

Speculations

Fano bundles

うして ふゆう ふほう ふほう ふしつ

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on \mathbb{P}^m and \mathbb{Q}^m have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o: the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof

Fano bundles

A vector bundle \mathcal{E} on a smooth complex projective variety X is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on \mathbb{P}^m and \mathbb{Q}^m have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b_4 was removed by Watanabe.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity o: the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Varieties with two \mathbb{P}^1 -bundle structures

Theorem (version with Bundles)

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}\oplus\mathcal{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{Q}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C}) = \mathbb{P}_{K(G_2)}(\mathcal{Q})$ \mathcal{C} Cayley, \mathcal{Q} universal quotient.

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

Varieties with two \mathbb{P}^1 -bundle structures

Theorem (version with Bundles)

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}\oplus\mathcal{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{Q}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C}) = \mathbb{P}_{K(G_2)}(\mathcal{Q}) \mathcal{C}$ Cayley, \mathcal{Q} universal quotient.

This result can be reformulated as follows:

Theorem (version with Flags)

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is rational homogeneous and it is isomorphic to a complete flag manifold of type $A_1 \times A_1$, A_2 , B_2 or G_2 .

Gianluca Occhetta

Introduction

The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections
- model
- Bott-Samelson varieties

CP Conjecture

- Positivity of the tangent bundle
- Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

A generalization

• Classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles - or just smooth \mathbb{P}^1 -fibrations.

Gianluca Occhetta

Introduction

- The problem
- RH manifolds
- Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions
- Flag manifolds

Main result

- Fibrations and reflections
- model
- Bott-Samelson varieties

CP Conjecture

- Positivity of the tangent bundle
- Results

An application

- Homogeneity and rational curves
- Comments and related results
- Idea of proof
- Speculations

A generalization

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- Classify Fano manifolds whose elementary contractions are ¹-bundles - or just smooth P¹-fibrations.
- The vector bundle approach seems difficult to apply to this more general situation.

Gianluca Occhetta

Introduction

The problem

- RH manifolds
- Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections Homogeneous
- Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Classify Fano manifolds whose elementary contractions are ¹-bundles - or just smooth P¹-fibrations.

- The vector bundle approach seems difficult to apply to this more general situation.
- Is it possible to prove the homogeneity directly, or at least recover features of the complete flags using the P¹-fibrations?

A generalization

うつう 山田 エル・エー・ 山田 うらう

Gianluca Occhetta

Introduction

The problem

- RH manifolds
- Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections Homogeneous model
- Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results Idea of proof Speculations

- Classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles or just smooth \mathbb{P}^1 -fibrations.
- The vector bundle approach seems difficult to apply to this more general situation.
- Is it possible to prove the homogeneity directly, or at least recover features of the complete flags using the P¹-fibrations?

Theorem

X is a Fano manifold whose elementary contractions are smooth $\mathbb{P}^1\text{-}\mathrm{fibrations}$ (Flag Type manifold) if and only if X is a complete flag manifold.

A generalization

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

idea or proo

Speculations

Rational Homogeneous Manifolds

(日)、(同)、(日)、(日)、(日)、

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Lie Algebras Root systems

・ロト ・ 四ト ・ 日ト ・ 日 ・

 ${\mathsf G}$ semisimple Lie group, ${\mathfrak g}$ Lie algebra, ${\mathfrak h} \subset {\mathfrak g}$ Cartan subalgebra.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Lie Algebras Root systems

・ロト ・ 四ト ・ 日ト ・ 日 ・

G semisimple Lie group, \mathfrak{g} Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra. The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{\mathfrak{0}\}}\mathfrak{g}_lpha.$$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Lie Algebras Root systems

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

G semisimple Lie group, \mathfrak{g} Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra. The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^eeackslashigoplus_{0}}\mathfrak{g}_{lpha}.$$

The spaces \mathfrak{g}_{α} are defined by

 $\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \,|\, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h}\};$

 $\alpha \neq 0$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called a root of \mathfrak{g} .

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Lie Algebras Root systems

G semisimple Lie group, \mathfrak{g} Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra. The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{\mathfrak{0}\}}\mathfrak{g}_lpha.$$

The spaces \mathfrak{g}_{α} are defined by

$$\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \,|\, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h}\};$$

 $\alpha \neq 0$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called a root of \mathfrak{g} .

The (finite) set Φ of such elements is called root system of \mathfrak{g} .

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

Lie Algebras Root systems

G semisimple Lie group, \mathfrak{g} Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra. The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{\mathfrak{0}\}}\mathfrak{g}_lpha.$$

The spaces \mathfrak{g}_{α} are defined by

$$\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \,|\, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h}\};$$

 $\alpha \neq 0$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called a root of \mathfrak{g} .

The (finite) set Φ of such elements is called root system of \mathfrak{g} .

A set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$ is a basis of \mathfrak{h}^{\vee} such that the coordinates of root are integers, all ≥ 0 or all ≤ 0 .

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Lie Algebras

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Weyl group

 (E, κ) real vector space generated by the roots, with a symmetric bilinear positive form κ induced by the Killing form of \mathfrak{g} .

Gianluca Occhetta

Introduction

The problem

RH manifolds

Lie algebras

Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

----- --- ------

Speculations

Lie Algebras

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Weyl group

 (E, κ) real vector space generated by the roots, with a symmetric bilinear positive form κ induced by the Killing form of \mathfrak{g} .

The reflections with respect to the roots:

$$\sigma_{lpha}(x)=x-\langle x,lpha
angle lpha, \quad ext{where} \quad \langle x,lpha
angle:=2rac{\kappa(x,lpha)}{\kappa(lpha,lpha)},$$

fix the root system and generate a finite group $W \subset Gl(E)$, called the Weyl group of \mathfrak{g} .

Gianluca Occhetta

Introduction

The problem

RH manifolds

Lie algebras

Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof

Speculations

Lie Algebras

Weyl group

 (E, κ) real vector space generated by the roots, with a symmetric bilinear positive form κ induced by the Killing form of \mathfrak{g} .

The reflections with respect to the roots:

$$\sigma_{lpha}(x)=x-\langle x,lpha
angle lpha, \quad ext{where} \quad \langle x,lpha
angle :=2rac{\kappa(x,lpha)}{\kappa(lpha,lpha)},$$

fix the root system and generate a finite group $W\subset \mathrm{Gl}(\mathsf{E}),$ called the Weyl group of $\mathfrak{g}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろく⊙

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Cartan matrix

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix A of \mathfrak{g} is the $n \times n$ matrix whose entries are the Cartan integers

$$\langle \alpha_i, \alpha_j \rangle = 2 \frac{\kappa(\alpha_i, \alpha_j)}{\kappa(\alpha_j, \alpha_j)}.$$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix A

Cartan matrix

of \mathfrak{g} is the $n \times n$ matrix whose entries are the Cartan integers

$$\langle \alpha_i, \alpha_j \rangle = 2 rac{\kappa(\alpha_i, \alpha_j)}{\kappa(\alpha_j, \alpha_j)}.$$

A and all its principal minors are positive definite and moreover

- $a_{ii} = 2$ for every i,
- $a_{ij} = 0$ iff $a_{ji} = 0$,
- if $a_{ij} \neq 0$, $i \neq j$, then a_{ij} , $a_{ji} \in \mathbb{Z}^-$ and $a_{ij}a_{ji} = 1, 2$ or 3.

Cartan matrix

Flag Manifolds Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix A of \mathfrak{g} is the $n \times n$ matrix whose entries are the Cartan integers

$$\langle lpha_{i}, lpha_{j}
angle = 2 rac{\kappa(lpha_{i}, lpha_{j})}{\kappa(lpha_{j}, lpha_{j})}.$$

A and all its principal minors are positive definite and moreover

- $a_{ii} = 2$ for every i,
- $a_{ij} = 0$ iff $a_{ji} = 0$,
- if $a_{ij} \neq 0$, $i \neq j$, then a_{ij} , $a_{ji} \in \mathbb{Z}^-$ and $a_{ij}a_{ji} = 1, 2$ or 3.

Example (n=2)

The Cartan matrices of rank 2 Lie algebras are

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Dynkin diagrams

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Dynkin diagrams

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

• \mathcal{D} is a graph with n nodes,

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Dynkin diagrams

・ロト ・ 四ト ・ 日ト ・ 日 ・

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

- \mathcal{D} is a graph with n nodes,
- the nodes i and j are joined by $a_{ij}a_{ji}$ edges,

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Dynkin diagrams

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

- \mathcal{D} is a graph with \mathfrak{n} nodes,
- the nodes i and j are joined by $a_{ij}a_{ji}$ edges,
- if $|a_{ij}| > |a_{ji}|$ the edges are directed towards the node i.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Dynkin diagrams

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

- \mathcal{D} is a graph with n nodes,
- the nodes i and j are joined by $a_{ij}a_{ji}$ edges,
- if $|a_{ij}| > |a_{ji}|$ the edges are directed towards the node i.

Example (n=2)

The Dynkin diagrams of rank 2 Lie algebras are

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams

RH manifolds

- Cone and contractions
- Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Dynkin diagrams

(日)、(四)、(日)、(日)、

CLASSICAL

ъ

 $D_n SO_{2n}$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

- Lie algebras
- Cartan matrix

Dynkin diagrams

- RH manifolds
- Cone and contractions
- Flag manifolds

Main result

- Fibrations and reflections Homogeneous model
- Bott-Samelson varieties

CP Conjecture

- Positivity o the tangent bundle
- Results

An application

- Homogeneity and rational curves
- Comments and related results Idea of proof
- Speculations

0-0-00	An	SL_{n+1}
000000	Bn	$SO_{2n+1} \\$
	C_n	Sp_{2n}
οοοο	D _n	SO_{2n}
· · · · · · · · · · · · · · · · · · ·	E ₆	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E ₇	
	E ₈	
$\circ - \bullet = \circ - \circ$	$F_4$	
	$G_2$	

# Dynkin diagrams

# CLASSICAL

# EXCEPTIONAL

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Rational homogeneous manifolds

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Rational homogeneous manifolds

ション ふゆ マ キャット マックシン

Subgroups  $\mathsf{P}\subset\mathsf{G}$  s.t.  $\mathsf{G}/\mathsf{P}$  is projective are called parabolic.

A parabolic subgroup is given by the choice of a set of simple roots, i.e. by  $I \subset D$ , and the variety G/P is denoted by marking the nodes of I.
Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram

#### RH manifolds

Cone and contractions Flag manifolds G = SL(4)

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

#### Speculations

# Rational homogeneous manifolds

うして ふむ くまく ふせく しゃくしゃ

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Rational homogeneous manifolds

ション ふゆ マ キャット マックシン

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.

G = SL(4)		
<b>●</b> O	<b>○</b> —●─O	00●
$\mathbb{P}^3$	$\mathbb{G}(1,3)$	$(\mathbb{P}^3)^*$

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Rational homogeneous manifolds

- コン (雪) (日) (日) (日)

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.



Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Rational homogeneous manifolds

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.



Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram

#### RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

# Rational homogeneous manifolds

Subgroups  $P \subset G$  s.t. G/P is projective are called parabolic.

A parabolic subgroup is given by the choice of a set of simple roots, i.e. by  $I \subset D$ , and the variety G/P is denoted by marking the nodes of I.



So a rational homogeneous (RH) manifold is given by a marked Dynkin diagram  $(\mathcal{D}, \mathcal{I})$ .

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions

Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Cone and contractions

イロト イポト イヨト イヨト ヨー のくで

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds

Cone and contractions

Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

### **1** X is a Fano manifold;

# Cone and contractions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲◎

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions

Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

**1** X is a Fano manifold;

**2** The Picard number  $\rho_X$  of X is #I;

# Cone and contractions

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions

Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

- **1** X is a Fano manifold;
- $\ensuremath{ 2 } \ensuremath{ 2 } \ens$
- 3 The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;

# Cone and contractions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Idea of proof

Speculations

### $X \; \mathrm{RH} \; \mathrm{given} \; \mathrm{by} \; (\mathcal{D}, \mathcal{I}).$

- **1** X is a Fano manifold;
- $\ensuremath{ 2 } \ensuremath{ 2 } \ens$
- 3 The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- **4** Every contraction  $\pi: X \to Y$  is of fiber type and smooth.

# Cone and contractions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

idea or proo

Speculations

### $X \; \mathrm{RH} \; \mathrm{given} \; \mathrm{by} \; (\mathcal{D}, \mathcal{I}).$

- **1** X is a Fano manifold;
- $\ensuremath{ 2 } \ensuremath{ {\rm The Picard number } \rho_X {\rm ~of} ~X {\rm ~is} ~\# I;}$
- 3 The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- (4) Every contraction  $\pi: X \to Y$  is of fiber type and smooth.
- **6** Y is RH with marked Dynkin diagram  $(\mathcal{D}, \mathcal{J})$ ,

# Cone and contractions

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

- **1** X is a Fano manifold;
- $\ensuremath{ 2 } \ensuremath{ {\rm The Picard number } \rho_X {\rm ~of} ~X {\rm ~is} ~\# I;}$
- 3 The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- $\textbf{@ Every contraction $\pi: X \to Y$ is of fiber type and smooth. }$
- **6** Y is RH with marked Dynkin diagram  $(\mathcal{D}, \mathcal{J})$ ,
- **6** Every fiber is RH with marked Dynkin diagram  $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$ .

# Cone and contractions

うして ふゆう ふほう ふほう ふしつ

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagram RH manifolds

#### Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

model Rott-Samolas

Bott-Sameison varieties

#### CP Conjecture

Positivity o the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

#### Speculations

### X RH given by $(\mathcal{D}, \mathcal{I})$ .

- **1** X is a Fano manifold;
- $\ensuremath{\textcircled{0}}\xspace{-1.5mm} \ensuremath{\textcircled{0}}\xspace{-1.5mm} \ensuremath{\textcircled{0}}\xspace{-1.5mm$
- 3 The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;
- $\textbf{@ Every contraction $\pi: X \to Y$ is of fiber type and smooth. }$
- **6** Y is RH with marked Dynkin diagram  $(\mathcal{D}, \mathcal{J})$ ,
- **6** Every fiber is RH with marked Dynkin diagram  $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$ .

## Cone and contractions



Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

#### Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Complete flag manifolds

ション ふゆ マ キャット マックシン

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

#### Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Complete flag manifolds

うして ふむ くまく ふせく しゃくしゃ

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

• Every RH manifold is dominated by a complete flag manifold.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

#### Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Complete flag manifolds

うつう 山田 エル・エー・ 山田 うらう

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i: G/B \to G/P^i$  contractions corresponding to the unmarking of one node are  $\mathbb{P}^1$ -bundles.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

#### Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Complete flag manifolds

うして ふゆう ふほう ふほう ふしつ

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i: G/B \to G/P^i$  contractions corresponding to the unmarking of one node are  $\mathbb{P}^1$ -bundles.
- If  $\Gamma_i$  is a fiber of  $p_i$ , and  $K_i$  the relative canonical, the intersection matrix  $[-K_i \cdot \Gamma_j]$  is the Cartan matrix.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

#### Flag manifolds

#### Main result

- Fibrations and reflections
- model
- Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Complete flag manifolds

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i: G/B \to G/P^i$  contractions corresponding to the unmarking of one node are  $\mathbb{P}^1$ -bundles.
- If  $\Gamma_i$  is a fiber of  $p_i$ , and  $K_i$  the relative canonical, the intersection matrix  $[-K_i \cdot \Gamma_j]$  is the Cartan matrix.

### Example $(A_n)$

If  $\mathcal{D} = A_n$ , then G/B is the manifold parametrizing complete flags of linear subspaces in  $\mathbb{P}^n$ .

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

- Fibrations and reflections Homogeneous
- Bott-Samelson varieties

#### CP Conjecture

- Positivity of the tangent bundle
- Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Fano manifolds whose elementary contractions are smooth $\mathbb{P}^1$ -fibrations



イロト 不得下 イヨト イヨト

ъ

## **Relative duality**

ション ふゆ マ キャット マックシン

#### Flag Manifolds Gianluca

Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

### $\pi\colon M\to Y \mbox{ smooth } \mathbb{P}^1\mbox{-fibration}. \ \Gamma \mbox{ fiber}, \ K \ {\rm relative \ canonical}$

### Lemma

Let D be a divisor on M and set  $l:=D\cdot\Gamma+1.$  Then,  $\forall i\in\mathbb{Z}$ 

$$\begin{aligned} & H^{i}(M,D) \cong \quad H^{i-1}(M,D+lK) & \text{if } l < 0 \\ & H^{i}(M,D) \cong \quad \{0\} & \text{if } l = 0 \\ & H^{i}(M,D) \cong \quad H^{i+1}(M,D+lK) & \text{if } l > 0 \end{aligned}$$

 $\label{eq:analytical} \textit{In particular} \quad X(M,D) = -X(M,D+lK) \quad \textit{for any } D.$ 

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### Theorem

### X is Flag Type manifold if and only if X is a complete flag manifold.

# Idea of Proof

I - Finding a homogeneous model

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### Theorem

### $\boldsymbol{X}$ is Flag Type manifold if and only if $\boldsymbol{X}$ is a complete flag manifold.

- X Fano manifold with Picard number n.
- $\pi_i : X \to X_i$  elementary contration.
- $K_i$  relative canonical,  $\Gamma_i$  fiber of  $\pi_i$ .

# Idea of Proof

I - Finding a homogeneous model

・ロト ・ 四ト ・ 日ト ・ 日 ・

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

### Theorem

### $\boldsymbol{X}$ is Flag Type manifold if and only if $\boldsymbol{X}$ is a complete flag manifold.

- X Fano manifold with Picard number n.
- $\pi_i: X \to X_i$  elementary contration.
- $K_i$  relative canonical,  $\Gamma_i$  fiber of  $\pi_i$ .
- $X_X : \operatorname{Pic}(X) \to \mathbb{Z}$  such that  $X_X(L) = X(X, L)$ .

# Idea of Proof

I - Finding a homogeneous model

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelsor varieties

#### CP Conjecture

Positivity o the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Theorem

### X is Flag Type manifold if and only if X is a complete flag manifold.

- X Fano manifold with Picard number n.
- $\pi_i : X \to X_i$  elementary contration.
- $K_i$  relative canonical,  $\Gamma_i$  fiber of  $\pi_i$ .
- $X_X : \operatorname{Pic}(X) \to \mathbb{Z}$  such that  $X_X(L) = X(X, L)$ .

Given  $L_1, \ldots, L_n$  basis of Pic(X),

$$\chi_{X}(\mathfrak{m}_{1},\ldots,\mathfrak{m}_{n}) = \chi(X,\mathfrak{m}_{1}L_{1}+\cdots+\mathfrak{m}_{n}L_{n})$$

is a numerical polynomial of degree  $\dim X,$  so we can extend it to  $X_X:N_1(X)\to \mathbb{R}.$ 

# **Idea of Proof**

I - Finding a homogeneous model

うつう 山田 エル・エー・ 山田 うらう

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# By the Lemma the affine involutions $r'_i:N^1(X)\to N^1(X)$ $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$

satisfy

$$\chi_{\mathbf{X}}(\mathbf{D}) = -\chi_{\mathbf{X}}(\mathbf{r}_{\mathbf{i}}'(\mathbf{D})).$$

Since  $K_X \cdot \Gamma_i = -2$  for every i, setting

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

By the Lemma the affine involutions  $r'_i:N^1(X)\to N^1(X)$   $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$ 

satisfy

$$\chi_X(\mathsf{D}) = -\chi_X(\mathfrak{r}'_i(\mathsf{D})).$$

Since  $K_X \cdot \Gamma_i = -2$  for every i, setting

$$\begin{array}{rcl} T(D) &:= & D + K_X/2 \\ r_i &:= & T^{-1} \circ r'_i \circ T \\ \chi^T &:= & X_X \circ T \end{array}$$

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

By the Lemma the affine involutions  $r'_i:N^1(X)\to N^1(X)$   $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$ 

satisfy

$$\chi_{\mathbf{X}}(\mathsf{D}) = -\chi_{\mathbf{X}}(\mathsf{r}'_{\mathsf{i}}(\mathsf{D})).$$

Since  $K_X \cdot \Gamma_i = -2$  for every i, setting

$$\begin{array}{rcl} T(D) &:= & D + K_X/2 \\ r_i &:= & T^{-1} \circ r'_i \circ T \\ \chi^T &:= & X_X \circ T \end{array}$$

we have that the map  $r_i$  is a linear involution of  $N^1(X)$  given by  $r_i(D)=D+(D\cdot\Gamma_i)K_i,$ 

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves Comments and related results

Idea of proof

Speculations

By the Lemma the affine involutions  $r'_i:N^1(X)\to N^1(X)$   $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$ 

satisfy

$$\chi_{\mathbf{X}}(\mathsf{D}) = -\chi_{\mathbf{X}}(\mathsf{r}'_{\mathsf{i}}(\mathsf{D})).$$

Since  $K_X \cdot \Gamma_i = -2$  for every i, setting

-

$$\begin{split} & \Gamma(D) & \coloneqq \quad D + K_X/2 \\ & r_i & \coloneqq \quad T^{-1} \circ r'_i \circ T \\ & \chi^T & \coloneqq \quad X_X \circ T \end{split}$$

we have that the map  $r_i$  is a linear involution of  $N^1(X)$  given by  $r_i(D)=D+(D\cdot\Gamma_i)K_i,$ 

which fixes pointwise the hyperplane  $M_{\mathfrak{i}}:=\{D\,|\,D\cdot\Gamma_{\mathfrak{i}}=0\}$  and satisfies

$$\mathbf{r}_{i}(\mathbf{K}_{i}) = -\mathbf{K}_{i}$$
  $\mathbf{\chi}^{\mathsf{T}}(\mathsf{D}) = -\mathbf{\chi}^{\mathsf{T}}(\mathbf{r}_{i}(\mathsf{D}));$ 

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves Comments and related results Idea of proof

Speculations

# By the Lemma the affine involutions $r'_i:N^1(X)\to N^1(X)$ $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$

satisfy

$$\chi_{X}(D) = -\chi_{X}(r'_{i}(D)).$$

Since  $K_X \cdot \Gamma_i = -2$  for every i, setting

$$\begin{array}{rcl} T(D) &:= & D + K_X/2 \\ r_i &:= & T^{-1} \circ r'_i \circ T \\ \chi^T &:= & X_X \circ T \end{array}$$

we have that the map  $r_i$  is a linear involution of  $N^1(X)$  given by  $r_i(D)=D+(D\cdot\Gamma_i)K_i,$ 

which fixes pointwise the hyperplane  $\mathsf{M}_{\mathfrak{i}}:=\{\mathsf{D}\,|\,\mathsf{D}\cdot\Gamma_{\mathfrak{i}}=0\}$  and satisfies

$$\mathbf{r}_{i}(\mathbf{K}_{i}) = -\mathbf{K}_{i}$$
  $\mathbf{X}^{\mathsf{T}}(\mathbf{D}) = -\mathbf{X}^{\mathsf{T}}(\mathbf{r}_{i}(\mathbf{D}));$ 

in particular  $X^T$  vanishes on  $M_i$  for every i.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the $r_i$ 's.

# Weyl group

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

### Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the $r_i$ 's.

### Theorem

### The group W is finite and the set

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W

# Weyl group

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Idea of proof

### For every divisor D and every $w \in W$

 $\chi^{\mathsf{T}}(\mathsf{D}) = \pm \chi^{\mathsf{T}}(w(\mathsf{D})),$ 

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Idea of proof

- コン (雪) (日) (日) (日)

### For every divisor D and every $w \in W$

$$X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})),$$

so  $X_X^T$  vanishes on the hyperplanes  $w(M_i)$ ; therefore the number of these hyperplanes is bounded by the dimension of X.

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Idea of proof

### For every divisor D and every $w \in W$

$$X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})),$$

so  $X_X^T$  vanishes on the hyperplanes  $w(M_i)$ ; therefore the number of these hyperplanes is bounded by the dimension of X.

Then one proves that the isotropy subgroup of  $M_i$  is finite (by considering the induced action on  $N_1(X)$ , and writing the elements of W is a suitable basis).

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

#### Speculations

# Idea of proof

### For every divisor D and every $w \in W$

$$X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})),$$

so  $X_X^T$  vanishes on the hyperplanes  $w(M_i)$ ; therefore the number of these hyperplanes is bounded by the dimension of X.

Then one proves that the isotropy subgroup of  $M_i$  is finite (by considering the induced action on  $N_1(X)$ , and writing the elements of W is a suitable basis).

By the finiteness there is a scalar product (, ) on  $N^1(X)$ , which is W-invariant. In particular the  $r_i$ 's are euclidean reflections.

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

#### Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o the tangent bundle

Results

#### An application

Homogeneity and rational curves Comments and

Idea of proof Speculations

# Idea of proof

うつう 山田 エル・エー・ 山田 うらう

### For every divisor D and every $w \in W$

$$X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})),$$

so  $X_X^T$  vanishes on the hyperplanes  $w(M_i)$ ; therefore the number of these hyperplanes is bounded by the dimension of X.

Then one proves that the isotropy subgroup of  $M_i$  is finite (by considering the induced action on  $N_1(X)$ , and writing the elements of W is a suitable basis).

By the finiteness there is a scalar product ( , ) on  $N^1(X)$ , which is W-invariant. In particular the  $r_i$ 's are euclidean reflections.

Using that  $r_i(K_i) = -K_i$  is then straightforward (but tedious) to prove that  $\Phi$  is a root system with Weyl group W.
# Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Homogeneous model

Since ( , ) is W-invariant, 
$$(K_j,K_i)=(r_i(K_j),-K_i)$$
 which gives

$$-K_{j}\cdot\Gamma_{i}=2\frac{(K_{j},K_{i})}{(K_{i},K_{i})}=\langle K_{j},K_{i}\rangle,$$

so the intersection matrix  $[-K_j \cdot \Gamma_i]$  is the Cartan matrix of  $\Phi$ .

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results Idea of proof

----- --- -----

Speculations

# Homogeneous model

うつう 山田 エル・エー・ 山田 うらう

Since ( , ) is W-invariant,  $(K_j,K_i)=(r_i(K_j),-K_i)$  which gives

$$-K_j\cdot \Gamma_i=2\frac{(K_j,K_i)}{(K_i,K_i)}=\langle K_j,K_i\rangle,$$

so the intersection matrix  $[-K_j \cdot \Gamma_i]$  is the Cartan matrix of  $\Phi$ .

In particular the intersection matrix of X is the intersection matrix of a complete flag manifold G/B, the homogeneous model of X.

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections

#### Homogeneous model

Bott-Samelso: varieties

#### CP Conjecture

Positivity o the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Homogeneous model

Since ( , ) is W-invariant,  $(K_j,K_i)=(r_i(K_j),-K_i)$  which gives

$$-K_j\cdot \Gamma_i=2\frac{(K_j,K_i)}{(K_i,K_i)}=\langle K_j,K_i\rangle,$$

so the intersection matrix  $[-K_j \cdot \Gamma_i]$  is the Cartan matrix of  $\Phi$ .

In particular the intersection matrix of X is the intersection matrix of a complete flag manifold G/B, the homogeneous model of X. Define  $\psi : N^1(X) \to N^1(G/B)$ , by setting  $\psi(K_i) = \overline{K}_i$ .

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections

#### Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

# Homogeneous model

うつう 山田 エル・エー・ 山田 うらう

Since ( , ) is W-invariant,  $(K_j,K_i)=(r_i(K_j),-K_i)$  which gives

$$-K_j\cdot \Gamma_i=2\frac{(K_j,K_i)}{(K_i,K_i)}=\langle K_j,K_i\rangle,$$

so the intersection matrix  $[-K_j\cdot\Gamma_i]$  is the Cartan matrix of  $\Phi.$ 

In particular the intersection matrix of X is the intersection matrix of a complete flag manifold G/B, the homogeneous model of X. Define  $\psi : N^1(X) \to N^1(G/B)$ , by setting  $\psi(K_i) = \overline{K}_i$ .

# Proposition

- $\Lambda \subset \operatorname{Pic}(X)$  generated by the K_i's.
  - $h^{i}(X,D) = h^{i}(G/B,\psi(D))$  for every  $D \in \Lambda$ ,  $i \in \mathbb{Z}$ .
  - $\dim X = \dim G/B;$

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# **Idea of Proof**

II - Proving the isomorphism

ション ふゆ マ キャット マックシン

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# **Idea of Proof**

II - Proving the isomorphism

うして ふゆう ふほう ふほう ふしつ

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Idea of Proof

II - Proving the isomorphism

うして ふゆう ふほう ふほう ふしつ

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

If  $\ell=\emptyset$  we set  $\mathsf{Z}_\ell:=\{x\}$  and  $\mathsf{f}_\ell:\{x\}\to X$  is the inclusion.

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Idea of Proof

II - Proving the isomorphism

うして ふゆう ふほう ふほう ふしつ

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

If  $\ell=\emptyset$  we set  $\mathsf{Z}_\ell:=\{x\}$  and  $f_\ell:\{x\}\to X$  is the inclusion.

Inductively we build  $Z_\ell$  on  $Z_{\ell[1]}$ :

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# **Idea of Proof**

II - Proving the isomorphism

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

If  $\ell=\emptyset$  we set  $\mathsf{Z}_\ell:=\{x\}$  and  $\mathsf{f}_\ell:\{x\}\to X$  is the inclusion.

Inductively we build  $Z_{\ell}$  on  $Z_{\ell[1]}$ :



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# **Idea of Proof**

II - Proving the isomorphism

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

If  $\ell=\emptyset$  we set  $\mathsf{Z}_\ell:=\{x\}$  and  $\mathsf{f}_\ell:\{x\}\to X$  is the inclusion.

Inductively we build  $Z_\ell$  on  $Z_{\ell[1]}$ :



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

# Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Idea of Proof

II - Proving the isomorphism

- X Flag Type manifold of Picard number  $n, x \in X$  point;
- $\ell = (l_1, \ldots, l_t)$ , list of indices in  $\{1, \ldots, n\}$ ,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety  $Z_{\ell}$ , with a morphism  $f_{\ell} : Z_{\ell} \to X$ , associated with the sequence  $\ell$ , is constructed in the following way:

If  $\ell=\emptyset$  we set  $\mathsf{Z}_\ell:=\{x\}$  and  $\mathsf{f}_\ell:\{x\}\to X$  is the inclusion.

Inductively we build  $Z_{\ell}$  on  $Z_{\ell[1]}$ :



◆□▶ ◆□▶ ◆□▶ ◆□▶ - □ - のへで

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# The image of $Z_{\ell}$ in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2}, \ldots, \Gamma_{l_t}$ starting from x.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# The image of $Z_{\ell}$ in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$ starting from x.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

In the homogeneous case such loci are the Schubert varieties.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

The image of  $Z_{\ell}$  in X is the set of points belonging to chains of rational curves  $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$  starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list  $\ell$  it is associated an element  $w(\ell)$  of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$ 

ション ふゆ マ キャット マックシン

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

The image of  $Z_{\ell}$  in X is the set of points belonging to chains of rational curves  $\Gamma_{l_1}, \Gamma_{l_2}, \ldots, \Gamma_{l_t}$  starting from x. In the homogeneous case such loci are the Schubert varieties.

With a list  $\ell$  it is associated an element  $w(\ell)$  of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$ 

うして ふゆう ふほう ふほう ふしつ

if there is no expression of  $w(\ell)$  which contains less than t reflections, then  $w(\ell)$  and  $\ell$  are called reduced.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

The image of  $Z_{\ell}$  in X is the set of points belonging to chains of rational curves  $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$  starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list  $\ell$  it is associated an element  $w(\ell)$  of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$ 

if there is no expression of  $w(\ell)$  which contains less than t reflections, then  $w(\ell)$  and  $\ell$  are called reduced.

The length  $\lambda(w(\ell))$  is the number of reflections appearing in a reduced expression of  $w(\ell)$ .

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity o the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results Idea of proof The image of  $Z_{\ell}$  in X is the set of points belonging to chains of rational curves  $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$  starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list  $\ell$  it is associated an element  $w(\ell)$  of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$ 

if there is no expression of  $w(\ell)$  which contains less than t reflections, then  $w(\ell)$  and  $\ell$  are called reduced.

The length  $\lambda(w(\ell))$  is the number of reflections appearing in a reduced expression of  $w(\ell)$ .

If  $w(\ell)$  is reduced then  $f_\ell: Z_\ell \to f_\ell(Z_\ell)$  is birational, hence

$$\dim f_{\ell}(\mathsf{Z}_{\ell}) = \dim \mathsf{Z}_{\ell} = \#(\ell) = \lambda(w(\ell)).$$

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

related results Idea of proof Speculations The image of  $Z_{\ell}$  in X is the set of points belonging to chains of rational curves  $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$  starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list  $\ell$  it is associated an element  $w(\ell)$  of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$ 

if there is no expression of  $w(\ell)$  which contains less than t reflections, then  $w(\ell)$  and  $\ell$  are called reduced.

The length  $\lambda(w(\ell))$  is the number of reflections appearing in a reduced expression of  $w(\ell)$ .

If  $w(\ell)$  is reduced then  $f_\ell: Z_\ell \to f_\ell(Z_\ell)$  is birational, hence

$$\dim f_{\ell}(Z_{\ell}) = \dim Z_{\ell} = \#(\ell) = \lambda(w(\ell)).$$

うして ふゆう ふほう ふほう ふしつ

In W there exists a unique longest element  $w_0$ , of length dim X. If  $\ell_0$  is a reduced list such that  $w(\ell_0) = w_0$  then  $f_\ell : Z_{\ell_0} \to X$  is surjective and birational.

Gianluca Occhetta

# Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

 $X \ {\rm Flag} \ {\rm Type} \ {\rm manifold}, \ G/B \ {\rm homogeneus} \ {\rm model} \ {\rm of} \ X \\ {\rm Find} \ {\rm a} \ {\rm list} \ \ell_0 \ {\rm such} \ {\rm that} \ w(\ell_0) = w_0 \ {\rm and} \ {\rm prove} \ {\rm that} \$ 

$$\mathsf{Z}_{\ell_0}\simeq\overline{\mathsf{Z}}_{\ell_0}\qquad\mathsf{f}_{\ell_0}=\overline{\mathsf{f}}_{\ell_0}$$

The idea is to show inductively that  $Z_{\ell_0}$  depends only on the list and on the intersection matrix.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Gianluca Occhetta

# Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

X Flag Type manifold, G/B homogeneus model of X Find a list  $\ell_0$  such that  $w(\ell_0) = w_0$  and prove that

$$\mathsf{Z}_{\ell_0}\simeq\overline{\mathsf{Z}}_{\ell_0}\qquad\mathsf{f}_{\ell_0}=\overline{\mathsf{f}}_{\ell_0}$$

The idea is to show inductively that  $Z_{\ell_0}$  depends only on the list and on the intersection matrix.

Assume that  $Z_{\ell[1]} \simeq \overline{Z}_{\ell[1]}$ ;



・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Gianluca Occhetta

# Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof X Flag Type manifold, G/B homogeneus model of X Find a list  $\ell_0$  such that  $w(\ell_0) = w_0$  and prove that

$$\mathsf{Z}_{\ell_0}\simeq\overline{\mathsf{Z}}_{\ell_0}\qquad\mathsf{f}_{\ell_0}=\overline{\mathsf{f}}_{\ell_0}$$

The idea is to show inductively that  $Z_{\ell_0}$  depends only on the list and on the intersection matrix.

Assume that  $Z_{\ell[1]} \simeq \overline{Z}_{\ell[1]}$ ;



 $f_{\ell[1]}$  factors via  $Z_{\ell}$ , giving a section  $\sigma_{\ell[1]}$ , hence an extension  $0 \to \mathcal{O}_{Z_{\ell(1)}}(f_{\ell[1]}^*K_{l_r}) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell(1)}} \to 0.$ 

# ◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# One shows easily that the following are equivalent

イロト イポト イヨト イヨト ヨー のくで

Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# One shows easily that the following are equivalent

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- The extension is split;
- $h^1(Z_{\ell[1]}, f^*_{\ell}(K_{l_r})) = 0;$
- the index  $l_r$  does not appear in  $\ell[1]$ .

Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

idea or proo

Speculations

One shows easily that the following are equivalent

- The extension is split;
- $h^1(Z_{\ell[1]}, f^*_{\ell}(K_{l_r})) = 0;$
- the index  $l_r$  does not appear in  $\ell[1]$ .

It is enough to show that if the index  $l_r$  appears in  $\ell[1]$  then

$$h^{1}(Z_{\ell[1]}, f_{\ell}^{*}(K_{l_{r}})) \leq 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Gianluca Occhetta

#### Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity o the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

One shows easily that the following are equivalent

• The extension is split;

• 
$$h^1(Z_{\ell[1]}, f^*_{\ell}(K_{l_r})) = 0;$$

• the index  $l_r$  does not appear in  $\ell[1]$ .

It is enough to show that if the index  $l_r$  appears in  $\ell[1]$  then

$$h^{1}(Z_{\ell[1]}, f_{\ell}^{*}(K_{l_{r}})) \leq 1.$$

This can be done except for  $G_2$ , (already known from the n = 2 case) and  $F_4$ , for which an ad hoc argument is needed.

・ロト ・ 四ト ・ 日ト ・ 日 ・

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

- Fibrations and reflections
- model
- Bott-Samelson varieties

# **CP** Conjecture

- Positivity of the tangent bundle
- Results

## An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations



# Campana-Peternell Conjecture



イロト 不得下 不同下 不同下

3

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Positivity of the tangent bundle

イロト イポト イヨト イヨト ヨー のくで

 $\boldsymbol{X}$  smooth complex projective variety.

Gianluca Occhetta

# Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections

model

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Positivity of the tangent bundle

ション ふゆ マ キャット マックシン

X smooth complex projective variety.

# Theorem [Mori (1979)]

 $T_X \text{ ample } \Leftrightarrow X = \mathbb{P}^{\mathfrak{m}}.$ 

Gianluca Occhetta

# Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous

model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Positivity of the tangent bundle

 $\boldsymbol{X}$  smooth complex projective variety.

# Theorem [Mori (1979)]

 $T_X \text{ ample } \Leftrightarrow X = \mathbb{P}^{\mathfrak{m}}.$ 

•  $T_X \text{ nef} \Rightarrow ??$ 

Gianluca Occhetta

# Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

.....

# Positivity of the tangent bundle

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

X smooth complex projective variety.

# Theorem [Mori (1979)]

 $T_X$  ample  $\Leftrightarrow X = \mathbb{P}^m$ .

- $T_X \text{ nef} \Rightarrow ??$
- Examples:



Gianluca Occhetta

# Introduction

Fano bundles The problem

# RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves Comments and

related results Idea of proof

Speculations

# Positivity of the tangent bundle

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

X smooth complex projective variety.

# Theorem [Mori (1979)]

 $T_X$  ample  $\Leftrightarrow X = \mathbb{P}^m$ .

- $T_X \text{ nef} \Rightarrow ??$
- Examples:



# Theorem [Demailly, Peternell and Schneider (1994)]

$$T_X \text{ nef} \Rightarrow \begin{cases} X \stackrel{\text{\tiny étale}}{\longleftarrow} X' \stackrel{F}{\longrightarrow} A \end{cases}$$

A Abelian, F Fano,  $T_{\rm F}$  nef

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

## Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

# Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

. ... ......

Speculations

# Campana-Peternell Conjecture

Sac

# Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

#### Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Campana-Peternell Conjecture

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

# Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

# **Results:**

 $\checkmark$  dim X = 3 [Campana & Peternell(1991)]

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

## CP Conjecture

Positivity of the tangent bundle

#### Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Campana-Peternell Conjecture

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

# Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

# **Results:**

- $\checkmark$  dim X = 3 [Campana & Peternell(1991)]
- $\mathbf{Z}$  dim X = 4 [CP (1993), Mok (2002), Hwang (2006)]

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

#### Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

# Campana-Peternell Conjecture

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

# Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

# **Results:**

 $\mathbf{V} \dim X = 3$  [Campana & Peternell(1991)]  $\mathbf{V} \dim X = 4$  [CP (1993), Mok (2002), Hwang (2006)]  $\mathbf{V} \dim X = 5$  and  $\rho_X > 1$  [Watanabe (2012)]

Gianluca Occhetta

#### Introduction

Fano bundles The problem

## RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

# Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

# CP Conjecture

Positivity of the tangent bundle

Results

# An application

Homogeneity and rational curves

Comments and related results Idea of proof

# Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

# **Results:**

- $\checkmark$  dim X = 3 [Campana & Peternell(1991)]
- $\mathbf{V} \dim \mathbf{X} = 4$  [CP (1993), Mok (2002), Hwang (2006)]
- $\mathbf{V} \dim X = 5 \text{ and } \rho_X > 1 \text{ [Watanabe (2012)]}$
- ☑ T_X big and 1-ample [Solá-Conde & Wiśniewski (2004)]

# Campana-Peternell Conjecture

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●
Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### **CP** Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof

# Campana-Peternell Conjecture

うつう 山田 エル・エー・ 山田 うらう

### Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

### Results:

- $\checkmark$  dim X = 3 [Campana & Peternell(1991)]
- $\mathbf{V} \dim \mathbf{X} = 4$  [CP (1993), Mok (2002), Hwang (2006)]
- $\mathbf{V} \dim X = 5 \text{ and } \rho_X > 1 \text{ [Watanabe (2012)]}$
- ☑ T_X big and 1-ample [Solá-Conde & Wiśniewski (2004)]
- The above results are obtained by classifying the manifolds satisfying the required properties;

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelsor varieties

#### **CP** Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

# Campana-Peternell Conjecture

うつう 山田 エル・エー・ 山田 うらう

### Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

### Results:

- $\checkmark$  dim X = 3 [Campana & Peternell(1991)]
- $\mathbf{V} \dim \mathbf{X} = 4$  [CP (1993), Mok (2002), Hwang (2006)]
- $\checkmark \dim X = 5 \text{ and } \rho_X > 1 \text{ [Watanabe (2012)]}$
- ☑ T_X big and 1-ample [Solá-Conde & Wiśniewski (2004)]
- The above results are obtained by classifying the manifolds satisfying the required properties;
- homogeneity is checked a posteriori.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds

Cone and contractions

Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations



# An application



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

#### Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Homogeneity via families of rational curves

- X Fano of Picard number one;
- $\mathcal{M}$  dominating family of rational curves of minimal degree;
- $\mathcal{U}$  universal family.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

#### Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Homogeneity via families of rational curves

うして ふむ くまく ふせく しゃくしゃ

- X Fano of Picard number one;
- $\mathcal{M}$  dominating family of rational curves of minimal degree;
- $\mathcal{U}$  universal family.



Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

model Bott=Samelso

varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

#### Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Homogeneity via families of rational curves

- X Fano of Picard number one;
- *M* dominating family of rational curves of minimal degree;
- $\mathcal{U}$  universal family.



### Theorem

Assume that  $\mathcal{M}$  is unsplit, q is smooth and that  $\mathcal{M}_x := q^{-1}(x)$  is RH for every  $x \in X$ . Then X is RH.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

#### Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Homogeneity via families of rational curves

- X Fano of Picard number one;
- *M* dominating family of rational curves of minimal degree;
- $\mathcal{U}$  universal family.



### Theorem

Assume that  $\mathcal{M}$  is unsplit, q is smooth and that  $\mathcal{M}_x := q^{-1}(x)$  is RH for every  $x \in X$ . Then X is RH.

### Remark

If  $T_X$  is nef then the assumptions on  $\mathcal M$  and q hold.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

#### Homogeneity and rational curves

Comments and related results Idea of proof Speculations

### Homogeneity via families of rational curves

- X Fano of Picard number one;
- $\mathcal{M}$  dominating family of rational curves of minimal degree;
- $\mathcal{U}$  universal family.



# Theorem

Assume that  $T_X$  is nef and that  $\mathcal{M}_x := q^{-1}(x)$  is RH for every  $x \in X$ . Then X is RH.

### Remark

If  $T_X$  is nef then the assumptions on  $\mathcal M$  and q hold.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Recognizing homogeneous spaces

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- $\bullet~X$  Fano of Picard number one,  $T_X$  nef;
- S = G/P RH space of Picard number one;
- $\mathcal{M}, \mathcal{L}$  minimal dominating families of rational curves;

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Recognizing homogeneous spaces

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- $\bullet~X$  Fano of Picard number one,  $T_X$  nef;
- S = G/P RH space of Picard number one;
- $\mathcal{M}, \mathcal{L}$  minimal dominating families of rational curves;

### Corollary

Assume  $\mathcal{L}_0$  is RH. If  $\mathcal{M}_x \simeq \mathcal{L}_0$  for every  $x \in X$  then  $X \simeq S$ .

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

# Recognizing homogeneous spaces

- $\bullet~X$  Fano of Picard number one,  $T_X$  nef;
- S = G/P RH space of Picard number one;
- $\mathcal{M}, \mathcal{L}$  minimal dominating families of rational curves;

### Corollary

 $\mathrm{Assume}\ \mathcal{L}_0\ \mathrm{is}\ \mathrm{RH}.\ \mathrm{If}\ \mathcal{M}_x\simeq \mathcal{L}_0\ \mathrm{for}\ \mathrm{every}\ x\in X\ \mathrm{then}\ X\simeq S.$ 

### The following are equivalent:

- $\mathcal{L}_0$  is G-homogeneous.
- P is associated to a long simple root.
- There is no arrow in the Dynkin diagram pointing towards the node corresponding to P.

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Recognizing homogeneous spaces

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- X Fano of Picard number one;
- S = G/P RH space of Picard number one;
- $\mathcal{M}, \mathcal{L}$  minimal dominating families of rational curves;
- $\mathcal{C}_0(S)$  VMRT of S;
- $\mathcal{C}_{\mathbf{x}}(X)$  VMRT of X at a general point;

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Recognizing homogeneous spaces

うして ふゆう ふほう ふほう ふしつ

- X Fano of Picard number one;
- S = G/P RH space of Picard number one;
- $\mathcal{M}, \mathcal{L}$  minimal dominating families of rational curves;
- $C_0(S)$  VMRT of S;
- $\mathcal{C}_{\mathbf{x}}(X)$  VMRT of X at a general point;

### Theorem [Mok, Hong-Hwang]

If P is associated to a long simple root and  $\mathcal{C}(X)_x$  is projectively equivalent to  $\mathcal{C}(S)_0$ , then  $X \simeq S$ .

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Idea of the proof

・ロト ・ 四ト ・ 日ト ・ 日 ・

Given the smooth fibration  $q: \mathcal{U} \to X$ , with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Given the smooth fibration $q: \mathcal{U} \to X$ , with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

Idea of the proof

The fibration q is defined by a cocycle  $\vartheta \in H^1(X,G),$  where G is the identity component of  $\operatorname{Aut}(F)$  - here we use that X is simply connected.

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Given the smooth fibration  $q: \mathcal{U} \to X$ , with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

The fibration q is defined by a cocycle  $\vartheta \in H^1(X, G)$ , where G is the identity component of Aut(F) - here we use that X is simply connected.

The cocycle  $\vartheta$  defines a principal G-bundle  $\mathcal{U}_G \to X$ 

# Idea of the proof

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### **CP** Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Given the smooth fibration  $q: \mathcal{U} \to X$ , with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

The fibration q is defined by a cocycle  $\vartheta \in H^1(X,G),$  where G is the identity component of  $\operatorname{Aut}(F)$  - here we use that X is simply connected.

The cocycle  $\vartheta$  defines a principal G-bundle  $\mathcal{U}_G \to X$ 

Given a Borel subgroup  $B \subset G$  we can define the G/B-bundle

$$\overline{\mathcal{U}} := \mathcal{U}_G \times^G G / B \to X$$

as a quotient of  $\mathcal{U}_G \times G/B$  by  $(x, gB) \sim (xg', g'^{-1}gB)$ ,

# Idea of the proof

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Given the smooth fibration  $q : \mathcal{U} \to X$ , with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

The fibration q is defined by a cocycle  $\vartheta \in H^1(X,G),$  where G is the identity component of  $\operatorname{Aut}(F)$  - here we use that X is simply connected.

The cocycle  $\vartheta$  defines a principal G-bundle  $\mathcal{U}_G \to X$ 

Given a Borel subgroup  $B\subset G$  we can define the G/B-bundle

$$\overline{\mathcal{U}} := \mathcal{U}_G \times^G G / B \to X$$

as a quotient of  $\mathcal{U}_G \times G/B$  by  $(x, gB) \sim (xg', g'^{-1}gB)$ , and we have a commutative diagram



# Idea of the proof

うして ふゆう ふほう ふほう ふしつ

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$ , and has $\rho(G/B)$ contractions (over X) which are smooth $\mathbb{P}^1$ -fibrations.

# Idea of the proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### Idea of the proof

The flag bundle  $\overline{\mathcal{U}}$  has Picard number  $\rho(G/B) + 1$ , and has  $\rho(G/B)$  contractions (over X) which are smooth  $\mathbb{P}^1$ -fibrations.

 $\begin{array}{c}
\overline{\mathcal{U}} \\
\downarrow^{\pi} \\
\mathcal{U} \\
\downarrow^{q} \\
\downarrow^{q} \\
\vee \\
\mathsf{V}
\end{array}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

### Occhetta Introduction

Flag

Manifolds Gianluca

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

# The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$ , and has $\rho(G/B)$ contractions (over X) which are smooth $\mathbb{P}^1$ -fibrations.

 $\begin{array}{c} \overline{\mathcal{U}} \\ \downarrow \pi \\ \psi \\ \mathcal{U} \\ \downarrow q \\ \chi \\ \end{array}$ 

### Idea: show that the $\mathbb{P}^1$ - fibration $p: \mathcal{U} \to \mathcal{M}$

・ロト ・ 四ト ・ 日ト ・ 日 ・

### Occhetta Introduction

Flag

Manifolds

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

# The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$ , and has

 $\rho(G/B)$  contractions (over X) which are smooth  $\mathbb{P}^1$ -fibrations.

 $\mathcal{M} \xleftarrow{p}{\mathcal{U}} \mathcal{M}$ 

Idea: show that the  $\mathbb{P}^1\text{-}$  fibration  $p:\mathcal{U}\to\mathcal{M}$ 

### Occhetta Introduction

Flag

Manifolds

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

#### CP Conjecture

Positivity o: the tangent bundle

Results

#### An applicatior

Homogeneity and rational curves

Comments and related results

Idea of proof

# The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$ , and has

 $\rho(G/B)$  contractions (over X) which are smooth  $\mathbb{P}^1$ -fibrations.

 $\mathcal{M} \xleftarrow{p}{\mathcal{U}} \mathcal{M} \xrightarrow{q} \mathcal{V}$ 

Idea: show that the  $\mathbb{P}^1$ - fibration  $p: \mathcal{U} \to \mathcal{M}$  can be lifted to  $\overline{\mathcal{U}}$ .

RH manifolds Cone and Flag manifolds

Flag

Manifolds Gianluca Occhetta

The problem

the tangent

### Homogeneity and

related results

Idea of proof

### The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$ , and has $\rho(G/B)$ contractions (over X) which are smooth $\mathbb{P}^1$ -fibrations.



Idea: show that the  $\mathbb{P}^1$ - fibration  $\mathfrak{p}: \mathcal{U} \to \mathcal{M}$  can be lifted to  $\overline{\mathcal{U}}$ .

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### So $\overline{\mathcal{U}}$ has a number of $\mathbb{P}^1$ -fibrations equal to its Picard number.



# Idea of the proof

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections

model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# Idea of the proof

・ロト ・ 四ト ・ 日ト ・ 日 ・

So  $\overline{\mathcal{U}}$  has a number of  $\mathbb{P}^1$ -fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

### Idea of the proof

うつう 山田 エル・エー・ 山田 うらう

So  $\overline{\mathcal{U}}$  has a number of  $\mathbb{P}^1$ -fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

### Theorem

Let X be a smooth projective variety of Picard number n, with n elementary contractions which are smooth  $\mathbb{P}^1$ -fibrations. Then X is isomorphic to a complete flag manifold.

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

#### Speculations

So  $\overline{\mathcal{U}}$  has a number of  $\mathbb{P}^1$ -fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

### Theorem

Let X be a smooth projective variety of Picard number n, with n elementary contractions which are smooth  $\mathbb{P}^1$ -fibrations. Then X is isomorphic to a complete flag manifold.

and get that  $\overline{\mathcal{U}}$  is a complete flag manifold;

# Idea of the proof

うつう 山田 エル・エー・ 山田 うらう

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

# Idea of the proof

うして ふゆう ふほう ふほう ふしつ

So  $\overline{\mathcal{U}}$  has a number of  $\mathbb{P}^1$ -fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

### Theorem

Let X be a smooth projective variety of Picard number n, with n elementary contractions which are smooth  $\mathbb{P}^1$ -fibrations. Then X is isomorphic to a complete flag manifold.

and get that  $\overline{\mathcal{U}}$  is a complete flag manifold; hence X, being the image of a contraction of  $\mathcal{U}$  is homogeneous.

Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

So  $\overline{\mathcal{U}}$  has a number of  $\mathbb{P}^1$ -fibrations equal to its Picard number.

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

### Theorem

Let X be a smooth projective variety of Picard number n, with n elementary contractions which are smooth  $\mathbb{P}^1$ -fibrations. Then X is isomorphic to a complete flag manifold.

and get that  $\overline{\mathcal{U}}$  is a complete flag manifold; hence X, being the image of a contraction of  $\mathcal{U}$  is homogeneous.

### Remark

A similar argument has been used to conclude the proof of CP conjecture in dimension 5 by Kanemitsu (2015).

Idea of the proof

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

#### Speculations

# Speculations

### Given a CP-manifold X, we define:

$$\tau(X) := \sum_{\mathsf{R}} (\ell(\mathsf{R}) - 2)$$

where the sum is taken over the extremal rays of  $\overline{NE}(X)$ .

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

#### Speculations

# **Speculations**

Given a CP-manifold X, we define:

$$\tau(X) := \sum_{\mathsf{R}} (\ell(\mathsf{R}) - 2)$$

where the sum is taken over the extremal rays of  $\overline{NE}(X)$ .

In particular  $\tau(X) = 0$  if and only if X is a Flag Type manifold.

# **Speculations**

うつう 山田 エル・エー・ 山田 うらう

Given a CP-manifold X, we define:

$$\tau(X) := \sum_{R} (\ell(R) - 2)$$

where the sum is taken over the extremal rays of NE(X).

In particular  $\tau(X) = 0$  if and only if X is a Flag Type manifold.

CP conjecture will then follow from:

### Conjecture

Given a CP-manifold satisfying  $\tau(X) > 0$ , there exists a contraction  $f: X' \to X$  from a CP-manifold X' satisfying  $\tau(X') < \tau(X)$ .

#### Flag Manifolds

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

# **Speculations**

うつう 山田 エル・エー・ 山田 うらう

Given a CP-manifold X, we define:

$$\tau(X) := \sum_{R} (\ell(R) - 2)$$

where the sum is taken over the extremal rays of NE(X).

In particular  $\tau(X) = 0$  if and only if X is a Flag Type manifold.

CP conjecture will then follow from:

### Conjecture

Given a CP-manifold satisfying  $\tau(X) > 0$ , there exists a contraction  $f: X' \to X$  from a CP-manifold X' satisfying  $\tau(X') < \tau(X)$ .

#### Flag Manifolds

#### Gianluca Occhetta

#### Introduction

Fano bundles The problem

#### RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

#### Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

#### CP Conjecture

Positivity of the tangent bundle

Results

#### An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations