Cylinders in Rational Surfaces

Jihun Park
with I. Cheltsov and J. Won

July 32015

Cylinder

Definition

Let S be a normal projective surface.

Cylinder

Definition

Let S be a normal projective surface. A cylinder in S is a Zariski open subset in S

Cylinder

Definition

Let S be a normal projective surface. A cylinder in S is a Zariski open subset in S that is isomorphic to $Z \times \mathbb{A}^{1}$ for some affine variety Z.

Cylinder

S contains a cylinder $U \cong \mathbb{C} \times Z$

Cylinder

S contains a cylinder $U \cong \mathbb{C} \times Z$

$$
g(Z)>0
$$

Cylinder

$$
S \text { contains a cylinder } U \cong \mathbb{C} \times Z
$$

$$
g(Z)>0
$$

S is a ruled but not a rational surface.

Cylinder

S contains a cylinder $U \cong \mathbb{C} \times Z$

$$
g(Z)>0
$$

$$
g(Z)=0
$$

S is a ruled but not a rational surface.

Cylinder

S contains a cylinder $U \cong \mathbb{C} \times Z$

$$
g(Z)>0
$$

S is a ruled but not a rational surface.

$$
\begin{array}{|l|}
\hline g(Z)=0 \\
\hline
\end{array}
$$

Z is a smooth rational affine curve, i.e., $\mathbb{P}^{1}-\{$ finitely many points $\}$
S is a rational surface.

Cylinder

S contains a cylinder $U \cong \mathbb{C} \times Z$

$$
g(Z)>0
$$

S is a ruled but not a rational surface.

$$
g(Z)=0
$$

Z is a smooth rational affine curve, i.e., $\mathbb{P}^{1}-\{$ finitely many points $\}$
S is a rational surface.

We consider only the case when S is rational.

Examples

\mathbb{P}^{2}

$$
\mathbb{P}^{2} \backslash L \cong \mathbb{A}^{1} \times \mathbb{A}^{1}
$$

Examples

$$
\mathbb{P}^{2} \backslash L_{1} \cong \mathbb{A}^{2} \quad \mathbb{C}^{2} \backslash L_{2} \cong \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}
$$

Examples

$$
\mathbb{P}^{2} \backslash L_{1} \cong \mathbb{A}^{2} \quad \mathbb{C}^{2} \backslash\left\{L_{2} \cup L_{3}\right\} \cong \mathbb{A}^{1} \times \mathbb{A}_{* *}^{1}
$$

EXAMPLES

$$
\mathbb{P}^{2} \backslash L \cong \mathbb{A}^{2} \quad \mathbb{A}^{2} \backslash C \cong \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}
$$

EXAMPLES

$$
\mathbb{C}^{2}
$$

$$
\mathbb{P}^{2} \backslash L \cong \mathbb{A}^{2}
$$

$$
\mathbb{A}^{2} \backslash C \cong \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}
$$

EXAMPLES

- Suppose that S has a cylinder U.

Examples

- Suppose that S has a cylinder U.
- A surface obtained by blowing up S at points outside U contains a cylinder.

Examples

- Every smooth rational surface contains a cylinder.

Examples

- Every smooth rational surface contains a cylinder.
- A singular surface may not have any cylinder at all.

What if S has a cylinder?

- Let S be a rational surface with quotient singularities.

What if S has a cylinder?

- Let S be a rational surface with quotient singularities.
- Let U be a cylinder in S, i.e., a Zariski open subset in S such that $U=\mathbb{A}^{1} \times Z$ for some affine curve Z.

What if S has a cylinder?

where

- p_{Z}, p_{2} and \bar{p}_{2} are the natural projections to the second factors,

What if S has a cylinder?

where

- p_{Z}, p_{2} and \bar{p}_{2} are the natural projections to the second factors,
- ψ is the rational map induced by p_{Z},

What if S has a cylinder?

where

- p_{Z}, p_{2} and \bar{p}_{2} are the natural projections to the second factors,
- ψ is the rational map induced by p_{Z},
- π is a birational morphism resolving the indeterminacy of ψ and the singularities of S,

What if S has a cylinder?

where

- p_{Z}, p_{2} and \bar{p}_{2} are the natural projections to the second factors,
- ψ is the rational map induced by p_{Z},
- π is a birational morphism resolving the indeterminacy of ψ and the singularities of S,
- ϕ is a morphism.

What if S has a cylinder?

- a general fiber of ϕ is \mathbb{P}^{1}.

What if S has a cylinder?

- Let C_{1}, \ldots, C_{n} be irreducible curves in S such that

$$
S \backslash U=\bigcup_{i=1}^{n} C_{i}
$$

What if S has a cylinder?

- Let C_{1}, \ldots, C_{n} be irreducible curves in S such that

$$
S \backslash U=\bigcup_{i=1}^{n} C_{i}
$$

- The curves C_{1}, \cdots, C_{n} generate the divisor class group $\mathrm{Cl}(S)$ of the surface S because $\mathrm{Cl}(U)=0$. In particular, one has

$$
n \geqslant \operatorname{rank} \mathrm{Cl}(S)
$$

What if S has a cylinder?

- Let E_{1}, \ldots, E_{r} be the π-exceptional curves, and let Γ be the section of \bar{p}_{2}, which is the complement of $\mathbb{C}^{1} \times \mathbb{P}^{1}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

What if S has a cylinder?

- Let E_{1}, \ldots, E_{r} be the π-exceptional curves, and let Γ be the section of \bar{p}_{2}, which is the complement of $\mathbb{C}^{1} \times \mathbb{P}^{1}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- Denote by $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and $\tilde{\Gamma}$ the proper transforms of the curves C_{1}, \ldots, C_{n} and Γ on the surface \tilde{S}, respectively.

What if S has a cylinder?

- Then $\tilde{\Gamma}$ is a section of ϕ.

What if S has a cylinder?

- Then $\tilde{\Gamma}$ is a section of ϕ.
- The curve $\tilde{\Gamma}$ is one of the curves $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r}.

What if S has a cylinder?

- Then $\tilde{\Gamma}$ is a section of ϕ.
- The curve $\tilde{\Gamma}$ is one of the curves $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r}.
- All the other curves among $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r} are irreducible components of some fibers of ϕ.

What if S has a cylinder?

- Then $\tilde{\Gamma}$ is a section of ϕ.
- The curve $\tilde{\Gamma}$ is one of the curves $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r}.
- All the other curves among $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r} are irreducible components of some fibers of ϕ.
- We may assume either $\tilde{\Gamma}=\tilde{C}_{1}$ or $\tilde{\Gamma}=E_{r}$.

What if S has a cylinder?

Let \tilde{F} be a general fiber of ϕ.

What if S has a cylinder?

Let \tilde{F} be a general fiber of ϕ.
Then $K_{\tilde{S}} \cdot \tilde{F}=-2$ by the adjunction formula.

What if S has a cylinder?

Let \tilde{F} be a general fiber of ϕ.
Then $K_{\tilde{S}} \cdot \tilde{F}=-2$ by the adjunction formula.
Put $F=\pi(\tilde{F})$.

What if S has a cylinder?

Choose arbitrary non-negative rational numbers $\lambda_{1}, \ldots, \lambda_{n}$.

What if S has a cylinder?

Choose arbitrary non-negative rational numbers $\lambda_{1}, \ldots, \lambda_{n}$.

$$
K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i} \quad=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right)
$$

What if S has a cylinder?

Choose arbitrary non-negative rational numbers $\lambda_{1}, \ldots, \lambda_{n}$.

$$
K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right)
$$

for some rational numbers μ_{1}, \ldots, μ_{r}.

What if S has a cylinder?

If $\tilde{\Gamma}=E_{r}$, then

$$
\begin{aligned}
-2+\mu_{r}=\left(K_{\tilde{S}}\right. & \left.+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}\right) \cdot \tilde{F} \\
& =\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot \tilde{F}=\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F
\end{aligned}
$$

What if S has a cylinder?

If $\tilde{\Gamma}=E_{r}$, then

$$
\begin{aligned}
-2+\mu_{r}=\left(K_{\tilde{S}}\right. & \left.+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}\right) \cdot \tilde{F} \\
& =\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot \tilde{F}=\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F
\end{aligned}
$$

If $\tilde{\Gamma}=C_{1}$, then

$$
\begin{aligned}
-2+\lambda_{1}=\left(K_{\tilde{s}}\right. & \left.+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}\right) \cdot \tilde{F} \\
& =\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot \tilde{F}=\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} c_{i}\right) \cdot F
\end{aligned}
$$

What if S has a cylinder?

If $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective, then

$$
\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F \geqslant 0
$$

because \tilde{F} is a general fiber of ϕ.
Therefore,

- $\mu_{r} \geq 2$
- $\lambda_{n} \geq 2$

What if S has a cylinder?

- If $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective, the \log pair $\left(S, \sum_{i=1}^{n} \lambda_{i} C_{i}\right)$ is not log canonical.

What if S has a cylinder?

Corollary

If a rational surface with pseudo-effective canonical class has only quotient singularities then it cannot contain any cylinders.

RATIONAL SURFACE W/O CYLINDER

At this stage, many famous rational surfaces enter!

Rational surface w/o Cylinder: Kollár

Let S be the hypersurface in $\mathbb{P}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ defined by the quasi-homogeneous equation of degree d

$$
x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+x_{3}^{a_{3}} x_{4}+x_{4}^{a_{4}} x_{1}=0
$$

- If $\operatorname{gcd}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=1$, then S is a rational surface with 4 cyclic quotient singularities.
- If $a_{1}, a_{2}, a_{3}, a_{4} \geq 4$, then K_{S} is ample.

Rational surface w/o cylinder: D. Hwang, Keum

Hwang and Keum have constructed another types of singular rational surfaces of Picard number one with ample canonical divisors.

An elliptic curve w/ CM

Let E be the the Fermat cubic curve:

$$
x^{3}+y^{3}+z^{3}=0 \subset \mathbb{P}^{2}
$$

An elliptic curve w/ CM

Let E be the the Fermat cubic curve:

$$
x^{3}+y^{3}+z^{3}=0 \subset \mathbb{P}^{2}
$$

- Its j-invariant is 0 and it is isomorphic to

$$
E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

where $\tau=e^{\frac{2}{3} \pi}$.

An elliptic curve w/ CM

Let E be the the Fermat cubic curve:

$$
x^{3}+y^{3}+z^{3}=0 \subset \mathbb{P}^{2}
$$

- Its j-invariant is 0 and it is isomorphic to

$$
E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

where $\tau=e^{\frac{2}{3} \pi}$.

- It is the unique elliptic curve admitting an automorphism τ of order 3 such that $\tau^{*}(\omega)=\tau \omega$, where ω is a non-zero regular 1-form on E.

An elliptic curve w/ CM

Let E be the the Fermat cubic curve:

$$
x^{3}+y^{3}+z^{3}=0 \subset \mathbb{P}^{2}
$$

- Its j-invariant is 0 and it is isomorphic to

$$
E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

where $\tau=e^{\frac{2}{3} \pi}$.

- It is the unique elliptic curve admitting an automorphism τ of order 3 such that $\tau^{*}(\omega)=\tau \omega$, where ω is a non-zero regular 1-form on E.
- The automorphism σ on E has exactly three fixed points P_{1}, P_{2}, P_{3}, respectively, the points corresponding to $0, \frac{2}{3}+\frac{1}{3} \tau$ and $\frac{1}{3}+\frac{2}{3} \tau$.

Rational surface w/o cylinder: cf. Campana, Oguiso, Truong, Ueno

Let S be the quotient surface

$$
E \times E /\langle\operatorname{diag}(-\tau,-\tau)\rangle
$$

- $6 K_{S}$ is linearly trivial.
- Since there is no non-zero regular 1-form on $E \times E$ invariant by $\operatorname{diag}(-\tau,-\tau)$, we obtain $h^{1}\left(S, \mathcal{O}_{S}\right)=0$.
- The surface S is a rational \log Enriques surface.

Rational surface w/o CYLinder: Reid, Oguiso, Zhang

Let \bar{S}^{\prime} be the quotient surface

$$
E \times E /\left\langle\operatorname{diag}\left(\tau, \tau^{2}\right)\right\rangle
$$

- The action $\operatorname{diag}\left(\tau, \tau^{2}\right)$ on $E \times E$ has 9 fixed points.
- These 9 fixed points become du Val singular points of type A_{2} on \bar{S}^{\prime}.

Rational surface w/o CYLINDER: Reid, Oguiso, Zhang

Let S^{\prime} be the minimal resolution of the quotient surface

$$
E \times E /\left\langle\operatorname{diag}\left(\tau, \tau^{2}\right)\right\rangle
$$

- It is a K3 surface with 24 smooth rational curves.
- Six of them come from the six fixed curves, $\left\{P_{i}\right\} \times E, E \times\left\{P_{i}\right\}$ on $E \times E$. The others come from the 9 singular points of type A_{2}.
- Let g be the automorphism of S^{\prime} induced by the $\operatorname{action} \operatorname{diag}(\tau, 1)$ on $E \times E$. Our 24 smooth rational curves on S^{\prime} are g-invariant. Among these 24 curves we can find rational tree of type D_{19}.

Rational surface w/o CYLinder: Reid, Oguiso, Zhang

Let S^{\prime} be the minimal resolution of the quotient surface

$$
E \times E /\left\langle\operatorname{diag}\left(\tau, \tau^{2}\right)\right\rangle
$$

- Let $S^{\prime} \rightarrow \hat{S}$ be the contraction of this tree.
- Then g acts on \hat{S} and it fixes two points.
- The quotient surface $\hat{S} /\langle g\rangle$ is a rational log Enriques surface.

Rational surface w/o CYLINDER: Oguiso, Zhang, Wang

Rational log Enriques surfaces of ranks 19 and 18 are completely classified by Oguiso, Zhang, Wang .

Some Zoology

Some Zoology

- Elephant

Some Zoology

- Elephant
- Tiger

Some Zoology

- Elephant
- Tiger
- Cat (Tom)

Some Zoology

- Elephant
- Tiger
- Cat (Tom)
- Mouse (Jerry)

Some Zoology

Some Zoology

Definition

Let X be a projective normal variety with at most quotient singularities. A tiger on X is an effective \mathbb{Q}-divisor D such that

- $D \equiv-K_{X}$;
- (X, D) is not log canonical.

Rational surface w/o CYLINDER: Keel, McKernan

Miyanishi conjectured:

Rational surface w/o CYLINDER: Keel, McKernan

Miyanishi conjectured:
A log del Pezzo surface S of Picard rank 1 has a finite unramified covering of $S \backslash \operatorname{Sing} S$ which contains a cylinder.

Rational surface w/o CYLINDER: Keel, McKernan

Miyanishi conjectured:
A log del Pezzo surface S of Picard rank 1 has a finite unramified covering of $S \backslash$ Sing S which contains a cylinder.

Keel and Mckernan have answered negatively by constructing log del Pezzo surfaces of Picard rank 1 such that

Rational surface w/o CYLinder: Keel, McKernan

Miyanishi conjectured:
A log del Pezzo surface S of Picard rank 1 has a finite unramified covering of $S \backslash$ Sing S which contains a cylinder.

Keel and Mckernan have answered negatively by constructing log del Pezzo surfaces of Picard rank 1 such that

- they have no tigers;

Rational surface w/o Cylinder: Keel, McKernan

Miyanishi conjectured:
A log del Pezzo surface S of Picard rank 1 has a finite unramified covering of $S \backslash$ Sing S which contains a cylinder.

Keel and Mckernan have answered negatively by constructing log del Pezzo surfaces of Picard rank 1 such that

- they have no tigers;
- their smooth loci have trivial algebraic fundamental groups $\pi_{1}^{a l g}$.

Rational surface w/o CYLinder: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- In general, if there is a cylinder, then we can construct a tiger D that does not contain the supports of any effective anticanonical divisors.

Rational surface w/o Cylinder: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- In general, if there is a cylinder, then we can construct a tiger D that does not contain the supports of any effective anticanonical divisors.
- Let D be a tiger on S, i.e., an effective \mathbb{Q}-divisor in the anticanonical class of $\operatorname{Pic}(S) \otimes \mathbb{Q}$ such that (S, D) is not log canonical at some point P. Then there is an effective divisor C in $\left|-K_{S}\right|$ such that (S, C) is not \log canonical at P and $\operatorname{Supp}(C) \subset \operatorname{Supp}(D)$.

Rational surface w/o CYLINDER: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- The smooth loci of these surfaces are not simply connected (Miyanishi, Zhang).

Rational surface w/o CYLinder: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- The smooth loci of these surfaces are not simply connected (Miyanishi, Zhang).
- These are the only Gorenstein log del Pezzo surfaces without any cylinders.

Rational surface w/o CYLINDER: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- The smooth loci of these surfaces are not simply connected (Miyanishi, Zhang).
- These are the only Gorenstein log del Pezzo surfaces without any cylinders.
- The other Gorenstein log del Pezzo surfaces contains cylinders.

Rational surface w/o CYLINDER: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- The smooth loci of these surfaces are not simply connected (Miyanishi, Zhang).
- These are the only Gorenstein log del Pezzo surfaces without any cylinders.
- The other Gorenstein log del Pezzo surfaces contains cylinders.
- The Gorenstein log del Pezzo surfaces of singularity types $2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}$ and $4 \mathrm{~A}_{2}$ are unique.

Rational surface w/o CYLINDER: Cheltsov, P-, Won

Let S be a Gorenstein log del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

- The smooth loci of these surfaces are not simply connected (Miyanishi, Zhang).
- These are the only Gorenstein log del Pezzo surfaces without any cylinders.
- The other Gorenstein log del Pezzo surfaces contains cylinders.
- The Gorenstein log del Pezzo surfaces of singularity types $2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}$ and $4 \mathrm{~A}_{2}$ are unique.
- There are infinite series of Gorenstein log del Pezzo surfaces of singularity type $2 D_{4}$.

Polar Cylinder

- Suppose that S has a cylinder U such that

$$
S \backslash U=\bigcup_{i=1}^{n} C_{i}
$$

- Choose arbitrary non-negative rational numbers $\lambda_{1}, \ldots, \lambda_{n}$.

$$
K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right)
$$

for some rational numbers μ_{1}, \ldots, μ_{r}.

- If $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective, the \log pair $\left(S, \sum_{i=1}^{n} \lambda_{i} C_{i}\right)$ is not log canonical.

Polar Cylinder

DEFINITION

Let H be a \mathbb{R}-divisor on S. An H-polar cylinder in S is an Zariski open subset U of S such that
(C) $U=\mathbb{A}^{1} \times Z$ for some affine curve Z, i.e., U is a cylinder in S,
(P) there is an effective \mathbb{R}-divisor D on S with $D \equiv H$ and $U=S \backslash \operatorname{Supp}(D)$.

$$
H \equiv \sum_{i=1}^{n} \lambda_{i} C_{i}
$$

for some positive real numbers $\lambda_{1}, \ldots, \lambda_{n}$.

Polar Cylinder

Let $\operatorname{Amp}(S)$ be the ample cone of S. Denote by $\operatorname{Amp}^{c}(S)$ the set $\{H \in \operatorname{Amp}(S):$ there is an H-polar cylinder on $S\}$.

- The set $\mathrm{Amp}^{c}(S)$ can be empty.
- $\operatorname{Amp}^{c}(S) \neq \varnothing$ if S is smooth.

Finer Obstruction for $(-K)$-Cylinder

- Let S be a Gorenstein del Pezzo surface.
- Suppose that S has a $\left(-K_{S}\right)$-polar cylinder, i.e., there is an effective \mathbb{Q}-divisor D on S with $D \sim_{\mathbb{Q}}-K_{S}$ and $S \backslash \operatorname{Supp}(D)$ is a cylinder.
- The divisor D is a tiger on S.
- There is a tiger D^{\prime} such that
- $\left(S, D^{\prime}\right)$ is not \log canonical at a point P;
- there is a divisor $T \in\left|-K_{S}\right|$ such that (S, T) is not \log canonical at P and $\operatorname{Supp}(T) \not \subset \operatorname{Supp}\left(D^{\prime}\right)$.

(-K)-Polar Cylinder

Theorem (KPZ; CPW)

Let S_{d} be a Gorenstein del Pezzo surface of degree $d \leqslant 3$ satisfying the following singularity condition:

- If $d=3, S_{d}$ is smooth;
- If $d=2, S_{d}$ allows only ordinary double points;
- If $d=1, S_{d}$ allows types $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{2}$, or D_{4}.

Let D be a tiger on S_{d} such that the \log pair $\left(S_{d}, D\right)$ is not log canonical at a point P. Then there exists a divisor T in the anticanonical linear system $\left|-K_{S_{d}}\right|$ such that

- the log pair $\left(S_{d}, T\right)$ is not \log canonical at the point P;
- $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

(-K)-Polar Cylinder

Theorem

$-K_{S_{d}} \in \operatorname{Amp}^{c}\left(S_{d}\right)$ if and only if one of the following conditions holds:

- $d \geqslant 4$,
- $d=3$ and S_{d} is singular,
- $d=2$ and S_{d} has a singular point that is not a singular point of type \mathbb{A}_{1},
- $d=1$ and S_{d} has a singular point that is not a singular point of types $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, or D_{4}.

(-K)-Polar Cylinder

Theorem

Let S_{d} be a smooth del Pezzo surface of degree d.

- For $4 \leqslant d \leqslant 9$, one has $\operatorname{Amp}^{c}\left(S_{d}\right)=\operatorname{Amp}\left(S_{d}\right)$.
- For $d=3$, the set $\operatorname{Amp}^{c}\left(S_{3}\right)$ is the cone $\operatorname{Amp}\left(S_{3}\right)$ without the ray generated by $-K_{S_{3}}$.

Polar Cylinders on smooth del Pezzo SURFACES OF LOW DEGREES

Some partial results on $\operatorname{Amp}^{c}(S)$ in the case when S is a smooth del Pezzo surface of degree ≤ 2.

Polar Cylinders on smooth del Pezzo SURFACES OF LOW DEGREES

Sir. Peter Swinnerton-Dyer

Polar Cylinders on smooth del Pezzo SURFACES OF LOW DEGREES

"If your research adviser gives you a problem involving del Pezzo surfaces of degree 2 and 1 ,

Sir. Peter Swinnerton-Dyer

Polar Cylinders on smooth del Pezzo SURFACES OF LOW DEGREES

"If your research adviser gives you a problem involving del Pezzo surfaces of degree 2 and 1 , it means he really hates you."

Sir. Peter Swinnerton-Dyer

