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Abstract. We generalize Nakamaye’s description, via intersection theory, of the aug-
mented base locus of a big and nef divisor on a normal pair with log-canonical singulari-
ties or, more generally, on a normal variety with non-lc locus of dimension ≤ 1. We also
generalize Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa’s description, in terms of valuations,
of the subvarieties of the restricted base locus of a big divisor on a normal pair with klt
singularities.

1. Introduction

Let X be a normal complex projective variety and let D be a big Q-Cartier Q-divisor
on X. The stable base locus

B(D) =
⋂

E≥0:E∼QD

Supp(E)

is an important closed subset associated to D, but it is often difficult to handle. On the
other hand, there are two, perhaps even more important, base loci associated to D.

One of them is the augmented base locus ([Nye], [ELMNP1, Def. 1.2])

B+(D) =
⋂

E≥0:D−E ample
Supp(E)

where E is a Q-Cartier Q-divisor. Since this locus measures the failure of D to be ample,
it has proved to be a key tool in several recent important results in birational geometry,
such as Takayama [T], Hacon and McKernan’s [HM] effective birationality of pluricanonical
maps or Birkar, Cascini, Hacon and McKernan’s [BCHM] finite generation of the canonical
ring, just to mention a few.

One way to compute B+(D) is to pick a sufficiently small ample Q-Cartier Q-divisor A
on X, because then one knows that B+(D) = B(D −A) by [ELMNP1, Prop. 1.5].

In the case when D is also nef, for every subvariety V ⊂ X of dimension d ≥ 1 such that
Dd · V = 0, we have that D|V is not big, whence s(D − A)|V cannot be effective for any
s ∈ N and therefore V ⊆ B(D −A) = B+(D). Now define

Null(D) =
⋃

V⊂X:Dd·V =0

V

so that, by what we just said,

(1) Null(D) ⊆ B+(D).
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A somewhat surprising result of Nakamaye [Nye, Thm. 0.3] (see also [Laz, §10.3]) asserts
that, if X is smooth and D is big and nef, then in fact equality holds in (1).

As is well-known, in birational geometry, one must work with normal varieties with
some kind of (controlled) singularities. In the light of this, it becomes apparent that it
would be nice to have a generalization of Nakamaye’s Theorem to normal varieties. While
in positive characteristic the latter has been recently proved to hold, on any projective
scheme, by Cascini, McKernan and Mustaţă [CMM, Thm. 1.1], we will show in this article
a generalization to normal complex varieties with log canonical singularities. This partially
answers a question in [CMM].

More precisely let us define

Definition 1.1. Let X be a normal projective variety. The non-lc locus of X is

Xnlc =
⋂
∆

Nlc(X,∆)

where ∆ runs among all effective Weil Q-divisors such that KX + ∆ is Q-Cartier and
Nlc(X,∆) is the locus of points x ∈ X such that (X,∆) is not log canonical at x.

Using Ambro’s and Fujino’s theory of non-lc ideal sheaves [A], [Fno] and a modification
of some results of de Fernex and Hacon [dFH], we prove

Theorem 1.
Let X be a normal projective variety such that dimXnlc ≤ 1. Let D be a big and nef
Q-Cartier Q-divisor on X. Then

B+(D) = Null(D).

This easily gives the following

Corollary 1.
Let X be a normal projective variety such that dim Sing(X) ≤ 1 or dimX ≤ 3 or there
exists an effective Weil Q-divisor ∆ such that (X,∆) is log canonical.

Let D be a big and nef Q-Cartier Q-divisor on X. Then

B+(D) = Null(D).

Moreover, using a striking result of Gibney, Keel and Morrison [GKM, Thm. 0.9], we
can give a very quick application to the moduli space of stable pointed curves.

Corollary 2.
Let g ≥ 1 and let D be a big and nef Q-divisor on Mg,n. Then

B+(D) ⊆ ∂Mg,n.

Thus, for example, one gets new compactifications of Mg,n by taking rational maps
associated to such divisors.

The second base locus associated to any pseudoeffective R-Cartier R-divisor D, measur-
ing how far D is from being nef, is the restricted base locus [ELMNP1, Def. 1.12].

Definition 1.2. Let X be a normal projective variety and let D be a pseudoeffective
R-Cartier R-divisor on X. The restricted base locus of D is

B−(D) =
⋃

A ample

B(D +A)
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where A runs among all ample R-Cartier R-divisors such that D +A is a Q-divisor.

Restricted base loci are countable unions of subvarieties by [ELMNP1, Prop. 1.19], but
not always closed [Les, Thm. 1.1].

For a big Q-divisor D on a smooth variety X, the subvarieties of B−(D) are precisely
described in [ELMNP1, Prop. 2.8] (also in positive characteristic in [M, Thm. 6.2]) in
terms of asymptotic valuations.

Definition 1.3. ([Nma, Def. III.2.1], [ELMNP1, Lemma 3.3], [BBP, §1.3], [dFH, §2]) Let
X be a normal projective variety, let D be an R-Cartier R-divisor on X and let v be a
divisorial valuation on X, that is v is a positive integer multiple of the valuation associated
to a prime divisor Γ lying on a birational model f : Y → X. The center of v on X is
cX(v) = f(Γ).

If D is big, we set

v(‖D‖) = inf{v(E), E effective R-Cartier R-divisor on X such that E ≡ D};
if D is pseudoeffective, we pick an ample divisor A and set

v(‖D‖) = lim
ε→0+

v(‖D + εA‖).

If D is a Q-Cartier Q-divisor such that κ(D) ≥ 0 and b ∈ N is such that bD is Cartier and
|bD| 6= ∅, we set (see [CD, Def. 2.14] or [ELMNP1, Def. 2.2] for the case D big)

v(〈D〉) = lim
m→+∞

v(|mbD|)
mb

where, if g is an equation, at the generic point of cX(v), of a general element in |mbD|,
then v(|mbD|) = v(g).

Now the main content of [ELMNP1, Prop. 2.8] is that, given a discrete valuation v on
a smooth X with center cX(v) and a big divisor D, then cX(v) ⊆ B−(D) if and only if
v(‖D‖) > 0. Using the main result of [CD] we give a generalization to normal pairs with
klt singularities.

Theorem 2.
Let X be a normal projective variety such that there exists an effective Weil Q-divisor ∆
with (X,∆) a klt pair. Let v be a divisorial valuation on X. Then

(i) If D is a big Cartier divisor on X we have

v(〈D〉) > 0 if and only if cX(v) ⊆ B−(D) if and only if lim sup
m→+∞

v(|mD|) = +∞.

(ii) If D is a pseudoeffective R-Cartier R-divisor on X, we have

v(‖D‖) > 0 if and only if cX(v) ⊆ B−(D).

Acknowledgments. We wish to thank Lorenzo Di Biagio for some helpful discussions.

2. Non-lc ideal sheaves

Notation and conventions 2.1. Throughout the article we work over the complex num-
bers. Given a variety X and a coherent sheaf of ideals J ⊂ OX , we denote by Z(J ) the
closed subscheme of X defined by J . If X is a normal projective variety and ∆ is a Weil
Q-divisor on X, we call (X,∆) a pair if KX + ∆ is Q-Cartier. We refer to [KM, Def. 2.34]
for the various notions of singularities of pairs.
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Definition 2.2. Let X be a normal projective variety and let ∆ =
s∑

i=1
diDi be a Weil

Q-divisor on X, where the Di
′s are distinct prime divisors.

Given a ∈ R we set ∆>a =
∑

1≤i≤s:di>a

diDi, ∆+ = ∆>0, ∆− = (−∆)+ and ∆<a =

−((−∆)>−a). The round up of ∆ is d∆e =
s∑

i=1
ddieDi and the round down is b∆c =

s∑
i=1
bdicDi. We also set ∆# = ∆<−1 + ∆>−1.

The following is easily proved.

Remark 2.3. Let X be a normal projective variety and let ∆,∆′ be Weil Q-divisors on
X. Then

(i) d(−∆)#e = d−(∆<1)e − b∆>1c;
(ii) If ∆ ≤ ∆′, then d∆#e ≤ d(∆′)#e.

We recall the definition of non-lc ideal sheaves [A, Def. 4.1], [Fno, Def. 2.1].

Definition 2.4. Let (X,∆) be a pair and let f : Y → X be a resolution of X such that
∆Y := f∗(KX + ∆) −KY has simple normal crossing support. The non-lc ideal sheaf
associated to (X,∆) is

JNLC(X,∆) = f∗OY (d−(∆<1
Y )e − b∆>1

Y c).

Remark 2.5. Non-lc ideal sheaves are well-defined by [Fno, Prop. 2.6], [A, Rmk. 4.2(iv)].
Moreover, when ∆ is effective and f : Y → X is a log-resolution of (X,∆), we have that the
non-lc locus of (X,∆) is, set-theoretically, Nlc(X,∆) = f(Supp(∆>1

Y )) = Z(JNLC(X,∆))
[Fno, Lemma 2.2].

Remark 2.6. The non-lc ideal sheaf of a pair (X,∆) with ∆ effective is an integrally closed
ideal.

Proof. With notation as in Definition 2.4, set G = d−(∆<1
Y )e and N = b∆>1

Y c, so that
G and N are effective divisors without common components, G is f -exceptional and
JNLC(X,∆) = f∗OY (G − N) = f∗OY (−N) by Fujita’s lemma [Fta, Lemma 2.2], [KMM,
Lemma 1-3-2], [dFH, Lemma 4.5]. Therefore JNLC(X,∆) is an ideal sheaf and it is inte-
grally closed by [Laz, Prop. 9.6.11]. �

Our next goal is to prove, using techniques and results in de Fernex-Hacon [dFH], that
non-lc ideal sheaves have a unique maximal element. To this end we will use some results of
Fujino [Fno] and de Fernex-Hacon [dFH] that we wish to recall for the reader’s convenience.

Lemma 2.7. [Fno, Lemma 2.7] Let g : Y ′ → Y be a proper birational morphism between
smooth varieties and let BY be an R-divisor on Y having simple normal crossing support.
Assume that BY ′ := g∗(KY +BY )−KY ′ also has simple normal crossing support. Then

g∗OY ′(d−(B<1
Y ′ )e − bB>1

Y ′ c) ∼= OY (d−(B<1
Y )e − bB>1

Y c).

Definition 2.8. ([dFH, Def. 3.1]) Let f : Y → X be a proper birational morphism
between normal varieties and let KY be a canonical divisor on Y and KX = f∗KY . For
every m ≥ 1 define Km,Y/X = KY − 1

mf
\(mKX), where f \(mKX) is the divisor on Y such

that OY (−f \(mKX)) = (OX(−mKX) · OY )∨∨.

Lemma 2.9. Let m ≥ 1. In (i)-(iv) below let f : Y → X be a proper birational morphism
between normal varieties. Then
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(i) If X is Gorenstein then Km,Y/X = KY/X := KY + f∗(−KX);
(ii) [dFH, Rmk 3.3] For all q ≥ 1 we have Km,Y/X ≤ Kmq,Y/X ;
(iii) [dFH, Lemma 3.5] Assume that mKY is Cartier and OX(−mKX) ·OY is invertible.

Let Y ′ be a normal variety and let g : Y ′ → Y be a proper birational morphism.
Then Km,Y ′/X = Km,Y ′/Y + g∗Km,Y/X ;

(iv) [dFH, Rmk 3.9] Let (X,∆) be a pair with ∆ effective and assume that m(KX + ∆)
is Cartier. Then KY + f−1

∗ (∆)− f∗(KX + ∆) ≤ Km,Y/X ;
(v) [dFH, Thm. 5.4 and its proof] For every m ≥ 2 there exist a log-resolution f :

Y → X of (X,OX(−mKX)) and a Weil Q-divisor ∆m on X such that m∆m

is integral, b∆mc = 0, (∆m)Y has simple normal crossing support, f is a log-
resolution for the log-pair ((X,∆m),OX(−mKX)), KX + ∆m is Q-Cartier and
Km,Y/X = KY + f−1

∗ (∆m)− f∗(KX + ∆m).

In (iv) and (v) above f−1
∗ (∆) is the proper transform of ∆. Note that our ∆Y (Definition

2.4) is different from the one in [dFH, Def. 3.8].
Now we have

Proposition 2.10. Let X be a normal projective variety. Then there exists a Weil Q-
divisor ∆0 on X such that b∆0c = 0, KX + ∆0 is Q-Cartier and

JNLC(X,∆) ⊆ JNLC(X,∆0)

for every pair (X,∆) with ∆ effective.

Proof. Fix a canonical divisor KX on X and an integer m ≥ 2. By Lemma 2.9(v) there
exist a log-resolution f : Y → X of (X,OX(−mKX)) and a Weil Q-divisor ∆m on X with
the properties in (v). In particular Km,Y/X is f -exceptional. Now set

am(X) = f∗OY (d(Km,Y/X)#e).

As in the proof of Remark 2.6 we get that am(X) is a coherent ideal sheaf. Let us check
that its definition is independent of the choice of f . Let f ′ : Y ′ → X be another log-
resolution of (X,OX(−mKX)) and assume, as we may, that f ′ factors through f and a
morphism g : Y ′ → Y . By Lemma 2.9(iii) and (i) we have Km,Y ′/X = KY ′/Y +g∗Km,Y/X =
KY ′ − g∗(KY −Km,Y/X), whence

(2) (fg)∗OY ′(d(Km,Y ′/X)#e) = f∗(g∗OY ′(d(KY ′ − g∗(KY −Km,Y/X))#e)).

Now set BY = −Km,Y/X and BY ′ = g∗(KY +BY )−KY ′ so that, using Remark 2.3(i) and
Lemma 2.7, we have

g∗OY ′(d(KY ′−g∗(KY −Km,Y/X))#e) = g∗OY ′(d(−BY ′)#e) = g∗OY ′(d−(B<1
Y ′ )e−bB>1

Y ′ c) =

= OY (d−(B<1
Y )e − bB>1

Y c) = OY (d(−BY )#e) = OY (d(Km,Y/X)#e)
and by (2) we get

(fg)∗OY ′(d(Km,Y ′/X)#e) = f∗OY (d(Km,Y/X)#e)

that is am(X) is well defined.
We now claim that the set {am(X),m ≥ 2} has a unique maximal element. In fact,

given m, q ≥ 2, let f : Y → X be a log-resolution of (X,OX(−mKX)) + OX(−mqKX)).
By Lemma 2.9(ii) and Remark 2.3(ii) we have d(Km,Y/X)#e ≤ d(Kmq,Y/X)#e and there-
fore am(X) ⊆ amq(X). Using the ascending chain condition on ideals we conclude that
{am(X),m ≥ 2} has a unique maximal element, which we will denote by amax(X).
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Next let us show that all the ideal sheaves am(X), for m ≥ 2 (whence in particular also
amax(X)), are in fact non-lc ideal sheaves of a suitable pair.

Let ∆m be as above, so that, by Remark 2.3(i) and using d(−f−1
∗ (∆m))#e = 0, we have

d−((∆m)<1
Y )e − b(∆m)>1

Y c = d(−(∆m)Y )#e = d(Km,Y/X − f−1
∗ (∆m))#e =

= d(Km,Y/X)#e+ d(−f−1
∗ (∆m))#e = d(Km,Y/X)#e

whence

JNLC(X,∆m) = f∗OY (d−((∆m)<1
Y )e − b(∆m)>1

Y c) = f∗OY (d(Km,Y/X)#e) = am(X).

To finish the proof, let (X,∆) be a pair with ∆ effective and let q ∈ N be such that
q(KX + ∆) is Cartier. Let m0 ≥ 2 be such that amax(X) = am0(X) = aqm0(X). By what
we proved above, there exists ∆0 := ∆qm0 such that JNLC(X,∆0) = amax(X). By Lemma
2.9(iv) we have that −∆Y ≤ KY + f−1

∗ (∆) − f∗(KX + ∆) ≤ Kqm0,Y/X , whence also, by
Remark 2.3 (i) and (ii),

d−(∆<1
Y )e − b∆>1

Y c = d(−∆Y )#e ≤ d(Kqm0,Y/X)#e
and therefore

JNLC(X,∆) = f∗OY (d−(∆<1
Y )e−b∆>1

Y c) ⊆ f∗OY (d(Kqm0,Y/X)#e) = amax(X) = JNLC(X,∆0).

�

3. Proof of Theorem 1

We record the following lemma, which is also of independent interest.

Lemma 3.1. Let (X,∆) be a pair with ∆ effective and let D be an effective Cartier divisor
on X. Then there exists c = c(X,∆, D) ∈ N such that the set-theoretic equality

Bs |D| ∪Nlc(X,∆) = Z(JNLC(X,∆ + E1 + · · ·+ Ec))

holds for some E1, . . . , Ec ∈ |D|.

Proof. Let f : Y → X be a log-resolution of (X,∆) and of the linear series |D| such that
f−1
∗ ∆ + Bs |f∗D| + Exc(f) has simple normal crossing support. Write ∆Y = ∆+

Y − ∆−Y ,
where ∆+

Y and ∆−Y are effective simple normal crossing support Q-divisors without common
components. Then ∆−Y =

∑s
i=1 δiDi, for some non-negative δi ∈ Q and distinct prime

divisors Di’s and define
c = dmax{δi, 1 ≤ i ≤ s}e+ 2.

Moreover we have that |f∗D| = |M | + F , where |M | is base-point free and Supp(F ) =
Bs |f∗D|. By Bertini’s Theorem and [Laz, Lemma 9.1.9], we can choose M1, . . . ,Mc ∈ |M |
general divisors such that, for all j = 1, . . . , c, Mj is smooth, every component of Mj is
not a component of ∆Y ,M1, . . . ,Mj−1 and ∆Y + M1 + · · · + Mc + F has simple normal
crossing support. Now, for all j = 1, . . . , c, Mj + F ∈ |f∗D|, so that there exists Ej ∈ |D|
such that Mj +F = f∗Ej . Set E = E1 + · · ·+Ec and notice that f is also a log-resolution
of (X,∆ + E).

By Remark 2.5 we have Nlc(X,∆) = Z(JNLC(X,∆)) ⊆ Z(JNLC(X,∆ +E)), the latter
inclusion following by Remark 2.3(i) and (ii), because E is effective. Also, for every prime
divisor Γ in the support of F we get for the discrepancies

a(Γ, X,∆ + E) = a(Γ, X,∆)− ordΓ(f∗E) = − ordΓ(∆Y )− ordΓ(f∗E) ≤

≤ ordΓ(∆−Y )− ordΓ(f∗E) ≤ max{δi, 1 ≤ i ≤ s} − ordΓ(M1 + · · ·+Mc + cF ) ≤ −2
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whence f(Γ) ⊆ Nlc(X,∆ + E). As Bs |D| is the union of such f(Γ)’s, using Remark 2.5,
we get the inclusion Bs |D| ⊆ Nlc(X,∆ + E) = Z(JNLC(X,∆ + E)).

On the other hand notice that (∆ + E)Y = f∗(KX + ∆ + E)−KY = ∆Y + f∗E. Also
∆Y + f∗E = ∆Y +M1 + · · ·+Mc + cF , so that

Supp((∆ + E)>1
Y ) = Supp((∆Y + f∗E)>1) ⊆ Supp(F ) ∪ Supp(∆>1

Y )

whence

f(Supp((∆ + E)>1
Y )) ⊆ f(Supp(F )) ∪ f(Supp(∆>1

Y )) = Bs |D| ∪Nlc(X,∆).

Therefore, by Remark 2.5,

Z(JNLC(X,∆ + E)) = Nlc(X,∆ + E) = f(Supp((∆ + E)>1
Y )) ⊆ Bs |D| ∪Nlc(X,∆).

�

Now we essentially follow the proof of Nakamaye’s Theorem as in [Laz, §10.3] and [Nye,
Thm. 0.3].

Proof of Theorem 1. We can assume that D is a Cartier divisor. The issue is of course to
prove that B+(D) ⊆ Null(D), since the opposite inclusion holds on any normal projective
variety, as explained in the introduction.

By Proposition 2.10 and Remark 2.5 there is an effective Weil Q-divisor ∆ on X such
that KX + ∆ is Q-Cartier and Nlc(X,∆) = Xnlc, so that dim Nlc(X,∆) ≤ 1.

Let A be an ample Cartier divisor such that A− (KX + ∆) is ample. As in [Laz, Proof
of Thm. 10.3.5]) we can choose a, p ∈ N sufficiently large such that

B+(D) = B(aD − 2A) = Bs |paD − 2pA|.
By Lemma 3.1 there exist c ∈ N and a Cartier divisor E on X such that

B+(D) ∪Nlc(X,∆) = Z(JNLC(X,∆ + E))

and E ≡ c(paD − 2pA) = qaD − 2qA, where q := cp ∈ N.
Set Z = Z(JNLC(X,∆ + E)). For m ≥ qa, we get that

mD − qA− (KX + ∆ + E) ≡ (m− qa)D + qA− (KX + ∆)

is ample, whence H1(X,JNLC(X,∆+E)⊗OX(mD−qA)) = 0, for m ≥ qa by [Fno, Thm.
3.2], [A, Thm. 4.4], so that the restriction map

(3) H0(X,OX(mD − qA))→ H0(Z,OZ(mD − qA)) is surjective for m ≥ qa.
By contradiction let us assume that there exists an irreducible component V of B+(D),
such that V 6⊆ Null(D). Now V ⊆ B+(D) ⊆ B(D − q

mA) ⊆ Bs |mD − qA| for m ∈ N,
whence the restriction map

H0(X,OX(mD − qA))→ H0(V,OV (mD − qA)) is zero for m ∈ N
and therefore, by (3), also

(4) H0(Z,OZ(mD − qA))→ H0(V,OV (mD − qA)) is zero for m ≥ qa.
On the other hand dimV ≥ 1, as B+(D) does not contain isolated points by [ELMNP2,
Proposition 1.1](which holds on X normal). As dim Nlc(X,∆) ≤ 1, this implies that V is
an irreducible component of Z. Moreover, as V 6⊆ Null(D), we have that D|V is big.

Now, by Remark 2.6, JNLC(X,∆+E) is integrally closed, and exactly as in [Laz, Proof of
Thm. 10.3.5] (the proof of this part holds on any normal projective variety) it follows that,
for m� 0, H0(Z,OZ(mD − qA))→ H0(V,OV (mD − qA)) is not zero, thus contradicting
(4). This concludes the proof. �
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Proof of Corollary 1. Note that, on any normal projective variety X, we have Xnlc ⊆
Sing(X) (see for example [CD, Rmk 4.8]) and if dimX ≤ 3, then dim Sing(X) ≤ 1. Then
just apply Theorem 1. �

Proof of Corollary 2. By [GKM, Thm. 0.9] we know that Null(D) ⊆ ∂Mg,n. On the other
hand it is well-known (see for example [BCHM, Lemma 10.1]) that (Mg,n, 0) is klt, whence
the conclusion follows by Theorem 1. �

4. Restricted base loci on klt pairs

We first recall that, associated to a pseudoeffective divisor D, there are two more loci,
one that also measures how far D is from being nef and another one that measures how far
D is from being nef and abundant.

Definition 4.1. Let X be a normal projective variety and let D be a pseudoeffective
R-Cartier R-divisor on X. As in [BBP, Def. 1.7], we define the non-nef locus

Nnef(D) =
⋃

v:v(‖D‖)>0

cX(v)

where v runs among all divisorial valuations on X, cX(v) is its center and v(‖D‖) is as in
Definition 1.3.

Let D be a Q-Cartier Q-divisor such that κ(D) ≥ 0. As in [CD, Def. 2.18], we define
the non nef-abundant locus

Nna(D) =
⋃

v:v(〈D〉)>0

cX(v)

where again v runs among all divisorial valuations on X and v(〈D〉) is as in Definition 1.3.

In the sequel we will use the fact that, for D big ([ELMNP1, Lemma 3.3]) or even
abundant ([Leh, Prop. 6.4]), we have v(‖D‖) = v(〈D〉), while in general they are different
when D is only pseudoeffective ([CD, Rmk 2.16]).

We will also use (see [BFJ, page 2] and references therein)
Izumi’s Theorem Let X be a normal variety over an algebraically closed field k and let
0 ∈ X be a closed point. Let m0 be the maximal ideal of the local ring OX,0 and set, for
any f ∈ OX,0, ord0(f) = max{j ≥ 0 : f ∈ mj

0}. For any divisorial valuation v of k(X)
centered at 0, there exists a constant C = C(v) > 0 such that

C−1 ord0(f) ≤ v(f) ≤ C ord0(f).

We start by proving an analogue of [ELMNP1, Prop. 2.8] for Nna(D).

Theorem 4.2. Let X be a normal projective variety, let D be a Q-Cartier Q-divisor such
that κ(D) ≥ 0 and let v be a divisorial valuation on X. Then

cX(v) ⊆ Nna(D) if and only if v(〈D〉) > 0.

Proof. We can assume that D is Cartier and effective. By definition of Nna(D), we just
need to prove that if cX(v) ⊆ Nna(D), then v(〈D〉) > 0.

We first prove the theorem when X is smooth. For any p ∈ N let b(|pD|) be the base
ideal of |pD|, J (X, ‖pD‖)) the asymptotic multiplier ideal and denote by bp and jp the
corresponding images in Rv, the DVR associated to v. As in [ELMNP1, §2], we get

(5) v(〈D〉) = lim
p→+∞

v(bp)
p
≥ lim

p→+∞

v(jp)
p

= sup
p∈N
{v(jp)

p
}.
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By [CD, Cor. 5.2] we have the set-theoretic equality

Nna(D) =
⋃
p∈N
Z(J (X, ‖pD‖))

whence there exists p0 ∈ N such that cX(v) ⊆ Z(J (X, ‖p0D‖)), so that v(jp0) > 0 and (5)
gives that v(〈D〉) > 0.

We now prove the theorem for a divisorial valuation ν on X such that cX(ν) = {x} is a
closed point.

As cX(ν) ⊆ Nna(D), there exists a divisorial valuation v0 on X such that v0(〈D〉) > 0
and x ∈ cX(v0). Let E0 be a prime divisor over X such that v0 = k ordE0 for some k ∈ N.
We can assume that there is a birational morphism µ : Y → X from a smooth variety Y
such that E0 ⊂ Y . As µ(E0) = cX(ordE0) = cX(v0), there is a point y ∈ E0 such that
µ(y) = x. Let π : Y ′ → Y be the blow-up of Y on y with exceptional divisor Ey. For any
m ∈ N and G ∈ |mD| we have

ordEy(G) = ordEy(π∗(µ∗G)) = ordy(µ∗G) ≥ ordE0(µ∗G) = ordE0(G)

therefore ordEy(〈D〉) ≥ ordE0(〈D〉) = 1
kv0(〈D〉) > 0. Since cX(ordEy) = {x}, by Izumi’s

Theorem applied twice, there exist C > 0, C ′ > 0 such that for all m ∈ N and G ∈ |mD|
we have ordEy(G) ≤ C ′ ordx(G) ≤ Cν(G). Hence ν(〈D〉) ≥ 1

C ordEy(〈D〉) > 0.
Finally let v be any divisorial valuation on X with cX(v) ⊆ Nna(D). As above there is a

birational morphism f : Z → X from a smooth variety Z and a prime divisor E ⊂ Z such
that v = h ordE for some h ∈ N. For every closed point z ∈ E we have that ν := ordz is a
divisorial valuation with cX(ν) ⊆ cX(ordE) ⊆ Nna(D) and cX(ν) is a closed point. Thus,
by what we proved above, we have that ordz(〈f∗(D)〉) = ordz(〈D〉) > 0 for all z ∈ E, so
that E ⊆ Nna(f∗(D)). As Z is smooth, we get v(〈D〉) = h ordE(〈D〉) = h ordE(〈f∗(D)〉) >
0. �

We next prove an analogous result for Nnef(D).

Theorem 4.3. Let X be a normal projective variety, let D be a pseudoeffective R-Cartier
R-divisor on X and let v be a divisorial valuation on X. Then

cX(v) ⊆ Nnef(D) if and only if v(‖D‖) > 0.

Proof. Again we need to prove that v(‖D‖) > 0 if cX(v) ⊆ Nnef(D). By [CD, Lemmas
2.13 and 2.12], there exists a sequence of ample R-Cartier R-divisors {Am}m∈N such that
‖Am‖ → 0, D +Am is a big Q-Cartier Q-divisor for all m ∈ N and

Nnef(D) =
⋃

m∈N
Nnef(D +Am).

Then there is m0 ∈ N such that cX(v) ⊆ Nnef(D + Am0). As D + Am0 is big, we have
Nnef(D+Am0) = Nna(D+Am0), whence v(‖D+Am0‖) = v(〈D+Am0〉) > 0 by Theorem
4.2. Therefore 0 < v(‖D +Am0‖) ≤ v(‖D‖) + v(‖Am0‖) = v(‖D‖). �

Remark 4.4. Note that, given a normal projective variety X, Theorems 4.2 and 4.3 can
be rewritten as follows (where x is a closed point).

If D is a Q-Cartier Q-divisor on X such that κ(D) ≥ 0, then

Nna(D) =
⋃

x∈X

{x | {x} = cX(v) for some divisorial valuation v with v(〈D〉) > 0}.
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If D is a pseudoeffective R-Cartier R-divisor on X, then

Nnef(D) =
⋃

x∈X

{x | {x} = cX(v) for some divisorial valuation v with v(‖D‖) > 0}.

Next we will prove Theorem 2. We will use a singular version (see for example [CD, Def.
2.2]) of standard asymptotic multiplier ideal sheaves [Laz, Ch. 11].

Proof of Theorem 2. In both cases we have that Nnef(D) = B−(D) by [CD, Thm. 1.2],
whence also Nna(D) = B−(D) in case (i). Then (ii) follows by Theorem 4.3 and the first
equivalence in (i) by Theorem 4.2. To complete the proof of (i) we need to show that if
lim supm→+∞ v(|mD|) = +∞ then v(〈D〉) > 0, the reverse implication being obvious. We
will proceed similarly to [ELMNP1, Proof of Prop. 2.8] and [CD, Proof of Lemma 4.1]. If
v(〈D〉) = 0, by what we just proved, we have that cX(v) 6⊆ B−(D) and, by [CD, Cor. 5.2],
we have the set-theoretic equality

B−(D) =
⋃
p∈N
Z(J ((X,∆); ‖pD‖))

where J ((X,∆); ‖pD‖) is as in [CD, Def. 2.2]. Therefore cX(v) 6⊆ Z(J ((X,∆); ‖pD‖))
for any p ∈ N. Let H be a very ample Cartier divisor such that H − (KX + ∆) is ample
and let n = dimX. By Nadel’s vanishing theorem [Laz, Thm. 9.4.17], we deduce that
J ((X,∆); ‖pD‖)⊗OX((n+ 1)H + pD) is 0-regular in the sense of Castelnuovo-Mumford,
whence globally generated, for every p ∈ N, and therefore cX(v) 6⊆ Bs |(n+ 1)H + pD|. On
the other hand, as D is big, there is m0 ∈ N such that m0D ∼ (n + 1)H + E for some
effective Cartier divisor E. Hence, for any m ≥ m0, we get v(|mD|) = v(|(m−m0)D+(n+
1)H + E|) ≤ v(|(m−m0)D + (n+ 1)H|) + v(|E|) = v(|E|) and the theorem follows. �

We end the section with an observation on the behavior of these loci under birational
maps.

Corollary 4.5. Let f : Y → X be a projective birational morphism between normal pro-
jective varieties. Then:

(i) For every Q-Cartier Q-divisor D on X such that κ(D) ≥ 0, we have

Nna(f∗(D)) = f−1(Nna(D));

(ii) For every pseudoeffective R-Cartier R-divisor on X, we have

Nnef(f∗(D)) = f−1(Nnef(D));

(iii) If there exist effective Weil Q-divisors ∆X on X and ∆Y on Y such that (X,∆X)
and (Y,∆Y ) are klt pairs, then, for every pseudoeffective R-Cartier R-divisor on X,
we have

B−(f∗(D)) = f−1(B−(D))

Proof. To see (i), for every closed point y ∈ Y , let vy be a divisorial valuation such that
cY (vy) = {y}. Then, by Theorem 4.2, we have,

y ∈ f−1(Nna(D))⇔ {f(y)} = cX(vy) ⊆ Nna(D)⇔

⇔ vy(〈f∗(D)〉) = vy(〈D〉) > 0⇔ {y} = cY (vy) ⊆ Nna(f∗(D)).

Now (ii) can be proved exactly in the same way by using Theorem 4.3, while (iii) follows
from (ii) and [CD, Thm. 1.2]. �
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