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Introduction

From local algebra to geometry: the origin of Ulrich bundles In
1984, Bernd Ulrich published the landmark paper Gorenstein Rings and Mod-
ules with High Numbers of Generators ([Ulr]). Just a few years later, in 1987,
together with Joseph P. Brennan and Jürgen Herzog, he further developed
these ideas in the in�uential work Maximally Generated Cohen-Macaulay
Modules ([BHU]).

These seminal works introduced a foundational problem in local algebra,
focusing on a speci�c class of modules � �nitely generated Cohen-Macaulay
modules of the maximal possible dimension over a Cohen-Macaulay local
or homogeneous ring (MCM). For such modules, the number of generators
is always bounded by their multiplicity. This led to a central question in
the theory: under what conditions do these modules achieve the absolute
maximum number of generators permitted by this theoretical bound? Modules
satisfying this extremal condition are also known as Ulrich modules.

Although this algebraic framework is rich and profound, we will not pur-
sue its intricate depths here; instead, we shall focus on its corresponding
geometric counterpart. We �nd that this very abstract setup is hiding a
remarkably concrete geometric problem, which had already been studied al-
most a century prior to Ulrich's algebraic perspective. In its simplest form,
it asks: when can a homogeneous polynomial be written as the determinant
of a matrix of linear forms?

The classical question: determinantal representations of varieties
The concept of representing geometric objects using determinants has roots
stretching back to the mid-19th century. During this period, speci�c deter-
minantal representations for objects like cubic surfaces were already known
and other examples of curves and surfaces were also treated in this period (by
[Gra] in 1855 and by [Sch] in 1881). The representation of the plane quartic
as a symmetric determinant, for instance, can be traced to 1855, credited to
O. Hesse [Hes]. Cubic and quartic surfaces have been also studied early; see
[Cay].
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The early 20th century saw a more systematic development of explicit
determinantal representations for projective varieties. In 1902, Arthur Lee
Dixon extended the idea to plane curves of arbitrary degree [Dix]. Sub-
sequently, Leonard Eugene Dickson provided insights into expressing gen-
eral homogeneous forms as linear determinants [Dic]. While classical e�orts
largely focused on curves and surfaces, modern research continues to explore
these representations, examining which general homogeneous forms admit
such structures.

Ulrich bundles and determinantal representations of hypersurfaces
Building upon these classical insights, a more re�ned question emerges in
modern algebraic geometry concerning the determinantal representation of
hypersurfaces. Speci�cally, given a smooth projective hypersurface X, can
its de�ning equation be expressed as the determinant of a matrix of linear
forms?

While this question yields positive answers for certain low-dimensional
cases, a critical challenge arises for higher-dimensional smooth hypersurfaces.
A crucial observation is that a hypersurface de�ned by the determinant of a
matrix of linear forms, say det(Lij) = 0, is necessarily singular along the locus
where the rank of the matrix (Lij) drops signi�cantly (by at least two). This
geometric constraint implies that a smooth hypersurface of dimension three
or higher generally cannot be represented as a simple determinant of linear
forms [Bea2, �2]. This highlights the necessity of moving beyond straightfor-
ward determinantal equations to more abstract structures for a comprehen-
sive understanding.

To overcome this limitation, one can pose a weaker, yet profoundly in-
sightful question: can a smooth projective hypersurface be de�ned set-theoretically
by a linear determinant?

This question reveals a deep equivalence with the existence of speci�c
vector bundles, as formalized by Beauville in [Bea2]:

Proposition 0.1. Let X ⊂ PN be a smooth hypersurface of degree d, given
by an equation F = 0 and let r ≥ 1 be an integer. The following conditions
are equivalent:

(i) F r = det(Lij), where (Lij) is an rd× rd matrix of linear forms on PN .

(ii) There exists a rank r vector bundle E on X and an exact sequence

0 → O⊕rd
PN (−1)

L−→ O⊕rd
PN → E → 0.

For a detailed proof of this proposition, we refer the reader to [Bea2,
Proposition 2.1].
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Remark 0.2 (Illustrative case: a plane curve). To see concretely how condi-
tion (ii) forces the determinantal equation in (i) in Proposition 0.1, consider
a smooth plane curve C ⊂ P2 of degree d, de�ned by F . If there exists a line
bundle E on C and an exact sequence

0 → O⊕d
P2 (−1)

L−→ O⊕d
P2 → E → 0

then at each point x ∈ P2 one checks easily that

F (x) = 0 ⇐⇒ x ∈ C ⇐⇒ det(L(x)) = 0.

The vector bundles E appearing in condition (ii) are key objects in this
geometric approach and are precisely what are known as Ulrich bundles.
While condition (ii) o�ers a powerful characterization of Ulrich bundles on
hypersurfaces (see Proposition 2.2), their more common formal de�nition,
which we will use in this work, relies on the vanishing of certain cohomology
groups:

H i(E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ dimX.

Two fundamental problems Having established the precise connection
between determinantal representations and Ulrich bundles, a natural and
fundamental line of inquiry arises: do such Ulrich bundles always exist on
a given projective variety? The problem of their existence is a central and
actively researched area in algebraic geometry. While Ulrich bundles are
known to exist on various important classes of varieties, such as curves, K3
surfaces, hypersurfaces and smooth complete intersections, their existence on
arbitrary projective varieties remains a signi�cant open problem.

Furthermore, for a given projective variety where Ulrich bundles do exist,
a related and equally important question concerns their minimum rank: what
is the smallest possible rank r for which an Ulrich bundle can be found? Also
is this case, determining this minimum rank for various classes of varieties is
an active area of research, with known bounds and precise values established
only for certain speci�c cases.

A Curve-Based construction of Ulrich bundles on surfaces As pre-
viously mentioned, the existence problem for Ulrich bundles on a given
smooth projective variety remains open, even for varieties of low dimen-
sion, such as surfaces. Addressing this, signi�cant progress has been made
in characterizing such bundles; for instance, Casnati presented a key result
that characterize Ulrich bundles on surfaces, providing criteria based on their
Chern classes and cohomology (see Section 3.1).

5



Building upon such foundational contribution, this work primarily focuses
on studying Ulrich bundles on smooth projective surfaces. The main result
of this thesis, which is original, gives a precise correspondence between Ulrich
bundles and curves on surfaces. Speci�cally, it is proved that an Ulrich bundle
on a surface exists if and only if it arises as a Lazarsfeld-Mukai bundle (see
Section 3.2) associated with a speci�c triple of geometric data. The main
theorem (Theorem 3.7) establishing this correspondence is stated as follows:

Theorem 0.3. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Then, there exists an
Ulrich bundle E of rank r on S if and only if there exists a smooth (possibly
disconnected) curve C ⊂ S of genus g together with a pair (W,L), where L
is a line bundle on C and W ⊆ H0(L) is a r−dimensional base-point free
linear series, such that:

(i) H1(C,L(KS +H)) = 0;

(ii) the multiplication map

φ : W ⊗H0(S,OS(KS + 2H)) → H0(L(KS + 2H))

is injective;

(iii) deg(C) = r
2
(KS + 3H) ·H and

deg(L) = rχ(OS) + g − 1− C ·KS − rH2.

A natural question arising from this theorem is: when is the curve C
connected? This question will be extensively addressed in Section 3.4. The
answer is provided by the following result (Corollary 3.23):

Corollary 0.4. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Let E be the Ulrich
bundle on S corresponding to the triple (C,W,L), as in Theorem 3.7. Then
C is irreducible if and only if one of the following cases arises:

(i) (S,OS(1), E) ≇ (PF ,OPF(1), π
∗(G(det(F))) where F is a rank 2 very

ample vector bundle over a smooth curve B of genus g, G is a rank r
vector bundle on B such that Hq(G) = 0 for q ≥ 0;

(ii) (S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(1, 0)) or
(S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(0, 1)).
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The insights derived from our main theorem are then applied to speci�c
cases, particularly to surfaces in P3, o�ering new results about Ulrich bun-
dles on them and their relation with Noether-Lefschetz loci (Chapter 4). To
support these discussions, the preceding chapters provide the necessary back-
ground: Chapter 1 introduces general notions and tools from the theory of
vector bundles and projective geometry, while Chapter 2 focuses on Ulrich
bundles, presenting some known results and examples relevant to our study.
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Chapter 1

Preliminaries

1.1 Riemann-Roch theorems

Theorem 1.1 (Riemann-Roch for line bundles on smooth curves).
Let D be a divisor on a smooth curve C of genus g. Then

χ(OC(D)) = deg(D) + 1− g.

Proof. See [Har, Theorem IV.1.3].

Theorem 1.2 (Riemann-Roch formula for line bundles on smooth
surfaces). Let S be a smooth projective surface and let D be a divisor on S.
Then

χ(OS(D)) =
1

2
D · (D −KS) + χ(OS).

Proof. See [Har, Theorem V.1.6].

Theorem 1.3 (Riemann-Roch formula for vector bundles on smooth
surfaces). Let S be a smooth projective surface and let E be a rank r vector
bundle on S. Then the Euler characteristic of E is given by:

χ(E) = rχ(OS) +
1

2
c1(S)c1(E) +

1

2
(c1(E)2 − 2c2(E)).

Proof. It follows directly from the Hirzebruch-Riemann-Roch theorem [Har,
App. A, Theorem 4.1].

1.2 Castelnuovo-Mumford regularity

De�nition 1.4. Let F be a coherent sheaf on the projective space PN , and
let m be an integer. F is m-regular in the sense of Castelnuovo-Mumford if
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H i(PN ,F(m− i)) = 0 for all i > 0.

Theorem 1.5 (Mumford's Theorem, I). Let F be an m-regular sheaf on
PN . Then for every k ≥ 0:

(i) F(m+ k) is globally generated;

(ii) The natural maps

H0(PN ,F(m))⊗H0(PN ,OPN (k)) → H0(PN ,F(m+ k))

are surjective;

(iii) F is (m+ k)-regular.

Proof. See [Laz, Theorem 1.8.3]

This notion of regularity on projective space is in fact a special case of
a more general de�nition, which applies to coherent sheaves over arbitrary
projective varieties equipped with a globally generated ample line bundle.

De�nition 1.6. Let X be a projective variety and let L be a globally gen-
erated ample line bundle on X. Let F be a coherent sheaf on X and let m
be an integer. F is m-regular with respect to L if

H i(X,F ⊗ L⊗(m−i)) = 0 for all i > 0.

The following result shows that the main properties of Castelnuovo-Mumford
regularity extend naturally to this more general setting.

Theorem 1.7 (Mumford's Theorem, II). Let F be an m-regular sheaf
on a projective variety X, with respect to L. Then for every k ≥ 0:

(i) F ⊗ L⊗(m+k) is globally generated;

(ii) The natural maps

H0(X,F ⊗ L⊗m)⊗H0(X,L⊗k) → H0(X,F ⊗ L⊗(m+k))

are surjective;

(iii) F is (m+ k)-regular with respect to L.

Proof. See [Laz, Theorem 1.8.5]
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1.3 Chern classes

Here, we summarize the foundational elements of Chern classes, following
the established framework provided by Eisenbud and Harris in [EH].

De�nition 1.8 (The Chow ring). Let X be a variety.

(i) A cycle of codimension r on X is an element of the free abelian group
generated by the closed irreducible subvarieties of X of codimension r.

(ii) For each r, we de�ne Ar(X) to be the group of cycles of codimen-
sion r on X, modulo rational equivalence (for the de�nition of rational
equivalence, see [EH, �1.3.2])

(iii) We denote by A(X) the graded group
⊕n

r=0A
r(X).

We present below Theorem 5.3 from [EH], which essentially provides the
de�nition of Chern classes.

Theorem 1.9. Let X be a smooth variety and let E be a vector bundle on
X. Then there is a unique way to assign to E a class

c(E) = 1 + c1(E) + c2(E) + . . . ∈ A(X)

which satis�es the following conditions:

(i) if L is a line bundle on X then the Chern class of L is 1+ c1(L) where
c1(L) is the class of the divisor of zeros minus the divisor of poles of
any rational section of L;

(ii) if τ0, . . . , τr−i are global sections of E and the degeneracy locus D where
they are dependent has codimension i, then the i-th Chern class of E is

ci(E) = [D] ∈ Ai(X);

(iii) (Whitney's formula) Given a short exact sequence of vector bundles

0 → E → F → G → 0

the total Chern class satis�es

c(F) = c(E)c(G);

(iv) (Functoriality) For any morphism φ : X → Y between smooth verieties,
the Chern classes respect pullbacks:

φ∗(c(E)) = c(φ∗(E))
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Proof. See [EH, Chapter 5, �9]

De�nition 1.10 (Chern classes). Given a vector bundle E over a smooth
variety X, its total Chern Class is the unique class

c(E) = 1 + c1(E) + c2(E) + . . . ∈ A(X)

satisfying the four conditions of Theorem 1.9.
The i-th Chern class of E is then de�ned as the degree i component of

c(E), that is, ci(E) ∈ Ai(X).

Remark 1.11. One can get a more concrete idea of Chern classes by thinking
in terms of the behavior of global sections. The �rst Chern class can be
interpreted as a way to measure how far a vector bundle is from being trivial.
For line bundles, this idea is simple: if the �rst Chern class vanishes, the
bundle has a nowhere-vanishing section and it is thus trivial. In higher rank,
one generalizes this by looking at the loci where a set of global sections fails
to be linearly independent.To simplify the discussion, let us assume E to be
rank r vector bundle on a variety X generated by its global sections. Choose
r general global sections s0, . . . , sr−1. These de�ne a bundle map

φ : O⊕r
X → E

which fails to be surjective exactly along a codimension 1 locus de�ned by
the vanishing of detφ. In this setup, detφ is a general global section of the
determinant line bundle

∧r E . Its zero scheme is a divisor whose class in
A1(X) is, by de�nition, the �rst Chern class of E , c1(E).

More generally, taking only r − i + 1 general sections yields a section
of

∧r−i+1(E) whose vanishing de�nes a codimension i degeneracy locus; the
class of this locus is, by de�nition, the i-th Chern class of E , ci(E).

To facilitate future applications, we summarize here some of the standard
identities and structural features satis�ed by Chern classes.

Lemma 1.12. Let X be a smooth variety and E a vector bundle on X.

(i) (Splitting principle) Any identity among Chern classes of bundles that
is true for bundles that are direct sum of line bundles is true in general;

(ii) c1(det(E)) = c1(E);

(iii) ci(E∗) = (−1)ici(E);
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(iv) if rk(E) = r and L is a line bundle on X, then

ck(E ⊗ L) =
k∑
i=0

(
r − k + i

i

)
c1(L)ick−i(E);

(v) If rk(E) = r and F is a rank s vector bundle on X, then

c1(E ⊗ F) = s · c1(E) + r · c1(F).

Proof. For point (i), see [EH, Theorem 5.11]. Points (ii) and (iii) follows at
once from Whitney's formula together with the splitting principle, as showed
in Example 5.14 and 5.15 in [EH]. For (iv) see [EH, Proposition 5.17] and
for (v) refer to [EH, Proposition 5.18].

1.4 Degeneracy loci

This section introduces degeneracy loci of morphisms between vector bundles,
following Ottaviani's exposition in [Ott2, �2]. Our primary objective is to
clearly state Banica's Theorem, which provides precise information regarding
the codimension of these loci.

De�nition 1.13. Let E and F be vector bundles on a variety X and let
φ : E → F be a morphism. For each point x ∈ X the morphism φ induces a
linear map of �bers

φ(x) : E(x) → F(x),

where E(x) and F(x) denote the �bers of E and F at x, respectively. We
de�ne the k-th degerenacy locus of φ as

Dk(φ) = {x ∈ X : rk(φ(x)) ≤ k}.

If k = min{rk(E), rk(F)} − 1, we refer to Dk(φ) as the maximal degen-
eracy locus.

Remark 1.14. For a morphism φ between vector bundles on a variety X,
the degeneracy locus Dk(φ) admits a natural structure of closed subscheme
of X. It is de�ned scheme-theoretically by the vanishing of all (k+1)×(k+1)
minors of a local presentation matrix of φ. In other words, Dk(φ) arises as
the ideal sheaf generated by these minors.

Remark 1.15. We start by analyzing a well-understood and accessible con-
text. Let us consider the vector space of all m × n matrices Matm×n(C) ∼=
Cmn. We de�ne Mk as the subset of matrices in Matm×n(C) whose rank is
less than or equal to k, that is,
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Mk = {x ∈ Matm×n(C) : rk(x) ≤ k}.

This particular case aligns with the general de�nition through a speci�c con-
struction. Let V and W be �nite-dimensional complex vector spaces of di-
mensions n and m respectively; from these, we construct two trivial vector
bundles over the base space Hom(V,W ), which we denote by V andW , whose
�bers are canonically identi�ed with the original vector spaces.

Now, we de�ne a canonical morphism ψ : V → W . This morphism is
de�ned pointwise: for any given point x ∈ Hom(V,W ) (which represents a
speci�c m×n matrix, which we denote by Mx), the linear map ψx : V → W
is simply given by ψx(v) = x(v), where v ∈ V . Under this construction, the
set Mk is precisely the degeneration locus Dk(ψ), infact, rk(ψx) ≤ k if and
only rk(Mx) ≤ k, by construction.

In addition, we have the following result.

Lemma 1.16. Mk is an irreducible algebraic subvariety of Matm×n(C) with
codimension (m− k)(n− k).

Furthermore, Sing(Mk) =Mk−1.

Proof. See [Ott2, Theorem 2.1]

In the more general context, Lemma 1.16 extends as follows.

Lemma 1.17. Let E and F be vector bundles of rank m and n on a variety
X and let φ : E → F be a morphism. Then

codimX(Dk(φ)) ≤ (m− k)(n− k).

Proof. See [Ott2, Lemma 2.7]

De�nition 1.18. Let E and F be vector bundles of rank m and n on a
variety X and let φ : E → F be a morphism. We say that Dk(φ) has the
expected codimension if

codimX(Dk(φ)) = (m− k)(n− k).

Theorem 1.19 (Banica). Let X be a variety and let E and F be vector
bundles of rank m and n on X such that Hom(E ,F) is globally generated.
If φ is a general morphism of Hom(E ,F) = H0(E∗ ⊗ F), then for each k
the degeneracy locus Dk(φ) is either empty or has the expected codimension
(m− k)(n− k).

In addition, Sing(Dk(φ)) ⊂ Dk−1(φ).

Proof. See [Ott2, Theorem 2.8]
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1.5 Torsion sheaves

De�nition 1.20 (Torsion modules). Let A be a commutative ring and let
M be an A-module.

(i) An element m ∈M is called a torsion element if there exists a nonzero
a ∈ A such that am = 0.

(ii) The torsion submodule of M , denoted Tors(M) is

Tors(M) = {m ∈M | ∃0 ̸= a ∈ A : a ·m = 0}.

One checks directly that Tors(M) naturally forms an A-submodule of
M ;

(iii) M is a torsion module if Tors(M) = M , i.e., every element of M is
torsion;

(iv) M is torsion-free if Tors(M) = 0.

Lemma 1.21. Let A be a domain and let M be a torsion A-module. Then,

HomA(M,A) = 0.

Proof. Let φ : M → A be a morphism in HomA(M,A). Fix m ∈ M ; since
M is a torsion module, there exists 0 ̸= a ∈ A such that a ·m = 0. Hence,

aφ(m) = φ(am) = φ(0) = 0

and, since a ̸= 0 and A is supposed to be a domain, one has φ(m) = 0.
Therefore, for each m ∈M , φ(m) = 0, that is, φ ≡ 0.

De�nition 1.22 (Torsion sheaves). Let X be a scheme and F a quasi-
coherent sheaf on X. We de�ne

F(U)tors = {s ∈ F(U) | ∃0 ̸= f ∈ OX(U) : f · s = 0}

One can show that there exists a unique subsheaf Ftors such that
Ftors(U) = F(U)tors for every a�ne open subset U of X and that Ftors is a
quasi-coherent sheaf on X (see [Liu, Exercise 1.14]). We say that

(i) F is a torsion sheaf if F = Ftors;

(ii) F is torsion-free if Ftors = 0.
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Lemma 1.23. Let F be a coherent sheaf on a smooth projective variety X
of dimension n. If

dim(Supp(F)) < n,

then F is a torsion sheaf.

Proof. Let U =Spec(A) ⊆ X be an a�ne open subset such that FU
∼= M̃

for a �nitely generated A-module M . Since the support of F has dimension
strictly less than n, the set of points where the stalkMpx is nonzero is a proper
subset of Spec(A). In particular, there exists a prime ideal px0 ∈Spec(A) such
that

Mpx0
= 0 and Apx0

̸= 0.

For any element m ∈ M , the vanishing of the localized element m
1
∈ Mpx0

implies the existence of an element s ∈ A\px0 such that s ·m = 0, showing
that each m ∈ M is a torsion element. Hence, for any a�ne open subset
U = Spec(A) ⊆ X, the associated A-module F(U) ∼= M is torsion; this
implies that F(U) = F(U)tors for all such U . Since Ftors is de�ned as the
unique subsheaf whose sections over any a�ne open subset are precisely the
torsion elements of F(U), we conclude that F = Ftors. Therefore, F is a
torsion sheaf.

Lemma 1.24. Let F be a torsion coherent sheaf on a smooth projective
variety X. Then, its dual Hom(F ,OX) vanishes.

Proof. On any a�ne open U = Spec(A) ⊂ X, write F|U ≃ M̃, where M is
a �nitely generated torsion A-module.

Then by de�nition one has

HomOX
(F ,OX)(U) = HomOU

(F|U ,OU) = HomOU
(M̃,OU).

By [Har, Exercise II.5.3], we have that HomOU
(M̃,OU) is naturally isomor-

phic to HomA(M,A) and, sinceM is torsion, Lemma 1.21 gives HomA(M,A) =
0. It follows that Hom(F ,OX) = 0 on every a�ne open U and, therefore,
Hom(F ,OX) is the zero sheaf.

1.6 Auxiliary results and techniques

Lemma 1.25 (Coherent sheaves of constant rank). Let X be a complete
scheme. Let F be a coherent sheaf of costant rank r on X then F is locally
free of rank r.

16



Proof. Fix a point x0 ∈ X. By hypothesis, the stalk Fx0 is a free OX,x0-
module of rank r. Choose an isomorphism

φx0 : O⊕r
X,x0

→ Fx0 .

Since F is coherent, there exists an a�ne neighborhood U =Spec(A) of x0
and a �nitely generated A-module M such that FU

∼= M̃ . By shrinking
U further if necessary, we may assume that the map φx0 is induced by a
morphism of sheaves

ψ : O⊕r
U → FU .

On global sections this corresponds to an A-linear map

ψU : A⊕r →M, (a1, . . . , ar) →
r∑
i=1

aimi,

for some chosen m1, . . . ,mr ∈M .
Next, we show that ψ is surjective on a neighbourhood of x0. Since

M is �nitely generated, we choose a full generating set {x1, . . . , xs}. The
surjectivity of ψx0 on the stalk on x0 implies that, in the localized module
Mpx0

, each generator xj can be written as an Apx0
-linear combination of the

image of the mi. Concretely, there exist elements aij ∈ A, sij /∈ px0 such that

xj
1

=
r∑
i=1

aij
sij

mi

1
=
a′1jm1 + . . .+ a′rjmr

sj

for suitable a′ij ∈ A, sj /∈ px0 . Clearing denominators then produces an
element tj /∈ px0 satisfying

tj(sjxj − (a′1jm1 + . . .+ a′rjmr)) = 0.

Setting fj = tjsj, we see that over the open set Ufj ⊂ U the element xj
indeed lies in the image of ψ. Taking the product f = f1 . . . fs, we conclude
that ψ is surjective on the smaller open set Uf .

We now turn to injectivity. Let K := ker(ψ). This is a coherent subsheaf
of O⊕r

U and by construction its stalk at x0 vanishes, that is, Kx0 = 0. Hence
there is a �nitely generated A-module N such that K|U ∼= Ñ . Writing N
as generated by n1, . . . , nt, for each nk there exists sk /∈ px0 with sknk = 0.
Taking g = s1 . . . st, we get gN = 0, and, on the open set Ug, the element g
is invertible, forcing N = 0. Hence, K|Ug = 0.

We conclude that ψ is simultaneously surjective and has trivial kernel on
the intersection Uf ∩ Ug = Ufg. Since the choice of x0 was arbitrary, this
proves that F is locally free of rank r.
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Proposition 1.26 (Injectivity of the evaluation map). Let E be locally
free sheaf of rank r over a smooth projective variety X and let V be a subspace
of H0(E) of dimension s ≤ r. Then, the natural evaluation map

φV : V ⊗OX → E

is injective as a morphism of sheaves.

Proof. Let x ∈ X \Ds−1(φV ), so that the evaluation map has rank s at that
point. Consider the stalk of the map φV at x

φV,x : O⊕s
X,x → Ex ∼= O⊕r

X,x.

Denoting A := OX,x and m = mx, this map becomes φV,x : A⊕s → A⊕r.
Then, φV,x is represented by an r × s matrix [aij] with entries in A.

Tensoring the map with the residue �eld K(x) = A/m we obtain the induced
linear map

φV (x) : K(x)⊕s → K(x)⊕r,

represented by the matrix [āij], where āij denotes the image of aij modulo
m. Since x /∈ Ds−1(φV ) this map has rank s, meaning that the image of
the sections in V ⊆ H0(E) remain linearly independent in the �ber E(x) ∼=
K(x)⊕r. Therefore, the matrix [āij] has rank s. In particular, there exists
an s × s submatrix M of [āij] such that det(M) ̸= 0 in K(x). This means
that the corresponding determinant det(M ′) ∈ A, where M ′ is the lift of M
in [aij], is not contained in m. Hence, det(M ′) is an invertible element of A,
implying that [aij] has rank at least s over A. Thus, the map φV,x is injective.
Now, since the point x was chosen outside the degeneracy locus Ds−1(φV ),
and injectivity holds there, we conclude that the kernel sheaf K = ker(φV )
vanishes on a nonempty open subset of X. Hence, K is torsion by Lemma
1.23.

But K is a subsheaf of O⊕s
X , which is locally free and hence torsion-free.

Therefore, K is a torsion sheaf inside a torsion-free sheaf, and must be zero
everywhere. This implies that φV is injective as a morphism of sheaves.

Lemma 1.27 (Base-point free pencil trick). Let C be a smooth curve,
let L be a line bundle on C and let F be a torsion free OC-module. Let
s1, s2 ∈ H0(L) be linearly independent sections of L, and denote by W the
subspace of H0(L). Then the kernel of the multiplication map

φ : W ⊗H0(F) → H0(F ⊗ L)

is isomorphic to H0(F ⊗ L−1(B)) where B is the base locus of the pencil
spanned by s1 and s2.

Proof. See [ACGH, Chapter 3, �3]
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1.7 Ruled Surfaces

In this section we brie�y recall the basic properties of ruled surfaces which
will be essential for the arguments in Section 3.4. Our presentation follows
the treatment in [Har, V.2].

De�nition 1.28. A ruled surface on a smooth curve B is a surface S, to-
gether with a surjective morphism π : S → B, such that π−1(p) ∼= P1 for
every point p ∈ B and such that π admits a section, that is, a morphism
σ : B → S such that π ◦ σ = idB.

Throughout this section, whenever we refer to a ruled surface S, we �x
the surjective morphism π : S → B onto the nonsingular base curve B and
the section σ : B → S provided by the de�nition. In addition, we denote by
f a general �ber of π and we set B0 = σ(B).

Lemma 1.29. Let S be a ruled surface and let D be a divisor on S. It follows
that:

(i) any two �bers of π are algebraically equivalent divisors on S. In par-
ticular, D · f is independent of the choice of the �ber;

(ii) if D · f = n ≥ 0 then π∗(OS(D)) is a locally free sheaf of rank n+1 on
B. In particular, π∗(OS) = OB.

Proof. See [Har, Lemma V.2.1]

Proposition 1.30. Let S be a ruled surface. Then:

(i) there exists a locally free sheaf F of rank 2 on B, such that S ∼= P(F).
Conversely, every such P(F) is a ruled surface over B;

(ii) if F and F ′ are two locally free sheaves of rank 2 on B, then P(F) and
P(F ′) are isomorphic as ruled serfaces over B if and only if there is an
invertible sheaf L on B such that F ′ ∼= F ⊗ L.

Proof. See [Har, Proposition V.2.2]

Lemma 1.31. Let S be a ruled surface. Then B0 · f = 1 and f 2 = 0.

Proof. Observe �rst that B0 meets each �ber f in exactly one point, and does
so transversely; hence their intersection number is B0 ·f = 1. Meanwhile, any
two distinct �bres are disjoint by de�nition of the ruling, so a �ber cannot
intersect itself, giving f 2 = 0.
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Lemma 1.32. Let S be a ruled surface on a smooth curve B and let D be a
divisor on S. If D · f ≥ 0, then

H i(S,OS(D)) ∼= H i(B, π∗OS(D)) for all i > 0.

Proof. See [Har, Lemma V.2.4]

Lemma 1.33. Let S ∼= P(F) be a ruled surface over B and let H be a divisor
in |OS(1)|. Then, the canonical divisor KS on S is given by

KS ∼ −2H + π∗(KB + detF) (1.1)

Proof. See [Har, Lemma 2.10] and use [Har, Exercise III.8.4(b)]

1.8 Nef line bundles

De�nition 1.34 (Nef line bundles). Let X be a smooth projective variety.
Let D be a Cartier divisor on X, and let L = OX(D) be the associated line
bundle. We say that L (equivalently, D) is nef if for every irreducible curve
C ⊂ X one has

D · C ≥ 0.

In other words, the degree of L restricted to any curve is non-negative.

De�nition 1.35 (Nef vector bundles). Let X be a smooth projective
variety. A vector bundle E on X is said to be nef if the tautological line
bundle OP(E)(1) on the projectivization P(E) is nef.

Lemma 1.36. Let X be a smooth projective variety and let L be a globally
generated line bundle on X. Then L is nef.

Proof. Fix an irreducible curve C ⊆ X. Because L is globally generated, its
base locus is empty. Now consider the short exact sequence of sheaves

0 → IC/X ⊗ L → L → L|C → 0.

Passing to global sections gives

0 → H0(IC/X ⊗ L) → H0(L) → H0(L|C).

If deg(L|C) < 0, then H0(L|C) = 0, and exactness forces

H0(IC/X ⊗ L) ∼= H0(L).

In other words, every global section of L vanishes identically along C. This
means, C is contained in the base locus of L, contradicting global generation.
Therefore, deg(L|C) ≥ 0 for every curve C ⊆ X. Hence, L is nef.
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Corollary 1.37. Let X be a smooth projective variety and let E be a globally
generated vector bundle on X. Then det(E) is nef.

Proof. If E is a globally generated vector bundle on X, then its determinant
det(E) is a globally generated line bundle onX, and hence nef by the previous
lemma.

Lemma 1.38. Let X be a smooth projective variety of dimension n and let
L = OX(D) be a nef line bundle on X. Then Dn ≥ 0.

Proof. By [Laz, Theorem 1.4.9], for every irreducible subvariety V ⊆ X
of dimension k, one has Dk · V ≥ 0. Taking k = n and V = X gives
Dn = Dn · [X] ≥ 0, as desired.

1.9 Big line bundles

De�nition 1.39 (Big line bundles). Let X be a smooth projective variety
of dimension n and let L be a line bundle on X. For any integer m ≥ 1 such
that H0(L⊗m) ̸= 0, consider the rational map

ϕm : X 99K PH0(L⊗m)

induced by the complete linear system |L⊗m|.

(i) The Kodaira dimension of L, denoted by k(X,L) is de�ned as

k(X,L) :=


−∞ if H0(X,L⊗m) = 0 for all m ≥ 1

max
m≥1

H0(X,L⊗m) ̸=0

dimϕm(X) otherwise

(ii) The line bundle L is said to be big if

k(X,L) = dimX = n.

De�nition 1.40. Let X be a smooth projective variety of dimension n. A
vector bundle E on X is said to be big if the tautological line bundle OP(E)(1)
on the projectivization P(E) is big.

Lemma 1.41. Let X be a smooth projective variety of dimension n and let
L = OX(D) be a nef line bundle on X. Then

L is big ⇐⇒ Dn > 0.
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Proof. See [Laz, Theorem 2.2.16].

Lemma 1.42 (Kawamata�Viehweg vanishing theorem for nef and
big line bundles). Let X be a smooth projective variety of dimension n
and let L be a nef and big line bundle on X. Then

H i(L(KX)) = 0 for every i > 0

Proof. See [Laz, Theorem 4.3.1]

Remark 1.43. Let X be a smooth projective variety of dimension n and let
E be a nef vector bundle on X. If c1(E)n = 0 then E is not big.

Proof. See [LM, Remark 2.2]
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Chapter 2

Ulrich bundles

2.1 De�nition and characterizations

De�nition 2.1. Let X ⊆ PN be a smooth projective variety and let E be a
vector bundle on X. E is said to be Ulrich if it satis�es

H i(X, E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ dimX.

Proposition 2.2. Let X ⊆ PN be a smooth hypersurface of degree d and let
E be a rank r vector bundle on X. The following conditions are equivalent:

(i) E is Ulrich;

(ii) There exists an exact sequence

0 → O⊕rd
PN (−1)

L−→ O⊕rd
PN → E → 0.

Proof. See [Bea2, Proposition 2.2]

Theorem 2.3. Let X ⊆ PN be a smooth projective variety and let E be a
vector bundle on X. The following conditions are equivalent:

(i) There exists a linear resolution

0 → Lc → Lc−1 → . . .→ L0 → E → 0

with c = codim(X,PN) and Li = OPN (−i)⊕bi;

(ii) E is an Ulrich bundle on X;

(iii) if π : X → PdimX is a �nite linear projection, the vector bundle π∗E is
trivial.
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Proof. See [Bea2, Theorem 2.3]

De�nition 2.4 (Ulrich complexity). Let X ⊆ PN be a smooth variety.
The Ulrich complexity of X is the integer

uc(X) := min{r ≥ 1 : X carries an Ulrich vector bundle of rank r}.

If no Ulrich vector bundle exists on X, we set uc(X) := ∞.

2.2 Main properties

Lemma 2.5. Let E be a rank r Ulrich bundle on a smooth projective variety
X ⊆ PN of dimension n and degree d. Then

(i) E is 0-regular and globally generated;

(ii) H i(X, E) = 0 for all i > 0;

(iii) H i(X, E(j)) = 0 for every integer j and 0 < i < n;

(iv) χ(E(m)) = rd
(
m+n
n

)
;

(v) h0(X, E) = rd.

Proof. (i) Fix a positive integer p. For p > n, then Hp(X, E(−p)) = 0;
for p ≤ n, since E is Ulrich, H i(X, E(−p)) = 0 for all i ≥ 0, in particular
for i = p. Hence, E is 0-regular and by Theorem 1.7(i), it is also globally
generated.

(ii) By point (i) and Theorem 1.7(iii), E is k-regular for all k ≥ 0, that is,

Hp(X, E(k − p)) = 0 for all k ≥ 0 and p > 0.

Taking k = p, one has

Hp(X, E) = 0 for all p > 0,

that is, (ii).
(iii) By Theorem 2.3(iii), we have H i(X, E(j)) = H i(PN , π∗E(j)), which

vanishes for 1 ≤ i ≤ n− 1 and all integers j.
(iv) By [Laz, Theorem 1.1.24] and [Har, Appendix A, Theorem 4.1], the

Euler characteristic χ(X, E(m)) is given by a polynomial P (m) ∈ Z[m] of
degree n, whose leading coe�cient is

r ·Hn

n!
,
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where H ∈ |OX(1)| denotes a hyperplane section of X, and r = rk(E).
Since the degree of X is de�ned as d := Hn, the leading coe�cient of

P (m) becomes rd
n!
. Since E is Ulrich, χ(X, E(t)) = 0 for all −n ≤ t ≤ −1.

Hence, P (m) vanishes for m = −1, . . . ,−n, so that P (m) must be of the
form

P (m) =
rd

n!
(m+ 1)(m+ 2) · · · (m+ n),

that is, χ(E(m)) = rd
(
m+n
n

)
.

(v) Evaluating the expression in (iv) at m = 0, we �nd

rd = χ(X, E) = h0(X, E),

where the last equality follows from (ii).

Lemma 2.6 ([Bea2, (3.4)]). Let E be an Ulrich bundle on a smooth projec-
tive variety X of dimension n and let Y be a hyperplane section of X. Then,
E|Y is an Ulrich bundle on Y .

Proof. Consider the short exact sequence

0 → E(−1) → E → E|Y → 0.

Tensoring with OX(−j) yields

0 → E(−1− j) → E(−j) → E|Y (−j) → 0.

From this, we obtain the long exact sequence in cohomology

. . .→ H i(E(−j)) → H i(E|Y (−j)) → H i+1(E(−1− j)) → . . .

Since E is Ulrich, we have that

H i(E(−j)) = 0 for i ≥ 0 and 1 ≤ j ≤ n,

H i+1(E(−1− j)) = 0 for i ≥ 0 and 0 ≤ j ≤ n− 1.

Hence, by exactness,

H i(E|Y (−j)) = 0 for all i ≥ 0 and 1 ≤ j ≤ n− 1 = dimY ,

that is, E|Y is Ulrich.

Lemma 2.7. Let X be a smooth projective variety of dimension n such that
(X,OX(1)) ≇ (Pn,OPn(1)) and let E be an Ulrich vector bundle on X. Then

H0(E∗) = 0.
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Proof. If n = 1 we have three cases, according to the genus g of X.
If g = 1, then KX = 0, so that h0(E∗) = h1(E) = 0, by Serre's duality

and Lemma 2.5(ii).
If g ≥ 2, choosing D ∈ |KX |, we have the exact sequence

0 → E → E(KX) → E(KX)|D → 0

which gives

. . .→ H1(E) → H1(E(KX)) → H1(E(KX)|D) → . . .

Since H1(E) = 0 by Lemma 2.5(ii) and H1(E(KX)|D) = 0, the exactness of
the sequence implies that h1(E(KX)) = 0, that is, h0(E∗) = 0, by Serre's
duality.

If g = 0, then X ∼= P1 and then E ∼= OP1(a1)⊕ . . .⊕OP1(ar). Now, E is
Ulrich if and only if OP1(ai) is Ulrich for each i with 1 ≤ i ≤ r. Since E is
globally generated by Lemma 2.5(i), it follows that ai ≥ 0 for all i. Suppose,
for contradiction, that h0(E∗) ̸= 0, then there is an i such that ai = 0. Since
by assumption (X,OX(1)) ≇ (P1,OP1(1)), we have that OX(1) = OP1(a) for
some integer a ≥ 2. Since ai = 0 andOP1 is Ulrich, we haveH1(OP1(−a)) = 0
for some a ≥ 2, which is clearly a contradiction.

This completes the proof for n = 1.
Moreover, observe that if (X,OX(1)) ≇ (P1,OP1(1)) thenH0(E∗(−ℓ)) = 0

for all ℓ ≥ 0.
We now claim that, if (X,OX(1)) ̸= (Pn,OPn(1)), then H0(E∗(−ℓ)) = 0

for every ℓ ≥ 0. This is in fact equivalent to the statement. For n = 1, the
statement holds by the above argument. For n ≥ 2, we proceed by induction.
Hence, Let H be a divisor in the linear system |OX(1)| and assume that
(X,H) ̸= (Pn,OPn(1)). Consider a smooth irreducible hyperplane section
Y ∈ |OX(1)|. Then (Y,H|Y ) ̸= (Pn−1,OPn−1(1)), for otherwise (X,H) =
(Pn,OPn(1)). It follows by Lemma 2.6 that E|Y is an Ulrich bundle with
respect to (Y,H|Y ), hence H0(E∗

|Y (−ℓ)) = 0 for every ℓ ≥ 0 by induction.
From the exact sequence

0 → E∗(−ℓ− 1) → E∗(−ℓ) → E∗
|Y (−ℓ) → 0

we deduce that h0(E∗(−ℓ))) = h0(E∗(−ℓ − 1)) for every ℓ ≥ 0. Since
h0(E∗(−ℓ))) = 0 for ℓ ≫ 0 by Serre vanishing, we get that H0(E∗(−ℓ)) = 0
for every ℓ ≥ 0.

Lemma 2.8 ([Bea2, (3.6)]). Let X and Y be smooth projective varieties
and let π : X → Y be a �nite surjective morphism. Let L be a very ample
line bundle on Y and let E be a vector bundle on X. Then E is an Ulrich
bundle for X, π∗L if and only if π∗E is an Ulrich bundle for (Y,L).
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Proof. The claim follows directly from the isomorphism

H i(Y, π∗E ⊗ L⊗−k) ∼= H i(X, E ⊗ π∗L⊗−k)

which holds for all i ≥ 0.

2.3 Stability

De�nition 2.9. Let E be a rank r vector bundle on a smooth projective
variety X.

(i) E is said to be semistable if for every nonzero coherent subsheaf F of
E we have the inequality

PF/rk(F) ≤ PE/rk(E)

where PF and PE are the Hilbert polynomials of the sheaves.

(ii) E is said to be stable if the inequality above is strict for every nonzero
proper coherent subsheaf of E .

Lemma 2.10. Let E be a rank r Ulrich bundle on a smooth projective variety
X. Then E is semi-stable.

Proof. See [CHGS, Theorem 2.9]

Lemma 2.11 (Bogomolov's inequality). Let E be a semistable rank r ≥ 2
vector bundle on a smooth projective surface S. Then the following inequality
holds

2rc2(E)− (r − 1)c1(E)2 ≥ 0

Proof. See [Gie, Theorem 0.3]

Lemma 2.12. Let X ⊆ PN be a smooth variety and let E be an Ulrich bundle
of minimal rank r on X, that is, uc(X) = r. Then, E is stable.

Proof. It follows from [CHGS, Theorem 2.9], by applying an argument anal-
ogous to that in [CG, Proof of Lemma 2.3].

De�nition 2.13. Let X ⊆ PN be a smooth variety and let E be a vector
bundle on X. We say that E is simple if

h0(X, E ⊗ E∗) = 1,

or, equivalently, Hom(E , E) ∼= C.
Lemma 2.14. Let X ⊆ PN be a smooth variety and let E be an Ulrich bundle
of minimal rank on X. Then, E is a simple vector bundle.

Proof. It follows from Lemma 2.12 by using [HL, Corollary 1.2.8].
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2.4 Notable cases and explicit constructions

Lemma 2.15 ([Bea2, (3.3)]). Let C ⊆ PN be a projective curve. Then
Ulrich bundles on C are the bundles E(1) where E is a vector bundle on C
with vanishing cohomology.

Proof. Set F = E(1), where E is a vector bundle on C with vanishing coho-
mology and set p = 1. Then, for all i ≥ 0,

H i(F(−p)) = H i(E) = 0,

that is F is Ulrich.

Lemma 2.16. Let Q ⊂ Pn+1 be a smooth quadric.

(i) If n is odd, there is exactly one indecomposable Ulrich bundle on Q, of
rank 2

n−1
2 , the spinor bundle.

(ii) If n is even, there are exactly two indecomposable Ulrich bundles on Q,
of rank 2

n−2
2 , the spinor bundles.

(iii) Ulrich vector bundles on quadrics are direct sums of spinor bundles.

Proof. For (i) and (ii), see [Bea2, Proposition 2.5]. Point (iii) is a direct
consequence of previous points.

Remark 2.17. For a more detailed discussion on spinor bundles on quadrics,
see [Ott1]. For applications relevant to this work, the case n = 2 is particu-
larly noteworthy: here, the quadric Q is isomorphic to P1 × P1, and in this
case, the spinor bundles correspond precisely to the pullbacks of the line
bundle OP1(1) along the two natural projection morphisms ([Bea2, Remark
2.6]).

Proposition 2.18. (PN ,OPN (d)) admits an Ulrich bundle of rank n!.

Proof. See [Bea2, Proposition 3.1]

Corollary 2.19. Let X be a smooth projective variety of dimension n and
let E be a rank r Ulrich bundle on X. Then, for every d ≥ 1, there exists an
Ulrich bundle E of rank rn! for (X,OX(d))

Proof. The claim follows directly from Proposition 2.18 and Lemma 2.8.

Proposition 2.20 (Ulrich line bundles). (i) Let X be a projective va-
riety of degree d > 1 and assume Pic(X) = ZH, where H ∈ |OX(1)|.
Then, there exists no Ulrich line bundle on X;
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(ii) Let S ⊂ PN be a del Pezzo surface, that is, KS = −H where H ∈
|OX(1)|. Let L = OS(D) be a line bundle on S satisfying D2 = −2 and
D ·KS = 0. Then, L(1) is an Ulrich line bundle on S.

In particular, these conditions are satis�ed by taking L = OS(ℓ − ℓ′)
where ℓ and ℓ′ are two disjoint lines.

Proof. (i) Suppose, for the sake of contradiction, that OX(k) is an Ulrich
bundle on X. Then,

h0(OX(k − 1)) = 0 and h0(OX(k)) = d

by Lemma 2.5(v). These cohomological conditions imply that k must be zero.
Indeed, the vanishing h0(OX(k − 1)) = 0 forces k ≤ 0, while h0(OX(k)) =
d > 0 forces k ≥ 0.

Consequently, d = 1, which is a contradiction.
(ii) See [Bea2, Proposition 4.1(i)]
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Chapter 3

Ulrich bundles on surfaces

This chapter delves into the study of Ulrich bundles speci�cally on smooth
projective surfaces. Building upon the foundational concepts of Ulrich bun-
dles introduced in Chapter 2, we explore their characteristics and properties
in the two-dimensional setting. We begin by presenting Casnati's Theorem
(Section 3.1), a central result which provides a key characterization of Ulrich
bundles on surfaces in terms of their Chern classes and only two cohomology
vanishing conditions. Following this, in Section 3.2, we will introduce the
concept of Lazarsfeld-Mukai bundles and establish important relationships
between such bundles and Ulrich bundles. These relationships, explored
further in Section 3.3, will be crucial for understanding the correspondence
between curves on a surface and Ulrich bundles on surfaces, which constitutes
the primary objective of this treatment. Section 3.4 then investigates spe-
ci�c conditions under which certain curves related to Ulrich bundles exhibit
connectedness properties.

3.1 Casnati's Theorem

Theorem 3.1 (Casnati, [Cas, Proposition 2.1]). Let S ⊆ PN be a smooth
projective surface of degree d, embedded by the linear system |H|, where H ∈
|OS(1)|, and let E be a vector bundle of rank r on S. Then, the following
statements are equivalent:

(i) E is Ulrich;

(ii) The following conditions hold:

(1) H0(E(−1)) = H2(E(−2)) = 0;

(2) c1(E) ·H = r
2
(KS + 3H) ·H and
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c2(E) = rχ(OS) +
1
2
c1(S)c1(E) + 1

2
c1(E)2 − rH2.

Before proceeding with the proof of Theorem 3.1, let us �rst prove the
following lemma.

Lemma 3.2. Let S ⊆ PN be a smooth projective surface of degree d, em-
bedded by the linear system |H|, where H ∈ |OS(1)|, and let E be a vector
bundle of rank r on S. Thenχ(E(−1)) = 0

χ(E(−2)) = 0
⇐⇒

c1(E) ·H = r
2
(KS + 3H) ·H

c2(E) = rχ(OS) +
1
2
c1(S)c1(E) + 1

2
c1(E)2 − rH2

Proof. Observe that, if L is any line bundle on S, so that L = OS(D) for
some divisor D, recalling [Prop.5.17 EH], one has the standard Chern class
identities for E ⊗ L

c1(E ⊗ L) = c1(E) + rc1(L),
c2(E ⊗ L) = c2(E) + (r − 1)c1(L)c1(E) +

(
r
2

)
c1(L)2

(Here, c1(L) = [D] denotes the divisor class of D.)
We now apply these identities with L = OS(−1) and L = OS(−2). To

streamline notation, write c1 := c1(S), d1 := c1(E), d2 := c2(E). A direct
computation then shows

c1(E(−k)) = d1 − krH,
c2(E(−k)) = d2 − k(r − 1)d1H + k2

(
r
2

)
H2,

for k = 1, 2. Substituting each of these into the Riemann�Roch formula of
Theorem 1.3, produces two explicit formulas for χ(E(−1)) and χ(E(−2)).
Requiring both Euler characteristics to vanish is therefore equivalent to the
systemrχ(OS) +

1
2
c1d1 − r

2
c1H + 1

2
d21 − d2 − d1H + r

2
H2 = 0

rχ(OS) +
1
2
c1d1 − rc1H + 1

2
d21 − d2 − 2d1H + 2rH2 = 0

that is, subtracting the �rst equation from the second one,d2 = rχ(OS) +
1
2
c1d1 − r

2
c1H + 1

2
d21 − d1H + r

2
H2

d1H = − r
2
c1H + 3

2
rH2 = r

2
(−c1 + 3H)H

Noting that c1 = c1(S) = −KS, the second equality immediately rewrites as
c1(E) ·H = r

2
(KS +3H) ·H and substituting this back into the �rst equation

yields

d2 = rχ(OS) +
1

2
c1d1 −

r

2
c1H +

1

2
d21 −

r

2
(−c1 + 3H)H +

r

2
H2
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that is exactly c2(E) = rχ(OS) +
1
2
c1(S)c1(E) + 1

2
c1(E)2 − rH2.

Hence the two vanishing conditions on χ(E(−1)) and χ(E(−2)) are equiv-
alent to the stated Chern-class equalities.

We now proceed to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose E is an Ulrich bundle on S. By de�nition,
this means H i(E(−p)) = 0 for all i and for p = 1, 2. In particular, this
immediately gives H0(E(−1)) = H2(E(−2)) = 0, so condition (1) is satis�ed.
Moreover, the total cohomology vanishing forces χ(E(−1)) = χ(E(−2)) = 0
and, by the previous lemma, this simultaneous vanishing is exactly equivalent
to the Chern�class relations in (2). Hence both (1) and (2) hold, completing
the proof of (ii).

Conversely, suppose (1) and (2) both hold. Then, by the previous lemma,
we again conclude that χ(E(−1)) = χ(E(−2)) = 0. Since moreover
H0(E(−2)) ⊆ H0(E(−1)) = 0 and H2(E(−2)) = 0, it follows at once that
H i(E(−2)) = 0 for all i.

For E(−1), consider the short exact sequence of sheaves coming from
restriction to the hyperplane section H

0 → E(−2) → E(−1) → E(−1)|H → 0.

Passing to cohomology gives the exact segment

...→ H2(E(−2)) → H2(E(−1)) → H2(E(−1)|H) → ...

Since H2(E(−2)) = 0 and H2(E(−1)|H) = 0, exactness forces H2(E(−1)) =
0. Finally, χ(E(−1)) = 0 gives H1(E(−1)) = 0.

Thus H i(E(−p)) = 0 for all i and p = 1, 2, hence E is Ulrich.

3.2 Lazarsfeld-Mukai bundles

In the correspondence we aim to establish between Ulrich bundles and curves
on a surface, Lazarsfeld�Mukai bundles play a central role. Speci�cally, in our
construction, Ulrich bundles on the surface S will arise precisely as Lazars-
feld�Mukai bundles associated with certain curves C ⊂ S satisfying suitable
conditions. This section reviews the construction of Lazarsfeld�Mukai bun-
dles and highlights the properties that make them central to our approach.
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De�nition 3.3 (Vector bundle KC,W,L). Let S ⊆ PN be a smooth projec-
tive surface of degree d, with H ∈ |OS(1)|, and let C ⊂ S be a smooth curve.
Let L be a line bundle on C and W ⊆ H0(L) a r-dimensional base-point-free
linear series. Consider the canonical surjective evaluation map

eC,W,L : W ⊗OS ↠ L.

We de�ne
KC,W,L : = ker(eC,W,L)

to be its kernel. Its dual K∗
C,W,L is the Lazarsfeld�Mukai bundle associated

to the triple (C,W,L).

Remark 3.4. Set K := KC,W,L. Then

(i) One has by construction the exact sequence

0 → K → W ⊗OS → L → 0; (3.1)

(ii) K is a rank r vector bundle on S;

(iii) c1(K) = −[C];

(iv) c2(K) = deg(L).

Proof. (i) Trivial
(ii) This can be checked locally: since L is a line bundle on a smooth

curve, we may assume L ∼= OC in a neighborhood. Then the evaluation map
decomposes as the direct sum of the canonical surjection OS → OC and r−1
copies of the zero map OS → 0.

Indeed, if x /∈ C, then the stalk Lx = 0, so that the evaluation map
eC,W,L,x : W ⊗ OS,x → Lx is the zero map. Consequently, its kernel is
W ⊗OS,x

∼= O⊕r
S,x.

If x ∈ C, then the stalk Lx is isomorphic to OC,x, a local ring and a free
module of rank 1 over itself. The evaluation map at the stalk level becomes
a surjective map

W ⊗OS,x → Lx ∼= OC,x

which, by de�nition, is given by the composition ofW⊗OS,x → W⊗OC,x and
W ⊗OC,x → OC,x. Since OC,x is a free module over itself, it is in particular a
projective module. A standard result in commutative algebra states that any
surjection onto a projective module splits (see [Lan, Chapter III, �4]); that is,
there exists a section σ : OC,x → W ⊗OC,x such that the composition is the
identity on OC,x. It follows that W ⊗OC,x

∼= OC,x⊕ ker(W ⊗OC,x → OC,x),
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by [Lan, Proposition III.3.2]. Hence, ker(W ⊗ OC,x → OC,x) = O⊕r−1
C,x and

the map W ⊗OC,x → OC,x splits.
Lifting the decomposition from C to S is straightforward. Select the

distinguished copy of OC,x ⊂ W⊗OC,x on which the evaluation is the identity
and take any element of W ⊗ OS,x mapping onto it. The OS,x�summand
generated by this element still surjects onto OC,x, while the entire preimage
of the complementary summand, already annihilated after restriction to C,
is sent to zero. Thus, the evaluation splits locally as

OS,x ↠ OC,x, O⊕(r−1)
S,x → 0,

so that globally the map W ⊗ OS → L is the direct sum of the canonical
surjection OS → OC with r − 1 copies of the zero map, as claimed.

Its kernel is thus locally isomorphic to OS(−C) ⊕ O⊕r
S , which is locally

free of rank r. Therefore, KC,W,L is a vector bundle of rank r on S.
(iii) Outside the curve C, the kernel K has rank r, implying that the

map K → W ⊗ OS maintains full rank in this region. However, along C,
this map drops rank, as L is supported on C. Consequently, the determinant
line bundle det(K) vanishes along C, yielding the isomorphism det(K) =
OS(−C), hence, c1(K) = −[C].

(iv) Let s ∈ W be a generic section with divisor D, and let W ′ := W/ <
s >. Then we have a map K → W ′ ⊗ OS which drops rank exaclty along
D ⊆ S. Hence, c2(K) = [D] = deg(L).

Lemma 3.5. Let S ⊆ PN be a smooth projective surface of degree d, em-
bedded by the linear system |H|, where H ∈ |OS(1)|, and let C ⊂ S be a
smooth curve. Let L be a line bundle on C, W ⊆ H0(L) a base-point-free
linear series of dimension r and let E be the Lazarsfeld�Mukai bundle on S
associated to (C,W,L), i.e., E∗ = KC,W,L. Then

(i) h0(E(−1)) = h1(L(KS +H))

(ii) H2(E(−2)) = kerφ, where φ is the multiplication map,

φ : W ⊗H0(S,OS(KS + 2H)) → H0(L(KS + 2H)).

(iii)

χ(E(−1)) = 0

χ(E(−2)) = 0
⇐⇒

deg(C) = r
2
(KS + 3H) ·H

deg(L) = rχ(OS) + g − 1− C ·KS − rH2

where g is the genus of the curve C.
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Proof. (i) We start by tensoring the exact sequence

0 → E∗ → W ⊗OS → L → 0, (3.2)

given by Remark 3.4(i), with OS(KS +H), which gives

0 → E∗(KS +H) → W ⊗OS(KS +H) → L(KS +H) → 0.

Taking cohomology of the above sequence yields the segment

...→ W ⊗H1(OS(KS +H)) → H1(L(KS +H)) → H2(E∗(KS +H)) →
W ⊗H2(OS(KS +H)) → ...

By Kodaira's vanishing theorem, we know that H1(OS(KS + H)) =
H2(OS(KS +H)) = 0. Therefore, we conclude that

W ⊗H1(OS(KS +H)) = 0 and W ⊗H2(OS(KS +H)) = 0,

that is, by the exactness of (3.2), H1(L(KS +H)) ∼= H2(E∗(KS +H)).
Hence, h0(E(−1)) ∼= h1(L(KS +H)), by Serre's duality.
(ii) Begin by observing that Serre's duality on the surface S identi�es

H2(E(−2H)) ∼= H0(E∗(KS+2H))∗. In particular, vanishing of H2(E(−2H))
is equivalent to the statement H0(E∗(KS + 2H)) = 0.

On the other hand,tensoring the exact sequence (3.2) by OS(KS + 2H)
yields

0 → E∗(KS + 2H) → W ⊗OS(KS + 2H) → L(KS + 2H) → 0

On cohomology this becomes

0 → H0(E∗(KS + 2H)) → W ⊗H0(OS(KS + 2H))
φ−→ H0(L(KS + 2H)) →

H1(E∗(KS + 2H)) → ...

By exactness, the space H0(E∗(KS +2H)) is precisely the kernel of the mul-
tiplication map φ.

(iii) From Remark 3.4(iii),(iv) and the basic properties of the Chern
classes of the dual bundle (see also 1.12), it follows that

c1(E) = [C] and c2(E) = deg(L)

According to Lemma 3.2, we haveχ(E(−1)) = 0

χ(E(−2)) = 0
⇐⇒

c1(E) ·H = r
2
(KS + 3H) ·H

c2(E) = rχ(OS) +
1
2
c1(S)c1(E) + 1

2
c1(E)2 − rH2
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⇐⇒


deg(C) = r

2
(KS + 3H) ·H

deg(L) = rχ(OS) +
1
2
c1(S)c1(E) + 1

2
c1(E)2 − rH2 =

= rχ(OS) +
1
2
(C2 − C.KS)− rH2

since c1(E) = C and c1(S) = −KS.
The claim follows from the adjunction formula, which implies that

1

2
(C2 − C ·KS) =

1

2
(C2 + C ·KS)− C ·KS = g − 1− C ·KS.

Substituting this expression into the formula for deg(L), we �nd that

deg(L = rχ(OS) +
1

2
(C2 − C.KS)− rH2

is equivalent to deg(L) = rχ(OS) + g − 1− C ·KS − rH2.

3.3 Ulrich bundles and curves on surfaces

Having introduced the necessary tools, we now turn to the core topic of
this chapter: the interplay between Ulrich bundles and curves on surfaces.
Building on the previous sections, we describe how certain curves give rise to
Ulrich bundles, and conversely, how geometric properties of Ulrich bundles
re�ect the structure of the underlying curves. We begin by considering a
simple case in the next Remark 3.6. This will be followed by Theorem 3.7,
which represents the true core of our discussion.

Remark 3.6. Let E be a rank r vector bundle on P2. Then

E is Ulrich respect to OP2(1) ⇐⇒ E ∼= O⊕r
P2 .

Proof. It follows directly from Theorem 2.3. Indeed, when X = P2 ⊆ P2, we
have codim(X,P2) = 0, so that the linear resolution in point (i) of Theorem
2.3 reduces to

0 → L0 → E → 0

with L0 = O⊕r
P2 . Hence, E is Ulrich if and only if E ∼= O⊕r

P2 , by the equivalence
of (i) and (ii) in Theorem 2.3.

We have thus fully described the case when (S,OS(1)) ∼= (P2,OP2(1)). For
this reason, we shall systematically exclude it from our subsequent analysis.
The intrinsic justi�cation lies in the fact that the "curve" associated with
this case is actually empty (as shown in the proof of Theorem 3.7), which
naturally leads us to treat it as an isolated instance.
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Theorem 3.7. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Then, there exists an
Ulrich bundle E of rank r on S if and only if there exists a smooth (possibly
disconnected) curve C ⊂ S of genus g together with a pair (W,L), where L
is a line bundle on C and W ⊆ H0(L) is a r−dimensional base-point free
linear series, such that:

(i) H1(C,L(KS +H)) = 0;

(ii) the multiplication map

φ : W ⊗H0(S,OS(KS + 2H)) → H0(L(KS + 2H))

is injective;

(iii) deg(C) = r
2
(KS + 3H) ·H and

deg(L) = rχ(OS) + g − 1− C ·KS − rH2.

Proof. Let us assume that E is a rank r Ulrich vector bundle on S. Observe
that E is globally generated by Lemma 2.5(i); therefore, there exists a general
subspace V of H0(E) of dimension r. Hence, the evaluation map, which is
injective by Proposition 1.26,

φV : V ⊗OS → E

is general in Hom(V ⊗OS, E).
In addition, observe that Hom(V ⊗OS, E) ∼= (V ∗ ⊗OS)⊗ E ∼= O⊕r

S ⊗ E ,
hence Hom(V ⊗ OS, E) is globally generated, since it is the tensor product
of two globally generated vector bundles. We now consider the (r − 1)-st
degeneracy locus of φV , Dr−1(φV ). According to Banica's theorem (Theorem
1.19), this locus is either empty or his codimension is given by

codim(Dr−1(φV )) = (rk(O⊕r
S )− (r − 1))(rk(E)− (r − 1)) = 1.

We now claim that if Dr−1(φV ) = ∅ then (S,OS(1)) ∼= (P2,OP2(1)), which is
excluded by the assumptions.

In fact, if Dr−1(φV ) = ∅, then rk(φ(x)) > r − 1 ∀x ∈ S, that is,
rk(φ(x)) = r ∀x ∈ S. Hence, φV is surjective at every point of S. It
follows that E ∼= O⊕r

S . In particular, since O⊕r
S is Ulrich, so is OS. Recall

that, by Lemma 2.5(v), one has that h0(E) = rd. In particular, for OS, we
get h0(OS) = d, since rk(OS) = 1. Thus, it follows that d = 1. Therefore
S is a variety of degree 1, implying that S is isomorphic to P2. Moreover,
S is embedded in PN through an immersion of degree 1. Consequently, we
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conclude that OS(1) ∼= OP2(1), and therefore we obtain the isomorphism of
pairs (S,OS(1)) ∼= (P2,OP2(1)).

Hence, the case Dr−1(φV ) = ∅ cannot occur, so that Dr−1(φV ) ̸= ∅ and,
therefore, it has the expected codimension one. In particular, it de�nes a
curve on S. Let

C := Dr−1(φV ).

By Banica's Theorem 1.19, Sing(C)=Dr−2(φV ). Moreover, according to the
same theorem, if Dr−2(φV ) were non empty, it would have codimension 4
in a 2-dimensional variety, which is clearly a contraddiction. Therefore,
Dr−2(φV ) = ∅, and consequently, Sing(C)= ∅, implying that C is smooth.
We now proceed to de�ne an appropriate line budle L on C, as well as a
suitable r-dimensional base-point free subspace W ⊆ H0(L), which we we
later show satis�es the required properties (i), (ii) and (iii). Let us consider
the following short exact sequence of vector bundle

0 → O⊕r
S

φV−→ E → L′ :=Coker(φV )→ 0.

Observe that L′ is supported at the points of S where φV is not surjective,
that is, at the point x ∈ S such that rk(φV (x))< r. Therefore, L′ is supported
on Dr−1(φV ) = C. Since Dr−2(φV ) = ∅, for every point x ∈ C, Im(φV (x))
has rank exactly r − 1 and, hence, the stalk L′

x has rank 1. It follows that
the pullback i∗L′, where i : C ↪→ S is the inclusion, and which we will simply
denote by L′ by ease of notation, is a coherent sheaf on C of constant rank
one. Therefore, by Lemma 1.25, L′ is a line bundle on C. Dualizing the
above exact sequence, we obtain the following dual exact sequence of vector
bundles:

0 → (L′)∗ → E∗ → V ∗ ⊗OS → L : = Ext1(L′,OS) → 0

observing that Ext1(E ,OS) = 0, since E and OS are both vector bundles on
S.

It should be noted that L′, being supported exclusively on the proper
subvariety C ⊂ S, is a torsion sheaf on S, hence its dual L′ vanishes, as
estabilished in Lemma 1.24. Finally, we hence obtain the following exact
sequence:

0 → E∗ → V ∗ ⊗OS → L → 0.

Now observe that L ∼= NC/S ⊗ L′∗ (see proof of [GL, Proposition 1.1]),
hence, L is a line bundle on C.

The above short exact sequence induces the long exact sequence in coho-
mology

0 → H0(E∗) → V ∗ ⊗H0(OS)
ψ−→ H0(L) → H1(E∗) → ...
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SinceH0(E∗) = 0 by Lemma 2.7, ψ is necessarily injective. Moreover, because
H0(OS) ∼= C, we identify V ∗ ⊗H0(OS) ∼= V ∗.

Setting

W :=Im(ψ : V ∗ → H0(L)),

then gives W ∼= V ∗ and hence dim(W )= r. At each p ∈ C, the �bre
map ψp : V ∗ → Lp is nonzero, so some element of W =Im(ψ) remains
nonvanishing at p. Hence, W is base-point free on C. Notice that (C,W,L)
meets exactly the conditions laid out in Lemma 3.5-namely C ⊂ S is smooth,
L is a line bundle on C, W ⊆ H0(L) is an r−dimensional base-point-free
linear series, and E∗ = KC,W,L. Since E is Ulrich, we have

H0(E(−1)) = 0, H2(E(−2)) = 0 and χ(E(−1)) = χ(E(−2)) = 0.

An application of Lemma 3.5 at once establishes thatH1(L(KS+H)) = 0,
that the map W ⊗ OS → H0(L(KS + H)) = 0 is injective and that the
vanishing of those two Euler characteristics is equivalent to the two numerical
identities

deg(C) = r
2
(KS +3H) ·H and deg(L) = rχ(OS)+ g− 1−C ·KS − rH2.

Thus the triple (C,W,L) clearly ful�lls conditions (i),(ii) and (iii), completing
the �rst part of the proof.

Conversely, suppose one is given a smooth curve C ⊂ S, a line bundle L
on C, and an r−dimensional, base-point-free subspaceW ⊆ H0(L) satisfying
conditions (i), (ii) and (iii). Set

E := K∗
C,W,L

so that by Remark 3.4(ii) the kernel bundle KC,W,L is locally free of rank r
and hence E is indeed a vector bundle of rank r on S. Moreover, E∗ = KC,W,L.

Then, by Lemma 3.5(i), the vanishing H1(L(KS +H)) = 0 is equivalent
to H0(E(−1)) = 0 and Lemma 3.5(ii) shows that the injectivity of

W ⊗H0(OS(KS + 2H)) → H0(L(KS + 2H))

is exactly the same as H2(E(−2)) = 0.
Finally, Lemma 3.5(iii) and Lemma 3.2 identi�es the two numerical equal-

ities on deg(C) and deg(L) with the Chern-class conditions

c1(E)·H =
r

2
(KS+3H)·H, c2(E) = rχ(OS)+

1

2
c1(S)c1(E)+

1

2
c1(E)2−rH2.

But these four facts are exactly the hypotheses of Casnati's theorem charac-
terizing Ulrich bundles on smooth projective surfaces. Hence, E is an Ulrich
bundle of rank r on S, completing the proof.
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Remark 3.8. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. In the setting
of Theorem 3.7, let E be be an Ulrich bundle on S with associated triple
(C,W,L), or conversely let (C,W,L) be any triple satisfying (i), (ii) and (iii)
with associated Ulrich bundle E . Let g be the genus of C. Then

(i) g ≤ r2

8d
KS ·H(KS ·H + 6d) + 1

2
C ·KS +

9r2d
8

+ 1;

(ii) g ≥ r+1
2
C ·KS + r2(d− χ(OS)) + 1.

Proof. (i) From the Hodge index theorem [Har, Theorem V.1.9], one has

C2H2 ≤ (C ·H)2.

Observe that C2 = 2g−2−C ·KS by adjunction and C ·H = r
2
(KS+3H) ·H

by condition (iii) of Theorem 3.7. Hence

(2g − 2− C ·KS)d ≤ r2

4
(KS ·H + 3d)2,

and rearranging the inequality yields the bound in (i).
(ii) Observe that E is an Ulrich vector bundle, hence, it is semi-stable.

Therefore, the Bogomolov's inequality (Lemma 2.11) applies:

2rc2(E)− (r − 1)c1(E)2 ≥ 0. (3.3)

Recalling that c1(E) = C and that c2(E) = degL = rχ(OS)+
1
2
C2− 1

2
C ·KS−

rd (by Remark 3.4(iii) and (iv) and condition (iii) of Theorem 3.7 together
with the adjunction), (3.3) yields

2r2χ(OS) + C2 − rC ·KS − 2r2d ≥ 0.

Again by adjunction one has C2 = 2g − 2− C ·KS, so that

2r2χ(OS) + 2g − 2− (r + 1)C ·KS − 2r2d ≥ 0,

that is, rearranging, (ii).

Remark 3.9. Once again, within the framework of Theorem 3.7, let E be
be an Ulrich bundle on S with associated triple (C,W,L), or conversely let
(C,W,L) be any triple satisfying (i), (ii) and (iii) with associated Ulrich
bundle E . Then the multiplication map

φ : W ⊗H0(S,OS(KS + 2H)) → H0(L(KS + 2H))

is not merely injective but in fact an isomorphism.
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Proof. Observe that if E is an Ulrich bundle on S with associated triple
(C,W,L), then E∗ ∼= KC,W,L; conversely, given any triple (C,W,L) meeting
conditions (i), (ii) and (iii), then the Ulrich bundle E produced by that data is
such that E∗ ∼= KC,W,L. Note that Serre's duality identi�es χ(E∗(KS+2H)) =
χ(E(−2H)), hence, in either case, χ(E∗(KS + 2H)) = 0 since E is an Ulrich
bundle. Moreover, by Remark 3.4(i), we have the following exact sequence

0 → E∗ → W ⊗OS → L → 0,

which, after tensoring with OS(KS + 2H), yields

0 → E∗(KS + 2H) → W ⊗OS(KS + 2H) → L(KS + 2H) → 0.

Therefore, by additivity of the Euler characteristic in the exact sequence,
one has

rχ(OS(KS + 2H)) = χ(L(KS + 2H)),

where r = dimW . Now, observe that χ(OS(KS+2H)) = h0(OS(KS+2H)),
by Kodaira's vanishing theorem. In addition, from the following short exact
sequence

0 → L(KS +H) → L(KS + 2H) → L(KS + 2H)|HC
→ 0

and sinceH1(L(KS+H)) = 0 by condition (i) of Theorem 3.7 andH1(L(KS+
2H)|HC

) vanishes, as L(KS + 2H)|HC
is supported on �nitely many points,

one has H1(L(KS + 2H)) = 0. Hence, χ(L(KS + 2H)) = h0(L(KS + 2H)).
Therefore, rh0(OS(KS + 2H)) = h0(L(KS + 2H)), which exactly means

that the multiplication map φ is not only injective (by assumption) but also
an isomorphism.

Remark 3.10. Recall that the multiplication map φ appearing in point (ii)
of Theorem 3.7 is de�ned by restriction to C; in other words, φ = ψ◦ρ where

ψ : W ⊗H0(OS(KS + 2H)) → W ⊗H0(OS(KS + 2H)|C)

and ρ is the natural map W ⊗H0(OS(KS + 2H)|C) → H0(L(KS +H)).
Under the hypotheses of Theorem 3.7 (in particular d ≥ 2) and assuming

r ≥ 2, the map ψ is always injective.

Proof. Since kerψ ∼= W ⊗H0
(
OS(KS + 2H − C)

)
, it su�ces to show(

KS + 2H − C
)
·H < 0,

so that OS(KS + 2H − C) has no nonzero global sections.
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Using deg(C) = C ·H = r
2
(KS + 3H) ·H, we compute(

KS + 2H − C
)
·H = KS ·H + 2H2 − deg(C)

= KS ·H + 2d− r

2

(
KS ·H + 3d

)
= −1

2

(
(r − 2)KS ·H + (3r − 4) d

)
= −1

2

(
(r − 2)(KS ·H + 2d) + r d

)
= −1

2

(
(r − 2)

(
2g(H)− 2 + d

)
+ r d

)
,

where we used the adjunction formula KS ·H+H2 = 2g(H)−2. Since r ≥ 2
and d ≥ 2, one checks

(r − 2)
(
2g(H)− 2 + d

)
+ r d ≥ r d > 0,

hence (
KS + 2H − C

)
·H < 0.

Thus, ψ is injective.

Remark 3.11. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|, and assume that
the canonical divisor satis�es KS = mH for some integer m. In the setting
of Theorem 3.7, there exists a rank r Ulrich bundle on S if and only if there
exists a triple (C,W,L) satisfying conditions (i), (ii) and (iii) of Theorem 3.7
with W = H0(L).

A surface satisfying such a condition is called subcanonical. Examples
include smooth surfaces of degree d in P3, for which KS = (d− 4)H, and K3
surfaces, where KS = 0.

Proof. Suppose E is a rank r Ulrich vector bundle on S, and let us consider
the associated triple (C,W,L) given by Theorem 3.7. From the construction
in the proof of Theorem 3.7, we obtain a short exact sequence

0 → E∗ → W ⊗OS → L → 0

and, passing to cohomology, we get the long exact sequence

0 → H0(E∗) → W ⊗H0(OS)
ψ−→ H0(L) → H1(E∗) → . . .

Since E is Ulrich and d ≥ 2, we know, by Lemma 2.7, H0(E∗) = 0 and, by
Lemma 2.5(iii), we also have h1(E∗) = h1(E(KS)) = h1(E(m)) = 0. Hence,
the map ψ is an isomorphism, so that W = H0(L).
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3.3.1 Ulrich bundles of rank 1 and rank 2 on surfaces

We now examine how Theorem 3.7 applies in the low-rank cases r = 1 and
r = 2. We will �rst analyze these low-rank situations in general, and later
return to them in the context of surfaces in P3.

Corollary 3.12 (Ulrich line bundles on surfaces). Let S ⊂ PN be a
smooth projective surface of degree d ≥ 2, embedded by the linear system |H|,
where H ∈ |OS(1)|. Then, there exists an Ulrich line bundle E on S if and
only if there exists a smooth (possibly disconnected) curve C ⊂ S of genus g
such that:

(i) H1(OC(KS +H)) = 0;

(ii) H0(OS(KS + 2H − C)) = 0

(iii) deg(C) = 1
2
(KS + 3H) ·H and

g = C ·KS + 1 + d− χ(OS).

(see also [CFK, Proposition 2.4])

Proof. We �rst observe that if L ∼= OC andW ⊆ H0(OC) is a base-point free
linear series of dimension 1 then the multiplication map supplied by Theorem
3.7 factors as

φ : W ⊗H0(OS(KS+2H))
ψ−→ W ⊗H0(OC(KS+2H))

ρ−→ H0(OC(KS+2H)).

and we have that

φ is injective ⇐⇒ ψ is injective (3.4)

Indeed, ρ acts by multiplication with the generator σ of W ⊆ H0(OC).
On each connected component Ci the generator σ restricts to a constant

ci. The base-point free condition means that σ vanishes nowhere on C: if
even one ci were zero, σ would vanish at every point of that component,
producing a base point and contradicting the hypothesis. Hence ci ̸= 0 for
every i.

The map ρ therefore acts on each Ci simply by multiplying sections by
the nonzero scalar ci; such multiplication is injective � and in fact bijective
� so that ρ is injective on the whole curve C. Because ρ is already injective,
the injectivity of the composite φ is equivalent to the injectivity of ψ.

Now, let E be an Ulrich line bundle on S, and let (C,W,L) be the triple
associated to it by Theorem 3.7. Then,W ⊆ H0(L) is a base-point free linear
series of dimension 1, hence, L ∼= OC . By condition (i) of Theorem 3.7, this
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directy implies that H1(OC(KS + H)) = 0. Moreover, since deg(L) = 0,
condition (iii) follows from condition (iii) of Theorem 3.7. Moreover, the
vanishing in (ii) follows directly from the injectivity of φ guaranteed by point
(ii) of Theorem 3.7.

On the other hand, let C ⊂ S be a smooth curve satisfying conditions
(i)-(iii). Then the triple (C,W,OC), where W = ⟨σ⟩ with 0 ̸= σ ∈ H0(OC),
meets immediately conditions (i) and (iii) of Theorem 3.7, whereas condition
(ii), together with the equivalence (3.4), provides the injectivity of φ, required
in point (ii) of the same theorem, thereby guaranteeing the existence of an
Ulrich line bundle on S.

Corollary 3.13 (Ulrich bundles of rank 2 on surfaces). Let S ⊂ PN be
a smooth projective surface of degree d ≥ 2, embedded by the linear system
|H|, where H ∈ |OS(1)|. Then, there exists an Ulrich vector bundle E of
rank 2 on S if and only if there exists a smooth (possibly disconnected) curve
C ⊂ S of genus g together with a pair (W,L), where L is a line bundle on C
and W ⊆ H0(L) is a 2−dimensional base-point free linear series, such that:

(i) H1(C,L(KS +H)) = 0;

(ii) the multiplication map

φ : W ⊗H0(S,OS(KS + 2H)) → H0(L(KS + 2H))

is injective;

(iii) deg(C) = (KS + 3H) ·H and

deg(L) = 2χ(OS) + g − 1− C ·KS − 2d.

Proof. The corollary is an immediate consequence of Theorem 3.7 in the case
r = 2.

Remark 3.14 ([Bea2, Remark 5.1]). Let S ⊂ PN be a smooth projective
surface. A natural strategy for constructing Ulrich bundles on S is to look
for bundles E such that E(−1) and E(−2) are Serre dual, that is,

E(−2)∗ ⊗ ωS ∼= E(−1). (3.5)

In this way, the vanishing of the cohomology of E(−1) automatically ensures
the vanishing for E(−2) as well. For bundles of rank 2, this Serre duality
condition is satis�ed when the determinant of E equals KS + 3H. In fact,
under this condition we have the isomorphism E∗ = E(−KS − 3H) which
yields the identi�cation (3.5).

This motivates the following de�nition of a special Ulrich vector bundle.
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De�nition 3.15. A rank 2 Ulrich bundle E on a smooth projective variety
X ⊆ PN of dimension n is special if det(E) = KX + (n+ 1)H.

The next result, which appears as Proposition 6.2 in [ESW], provides a
precise description of special Ulrich bundles on a smooth surface. We revisit
both its statement and proof from the point of view of Theorem 3.7.

Lemma 3.16 (Special Ulrich bundles on surfaces, [ESW, Proposi-
tion 6.2]). Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Then, there exists a
special Ulrich bundle E on S if and only if there exists a smooth curve C ⊂ S
of class KS +3H together with a pair (W,L), where L is a line bundle on C
and W ⊆ H0(L) is a 2−dimensional base-point free linear series, such that:

(i) H1(C,L(KS +H)) = 0;

(ii) deg(L) = 1
2
H · (5H + 3KS) + 2χ(OS).

Proof. Observe that if C ⊂ S is a smooth curve of class KS + 3H, then the
condition

deg(L) = 2χ(OS) +
1

2
C · (C −KS)− 2H2 (3.6)

is equivalent to (ii). Indeed, one computes

1

2
C · (C −KS)− 2H2 =

1

2
(KS + 3H) · 3H − 2H2 =

1

2
H · (5H + 3KS).

and putting these together yields (3.6).
Now let E be a special Ulrich vector bundle on S and let (C,W,L) be the

triple associated to E by Corollary 3.13. By that construction, we already
know H1(L(KS + H)) = 0, so condition (i) is immediate. Moreover, by
the proof of Theorem 3.7, we know that det E = c1(E) = C and, since E is
assumed special, we have that C lies in the linear system |KS+3H|. Finally,
point (iii) of Corollary 3.13 together with adjunction gives (3.6), hence, (ii).
Therefore, every special Ulrich bundle produces a curve C ∈ |KS + 3H| and
a pair (W,L) satisfying (i) and (ii).

On the other hand, suppose that there exists a smooth curve C ⊂ S of
class KS+3H together with a pair (W,L), where L is a line bundle on C and
W ⊆ H0(L) is a 2−dimensional base-point free linear series, satisfying (i)
and (ii). Then, hypothesis (i) directly implies condition (i) of Corollary 3.13.
Moreover, since C ∈ |KS + 3H|, identity (3.6) together with the adjunction
formula yields exactly the numerical condition on deg(L) of Corollary 3.13.
Hence, condition (iii) of Corollary 3.13 is satis�ed.
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We now prove that the multiplication map

φ : W ⊗H0(OS(KS + 2H)) → H0(L(KS + 2H))

is injective. Recall that φ is de�ned by restriction to C, that is, φ = ψ ◦ ρ
where

ψ : W ⊗H0(OS(KS + 2H)) → W ⊗H0(OS(KS + 2H)|C) and

ρ : W ⊗H0(OS(KS + 2H)|C) → H0(L(KS +H)).

Observe that, since r := dimW = 2, the map ψ is injective by Remark 3.10,
so it su�ces to show the injectivity of ρ in order to obtain the injectivity of
φ. Let D be a divisor on C such that L = OC(D). Using the base-point
free pencil trick (Lemma 1.27), one has that ker ρ = H0(OC(KS +2H −D)).
Recalling that KC = (KS + C)|C = (2KS + 3H)|C and using Serre's duality,
one has

h0(OC(KS + 2H −D)) = h1(OC(2KS + 3H −KS − 2H +D)) =

= h1(OC(KS +H +D)) = h1(L(KS +H)).

Hence, ker ρ = 0 by (i), i.e., ρ is injective. It follows that the triple (C,W,L)
satis�es conditions (i), (ii) and (iii) of Corollary 3.13. Hence Corollary 3.13
produces a rank 2 Ulrich vector bundle E on S whose determinant is precisely
C. Since C was chosen in |KS + 3H|, one obtains det(E) = KS + 3H. In
particular, E is special.

3.4 When is the curve in Theorem 3.7 con-

nected?

We are interested in understanding whether the curve C from Theorem 3.7
is connected or, equivalently, irreducible. When E is an Ulrich bundle with
c1(E)2 > 0, the answer is straightforward: the curve is connected. The
interesting and more subtle situation arises when c1(E)2 = 0, a case which
has been studied in detail by López and Muñoz in [LM], and whose results
we now recall.

Theorem 3.17 (Lopez-Muñoz, [LM, Theorem 1]). Let S ⊆ PN be a
smooth irreducible complex surface, and let E be a rank r Ulrich vector bundle
on S. Then E is not big if and only if the triple (S,OS(1), E) is one of the
following:

(i) (P2,OP2(1),O⊕r
P2 );
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(ii) (PF ,OPF(1), π
∗(G ⊗ detF)), where F is a rank 2 very ample vector

bundle over a smooth curve B and G is a rank r vector bundle on B
such that Hq(G) = 0 for q ≥ 0.

Proof. See [LM, Proof of Theorem 1 ].

The following corollary does not appear explicitly in [LM], but it is a
straightforward consequence of their results. We present it here in this form,
as it will be useful in what follows.

Corollary 3.18 (Lopez-Muñoz). Let S ⊆ PN be a smooth projective sur-
face, and let H be a very ample line bundle on S. Suppose that E is an Ulrich
bundle with respect to (S,H). Then the following conditions are equivalent:

(i) (S,OS(1), E) is isomorphic either to (P2,OP2(1),O⊕r
P2 ) or to

(PF ,OPF(1), π
∗(G(det(F))) where F is a rank 2 very ample vector bun-

dle over a smooth curve B and G is a rank r vector bundle on B such
that Hq(G) = 0 for q ≥ 0;

(ii) c1(E)2 = 0;

(iii) the bundle E is not big.

Proof. Assume (i) holds. If (S,OS(1), E) ∼= (P2,OP2(1),O⊕r
P2 ), then c1(E)2 =

0. Otherwise, set M := G ⊗ det(F), so that E = π∗(M), and L := det(M).
Since π : S → B is a ruled surface on a curve, we have

c1(E)2 = (det(E))2 = (det(π∗M))2 = (π∗(detM))2 = (π∗L)2 = π∗(L2) = 0

because the self-intersection number of a line bundle on a curve is always
zero. Hence, condition (ii) follows.

Now assume (ii) holds. According to Remark 1.43, if an Ulrich bundle E
satis�es c1(E)2 = 0 then E cannot be big, thus condition (iii) follows.

Finally, if (iii) holds, then Theorem 3.17 asserts that E must be of the
speci�c form described in (i).

Therefore, the three statements are equivalent.

We proceed by presenting the following corollary of Theorem 3.7.

Corollary 3.19. Let S = PF ⊂ PN be a ruled surface of degree d ≥ 2 over a
smooth curve B, with H ∈ |OPF(1)|. Then there exists a rank-r Ulrich vector
bundle E on S with c1(E)2 = 0 if and only if S contains a smooth curve C,
which is the disjoint union of

t = r (g(B)− 1 + d)
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�bers (lines) of S, together with a base point free r-dimensional subspace
W ⊆ H0(OC) such that the multiplication map

W ⊗H0(OS(KS + 2H)) → H0(OC)

is injective.

For clarity, we isolate the following technical observations.

Lemma 3.20. Let S ∼= PF ⊂ PN be a ruled surface of degree d ≥ 2 over a
smooth curve B, with H ∈ |OPF(1)|. Let C be disjoint union of t �bers of S.
Then

(i) rχ(OS) + g(C)− 1− C ·KS − rH2 = t− r(g(B)− 1 + d)

(ii) Let L be a line bundle on C. Then L ∼=
⊕t

i=1OP1(ai) for some integers
ai.

In particular, H1(L(KS + H)) = 0 if and only if ai ≥ 0 for every
i = 1, . . . , t

Proof. (i) By adjunction, one has

rχ(OS) + g(C)− 1− C ·KS − rH2 = rχ(OS) +
1

2
(C2 − C ·KS)− rd.

Since each �ber F satis�es F 2 = 0 and g(F ) = 0, adjunction gives F ·
KS = −2. It follows that C · KS = −2t. In addition, by [Har, V.2.4] and
Riemann�Roch on curves (Theorem 1.1), one has χ(OS) = χ(OB) = 1−g(B).
Observing that C2 = 0, yields

rχ(OS)+g(C)−1−C ·KS−rH2 = r(1−g(B))+ t−rd = t−r(g(B)−1+d)

(ii) The �rst part of the proof is immediate. For the second, observe that
on each �ber F one has (KS +H) · F = KS · F +H · F = −1, so that

L(KS +H)|F ∼= OP1(ai − 1),

and hence

H1(L(KS +H)) =
t⊕
i=1

H1(P1,OP1(ai − 1)).

Since, H1(P1,OP1(l)) = 0 i� l ≥ −1, we obtain

H1(L(KS +H)) = 0 ⇐⇒ ai ≥ 0 ∀i.
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We now return to the proof of Corollary 3.19.

Proof of Corollary 3.19. Suppose that E is an Ulrich bundle with c1(E)2 = 0
and let (C,W,L) denote the triple arising from Theorem 3.7. Then, by
Corollary 3.18, E ∼= π∗G(det(F)) where G is a rank r vector bundle on B with
vanishing cohomology. In the proof of Theorem 3.7, we saw that the curve
C is a divisor in the det(E). Observe that one has the natural identi�cation

det(E) = det(π∗G ′) = π∗ det(G ′)

where we set G ′ = G(det(F)) and use the fact that pullback commutes with
determinant. But det(G ′) is a divisor on the base curve B and therefore
corresponds to an e�ective divisor D = P1 + . . .+ Pt on B. Pulling back, it
follows that

C ∈ |π∗D| = |π∗P1 + . . .+ π∗Pt|.
Since each π∗Pi is exactly the �ber Fi ∼= P1 we conclude that C is linearly
equivalent to the sum of these �bers:

C ∼ F1 + . . .+ Ft.

Finally, because C is smooth by Theorem 3.7, no two �bers Fi can coincide
or meet nontrivially. Hence,

C =
t⊔
i=1

Fi

is the disjoint union of t distinct copies of P1, which, speci�cally, are �bers
of the ruling π.

In particular, observe that

t = deg(c1(G ′)) = deg(c1(G ⊗ det(F))).

By Lemma 1.12 (iv),

deg(c1(G ⊗ det(F))) = deg(c1(G)) + r deg(c1(F)).

Since H i(G) = 0 for all i, Riemann�Roch on the curve B gives

0 = χ(G) = deg(G) + r(1− g(B))

hence deg(G) = r(g(B)− 1), that is, deg(c1(G)) = r(g(B)− 1).
Grothendieck's relation in the Chow ring of PF [Har, Appendix A.3]

states
2∑
j=0

(−1)jπ∗cj(F)H2−j = 0
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and we have c0(F) = 1 and c2(F) = 0, so that the above reduces to
π∗c0(F)H2 − π∗c1(F)H = 0, that is, d = π∗c1(F)H. But π∗c1(F) is the
sum of deg(c1(F)) distinct �bers of π, and each �ber meets H at one point.
Hence, d = deg(c1(F)).

It follows that

t = deg(c1(G)) + r deg(c1(F)) = r(g(B)− 1) + rd = r(g(B)− 1 + d)

as required.
Next, we show that L is trivial. Since condition (iii) of Theorem 3.7

occurs, the preceding computation of t together with Lemma 3.20(i) imme-
diately yield that

deg(L) = t− r(g(B)− 1 + d) = 0.

Now, C =
⊔t
i=1 Fi and H

1(L(KS+H)) = 0 from condition (i) of Theorem
3.7. Hence, according to Lemma 3.20(ii), L ∼=

⊕t
i=1 OP1(ai) with

∑
i ai =

deg(L) = 0 and ai ≥ 0 for each i. Therefore, ai = 0 for every i, hence
L ∼= OC .

Finally, the validity of condition (ii) of Theorem 3.7 ensures that the
multiplication map

W ⊗H0(OS(KS + 2H)) → H0(OC(KS + 2H))

is injective. This concludes the �rst part of the proof, simply by observing
that (KS + 2H).C = 0 and, hence, H0(OC(KS + 2H)) = H0(OC).

Conversely, suppose C is the disjoint union of t = r(g(B)− 1 + d) �bers
of S, L = OC and W ⊆ H0(L) is a base�point�free subspace of dimension
r such that the multiplication map W ⊗ H0(OS(KS + 2H)) → H0(OC) is
injective. By Lemma 3.20(i), one has

rχ(OS) + g(C)− 1− C ·KS − rH2 = 0

and since deg(L) = 0, it follows that

deg(L) = rχ(OS) + g(C)− 1− C ·KS − rH2.

Lemma 3.20(ii) then gives H1(L(KS+H)) = 0. Recalling that KS = −2H+
π∗(KB + detF) and that deg(detF) = d by the �rst part of the proof, we
compute

r
2
(KS + 3H) ·H = r

2
(H2 + deg(KB + detF)) = r

2
(d+ 2g(B)− 2 + d) =

= r(g(B)− 1 + d) = t = deg(C).
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Therefore, the triple (C,W,L) satis�es conditions (i), (ii) and (iii) of
Theorem 3.7, giving rise to an Ulrich bundle E on S such that c1(E)2 = C2 =
0 and thus concluding the proof.

Remark 3.21. We o�er an alternative proof of the �rst assertion of the
proposition by exploiting the fact that the curve C constructed in the theorem
is precisely the (r−1)-st degeneracy locus of the map φV , namely Dr−1(φV ),
where V ⊆ H0(E) is a r-dimensional general subspace. Our goal is to show
that C is a disjoint union of �bers of the projection π : PF → B. To this
end, it su�ces to prove that the rank of φV remains constant along each �ber
of π. This will imply that if x ∈ C, rk(φV (x))= r − 1, so that the entire
�ber π−1(π(x)) is contained in C; conversely, if x /∈ C, then rk(φV (x))= r
and hence the �ber π−1(π(x)) meets C in no points.

To make this precise, �x a point b ∈ B and choose an open neighbourhood
U ∋ b over which the bundle G ′ = G(det(F)) is trivial.

Observe that E|π−1(U)
∼= O⊕r

|π−1(U). Indeed, we have the following commu-
tative diagram

π−1(U) PF

U B

j

π1:=π|π−1(U)
π

i

so that,

E|π−1(U)
∼= j∗E ∼= j∗(π∗G ′) ∼= π∗

1(i
∗G ′) ∼= π∗

1(G ′
|U) ∼= π∗

1(O⊕r
U ) ∼= O⊕r

π−1(U).

Now let F be any �ber of π. The restriction φV becomes a morphism

O⊕r
F → O⊕r

F

which is equivalent to choosing r global sections of O⊕r
F . But F ∼= P1 and

H0(P1) ∼= C so each section may be identi�ed with an r-tuple of constants
in C. Hence, the matrix representing φV has constant entries, independent
of the point x ∈ F . In particular, its rank is the same at every point of the
�ber.

Remark 3.22. In the context of Corollary 3.19, assume deg(S) = d ≥ 2.
One easily checks that

t = 1 ⇐⇒ r = 1, d = 2, g(B) = 0,

that is, S ∼= P1 × P1. On P1 × P1 every Ulrich vector bundle splits as

OP1×P1(1, 0)⊕α ⊕OP1×P1(0, 1)⊕β,

for some integers α, β ≥ 0 [Lemma 2.16]. Since here r = 1, the only possi-
bilities for E are

52



OP1×P1(1, 0) or OP1×P1(0, 1).

Moreover, this special case is covered by the Lopez�Muñoz theorem (Theorem
3.17), by taking

F = OP1(1)⊕2, H = OPF(1), G = OP1(−1).

The following corollary �nally provides a characterization of the connect-
edness of the curve in Theorem 3.7.

Corollary 3.23. Let S ⊂ PN be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Let E be the Ulrich
bundle on S corresponding to the triple (C,W,L), as in Theorem 3.7. Then
C is irreducible if and only if one of the following cases arises:

(i) (S,OS(1), E) ≇ (PF ,OPF(1), π
∗(G(det(F))) where F is a rank 2 very

ample vector bundle over a smooth curve B of genus g, G is a rank r
vector bundle on B such that Hq(G) = 0 for q ≥ 0;

(ii) (S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(1, 0)) or
(S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(0, 1)).

Proof. First suppose that C is irreducible. If C2 > 0, then by Corollary
3.18 we cannot have (S,OS(1), E) ∼= (PF ,OPF(1), π

∗(G(det(F))), so we are
in case (i). On the other hand, if C2 = 0, Corollary 3.18 forces exactly the
situation excluded from (i), and by Corollary 3.19 and previous numerical
remark (Remark 3.22) the only way for an irreducible C to arise is when
r = 1, g(B) = 0, d = 2, in which case S ∼= P1 × P1 and E is one of the two
line bundles OP1×P1(1, 0) or OP1×P1(0, 1) described in Remark 3.22, that is,
(ii).

Conversely, assume that C is reducible. Consider the following short
exact sequence

0 → OS(−C) → OS → OC → 0

and the induced long exact sequence in cohomology

0 → H0(OS(−C)) → H0(OS)
φ−→ H0(OC) → H1(OS(−C)) → . . . .

Since C is smooth and reducible, we have h0(OC) ≥ 2, whereas H0(OS) ∼= C.
It follows that the map φ fails to be surjective, and hence H1(OS(−C)) ̸= 0.
On the other hand, from the proof of Theorem 3.7 we know that det(E) =
c1(E) = C, so that, by Serre's duality, we have

h1(OS(KS + det(E))) = h1(OS(−C)) ̸= 0.
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Moreover, by Lemma 2.5(i) the bundle E is globally generated, whence det(E)
is nef (Corollary 1.37). An application of the Kawamata�Viehweg vanishing
theorem (Lemma 1.42) then yields c1(E)2 = 0. Hence, Corollary 3.18 forces
(S,OS(1), E) = (PF ,OPF(1), π

∗(G(det(F))), so that (i) fails. Condition (ii)
can also be excluded. Indeed, assuming its validity leads to a contradiction:
by Corollary 3.19 and Remark 3.22, C would have to be a line and, hence,
irreducible, contradicting our assumptions.

Therefore, if C is reducible neither (i) nor (ii) can hold, which completes
the proof.
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Chapter 4

Ulrich bundles on surfaces in P3

Building on the correspondence established in Chapter 3, this chapter turns
to the most classical theatre for Ulrich theory: smooth degree-d surfaces in
P3. Our point of departure is Theorem 3.7, which expresses an Ulrich bundle
in terms of a Lazarsfeld-Mukai construction on a curve C ⊂ S together with a
linear series on C. When we work inside P3, these data simplify signi�cantly.
In particular, the connectedness criterion examined at the end of Chapter
3 (Corollary 3.23) collapses to a single exceptional con�guration: except for
the ruled surface P1 × P1 carrying spinorial Ulrich bundles, the associated
curve is automatically connected.

Section 4.1 collects these explicit consequences. We show how Theorem
3.7 yields streamlined existence criteria, we record the lone disconnected case,
and we illustrate the general bounds for the genus g of curve C.

Section 4.2 �rst reviews the de�nition and basic properties of Noether�
Lefschetz loci for degree-d surfaces before proving that the subset of surfaces
supporting an Ulrich line bundle coincides with an entire irreducible compo-
nent of the Noether-Lefschetz locus (Theorem 4.20).

The �nal Section 4.5 turns to the special case of quartic surfaces. Starting
from the general bounds established earlier, we prove a sharper lower estimate
for the genus of the curve C when it arises from a minimal-rank Ulrich bundle.

4.1 Immediate applications of the results from

Chapter 3

Remark 4.1. Let S ⊂ P3 a smooth projective surface of degree d, embedded
by the linear system |H|, where H ∈ |OS(1)|, and let C ⊂ S be a smooth
curve. To make the discussion clearer, we highlight the following computa-
tions:
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(i) KS = (d− 4)H;

(ii) KS ·H = d(d− 4);

(iii) χ(OS) =
(
d−1
3

)
+ 1.

Proof. (i) KS = (KP3 + S)|S = (−4HP3 + dHP3)|S = (d− 4)H;

(ii) it follows direcly from (i);

(iii) Recall that χ(OP3) = 1 and that χ(OP3(−d)) = −
(
d−1
3

)
. Then (iii)

follows directly from the exact sequence

0 → OP3(−d) → OP3 → OS → 0

and additivity of the Euler characteristic for short exact sequences.

Theorem 4.2. Let S ⊂ P3 be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Then, there exists an
Ulrich bundle E of rank r on S if and only if there exists a smooth (possibly
disconnected) curve C ⊂ S of genus g and a line bundle L on C, with
h0(L) = r, such that:

(i) H1(C,L((d− 3)H)) = 0;

(ii) the multiplication map

φ : H0(L)⊗H0(S,OS((d− 2)H)) → H0(L((d− 2)H))

is injective;

(iii) deg(C) = r
2
d(d− 1) and

deg(L) = r
2
(2
(
d−1
3

)
− d(d− 2)(d− 3) + 2) + g − 1.

Proof. The Theorem is a direct consequence of Theorem 3.7, Remark 3.11
and computations of Remark 4.1.

Remark 4.3. The inequalities from Remark 3.8 concerning the genus g of
the curve C of Theorem 4.2 take the following form:

(i) g ≤ r
8
d(d− 4)((r + 2)d+ 2(r − 1)) + 9r2d

8
+ 1

(ii) g ≥ r(r+1)
4

d(d− 1)(d− 4)− r2(
(
d−1
3

)
− d+ 1) + 1.
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Corollary 4.4. Let S ⊂ P3 be a smooth projective surface of degree d ≥ 2,
embedded by the linear system |H|, where H ∈ |OS(1)|. Let E be the Ulrich
bundle on S corresponding to the pair (C,L), as in Theorem 4.2. Then C is
disconnected if and only if

(S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(1, 0)⊕r) or

(S,OS(1), E) ∼= (P1 × P1,OP1×P1(1),OP1×P1(0, 1)⊕r)
(4.1)

with r ≥ 2.
In particular, in this case C is the disjoint union of exactly r lines.

Proof. If (4.1) holds, then both (i) and (ii) of Corollary 3.23 fail. Indeed, (i)
fails choosing

F = OP1(1)⊕2, B = P1, H = OPF(1), G = OP1(−1).

and (ii) fails since r ≥ 2. Hence, C is disconnected and, in particular, by
Lemma 3.19, it is a disjoint union of t = r(g(B)− 1 + d) = r lines.

On the other hand, by Corollary 3.23, if the curve C is disconnected, S
is a ruled surface

(S,OS(1), E) ∼= (PF ,OPF(1), π
∗(G(det(F))),

where the data (F , B,G) are exactly those speci�ed in Corollary 3.23(i),
and, in particular, the triple (S,OS(1), E) is not isomorphic to either of the
spinorial con�gurations

(P1 × P1,OP1×P1(1),OP1×P1(1, 0)), (P1 × P1,OP1×P1(1),OP1×P1(0, 1)).

Comparing the two canonical expressions

KS = (d− 4)H and KS = −2H + π∗(KB + det(F)),

one has
(d− 2)H = deg(KB + det(F))f,

where f is a generic �ber of S. Intersecting �rst with a �ber f then gives

(d− 2)H · f = deg(KB + det(F))f 2

and, recalling that H · f = 1 and f 2 = 0, one has d = 2. Hence,
deg(KB + det(F)) = 0, that is, 2g(B)− 2 + d = 0, which implies g(B) = 0.

Thus, B = P1 and S ∼= P1 × P1.
Since Hq(B,G) = 0 for all q ≥ 0 and every vector bundle on P1 splits

as a direct sum of line bundles, we have that G ∼=
⊕r

i=1OP1(−1). Moreover
deg(detF) = − deg(KB) = 2, hence detF ∼= OP1(2). Tensoring gives

G ⊗ detF ∼= OP1(1)⊕r.

Hence, E coincides with the pull-back π∗(OP1(1)⊕r), that is,
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E ∼= OP1×P1(1, 0)⊕r or E ∼= OP1×P1(0, 1)⊕r.

and, since the single-spinor cases have been excluded, we must have r ≥ 2.
This exactly gives the con�guration in (4.1), completing the proof.

4.2 Noether-Lefschetz loci

De�nition 4.5. The parameter space of curves of degree n and genus g in
P3 is denoted Hn,g and it is called the Hilbert scheme of curves of degree n
and genus g.

One can verify that Hn,g carries the natural structure of a projective
variety (see [Har, Remark 9.8.1 and Ch. IV, �6]).

De�nition 4.6. Let d ≥ 1 be an integer.

(i) We denote by PN = P(
d+3
3 )−1 the projective space whose points corre-

spond to surfaces of degree d in P3.

(ii) Ud ⊆ PN is de�ned as the open subset consisting of points corresponding
to smooth surfaces.

Theorem 4.7 (Noether-Lefschetz). Let S ⊂ P3 be a very general surface
of degree d ≥ 4, embedded by the linear system |H|, where H ∈ |OS(1)|.
Then

Pic(S) = ZH.

Proof. The �rst rigorous proof was given by Lefschetz in [Lef]; a modern,
scheme-theoretic proof was later given by Grothendieck in [GR]. For yet
another presentation, see [GH].

De�nition 4.8 (Noether-Lefschetz locus). We de�ne theNoether-Lefschetz
locus as

NL(d) = {S ∈ Ud : Pic(S) ≇ ZH}.

Remark 4.9. Recall that a property holds for a very general point of a
projective variety X when it is satis�ed outside a countable union of proper
closed subvarieties of X.

In particular, the Noether�Lefschetz Theorem (Theorem 4.7) implies that
the exceptional set of degree-d surfaces whose Picard group is larger than ZH,
namely the locus NL(d), is precisely such a countable union inside Ud, that
is,

NL(d) =
⋃
i∈Z

Wi ⊊ Ud, with Wi ⊂ Ud proper closed subvariety.
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Lemma 4.10. Let W be an irreducible component of NL(d). Then one has
the inequalities

d− 3 ≤ codimUd
W ≤ pg(d) =

(
d− 1

3

)
.

Proof. See [CGGH] or [Gre].

De�nition 4.11. An irreducible component W of NL(d) is called general if
it has the maximal possible codimension in Ud, namely

codimUd
W =

(
d− 1

3

)
.

Lemma 4.12. Let W be a component of Hn,g and consider the incidence
correspondence

{(S,C) : C ⊆ S} ⊆ PN ×W

PN W

π1 π2

Set W (d) := Imπ1 and let C be a general point of W . Assume that

(i) C is smooth and irreducible;

(ii) the ideal sheaf JC is (d− 1)-regular;

(iii) H1(JC(d− 4)) = 0.

Then W (d) is a component of the Noether�Lefschetz locus NL(d) and

codimUd
W (d) = h0(OC(d− 4))− dimW + 4degC.

Proof. See [CL, Lemma 1.2].

4.3 Arithmetically Cohen-Macaulay curves

De�nition 4.13. A smooth projective curve C ⊆ PN is said arithmetically
Cohen-Macaulay (ACM) if it satis�es

H1(IC/PN (j)) = 0 for all j ∈ Z.
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Remark 4.14. Let S ⊂ P3 be a smooth surface of degree d ≥ 4, embedded
by the linear system |H|, where H ∈ |OS(1)|.

Let C ⊂ S be a smooth curve of genus g as in Corollary 3.12, that is,

(i) H1(OC((d− 3)H)) = 0;

(ii) H0(OS((d− 2)H − C)) = 0

(iii) deg(C) = 1
2
d(d− 1) and

g = 1
6
(d− 2)(d− 3)(2d+ 1).

Then:

(i) C is irreducible;

(ii) OS(C) is an Ulrich line bundle on S;

(iii) C is ACM.

Proof. Item (i) follows directly from Corollary 4.4, simply by noting that
d ≥ 4, while (ii) is an immediate consequence of the constructions of Theorem
3.7 and Corollary 3.12.

To prove (iii), �x an integer j ∈ Z and consider the short exact sequence

0 → IS/P3(j) → IC/P3(j) → IC/S(j) → 0. (4.2)

Observe that
H1(IS/P3(j)) = H1(OP3(−d+ j)) = 0 (4.3)

since H1(OP3(ℓ)) = 0 for all integers ℓ and IS/P3
∼= OP3(−d).

Moreover, from Lemma 2.5(iii) and point (ii), we have that

h1(OS(C)(ℓ)) = 0 for all ℓ ∈ Z.

It follows that,

0 = h1(OS(C)(ℓ)) = h1(OS((d− 4− ℓ)H − C)) for all ℓ ∈ Z,

that is, H1(OS(aH − C)) = 0 for all a ∈ Z, thereby implying that

H1(IC/S(j)) = h1(OS(jH − C)) = 0. (4.4)

From the exact sequence (4.2) and the vanishings in (4.3) and (4.4), we
conclude that

H1(IC/P3(j)) = 0 for all j ∈ Z,
that is, C is ACM.
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Lemma 4.15. Let C ⊂ P3 be a smooth curve. Then C admits a minimal
free resolution

0 →
n+1⊕
i=1

OP3(−mi) →
n+2⊕
j=1

OP3(−dj) → IC/P3 → 0 (4.5)

if and only if C is ACM.
Moreover, one has

(i) mi > min{dj for j = 1, . . . , n+ 2};

(ii)
∑n+2

i=1 mi =
∑n+2

j=1 dj;

(iii) deg(C) = 1
2
(
∑n+1

i=1 m
2
i −

∑n+2
j=1 d

2
j);

(iv) g(C) = 1 + 1
6
(
∑n+1

i=1 m
3
i −

∑n+2
j=1 d

3
j)− 2 deg(C).

Proof. If C is ACM, the existence of the minimal free resolution (4.5) is
proved in [Bea1, Theorem A]. On the other hand, observe that

H1(
n+2⊕
j=1

OP3(−dj + k)) = H2(
n+1⊕
i=1

OP3(−mi + k)) = 0

for all integres k.
Therefore, if C admits a minimal free resolution as in (4.5), we have that

H1(IC(k)) = 0 for every k ∈ Z, that is, C is ACM.
In particular, write the �rst map in (4.5) as the matrix [Aij]. Since the

resolution is minimal, each entry satis�es

degAij = mi − dj if mi − dj > 0, Aij = 0 if mi − dj ≤ 0.

Suppose, on the contrary, that some i satis�es mi ≤ min{dj}. Then mi −
dj ≤ 0 for every j and consequently Aij = 0 for all j. Hence, the i-th
row of [Aij] is identically zero. Since the ideal IC/P3 is generated by the
(n + 1) × (n + 1) minors of this matrix, a zero row forces all those minors
to vanish, so IC/P3 = 0, a contradiction. Hence the inequality must hold for
every i, that is, (i).

Finally, for the equality in (ii), see [PS, �3], and for point (iii) and (iv)
see [PS, Proposition 3.1].

Lemma 4.16. Let C ⊂ P3 be a smooth ACM curve and let d ≥ 4 be an
integer. Then

IC is (d− 1)-regular ⇐⇒ H1(OC(d− 3)) = 0.
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Proof. IC is (d− 1)-regular ⇐⇒ H i(IC(d− 1− i)) = 0 for all i > 0 ⇐⇒

H1(IC(d− 2)) = 0, H2(IC(d− 3)) = 0, H3(IC(d− 4)) = 0,

that is, equivalently, since C is assumed to be ACM ,

H2(IC(d− 3)) = 0, H3(IC(d− 4)) = 0.

Now, consider the short exact sequence

0 → IC → OP3 → OC → 0.

Twisting by OP3(d− 3) and passing to cohomology, one has

H2(IC(d− 3)) = 0 ⇐⇒ H1(OC(d− 3)) = 0,

while, observing that H2(OC(d− 4)) = 0 and H3(OP3(d− 4)) = 0, the con-
dition H3(IC(d− 4)) = 0 is automatically satis�ed.

It follows that

H2(IC(d− 3)) = 0, H3(IC(d− 4)) = 0 ⇐⇒ H1(OC(d− 3)) = 0,

that is, the statement.

Lemma 4.17. Let C ⊂ P3 be a smooth irreducible ACM curve such that IC
is (d− 1)-regular, with d ≥ 4. Then

(i) there exists a smooth surface S of degree d containing C;

(ii) for any smooth surface S lying in the linear system |IC(d)|, one has
the isomorphism

H0(IC((d− 2)) ∼= H0(OS((d− 2)H − C))

where H ∈ |OS(1)|.

Proof. (i) Observe that IC(d−1) is 0-regular, hence, it is globally generated.
Then, by Theorem 1.7(ii) the natural map

H0(IC(d− 1))⊗H0(OP3(1)) → H0(IC(d))

is surjective and, since H0(IC(d − 1)) ̸= 0, one has H0(IC(d)) ̸= 0. Hence,
there exists a surface S ∈ |IC(d)|, that is, a degree d surface containing C.
Actually, one can prove the existence of a smooth degree d surface containing
C � see for istance [BGL, Proof of Lemma 4.1].
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(ii) Let S ∈ |IC(d)| be a smooth surface. Then, one has the following
short exact sequence

0 → IS/P3(d− 2) → IC/P3(d− 2) → IC/S(d− 2) → 0 (4.6)

Observe that IS/P3(d− 2) ∼= OP3(−2) and, hence,

H0(IS/P3(d− 2)) = H1(IS/P3(d− 2)) = 0.

Then, from the cohomology of the exact sequence (4.6), one has

H0(IC(d− 2)) ∼= H0(IC/S(d− 2)) ∼= H0(OS((d− 2)H − C)),

that is, (ii).

4.4 Ulrich bundles and Noether Lefschetz Loci

De�nition 4.18. Let d be a positive integer. We de�ne

Ulr,d := {S ∈ Ud : uc(S) = r}

Remark 4.19. We claim that the locus Ulr,d is constructible. For any pro-
jective space Pn with n ≥ 2 and for any integers d ≥ 1 and r ≥ 1, let Vr,d
denote the locus of degree-d hypersurfaces that carry at least one Ulrich bun-
dle of rank r. Write Sk for the homogeneous polynomials of degree k in n+1
variables, let

α : Matr×r(S1) → Srd, [Lij] → det([Lij])

be the determinant map, and let

β : Sd → Srd, F 7−→ F r.

Because both α and β are regular morphisms between a�ne varieties, Cheval-
ley's theorem shows that β−1(Imα) is constructible; this set is exactly Vr,d,
so Vr,d is constructible. The subset in which the minimal Ulrich rank equals
r,

Ulr,d = Vr,d \
(
V1,d ∪ · · · ∪ Vr−1,d

)
,

is therefore constructible as well, because �nite unions and set-theoretic dif-
ferences of constructible sets remain constructible.

In the setting of this paper we work with hypersurfaces in P3; thus Ulr,d
is viewed inside the parameter space of degree-d surfaces in P3, but the same
reasoning carries over unchanged to projective spaces of any dimension.

63



Theorem 4.20. Let d ≥ 4 be an integer. Then, Ul1,d is the general com-
ponent of the Noether-Lefschetz locus NL(d) made of surfaces containing a
smooth ACM curve whose ideal is given by the (d− 1)× (d− 1) minors of a
(d− 1)× d matrix of linear forms.

Proof. Let C ⊂ P3 be a curve as in the statement. It is well known (see [PS,
Theorem 6.2]) that C admits a minimal free resolution

0 → OP3(−d)⊕(d−1) → OP3(1− d)⊕d → IC → 0. (4.7)

Observe that such a curve exists from [PS, Theorem 6.2].
Then, C is ACM by Lemma 4.15.
In addition, IC is (d−1)-regular. Indeed, from the long exact sequence in

cohomology induced by (4.7) twisted by OP3(d− 1− i), we have the segment

. . .→ H i(OP3(−i))⊕d → H i(IC(d− 1− i)) → H i+1(OP3(−1− i))⊕(d−1) → . . .

Hence, it follows that H i(IC(d−1− i)) = 0 for all i > 0, simply by observing
that

H i+1(OP3(−1− i)) = H i(OP3(−i)) = 0 for i = 1, 2, 3 .

In addition, by point (iii) and (iv) of Lemma 4.15 we have that

d′ := deg(C) =
1

2
((d− 1)d2 − d(d− 1)2) =

1

2
d(d− 1);

g := g(C) = 1 +
1

6
d(d− 1)(2d− 7) =

1

6
(d− 2)(d− 3)(2d+ 1).

We de�ne

W := {[C] ∈ Hd′,g : there exists minimal free resolution as in (4.7)}.
(4.8)

Then, W is a component of Hn,g and a general point [C] of W is a curve that
admits the minimal free resolution (4.7) (see [Ell]), hence, it is smooth and
irreducible, ACM and such that IC is (d− 1)-regular. Therefore, by Lemma
4.12, W (d) = Im(π1) is a component of NL(d).

Moreover, by Lemma 4.16, H1(OC(d− 3)) = 0.
Note that H0(OP3(−1)) = H1(OP3(−2)) = 0, hence, H0(IC(d− 2)) = 0.

By Lemma 4.17, it follows that for any smooth surface S ∈ |IC(d)| we have
H0(OS((d− 2)H −C)) = 0, where H ∈ |OS(1)|. Hence, any C ∈ W satis�es
point (i), (ii) and (iii) of Remark 4.14, implying that, by Corollary 3.12, for
any smooth surface S ∈ |IC(d)|, we have that OS(C) is an Ulrich line bundle
on S.
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On the other hand, let S ⊂ P3 a smooth surface of degree d. Suppose
that there exists a smooth irreducible curve C ⊂ S satisfying condition (i),
(ii) and (iii) of Remark 4.14. Then, by Remark 4.14, C is ACM and, by
Lemma 4.16, IC is (d− 1)-regular.

Moreover, C admits a minimal free resolution

0 →
n+1⊕
i=1

OP3(−mi) →
n+2⊕
j=1

OP3(−dj) → IC/P3 → 0.

by Lemma 4.15.
Observe that H0(IC(d− 2)) = 0 by Lemma 4.17 together with condition

(ii) of Remark 4.14. Hence, dj = d− 1 for all j = 1, . . . , n+ 2.
Moreover, n + 2 = h0(IC(d − 1)) which we now prove to be equal to d.

From the short exact sequence

0 → IS/P3(d− 1) → IC/P3(d− 1) → IC/S(d− 1) → 0 (4.9)

we have that h0(IC/P3(d− 1)) = h0(IC/S(d− 1)) = h0(OS((d− 1)H −C)) =
h2(OS(C)(−3)). Note that, by Remark 4.14, OS(C) is an Ulrich line bundle
on S. Hence, h0(OS(C)(−3)) ⊆ h0(OS(C)(−2)) = 0 and Lemma 2.5(iii)
implies that h1(OS(C)(−3)) = 0. In particular,

h0(IC/P3(d− 1)) = h2(OS(C)(−3)) = χ(OS(C)(−3)) = d,

where the last equality follows Lemma 2.5(iv).
Therefore, by point (i) of Lemma 4.15 we have mi ≥ d for all i, hence,

point (ii) of the same lemma gives

d(d− 1) ≤
n+1∑
i=1

mi = d(d− 1),

which implies that mi = d for all i.
Hence, C admits a minimal free resolution as is (4.7).
This exactly means that

S ∈ W (d) ⇐⇒ S admits an Ulrich line bundle,

that is, Ul1,d = W (d), thereby implying that Ul1,d is a component of NL(d).
We now prove that this component is general.
Observe that the curves constructed inW , satisfy the vanishing condition

H1(NC) = 0, where NC denotes the normal bundle of C ⊂ P3. The vanishing
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H1(NC) = 0 can be checked explicitly using a version of Kleppe's Lemma
(see [BGL, Lemma 4.2]), from which one has in particular

H1(NC) ∼= Ext2OP3
(IC , IC).

Applying the functor Hom(−, IC) to the exact sequence (4.7), we obtain the
exact segment

. . .→ Ext1(OP3(−d), IC)⊕(d−1) → Ext2(IC , IC) → Ext2(OP3(1−d), IC)⊕d → . . .

Observe that

Ext1(OP3(−d), IC) = Ext1(OP3 , IC(d)) = H1(IC(d)) = 0 and

Ext2(OP3(1− d), IC) = Ext2(OP3 , IC(d− 1)) = H2(IC(d− 1)) = 0

where the vanishing H1(IC(d)) = 0 is given by the ACM property and
H2(IC(d− 1)) = 0 is a consequence of Theorem 1.7.

Hence, Ext2(IC , IC) = 0, that is, H1(NC) = 0.
This vanishing immediately yields the identity χ(NC) = h0(NC). Now,

according to [HE, Chapter 2.a] or [HM, �1.E] one has the inequality

χ(NC) ≤ dimW ≤ h0(NC).

Since both bounds coincide in this case, it follows that

dimW = χ(NC) = 4 deg(C).

For an explicit computation of χ(NC), see Remark 4.21.
By applying Lemma 4.12, one concludes that the associated component

W (d) ⊂ NL(d) in the Noether�Lefschetz locus is general, in the sense that it
has maximal possible codimension

codimW (d) = pg(d) =

(
d− 1

3

)
.

This follows from the identity

h0(OC(d− 4)) = h0(OP3(d− 4)) = pg(d).

Moreover, this codimension is indeed the maximum allowed for a component
of NL(d), by Lemma 4.10.
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Remark 4.21 (Computation of χ(NC)). We now justify the identity
χ(NC) = 4 deg(C). Start with the exact tangent sequence

0 → TC → TP3|C → NC → 0,

so that
χ(NC) = χ(TP3|C )− χ(TC).

Restricting to C the standard short exact sequence in [Har, Example II.8.20.1]
we obtain

0 → OC → OC(1)
⊕4 → TP3|C → 0,

thereby implying

χ(TP3|C ) = 4χ(OC(1))−χ(OC) = 4(degC+1−g)−(1−g) = 4 degC+3−3g.

Recall that TC ≃ ω−1
C , then Riemann�Roch gives

χ(TC) = deg
(
ω−1
C

)
+ 1− g = −3g + 3.

Combining these two formulas gives χ(NC) = 4 degC, as claimed.

The results obtained throughout this chapter naturally converge to the
following statement � essentially the content of [Bea1, Proposition 6.2] �
which we include here for completeness.

Proposition 4.22 ([Bea1, Proposition 6.2]). Let S ⊂ P3 be a smooth
surface of degree d and de�ned by an equation F = 0, and let C ⊂ S be an
ACM curve such that

degC =
1

2
d(d− 1), g(C) =

1

6
(d− 2)(d− 3)(2d+ 1).

Then the line bundle OS(C) admits a linear determinantal resolution

0 → OP3(−1)⊕d
M−→ O⊕d

P3 → OS(C) → 0

with detM = F .
Conversely, let M ∈ Md(S

3) be a linear matrix with detM = F . Then
the cokernel of

M : OP3(−1)⊕d → O⊕d
P3

is isomorphic to OS(C), where C ⊂ S is a smooth ACM curve with degree
and genus speci�ed above.

67



Proof. We �rst observe that the assumptions on the curve C in the statement
are equivalent to conditions (i), (ii) and (iii) of Remark 4.14. Indeed, the
degree and genus conditions assumed in the proposition match exactly those
required in Remark 4.14(iii).

To verify condition (i) and (ii) of Remark 4.14 consider the exact sequence

0 → IC → OP3 → OC → 0. (4.10)

Twisting (4.10) by OP3(d−2), taking global sections and using the vanishing
of
H1(IC(d− 2)), given by the ACM property, we obtain

h0(IC(d− 2)) = h0(OP3(d− 2))− h0(OC(d− 2)) =

=

(
d+ 1

3

)
− ((d− 2) degC − g(C) + 1+ h1(OC(d− 2))) = −h1(OC(d− 2)).

Hence, since h0(IC(d−2)) and h1(OC(d−2)) are both non-negative integers,
we have h0(IC(d − 2)) = 0, which is precisely, by Lemma 4.17(ii), Remark
4.14(ii).

Repeating the same procedure twisting (4.10) by OP3(d− 3) we obtain

h0(IC(d− 3)) = h0(OP3(d− 3))− h0(OC(d− 3)) =

=

(
d

3

)
− ((d− 3) degC − g(C) + 1 + h1(OC(d− 3))) = −h1(OC(d− 3)),

which implies h1(OC(d− 3)) = 0, that is, Remark 4.14(i).
Conversely, if a curve ful�ls conditions (i), (ii) and (iii) of Remark 4.14,

then Remark 4.14 itself ensures that C is ACM.
Having established this equivalence, the statement becomes an immediate

consequence of Proposition 2.2 together with Remark 4.14.

4.5 Re�ning the lower genus bound on quartic

surfaces

Remark 4.23. Let S ⊂ P3 be a smooth quartic surface. Then, from Remark
4.3, we have the following bounds for the genus g of the curve C of Theorem
4.2:

2r2 + 1 ≤ g ≤ 9

2
r2 + 1.

In what follows, we re�ne the lower bound for g when the curve C arises
from a minimal rank Ulrich bundle on S.
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Remark 4.24. Let S ⊂ PN be a smooth surface of degree d and �x an Ulrich
bundle E of minimal rank r on S. From Lemma 2.14, the existence of a non-
scalar endomorphism of E � equivalently h0(S, E ⊗ E∗) ≥ 2 � would force
S /∈ Ulr,d. Computing h0(S, E ⊗E∗) directly is, however, seldom practical. It
is easier to work with the Euler characteristic

χ(E ⊗ E∗) = h0(E ⊗ E∗)− h1(E ⊗ E∗) + h2(E ⊗ E∗).

Assume moreover that S is a K3 surface.
By Serre duality h2(S, E ⊗ E∗) = h0(S, E ⊗ E∗); hence

2h0(S, E ⊗ E∗) = χ(E ⊗ E∗) + h1(S, E ⊗ E∗) ≥ χ(E ⊗ E∗),

so that,

h0(S, E ⊗ E∗) ≥ χ(E ⊗ E∗)

2
.

In particular, if one can prove that χ(E ⊗E∗) ≥ 4, then h0 ≥ 2, contradicting
the simplicity established in Lemma 2.14 for any minimal�rank Ulrich bundle.
This observation justi�es the computations in the following remark.

Remark 4.25. Let S ⊂ PN be a smooth projective surface and let E be a
rank r vector bundle on S. Then

(i) c1(E ⊗ E∗) = 0;

(ii) c2(E ⊗ E∗) = 2rc2(E)− (r − 1)c1(E)2;

(iii) χ(E ⊗ E∗) = r2χ(OS)− 2rc2(E) + (r − 1)c1(E)2.

Proof. (i) It follows directly from Lemma 1.12(v).
(ii) Observe that, from [Har, Appendix A, �4], we have

[ch(E ⊗ E∗)]2 =
1

2
(c1(E ⊗ E∗)2 − 2c2(E ⊗ E∗)),

that is, by point (i), [ch(E ⊗ E∗)]2 = −c2(E ⊗ E∗).
On the other hand, [EH, �5.5.2] gives

[ch(E ⊗ E∗)]2 = [ch(E)ch(E∗)]2 =

=
[(
r+ c1(E) +

1

2
(c1(E)2 − 2c2(E))

)
·
(
r+ c1(E∗) +

1

2
(c1(E∗)2 − 2c2(E∗))

)]
2
=

=
[(
r + c1(E) +

1

2
(c1(E)2 − 2c2(E))

)
·
(
r − c1(E) +

1

2
(c1(E)2 − 2c2(E))

)]
2
=

69



= −2rc2(E) + (r − 1)c1(E)2,

which directly implies (ii).
(iii) It is a direct consequence of the Riemann-Roch theorem (Theorem

1.3), together with (i) and (ii).

We are now ready to present the sharper lower bound announced in Re-
mark 4.23.

Lemma 4.26. Let S ⊂ P3 be a smooth quartic surface of degree d and let
E be a minimal Ulrich bundle of rank r on S. Denote by (C,L) the pair
associated with E via Theorem 4.2. Then, the genus g of C satis�es

g ≥ 3r2.

Proof. Observe that, by Remark 4.25(iii), we have

χ(E ⊗ E∗) = 2r2 − 2rc2(E) + (r − 1)c1(E)2,

For the Ulrich bundle E one has c1(E) = C with C2 = 2g − 2, and c2(E) =
g − 1− 2r. Substituting these expressions gives

χ(E ⊗ E∗) = 6r2 − 2g + 2.

Assume, for contradiction, that g ≤ 3r2 − 1. Then

χ(E ⊗ E∗) ≥ 4

which, by Remark 4.24, contradict the simplicity of the minimal-rank Ulrich
bundle E . Consequently, we must have g ≥ 3r2.

Remark 4.27. Note that for r = 1 the inequality coincides with the previous
bound, whereas for r ≥ 2 it is already strictly stronger.
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