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On the curves lying on a general surface

containing a fixed space curve.

ANGELO FELICE LOPEZ (*)

ABSTRACT. — We study, up to linear equivalence, the curves lying on a general
smooth surface S C IP? containing a fixed curve C. If degS > max{3,deg C,
degrees of the minimal generators of the ideal of C} we show that all curves on S

are a linear combination of the hyperplane section H of S and C, that is Pic S ~ Z?
generated by Os(1) and Og(C). This is accomplished by proving that if v €
HY1(S) is the class of a curve, a general deformation S’ of S, S’ O C, keeps 7 of
type (1,1) if and only if v is a linear combination of the classes of H and C.

KEY WORDs: Noether-Lefschetz, Picard group.

1. Introduction.

The study of curves lying on smooth surfaces in IP? is a classical and,
at the same time, modern sub ject.

When the degree of a smooth surface S is at most three, a lot is known:
a surface of degree 1 is IP? and the curves on it correspond to homogeneous
polynomials in three variables; a smooth quadric S is isomorphic to IP* x IP*
and if we let z4,21,%0,y1, be the coordinates, then every curve on S is a
bihomogeneous polynomial of bidegree (a,b) (in zo, z1, Yo, y1 respectively);
if d = 3, S is isomorphic to the blowing up of IP? at six general points
P, ..., Ps and if we denote by £ the pull-back of a line, e; the i*"-exceptional

(*) Dipartimento di Matematica, Universita di Pavia, Strada Nuova 65, 27100
Pavia.
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divisor, then the curves on S are the elements of the linear systems af —
S5, bie; for integers a,by, ... ,bg, that is (essentially) correspond to plane
curves with assigned singularities at Py,... ,FPs.

On the other hand no geometric description is known for surfaces of
degree d > 4, except for “sufficiently general” ones: In this case a classical
theorem of M. Noether and S. Lefschetz asserts that the only curves on
such S are complete intersections of S with another surface. In modern
language this amounts to say that the group of line bundles on § modulo
isomorphism (called the Picard group of S, denoted Pic §) is Z generated
by the hyperplane bundle Og(1).

A natural question to be asked therefore, as a way of generalizing such
result, is: given C C IP® and § sufficiently general containing C, what
about Pic S? For example, what is the Picard group of a general surface
containing a line? ‘

The answer to this question, in the case when C is any plane curve of
degree § < d is Pic § = Z* generated by Os(1) and Os(C) (see [3], [4]).

In this paper we study the above question when C' is a given space curve,
having in mind the goal of giving some conditions under which the same
answer holds (that is Pic § = Z?). The result obtained is the following:
Let C C IP? be a smooth irreducible nondegenerate curve of degree k and
genus g and denote by a(C) the maximum degree of the polynomials in a
minimal set of generators of the ideal of C. Then

THEOREM 1.1. — Ifd > max{4,a(C)+ 1,k + 1} the Picard group of
the general surface S of degree d containing C is generated by Ogs(1) and
Os(C).

The main idea is the use of the infinitesimal M. Noether theorem,
which in turn is a remake of Lefschetz’s original proof.

These basic facts are axplained in section 2. Then section 3 is devoted
to see that the infinitesimal M. Noether theorem holds on the blowing up
of IP® along the curve C. This is accomplished by a careful study of the
cohomology of some sheaves on the blowing up.

It is important to note here that, while the main result of this paper
(Theorem 1.1) is already contained in [4], the technical context in which the
results are obtained is completely different and, I believe, of independent
interest. In particular it is my opinion that the techniques used here may
have more applications than the existing ones. For example one could study
in a similar way surfaces containing a given curve with some multiplicity,
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surfaces of general type (in some cases), etc. It is with this scope in mind
that I have decided to publish this paper.

2. Some basic results of Hodge theory.

The proof of the theorem is based on a deep result of Hodge theory that
I wish to recall briefly here (for the proofs of all statements in this section
see [2]).

Let Y be a smooth variety over the complex numbers of dimension
n+1 22, [ an ample line bundle over ¥ with ¢,(L) = w and X € |L]| a
smooth divisor.

Let r: H*(Y) — H™(X) be the restriction map and R: HY(Y-X)—
H"(X) be the residue map, then there is a direct sum decomposition

H™(X)=rH"Y)® RH™\(Y - X).

As X varies among the smooth divisors in |L| we can consider the variation
of Hodge structure given by H*(X) = @ HP9(X) and it is a general fact

p+g=n
that a global variation is completely reducible into a “fixed” component and

a “variable” one, which in this case are
H}(X)=rH"(Y), H}(X)=RH"\(Y - X).
Suppose now that L is such that the restriction map
H(Y,Ty) — H°(X,Ty ® Ox)  isan isomorphism .

Then we can introduce an infinitesimal variation of Hodge structure as
follows. Let s € H°(Y,L) such that X = (s) and denote by T.(L]) =
H°(Y,L)/Cs C H(X, Nx,v) the tangent space to the complete linear system
|L| at X.

Also let o be the composition map Ty — Ty ® Ox — Nx/y and

__ T.(L))
T T,(L)NIme”

By the above hypothesis on L we see that W C H'(X,Tx) is the image of
T,(|L|) under the Kodaira-Spencer mapping and this allows us to define the
infinitesimal variation of Hodge structure ‘

V = {Hgz,H??, W, 6} given by...
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Hyz = H*(X,Z)/ torsion
HPY = HP9(X)

§: W — @ Hom (HP, HP~14+!) given by the cup-product with the
pt+g=n
Kodaira-Spencer class.

Let HYY(X) = {¢ € H»*: §(€)y = 0V € W} = subspace of classes
infinitesimally fixed under V and introduce the following definition:
L is sufficiently ample if
(1) H(Y,Ty) — H(X,Ty ® Ox) is an isomorphism
(2) HY(Y,L)® H(Y,Ky ® L) —» H(Y,Ky ® L**') Vg2>1
(3) H (Y, ® L) =0 Vr>0,Vr>0.
Then

Infinitesimal M. Noether Theorem
For L sufficiently ample and any smooth X € |L| we have

HY{(X) = HP'(X).
CoROLLARY 2.1. — (Lefschetz) Let S C |L| be the open dense set of
smooth divisors X. Then the monodromy representation
p: m(S) — Aut (HJ (X))
has no factors on which 71(S) acts as a finite group.
COROLLARY 2.2. — If X € |L| is generic and n = 2m, then

H™™(X,Q) = imageof {H™™(Y,Q)— H™(X,Q)}.

3. The proof of theorem 1.1.

With notation as in section 1 let P’ be the blow-up of IP? along C,
E = IP(NY) the exceptional divisor so that we have the following diagram

E;_.i_, P3

K

C ‘__—1__> IPS.
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Also let H be the pull-back of a plane in IP® and L = Of)a(dﬁ - E).
The I wish to prove that, under the hypothesis on d of Theorem 1.1, L
is sufficiently ample on IP3. This will imply the Infinitesimal M. Noether
theorem for ¥ = IP3 and X € |L| and hence theorem 1.1 by using cor. 2.2.

I will start by proving that property (3) of the definition of sufficiently
ample holds for L, but first I want to collect some facts about the ideal sheaf
of C' and of its “thickenings” that I will be using throughout this paper.

LEMMA 3.1. — Let I; be the ideal sheaf of C. Then

g—1
@ H(Z(m) =0 Va1, Vm>qd-4;

Sy

(®)  H(Z&(m)) =0 Vg1, Vm3>qd-4;

=S

()  H'(Z&(m)) =0 ¥g>1, Ym>qd-3;

(d) H'(Qi»s®fé(m))=0, r=12, Vg>1, VYm>qd;

q—2

©  H(Fo)e N /1) =0 Va2

() H'(Tp3®Ié(m))=0, r=12, Vg>1, Vm>qd-4;

¢

g—1

(h) H* TC®I§q (qd—4)):0 Vg >1.
C

(9) H1<Nc®Ig-1(qd—4))=0 Vg>1;
(

Proof. - Let § be a surface of degree d containing C (existing by the
hypothesis d > a(C)+1) and let H C S be the plane section, then Ym € Z
we have an exact diagram
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0 0 0
! | |
0— I§5 ' (m—d)— T¢(m)— Os(mH — ¢C)— 0
! ! !
(1) 0— TE (m—d)— I§'(m)—  Os(mH —(g—1)C)— 0
! ! !
y 4 I8
0— =—=(m-d)— —/—(m)— Oc ® Os(mH — (¢—1)C)—0
1z A
! ! !
0 0 0

(a) induction on ¢:

0
¢g=1: H' (%(m)) = H'(O¢(m)) =0 since mk >2g—2.
In fact by Castelnuovo’s bound we have g < 1/4(k* — 1) — k + 1 hence
29 —2<1/2(k* = 1) -2k < k(k—3) < k(d—4) <mk (k2>3).
g > 2: from the last horizontal exact sequence of diagram (*) since m —d >
(¢ — 1)d — 4 all we need to prove is
H'(O¢ ® Os(mH — (¢ —1)C)) = 0 and this is true since
deg (Oc ® Os(mH — (¢—1)C)) = mk—(g—1)(29—2—k(d —4)) > 29— 2;
in fact mk > (¢d—4)k, 29 —2—2kd + 4k < 0, ¢ > 2 hence it’s enough to see
that 2(2g — 2 — 2kd + 4k) + kd < 0 which is true by Castelnuovo’s bound.

(b) again by induction on g.

qg=1: H*(Z¢(m)) = H'(Oc(m)) = 0 as above;

g > 2: this follows by the inductive hypothesis and (a) by looking at the
second vertical exact sequence of (*).

(¢c) ¢ = 1: H'(Z¢(m)) = 0 by Castelnuovo-Gruson-Peskine-Lazarsfeld theo-
rem on the completedness of the hyperplane series sincem > d—3 > k — 2.
g > 2: modify diagram (*) by choosing a surface S containing C of degree d—
1. Again by the second vertical exact sequence and the inductive hypothesis
it will be enough to show

q—1
CraIM - HO(ZE * (m)) —»H°<I;q (m)) Vg>2, Vm>gqd-3.
&
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To see that we look at the global sections of (*) modified

0 0
! !
BT m—d+1) —» H"(;—:C;:-(m—d+ 1))
! !
0(T9-1 of 78
HO(15 (m)) - 7°(Zr(m)
lu !

H°(Os(mH - (¢-1)C)) —%» H°(Oc® Os(mH - (¢ - 1)C)).

Now u and v are surjective by induction so the claim will follow once
proved that ¢ is surjective.
To see that I will actually prove that H(Os(mH — ¢C)) = 0.
Let C’ be a generic curve in the base point free linear system |Og((d —
1)H — C)| so that
H—-qC~ (m—q(d—1))H+¢C’'and m—q(d—1) > ¢—3 > —2 for ¢ > 1.

SuBCLAIM - H(Os(aH +¢C')) = 0 Va > —2 and Vg > 1.
g = 1: follows from the exact sequence

0— Ops(@) —Io(a+d—1)— Os(aH + C'")—0

since H'(Z¢(a+d—1)) = 0 (as above because a +d—1>d -3 > k — 2);
g > 2: follows by induction from the sequence

0— Os(aH +(¢—1)C") — Os(aH + qC") — Oc1 ® Os(cH + ¢C') — 0

since deg (O¢' @ Os(aH + qC")) > 2¢(C’) — 2 (computation as in (a)).
This proves the subclaim, hence the claim and (c).

(d) Tensoring the Euler sequence by Z&(m) we get
0— Qps ®ZL(m) — T&(m — 1)®* — TL(m) — 0
hence the long exact sequence ...
H(Tg(m ~ 1))”" — H(T4(m)) — H' (Qps ® T¢(m)) —
— H' (Z¢(m ~ 1) — ' (zE(m)) —

— H (s ® I&(m)) — H(T§(m — 1)),
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Now the first map is surjective since the ideal of C is generated in degree
<o(C)and m—12>qd—12> ga(C); also

H'(T4(m - 1)) = H'(Z}(m)) = 0 by (c) and

H*(Z{(m — 1)) = 0 by (b), so (d) follows.

(e) From the sequence
0— N¢is — Ngyps — Ngyps @ Oc — 0

we see that A*(Z¢/I%) = Oc ® Os(—dH — C) so we want to prove, by
induction on g,

7572
" (IQL_I-(qd) ® Os(—dH — C)) =0 Vg>2;
C

g2t Hl(%(Qd)®Os(—dH—C)) = H'(0c®0s(dH~C)) = 0

since deg (O¢c ® Os(dH — C)) > 29 — 2;

g > 3: this follows by tensoring with O¢c ® Os(—C) the third horizontal
exact sequence of (*) written for ¢ — 1 in place of ¢ and with m = (¢ — 1)d.
In fact this gives

= 142
0— Z=2((¢-1)d) ® Os(-dH - C) — 7o-1(9d) ® Os(~dH - C) —
C C

— 06 ® Os((g — 1)dH ~ (g - 1)C) — 0

so H' of the first sheaf is 0 by induction and so is H! of the third by the
fact deg (OC ® Os((q—1)dH — (¢ — l)C)) > 29 — 2.

(f) From the dual of the Euler sequence tensored by Z%(m) we get
0—Z¢(m) — T&(m + 1)®* — Tps @ Z&(m) — 0
so (f) is implied by (b) and (c).
(g) ¢ = 1: as in the proof of (e) we have
0—O0c ®0s((d—4)H + C) — Nc(d — 4) — Oc(2d — 4) — 0

so that H'(Nc(d — 4)) = 0 since both O¢(d — 4) and Oc(2d — 4) are non-
special;
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q > 2: let m = gd — 4 in the third horizontal exact sequence of (*) and
tensor with N¢; then, by induction, it will be enough to prove that H* (NC®

Os((¢gd—4)H — (¢ - 1)C)) = 0 and this follows again from the sequence of
normal bundles of C' C § C IP? tensored by Os((¢d — 4)H — (¢ — 1)C):

0—-—)(’)0 ®05((Qd—4)H— (q— 2)C) e
— 0c 8 0s([(g+1)d—41H - (- 1)C) — 0

where both the first and the third line bundle have degree strictly greater
than 2g — 2.

(h) Induction on g¢:

g=1. H (Tc(d—4)) = 0since deg (Tc(d—4)) = 2—2g+k(d—4) > 29— 2;
q > 2: let m = qd — 4 in the third horizontal exact sequence of (*) and
tensor with T¢ so that by induction H' of the first sheaf is 0 and same for
the third which is Tc ® Os((¢d — 4)H — (¢ — 1)C) whose degree is > 2g — 2.

This concludes the proof of lemma 3.1.

ProprPosITION 3.2. —

H’(fP"’, 2, ®L)=0 Vr>0, Vg>0.

_Proof. -1 wish to use the Leray spectral sequence for the blow-up
f:IP? — 1P hence first let us prove the following

LEMMA 3‘.3. - Let F= Q%s ® L = Q’i’;a(qdff— gF) for 0 < p < 3,
g>1, then R f,(F)=0V:>0.
PROOF OF THE LEMMA: Let X = IP3 and y € IP? be a point. For each

n > 1 define
X, = Xxg, Spec(O, /my)

the n*"-thickening of the fiber over y and let v, : X, — X the natural map.
If 7, = v, F and"denotes the completion then (theorem on formal functions)

B fu(F), & lim B (X,,, Fo).
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Now since X, is homeomorphic to either a point or IP* (when y € IP® — C
or y € C respectively) we see that R'fu(F), = 0if ¢ > 2 and any yor i = 1
and y € IP® - C.

For i =1 and y € C we need a closer look.

CLAIM - HY(X,,F,) =0 Vn > 1 in this case.

Forn:lwehabve)g'\l’%‘IP1 and X;-H =0, X, - E = —1 hence

p=0:F = Op;(qdH - ¢E)® Ox, = Ox,(q9) = HY(X:,F1) = 0;
p=37F = Op((ed - DF - (3 - )E) ® Ox, = Ox,(¢ - 1) =
Hl(le'F):O; ~

p=1:F = QL (qdH — ¢E)® Ox, = 0%, ® Ox,(9)

so let’s look at the exact sequence

0— N?

Xllga(q) = Qlﬁa ® Oxl (q) - lel (q) —0.

Here H' (Q}(l(q)) e H (0p1(q - 2)) = 0 and from the exact sequence of

normal bundles of the triple X; C E C IP? we get (after dualizing and
twisting by ¢)

0_')0X1(q+ 1)—_)N;(1/§3(Q) — OXI(Q) —=

hence H 1( ;&’1 /50 (q)) = 0 since both the sheaves on the right and on the

left are non-special,

pr=2: Q%;a = Tﬁs(—4ﬁ+ E) so that F, = Tgs ® Ox, (g = 1)-
Now

0__)TX1(‘1" 1)_"T§3 ®0X1(Q" 1)—*Nx1/i53(q_ 1)'_’0
and again H*(Tx, (¢ 1)) = H'(Opi (g + 1)) = 0 and
0— Ox,(¢— 1) — Ny /pa(¢ = 1) — Ox, (¢~ 2) —0

so that H'(Ny zs(g—1)) =0.
This completes the proof of the claim for n = 1.
For n > 2 since X,_; C X,, we have

0—Zx, , x, ®F —Fn—Fn1—0
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so by induction we need to prove H'(Zx,_, x, ® F) = 0. Now V¥i > 0 there
is an exact sequence (**)

0 _.)IX"_.'_Q,X"_“_I ® f( - ('l .3 1)E) —)Ixn_,'_l Xn—i ® f(—iE) e

and H'(F(~iE) ® Ox,) = H* (92, (@dH - (¢ + )E) ® Ox,) = 0 by the

same argument as above since ¢ +1 > 1; but for i = n — 2
H (Tx,_iy 30 ® F(-iE)) = H'(Zx, x, ® F(~ (n - 2)E)) =

= H' (N} 5,8 F(— (n=2)E)) =0

X1 /P
since we have

0—+(9x1®}'(—(n—1)E)—>N;’(1/§3®.7:(—(n—2)E)—>

—O0x, ® F(=(n—-2)E) —0.

So by (**) H* (IXn_;_l,Xn_.- ® f(—iE)) =0Vi<n—2hencefori=0. W
So Lemma 3.3 is completely proved.

Now to prove the proposition observe that by the Leray spectral se-
quence applied to the map f: IP® — IP3 and the lemma 3.3 we have

H' (P03, ® 1) = #" (P*,1, (0%, ® L))

so we will prove that the cohomology groups on the right hand side are 0.

Again let F = 9%3 ® LI = Q%a(qu —qgE)for0<p<3,¢g>1,and
suppose first p > 1.
If Qz, /p3 is the sheaf of relative differentials then there is an exact sequence
(o) 0—"f*Qi>3 -—’9%3 _)Qiia/ps ~3{
so by taking A? and twisting by Og, (qdff — ¢F) we get

0— f*QP,(qdH — ¢E) — Q% (qdH — qE) — G — 0

where G is a sheaf supported on E.
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Now, since for every ¢ > 0 f,(Op;(—¢E)) = Z& and the projection formula,
taking f. of the above sequence gives

0— Q% ®Ii(gd) — fL F— G —0

where G’ is a sheaf supported on C.

Crami - H3(f.(f*Qpa(al - BE))) =0Va > 0and V8 2 0 (a > 0 if

p=3),

Let’s prove it by induction on .
B=0: H3(f.(f*Qps(aH))) = H*(Qhs(a)) =0 Va >0 (a > 0if p = 3).
B > 1: taking f, of the sequence

0— f*Q2s(aH — BE) — f*Q2; (aH — (8 — 1)E) —>
— f* Py (aH — (8-1)E) ® Og — 0
we get
0— fu(f*Upa(al = BE)) — f.(f* Qs (eH - (8~ 1)E)) — H —0

and here H is a sheaf supported on C.
Hence

H(C, H) — H(f.(f* Qpa(oH - BE))) —
— H(f(f* Qs (el - (8- 1)E)))

so the claim follows by the inductive hypothesis.
But since R'f, (Q%,(aH — BE)) is supported on C we have

H?(R'f. (9%, (oH - BE))) = B*(£.(9%, (o} - BE))) = 0

so the Leray spectral sequence gives H3 (I?‘*,Q%Aaﬁ - ,HE)) =0Va >0
and V3 > 0 (a > 0 if p = 3).
Let us see now that Hz(Q’l’,3 ® Ig-(qd)) e 0.
p=3: Q% ® I;(qd) = T¢(gd — 4) hence its H? is 0 by (b) of lemma 3.1;
p=1: H*(Qks ® T¢(qd)) = 0 by (d); |
p=2: H*(Q%; ® T¢(qd)) = H*(Tps ® I(gd - 4)) = 0 by ().

So this proves the proposition for p > 1, r = 2, 3.
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Suppose now p = 0.
Then F = Og,(qdH — gF) hence fu F = Zl(qd) so

H*(Z¢(qd)) = 0 by (c), H” (Ig(qd)) = 0 by (b) and

H? (:rg,(qd)) = H3(Ops(qd — 4)) = 0.
Letnowr=1,p2> 1. _
p=3:F = Q% (¢dH - gE) = Og,((¢d - 4)H — (¢ - 1)E) = LF =

18 (gd—4) = H'(I&(qd—4)) = 0by (c)for g > 2and by H' (Ops (-

4)) = 0 for ¢ = 1.
p = 1: from the exact sequence (o) we get

0—> Qs @ Z4(¢d) — foF — fu (U0 ps (44H — 4B)) — 0

(since, by the projection formula for R'f, we have R'f, (f*Qi,a (qdff —
¢E)) = R*f.(Op:(adH - ¢E)) ® Qs = 0 by lemma 3.3).

Now H' (Qi,a ®Ié(qd)) =0 by (d) and to see that

H! (f* (Q§3/P3 (qd?f - qE))) = 0 let us make the identification

E = 1P(Ic/T%) sothat O(-1)= Ny g = Op @ Op(E).

Since (5, s = 4+(Qg/c) and by the projection formula we have

fo (R0 o (9dH — ¢E)) = f. (2 pa(—1E)) ® Ops(qd) =
= 9.(25/0(9)) ® Ops(qd).
Let £ = Ic/ZZ%, then the Euler sequence for the vector bundle £ is
0— /o —(g"E)(=1) — Op — 0
so that Qg/c = g*(A2)(—2) and by the projection formula
0. (Q/0(0) = 0.[57 (12€) @ Os(¢ - 2)] = A€ ® 4.(Os(a - 2)
But

0 if g=1
5. (0sta-2) - SIS i 22
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so we have (for ¢ > 2)

q—2

5+ (Ops o 04 4E)) = Zor(ad) © 82/ )

hence H' (f,, (Qf,slps(qdﬁ— qE))) = 0 by (e).

Let now p = 2.
Let F' the sheaf defined by the exact sequence

0— Ny ps — g Neyps — F— 0

then there is an exact sequence

(e0) 0—Tg; — ffTps — ju.F— 0

where the second map is given by the composition

f*Tps — f"Tps ® Op = ¢ (Tp3 ® Oc) — g Neyps — F.
Now tensor (ee) by Og, ((¢d — 4)H — (g — 1)E) to get
0— Tgs((9d — 4)H — (¢ = 1)E) — f*Tps ((qd - 4)H — (¢ — 1)E) —
— j.F((¢d = 4)H — (¢ — 1)E) — 0.

Recall that Q% = Ti;s(—éfff-}- E) = F =Tg((¢gd—4)H - (¢—1)E)
so taking f, of the above sequence, by lemma 3.3, gives

0— fuF —Tps ® I¢ (4 ~ 4)— 1. (. F ((gd - )T — (g - 1)E) ) —0.

Since HI(TPS ® I (qd — 4)) = 0 (for ¢ > 2 by (f) and for ¢ = 1 since

Tps @ I& *(gd — 4) = Q2,4 (d)), we need to see that ¢ is surjective in global
sections.
So according to the previous description, ¢ is given by taking f, of

f*Tes ® Oga ((¢d — 4)H - (¢— 1)E) —
— ¢"(Tps ® Oc) ® Og; ((gd - )H - (¢~ 1)E) —

—_ g*NC/ps ® 053 ((qd — 4)H - (q — 1)E) —

— F ® Og, ((¢d — 4)H — (¢ — 1)E)
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i.e. by the composition of
_ 1 .
Tps @ I& ' (gd — 4)— 9. [g (Tps ® Oc(gd - 4)) ® Op(q - 1)] =

g—1

= Tps ® £ (qd — 4)

I¢
74!t P2 .
Tes ® —2—(ad — 4)=—.[g" (No(ed ~ 4)) © Os(g~ 1)] =
C
T
C
e Pa
No ® —Z—(qd = 4)—9.(F(g = 1)) ® Ops(gd - 4).
C

CLAIM - ¢y, @, @3 are all surjective in global sections.
In fact Coker ¢; C H(Tps ® I&(qd — 4)) = 0 by (f);

g—1

A
Coker ¢, C H! (TC ® gé (gd —4) | =0 by (h).

To see Coker ¢3 let’s go back to the exact sequence defining F'.
Tensoring it by Og(q — 1) gives

0—O0gp(¢g—2)—9"Nc ® Op(¢g—1)— F® Op(¢g—1)—0

hence after taking g. we see that

Coker g3 C H'(g.(Ox(g — 2)) ® Ops(gd — 4)) =0

since
0 if g=1

& IE if g>2
so that for ¢ = 1 there is nothing to prove, for ¢ = 2 because O¢(2d — 4) is
non-special and for ¢ > 3 by (a).

This proves the claim and therefore completes the proof of proposition

3.2.
We now deal with property (1) of the definition of sufficiently ample.

G+ (OE(CI - 2)) = {

ProrosiTION 3.4. —

H°(1T>3,T,~,3(—dﬁ+ E)) = Hl(ff’a,Tgs(-dff+ E)) =0.
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Proof. -
H° (Tf,s(—dﬁ-}-E)) = H°(02,(4F ~E—dH+E)) = 1° (24, ((d- 9H)) =0

by the proof of proposition 3.2.
Similarly 1 (1P3, Ty, (—dH + E)) = B (94, ((d - 4)H))  and to see
that it is 0 it will be enough (by Leray) to prove

B (R 1., (4~ 9TD)) = H*(f. (9, ((d - 4)H))) = 0.
By the sequence (s) we get
0— f"Qp2 ® O (d~4)H) — %, (d-4)F) —s Q5 p3 (A=) H) — 0.
Now observe that
R'f.(f*Qbs ® Og, ((d - OH)) = B'f. (0, ((d - 4)H)) ® Qha =0

since, with the same proof as in lemma 3.3, R'f, ((953 ((d - 4)?)) = 0.
Thus

(B 1. (@~ ) = 2 (R (g0 (- 7)) =
= H*(R'9.(%5/6) ® Ops(d - 1)) = 1" (0c(d - 1)) =0

as usual.
Also taking f, of the above exact sequence we get

0— Qps(d — 4) — £, (2, ((d - HH)) — f. (950 s ((d — HH)) —0

and this implies H2 (f,. (9%, ((d - 4)3))) =B, [ |
Finally let’s prove that property (2) holds.

ProrosiTiON 3.5. —
H (1%, 05, (47 - E)) ® B (P2, 03, ((qd — 4)F - (q 1)E)) —

— H° (B2, 05, ({(g + 1)d — 4]F — ¢E))  Vg>1.
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Proof. - Suppose first ¢ = 1. Then the statement is equivalent to
H°(1P?, Zo(d)) ® H° (IP°, Ops(d - 4)) —» B (P*, Zo(2d - 4))

which is true by the hypothesis on d. _
Now for ¢ > 2 let S be a generic surface in the linear system |(’)§3 (dH -
E)| and let’s look at the following diagram

B° (05, (471 - B) @ B O ((4d~ 9 E — (-1 B) — H°O5((a+1)d~4)H ~E))

l Tq,S l Tq+1,5

HO (os(dfi—E)) QH® (cJS((qd-4)ﬁ_(q-1)E)) Bl o (os([(q+1)d-4]17_qE))

CLAIM - It’s enough to see that ¢, s is surjective.
In fact Kerrgp1,s = H° ((’)53 ((qd — 4)H — (g — 1)E)) so the claim will be
proved if r, s is surjective.

But ry s is tensor of two restrictions which are both surjective: in fact
H'(IP%, Og,) = 0 since as usual R'f,(Op) = 0 = H'(IP3,05,) =
H'(IP3,Op3) = 0 and

(B2, 0, (1) d-4H~g-2)E) ) = B (B°, 9%, ((¢- DAl F{¢-1) E) ) =0

by proposition 3.2 (here ¢ > 2). _
Now let C' be a general curve of the linear system |05 ® Og, (dH — E)|,
then since Ks & Os ® O, ((d—4)H) and K¢ = Ocr @ Og; ((2d—4)H — E)

we have a diagram

HOOS(H - B) @ H° (K500, ((¢-1)dH ~(g-1)B) 2 B°(Ks€0g,(adH ~qE))

Tq—lpcl l Tq,cf

f:r"(oc:(alﬁ—fs))@Iaﬂ(fx’cf((q—2)«u?r—(q—Z)E))“3ﬁc—1 #(Ke(a- 1) - (g-1)B)
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CLAIM -
(i) @g-2,cr surjective = ©q,5 surjective
(ii) @g—2 ¢ is surjective.
The proof of (i) is similar as the one of the clajm.
In fact Kerr, ¢r = H° (KS ® O ((g—1)dH — (¢ - l)E)) and r,_; ¢ is

surjective since tensor of two surjective maps:
from 0—+(’)i;3(—dﬁ+ E)——>(91~,3——>(95—>0
“and the fact that Hl(]f’:’,(?f,a) = 0 and
H*(IP°, Ogs(—dH + E)) = H'(Og4 ((d - YH)) =0

(by the usual proof) we see that H (S, Os) = 0 so the first map is surjective;
as for the second map its cokernel is contained in ! ((95 ((¢d - 4)?I’— (¢g—

l)E)) which is 0 by the exact sequence
0— 0 ([(¢-1)d - 4]F - (¢ - 2)E) —Oga (¢d - )T - (¢ 1)E)—>
— Os((¢d - 4)H - (¢ - 1)E) — 0
where
H' (O, ((¢d - 9)H - (¢ - 1)E)) = A (92, (d - ¢E)) =0
by prop. 3.2 and
H*(0g ([(q—l)d—4lﬁ—(q~2)E)) = H'(Q%, ((q—l)dﬁ—(qd)E)) =0
for ¢ > 2 by prop 3.2 and for ¢ = 1 by Hl(l’Pa,an) = Hz(lf”,(?;a) =

H2(]?3, OPS) =1,
To see (ii) we use the following classical lemma ([1D.

LEMMA. —  Let C' a smooth irreducibile non-rational curve and |D| a
base point free birational linear system on C. Then Vq > 0

H°(C,0c(D)) ® H°(C, Kc(¢D)) —» HO(C, Kc((g+1)D)).
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Now the lemma applies to C’ since it is not rational (in fact C' is the
strict transform in the blow-up of IP? along C of the generic residual T
of C in the complete intersection of two surfaces of degree d containing C
and if T were rational it would follow that every surface of degree 2d — 4
containing C contains I', against the hypothesis on d and the linear system
|Oc' @ Ogs (dH — E)| is base point free and birational since by the hypothesis
d > a(C) + 1 it separates points.

Thus (ii) is proved and so is proposition 3.5.

Then collecting the results of propositions 3.2, 3.4 and 3.5 we see that
L = Ogs(dH - E) is sufficiently ample and so, by the argument in the
beginning of section 3, theorem 1.1 is proved.

Finally I would like to make some remarks on the hypothesis d >
degC + 1.

First of all if C is any curve the best one can do to improve it, by using
the same proof, is to decrease it by 3, i.e. d > deg C — 2 since there are
curves with H'(Z¢(degC — 3)) # 0. On the other hand by making special
hypotheses on the curve one can get better results: for example with the
same proof it is easy to prove

PROPOSITION 3.6. — Let C be a complete intersection curve in P23 of
two surfaces of degree a and b with (a,b) different from (1,1), (1,2). Then
theorem 1.1 is true for C for any d > 2a + 2b - 3.

But again all of these hypotheses on d seem to be fairly stronger than
they should be (it seems to me that it should be wenough to assume d >
o(C) or something similar) so it is still interesting to find a proof that
uses more the geometry of the problem (so not only to drop the useless
hypotheses) and this is what I hope to do by using deformation theory.
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