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Introduction

As the history of algebraic geometry shows, a mainstream problem has al-
ways been the classification of algebraic varieties. One of the most common
ways to classify varieties is through studying algebraic objects associated to
each variety.
Maybe the simplest example of this kind is given by the coordinate ring of a
projective variety X. In this ring are contained basic geometrical properties
of X such as its dimension and its degree. In particular, denoting by H a
hyperplane section on X, we see that the coordinate ring of X is strictly
related to

R(X,H) =
⊕
m≥0

H0(X,mH).

and in fact they have the same Hilbert polynomial.
Looking for other geometrical properties of X, this suggests us the idea
of considering an arbitrary divisor D on X and defining the graded ring
associated to D as

R(X,D) =
⊕
m≥0

H0(X,mD).

One of the purposes of this thesis is to study the relation between the ge-
ometrical characteristics of the couple (X,D) and the algebraic properties
of the ring R(X,D). For example, denoting by KX the canonical divisor,
we have that an n-dimensional variety X is of general type if and only if,
asymptotically, dim R(X,KX)m = O(mn).
The most significant property that R(X,D) might have is the finite gener-
ation as a C-algebra and the divisor D itself is said to be finitely generated
if its graded ring R(X,D) is such.
In particular the finite generation ofR(X,KX) has been considered for a long
time, especially because it holds a particular role in the theory of minimal
models. Given an algebraic variety X the idea is that a minimal model of X
is the “simplest” variety birational to X. The existence of minimal models
for surfaces was shown by the Italian school (Castelnuovo, Enriques, etc.)
in the 30’s. Passing to dimension n things get more complicated. However
an important very recent theorem of Birkar, Cascini, Hacon and McKernan
proves the existence of minimal models for smooth n-dimensional varieties
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of general type and the finite generation of the graded ring R(X,KX) (see
[BCHM07]). Moreover the importance of considering arbitrary divisors and
not just the canonical one is given by the tight link between the finite gen-
eration of R(X,KX) and the properties of rings of kind R(X,KX + ∆), for
suitable divisors ∆.
Another remarkable historical reason that led to consider the rings R(X,D)
is the connection between their finite generation and Hilbert’s fourteenth
problem. We can formulate Hilbert’s 14th problem in these terms: given a
field k, a polynomial algebra k[x1, . . . , xn] and a subfield of the rational func-
tions in n-variables over k, K ⊆ k(x1, . . . , xn), is the ring K ∩ k[x1, . . . , xn]
finitely generated as a k-algebra?
The answer is negative and, in a famous counter-example given in 1959,
Nagata considers the surface X obtained by blowing up P2 in r general
points p1, . . . , pr and finds a suitable divisor D on X such that R(X,D) is
not finitely generated and it is of kind K ∩ k[x1, . . . , xn].

We now come to the description of the work of this thesis.
We study how the notion of finite generation can be related to different
geometrical properties of the couple (X,D). Our approach will often be
asymptotic, in the sense that we study a divisor looking at all its sufficiently
large multiples and the graded ring R(X,D) helps us in this sense, since, by
definition, it depends on all the multiples of D.
A first step consists in analyzing the geometrical behaviour of (X,D) and
observing how it reflects in the graded ring associated to D. With this goal
in mind we first study divisors.
While in the first chapter we essentially follow [Har77] (except for the defini-
tion of intersection numbers, for whom we refer to [Kle66]), from the second
one our point of view is that of [Laz04]. The reader will find in these books
lacking proofs of some results presented and more explanations.
We begin with the classic theory of ample divisors before passing to the more
recent one of nefness and we generalize the concept of divisor introducing
Q and R-divisors. Then we pass to the description of some important prop-
erties and notions, such as bigness, mainly developed in the last 30 years,
closely linked to base loci and projective morphisms defined by divisors.
We begin by defining the stable base locus:

Definition 0.1. Let X be a variety and let D be a Cartier divisor on X. [Def. 3.5]
The stable base locus of D is the algebraic set

B(D) =
⋂
m≥1

Bs(|mD|)

where we disregard the structures of schemes and consider the intersection
just like an intersection of closed subsets.

Then we pass to the definition of semiampleness:
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Definition 0.2. Let X be a variety. A Cartier divisor D on X is semiample [Def. 3.9]
if mD is globally generated for some m ∈ N, or, equivalently, if B(D) = ∅.

Finally we introduce the notion of bigness:

Definition 0.3. Let X be a variety. A Cartier divisor D on X is big if [Def. 3.19]
there exists an ample Q-divisor A, together with an effective Q-divisor F ,
such that D ∼Q A+ F .

Note that if D is semiample then it is finitely generated and it is easy to
check that every divisor on a curve is finitely generated. On the contrary,
when passing to surfaces, a famous example of Zariski provides a big and
nef divisor D whose graded ring is not finitely generated. Already in this
example one can observe how the fundamental reason not allowing finite
generation is that the multiplicity of a curve in the base locus of |mD| is
bounded. This drives us to the following definition:

Definition 0.4. Let X be a variety and let D be a Cartier divisor on X. [Def. 4.12]
Given a linear series |V | ⊆ |D| and a point x ∈ X we define the multiplicity
of |V | at x, denoted by multx|V |, as the multiplicity at x of a general divisor
in |V |.
Equivalently

multx|V | = min
D′∈|V |

{multxD′}.

Using this definition we prove the following original characterization of semi-
ampleness in terms of finite generation and boundedness of the multiplicity
at every point:

Theorem 0.5. Let X be a normal variety and let D be a Cartier divisor [Theorem
4.16]on X.

Then D is semiample if and only if D satisfies the following three conditions:

1. D is finitely generated.

2. k(X,D) ≥ 0.

3. There exists a constant C > 0 such that for all m > 0, with |mD| 6= ∅,
and for all x ∈ X, we have

multx|mD| ≤ C.

Then we note that the multiplicity of a linear series is nothing but a particu-
lar discrete valuation on the function field K(X). Hence the idea developed
in the fifth chapter is to generalize the previous result in terms of valuations,
along the lines of recent works of Ein, Lazarsfeld, Mustată, Nakamaye and
Popa.
In these matters a relevant role is played by the restricted base locus:
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Definition 0.6. Let X be a normal variety and let D be an R-divisor on [Def. 5.1]
X. The restricted base locus of D is

B−(D) =
⋃
A

B(D +A),

where the union is taken over all ample R-divisors A such that D + A is a
Q-divisor.

Then, following [ELMNP06], we adopt the language of valuations to gener-
alize the concept of multiplicity at a point of a linear series:

Definition 0.7. Let X be a variety with function field K = K(X), let v be [Def. 5.15
& 5.17]a discrete valuation on K/C with valuation ring Rv and center ξ ∈ X.

If D is a Cartier divisor on X, with |D| 6= ∅, we put

v(|D|) = v((b(|D|)ξ)Rv),

where b(|D|) is the base ideal of D and ((b(|D|)ξ)Rv is the ideal generated
by the stalk (b(|D|)ξ in the ring Rv.

In analogy with Theorem 0.5 we define a v-bounded divisor, that is a divisor
D such that the center of the valuation v is asymptotically contained in the
base locus of mD with bounded multiplicity. In other words:

Definition 0.8. Let X be a normal variety and let v be a discrete valuation [Def. 5.35]
on K(X)/C. If D is a Cartier divisor on X with k(X,D) ≥ 0 we say that
D is v-bounded if there exists a constant C > 0 such that

v(|pD|) ≤ C

for every p > 0 such that |pD| 6= ∅.

Moreover we generalize the concept of semiample divisor with the weaker
one of v-semiample, that is a divisor not containing the center of v in its
stable base locus:

Definition 0.9. Let X be a normal variety with function field K = K(X), [Def. 5.39]
let v be a discrete valuation on K/C, having center Zv ⊆ X, and let D be
a Cartier divisor on X with k(X,D) ≥ 0.
Then D is v-semiample if there exists a positive integer l0 such that |l0D| 6= ∅
and v(|l0D|) = 0, or equivalently if Zv 6⊆ B(D).

These last two notions are not equivalent but they are linked by the following
result:
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Theorem 0.10. Let X be a normal variety with function field K = K(X), [Pr. 5.41
& 5.42]let v be a discrete valuation on K/C and let D be a Cartier divisor on X

with k(X,D) ≥ 0.

• If D is v-semiample, then D is v-bounded.

• If D is finitely generated and v-bounded, then D is v-semiample.

Actually for the second statement it is not necessary to take D v-bounded,
but it suffices the hypothesis of “v-sublinearity”, that is v(|mD|) can go to
infinity but in a “sublinear” way with respect to m (see Proposition 5.42).
As a corollary, considering all the discrete valuations on K(X)/C together
and noting that D is semiample if and only if D is v-semiample for every
valuation v, we can generalize Theorem 0.5 with a different characterization
of semiampleness involving v-boundedness:

Theorem 0.11. Let X be a normal variety with function field K = K(X) [Theorem
5.46]and let D be a Cartier divisor on X with k(X,D) ≥ 0.

Then the following statements are equivalent:

1. D is semiample

2. D is finitely generated and there exists a constant C > 0 such that

multx|mD| ≤ C

for every m > 0 such that |mD| 6= ∅, for every x ∈ X.

3. D is finitely generated and, for every discrete valuation v on K/C, D
is v-bounded.

On the other hand we extend the notion of asymptotic order of vanishing of
a divisor along a valuation v, defined in [ELMNP06] only in the big case, to
non-big divisors:

Definition 0.12. Let X be a normal variety with function field K = K(X), [Def. 5.20]
let D be a Cartier divisor on X with k(X,D) ≥ 0 and let v be a discrete
valuation on K/C.
We define the exponent of D as

e(D) = g.c.d.{m ∈ N : |mD| 6= ∅}.

If e = e(D) is the exponent of D, the asymptotic order of vanishing of D
along v is

v(||D||) = lim
m→∞

v(|meD|)
me

.
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We can simply extend this definition to Q-divisors. In particular we fix as
the right work environment the set of Q-linearly effective Q-divisors:

Definition 0.13. Let X be a variety and let D be a Q-divisor on X. We [Def. 5.23]
define the Q-linear series |D|Q as the set of all the effective Q-divisors that
are Q-linearly equivalent to D.
D is Q-linearly-effective if |D|Q 6= ∅.

Finally, we present the main result in [ELMNP06, §2] about the asymptotic
order of vanishing of big Q-divisors.

Theorem 0.14. Let X be a smooth variety with function field K = K(X) [Theorem
5.36]and let v be a discrete valuation on K/C, having center Zv on X.

If D is a big Q-divisor on X, then the following conditions are equivalent:

1. D is v-bounded;

2. v(||D||) = 0;

3. Zv 6⊆ B−(D).

One of the aims of this thesis is, using Definition 0.12, to study which
implications of the above theorem are still true in the non-big case. In
particular, if D is a Q-linearly effective Q-divisor, we first observe that

(i) D is v-bounded ⇒ v(||D||) = 0;

(ii) v(||D||) = 0 ⇒ Zv 6⊆ B−(D)

are still true, using the same argument of [ELMNP06].
On the other hand the reverse implication of (ii) does not hold and we
provide a counter-example in Section 5.6.
Finally we outline the questions that, at the moment, remain unsolved:

Open questions:

• We do not know whether D is v-bounded whenever the asymptotic
order of vanishing of D along v is zero. However it is true if D is a
divisor on a curve or a normal surface (see Remark 5.44).

• It remains an open problem how we can weaken the hypothesis of the
second statement of Theorem 0.10 in order to have the viceversa.

Remark 0.15. Besides Theorem 0.5, the original results in this thesis are
Theorem 0.10 and Theorem 0.11 (which are inspired by Theorem 0.5) and
the example in Section 5.6.
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Notation and conventions

• We always work throughout over the field of complex numbers C.

• When speaking about a scheme we mean a projective scheme over C,
that is a scheme with a closed immersion i : X ↪→ PnC.

• By variety we mean an irreducible, reduced (projective) scheme.

• Unless clearly specified, a point of a scheme or a variety is a closed
point.

• A curve is a variety of dimension one, a surface is a variety of dimen-
sion two.

• With the word ring we mean a commutative ring with the identity
element.

• When speaking about a divisor, unless clearly specified, we always
mean a Cartier divisor (see Definition 1.1).

• We denote by “R+” (respectively “Q+”,“N”) the set

{x ∈ R (respectively Q, Z) : x > 0}

• Given a function f : N → R and an integer k ≥ 0, we say that
f(m) = O(mk) if

lim sup
m→∞

|f(m)|
mk

<∞
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Chapter 1

Divisors, line bundles and
linear series

1.1 Divisors and line bundles

Cartier divisors

Definition 1.1. Let X be a scheme. For every open set U ⊆ X, let S(U) =
{s ∈ Γ(U,OX) : s is not a zero-divisor in OX,p , ∀x ∈ U} ⊆ Γ(U,OX). Let
KX be the sheaf of total quotient rings of OX , that is the sheaf associated
to the presheaf S(U)−1Γ(U,OX).
Let K∗X be the subsheaf of invertible elements in KX and let O∗X be the
subsheaf of invertible elements in OX .
A Cartier divisor on X is a global section of K∗X/O∗X .

We observe that a Cartier divisor can be described by giving a collection
{(Ui, fi)}i∈I , where {Ui} is an open covering of X and fi ∈ Γ(Ui,K∗X) for
all i ∈ I, such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗X) ∀i, j ∈ I.
In order to describe the operation of the group of Cartier divisors we find
additive notation more comfortable. For this reason, from now on, we use
the following convention:
If D1 and D2 are such that D1 ↔ {(Ui, fi)}i∈I , D2 ↔ {(Vj , gj)}j∈J
We put

D1 +D2 ←→ {(Ui ∩ Vj , figj)}

D1 −D2 ←→ {(Ui ∩ Vj ,
fi
gj

)}.

The group of Cartier divisors is denoted by Div(X).

Definition 1.2. A Cartier divisor is principal if it is in the image of the
natural map Γ(X,K∗X)→ Γ(X,K∗X/O∗X).
We say that two Cartier divisors D,D′ are linearly equivalent (written D ∼
D′) if their difference D −D′ is a principal divisor.
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∼ is an equivalence relation, whence we can consider the quotient group
Div(X)/ ∼.

Weil divisors

Definition 1.3. Let X be a scheme of dimension n. A k-cycle on X is a
finite Z-linear combination of subvarieties of dimension k.
Zk(X) is the group of all k-cycles.
A Weil divisor on X is an (n− 1)-cycle.
We will denote the group of Weil divisors by WDiv(X).

Definition 1.4. Let X be a variety of dimension n, regular in codimension
one and let f ∈ K, the function field of X.
We define the Weil divisor of f , denoted by (f), by

(f) =
∑

ordY (f)Y

where the sum is taken on all irreducible subvarieties of codimension one.

It is a well defined divisor because the sum is finite for every f ∈ K. Divisors
of functions are called principal.
The subset of all principal Weil divisors is a subgroup of WDiv(X) and, as
for Cartier case, we can consider the quotient group WDiv(X)/ ∼.
Now we observe that there is a cycle map

Div(X) −→WDiv(X)

D 7−→
∑

ordv(D)V

where the sum is taken on all irreducible codimension one subvarieties and
ordV (D)is the order of D along V .
In particular:

Theorem 1.5. For any normal variety X the cycle map above is injective.
It is an isomorphism if X is non-singular.

Proof. See [Har77, II, 6.11].

Moreover, when X is regular in codimension one, since the cycle map sends
principal Cartier divisors to principal Weil divisors, we can use it to define
a cycle map of isomorphism classes that satisfies again the theorem.
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Line bundles

For any divisor D on a scheme X we can consider a line bundle (that is a
locally free OX -module of rank 1) associated to it in the following sense:

Definition 1.6. Let D be a (Cartier) divisor represented by {(Ui, fi)}i∈I .
The line bundle associated to D, denoted by OX(D), is the subsheaf of KX
generated by f−1

i on any Ui.

Since fi/fj is an invertible element, fi and fj determine the same module
on Ui ∩ Uj , then OX(D) is well-defined.
Moreover linearly equivalent divisors give rise to isomorphic line bundles.

Theorem 1.7. For any (projective) scheme X, if we denote by Pic(X) the
group of isomorphism classes of line bundles, the correspondence

Div(X) −→ Pic(X)

D 7−→ OX(D)

is surjective and it determines an isomorphism Div(X)
∼ ' Pic(X).

Proof. See [Har77, II, 6.13].

1.2 Linear series

Definition 1.8. Let X be a scheme, let L be a line bundle on X and let
V ⊆ H0(X,L) be a vector subspace.
We denote by |V | = P(V ) the projective space of all one-dimensional sub-
spaces of V (if L = OX(D) we use to write |L| or simply |D| in place of
|H0(X,L)|).
With this convention |V | is called a linear series, |D| is a complete linear
series.

Now let X be a nonsingular variety.
In this case there is a natural correspondence between global sections of
L = OX(D) and effective divisors linearly equivalent to D.
In fact, for each global section s in H0(X,OX(D)) we can define the effective
divisor (s)0 as follows:
For every open set U ⊆ X such that OX(D) is trivial on U , let φ(s) be the
image of s under the isomorphism φ : OX(D)|U → OU .
(s)0 is the effective divisor determined by the collection {(U, φ(s))}, as U
ranges over a covering of X.
Through the map s 7→ (s)0 we can identify |D| with the set of the effective
divisors linearly equivalent to D, equipping, in a such a way, this set with a
structure of projective space.
Using the same map, for every V ⊆ H0(X,OX(D)), |V | will be identified
with a subspace of this set.
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Base points

Let X be a scheme, let L be a line bundle on X and let V ⊆ H0(X,L) be
a subspace.
Then V determines a morphism

V ⊗C OX −→ L

locally defined by
V ⊗OX,p −→ Lp
s⊗ fp 7−→ sp · fp.

Tensoring by the inverse line bundle L∗ we find a morphism

eV : V ⊗ L∗ −→ OX

Definition 1.9. The base ideal of |V |, denoted by b(|V |), is the ideal sub-
sheaf of OX image of the map eV .
The base locus of |V |, written Bs(|V |), is the closed subset of X determined
by the ideal sheaf b(|V |).
Each point p ∈ Bs(|V |) is called a base point of |V |.

Equivalently p is a base point of |V | if and only if all sections of V vanish
in p.
Note that we put Bs(|V |) = X if and only if |V | = ∅.

Proposition 1.10. Let X be a scheme. If D,E ∈ Div(X) are such that
|D| 6= ∅, |E| 6= ∅, then there is an inclusion of ideal sheaves

b(|D|) · b(|E|) ⊆ b(|D + E|).

Moreover equality holds if the natural map

µD,E : H0(X,OX(D))⊗H0(X,OX(E)) −→ H0(X,OX(D + E))

determined by multiplication of sections is surjective.

Proof. See [Laz04, I, 1.1.9]

Definition 1.11. A linear series |V | is free, or base-point free, if its base
locus is empty. A divisor D (or its line bundle OX(D)) is free, or base-point
free, if the corresponding linear series |D| is such.

We can observe that a divisor is free if and only if its line bundle is globally
generated.
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Definition 1.12. Let X be a variety and D ∈ Div(X). Then, looking at D
as a Weil divisor on X, we define Supp(D) as the union of all subvarieties
of codimension one Yi such that ordYi(D) > 0.

Remark 1.13. A point p in a variety X is a base point of a linear series
|V | if and only if p ∈ Supp(D) for all D ∈ |V |.

Rational map defined by a linear series

Assume now V ⊆ H0(X,L) such that dim(V ) > 0 and B = Bs(|V |).
Then |V | determines a morphism

φ = φ|V | : X \B → P(V ) = Pr.

If we choose a basis {s0, s1, . . . , sr} of V , we can describe this map, using
homogeneous coordinates, with the expression

φ(x) = [s0(x), . . . , sr(x)] ∀x ∈ X \B.

If |V | is free, then φ is defined on all X. In this case there is an isomorphism

φ∗(O(1)) ' L.

Conversely if φ : X → Pr is a morphism, then φ∗(O(1)) is a free line bundle
on X generated by the the linear series |V | =< φ∗(x0), . . . , φ∗(xr) >.
Furthermore φ is identified with the morphism φ|V |.

Remark 1.14 (Projection). Assume now V ⊆ H0(X,L) is a linear series,
W ⊆ V is a linear subspace.
Then Bs(|V |) ⊆ Bs(|W |), so that φ|V | and φ|W | are both defined on X \
Bs(|W |).
Considering them as morphisms on this set, one has the relation

φ|W | = π ◦ φ|V |

where
π : P(V ) \ P(V/W ) −→ P(W )

is the linear projection centered along the subspace P(V/W ) ⊆ P(V ). More-
over if |W | (whence also |V |) is free, then π|φ|V |(X)

is finite.

1.3 Intersection numbers

Let X be a variety. Given D1, . . . , Dk ∈ Div(X) and V a subvariety of X of
dimension k, we want to define an integer number (D1 · · · · ·Dk · V ), called
intersection number of D1, . . . , Dk along V .
We start with a definition.
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Definition 1.15. Let X be a scheme and let F be a coherent sheaf on X.
The Euler characteristic of F is

χ(F) =
dimX∑
i=1

(−1)i · hi(X,F).

Before giving the next theorem, that will allow us to define intersection
numbers in a very general setting, we recall that:

• Given a coherent sheaf F on a scheme X, by Supp(F) we mean the
subset of p ∈ X such that the stalk Fp 6= 0.

• A polynomial f with rational coefficients is numerical if f(n1, . . . , nk)
is an integer whenever ni ∈ Z for every i = 1, . . . k.

Theorem 1.16 (Snapper). Let X be a scheme, let F be a coherent sheaf
on X with dim(Supp(F)) = s and let L1, . . . ,Lk be line bundles on X.
Then the Euler characteristic χ(F ⊗ Ln1

1 ⊗ · · · ⊗ L
nk
k ) is a numerical poly-

nomial in n1, . . . , nk of degree s.

Proof. See [Kle66, I, §1].

Definition 1.17. Let L1, . . . ,Lk be line bundles on a scheme X and let
F be a coherent sheaf on X such that dim(Supp(F)) ≤ k. We define the
intersection number

(L1 · · · · · Lk · F)

as the coefficient of the monomial n1 · · ·nk in χ(F ⊗ Ln1
1 ⊗ · · · ⊗ L

nk
k ).

Thanks to Snapper’s theorem and to the properties of numerical polynomials
we have that (L1 · · · · · Lk · F) is always an integer.
Moreover we have:

Proposition 1.18. (L1 · · · · · Lk · F) = 0 if dim(Supp(F)) < k.

Proof. See [Kle66, I, §2, Prop. 1].

Definition 1.19. Let V ⊆ X be a subvariety of dimension s ≤ k and let
L1, . . . ,Lk be line bundles on X. We define

(L1 · · · · · Lk · V ) = (L1 · · · · · Lk · OV ).

Similarly if D1, . . . , Dk ∈ Div(X) we define

(D1 · · · · ·Dk · V ) = (OX(D1) · · · · · OX(Dk) · V ).
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For every s-cycle Y ∈ Zs(X) the intersection number (D1 · · · · · Dk · Y ) is
defined, in obvious way, by linearity.
Thanks to Proposition 1.18, if Y ∈ Zs(X) we have (D1 · · · · · Dk · Y )=0
whenever s < k, thus the only interesting case is when s = k.

Notation. Let X be an n-dimensional variety. Then we will write

• (D1 · · · · ·Dn) = (D1 · · · · ·Dn ·X),

• (Dn) = (D · · · · ·D︸ ︷︷ ︸
n times

).

Theorem 1.20 (Properties of intersection numbers). Let X be an n-dimensional
variety, let D1, . . . , Dk ∈ Div(X) and let Y ∈ Zk(X). Then

1. (D1 · · · · ·Dk ·Y ) is a symmetric function of the Di and it is multilinear
with respect to divisors and k-cycles.

2. (D1 · · · · · Dk · Y ) depends only on the linear equivalence class of the
Di.

3. If D1, . . . , Dn are effective divisors meeting transversely, then

(D1 · · · · ·Dn) = Card{D1 ∩ · · · ∩Dn}.

4. If f : Y → X is a finite surjective morphism, then

(f∗(D1) · · · · · f∗(Dn))Y = deg(f) · (D1 · · · · ·Dn)X .

Proof. See [Kle66, I, §2] and [Laz04, I, 1.1.13]

1.4 Numerical equivalence

Definition 1.21. Let X be a scheme. Two divisors D1, D2 on X are nu-
merically equivalent (we write D1 ≡ D2) if

(D1 · C) = (D2 · C)

for every irreducible curve C ⊆ X.
A divisor is said to be numerically trivial if it is numerically equivalent to
zero. Num(X) ⊆ Div(X) is the subgroup of all numerically trivial divisors.

Remark 1.22. Note that:

• We can deal with linear equivalence classes in the definition thanks to
the properties of intersection numbers.

15



• Equivalently we could define D1 ≡ D2 if (D1 · γ) = (D2 · γ), ∀γ ∈
Z1(X).

• We can define numerical equivalence classes of line bundles in the same
way.

Definition 1.23. The Neron-Severi group of a scheme X is

N1(X) = Div(X)/Num(X).

Theorem 1.24. For any X scheme, N1(X) is a free abelian group of finite
rank.

Proof. See [Laz04, I, 1.1.16].

Lemma 1.25. Let X be a scheme and let D1, . . . , Dk, D
′
1, . . . , D

′
k ∈ Div(X)

be such that Di ≡ D′i for all i = 1, . . . , k. Then

(D1 · · · · ·Dk · Y ) = (D′1 · · · · ·D′k · Y )

for every k-cycle Y ∈ Zk(X).

Proof. See [Laz04, I, 1.1.18].

Thanks to this lemma we can define intersection numbers of numerical equiv-
alence classes:

Definition 1.26. Let Y ∈ Zk(X) and let δ1, . . . , δk ∈ N1(X) be numerical
equivalence classes of divisors, the intersection number

(δ1 · · · · · δk · Y )

is the intersection number of any representatives of this classes.
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Chapter 2

Ample and nef divisors

2.1 Ample divisors

Definition 2.1. Let X be a scheme. A line bundle L on X is very ample if
there exists a closed immersion i : X ↪→ Pr for some r such that

L = i∗(O(1))

In other words L is very ample if and only if the morphism φ|L| : X →
P(H0(X,L)) defined by L is a closed immersion.

Definition 2.2. Let X be a scheme. A line bundle L on X is ample if for
any coherent sheaf F on X, there exists a positive integer m(F) > 0 such
that F ⊗ Lm is globally generated for any m > m(F).
A divisor D is ample if OX(D) is such.

The following theorem gives different characterizations of ampleness, using
cohomology and very ample line bundles:

Theorem 2.3. Let X be a scheme and let L be a line bundle on X.
Then the following statements are equivalent:

• L is ample.

• For any coherent sheaf F on X, there exists a positive integer m1(F)
such that for every m > m1(F) we get H i(X,F ⊗ Lm) = 0 for all
i > 0.

• There exists a positive integer m2 > 0 such that Lm is very ample for
every m > m2.

• There exists a positive integer m3 > 0 such that Lm3 is very ample.

Proof. See [Laz04, I, 1.2.6].
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Corollary 2.4. Let X be a scheme, let D be an ample divisor on X and
let E ∈ Div(X) be an arbitrary divisor. Then there exists a positive integer
m0 > 0 such that mD + E is very ample for all m ≥ m0.

Proof. See [Laz04, I, 1.2.10].

The next proposition shows how ampleness is preserved when passing to
reduced and irreducible components or restricting to subvarieties:

Proposition 2.5. Let f : Y → X be a finite morphism of schemes and let
L be a line bundle on X.
Then

• If L is ample on X, then f∗(L) is ample on Y .

In particular for any Y subscheme of X, the restriction L|Y is ample
on Y .

• L is ample on X if and only if Lred is ample on Xred.

• L is ample on X if and only if the restriction of L to each irreducible
component of X is ample.

Proof. See [Laz04, I, 1.2.13 and 1.2.16].

Theorem 2.6 (Nakay-Moishezon). Let X be an n-dimensional scheme and
let D ∈ Div(X).
Then D is ample if and only if for all k = 1, . . . , n we have

(Dk · V ) > 0

for every V ⊆ X irreducible k-dimensional subvariety.

Proof. See [Laz04, I, 1.2.23].

Corollary 2.7. Ampleness of divisors only depends on numerical equiva-
lence classes.

Proposition 2.8. Let X be a scheme and let D and E be ample divisors
on X.
Then there is a positive integer m0 such that the natural maps

H0(X,OX(aD))⊗H0(X,OX(bE)) −→ H0(X,OX(aD + bE)

defined by multiplication of sections are surjective whenever a, b ≥ m0.
More generally, for any coherent sheaves F ,G on X, there is a positive
integer m1(F) such that the maps

H0(X,F ⊗OX(aD))⊗H0(X,G ⊗OX(bE)) −→

−→ H0(X,F ⊗ G ⊗OX(aD + bE))

are surjective for all a, b ≥ m1(F).

Proof. See [Laz04, I, 1.2.22].
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Asymptotic Riemann-Roch

Definition 2.9. Let X be an n-dimensional variety and let F be a coherent
sheaf on X.
The rank of F is

rank(F) = dimC(X)F ⊗ C(X).

Theorem 2.10 (Asymptotic Riemann-Roch). Let X be a variety of dimen-
sion n and let D ∈ Div(X). Then

χ(OX(mD)) =
(Dn)
n!

mn +O(mn−1).

Moreover, for any coherent sheaf F on X we have

χ(F ⊗OX(mD)) = rank(F)
(Dn)
n!

mn +O(mn−1).

In particular in the case of ample divisors, thanks to Theorem 2.3, we can
re-formulate the theorem as follows:

Theorem 2.11 (Ample asymptotic Riemann-Roch). Let X be a variety of
dimension n and let D ∈ Div(X) be an ample divisor, then

h0(X,OX(mD)) =
(Dn)
n!

mn +O(mn−1).

Moreover, for any coherent sheaf F on X

h0(X,F ⊗OX(mD)) = rank(F)
(Dn)
n!

mn +O(mn−1).

Corollary 2.12. Let X be an n-dimensional variety and let E ∈ Div(X).
Then there exists a constant C > 0 such that

h0(X,OX(mE)) ≤ C ·mn

for all m > 0.

Castelnuovo-Mumford regularity

Definition 2.13. Let X be a variety and let L be an ample globally gener-
ated line bundle on X.
A coherent sheaf F on X is m-regular with respect to L if

H i(X,F ⊗ Lm−i) = 0

for all i > 0.

With this definition we have the following theorem:

Theorem 2.14 (Mumford). Let L be an ample globally generated line bundle
on a variety X. If F is an m-regular sheaf with respect to L, then F⊗Lm+k

is globally generated for every k ≥ 0.

Proof. See [Laz04, I, 1.8.5].
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2.2 Q-Divisors

Definition 2.15. Let X be a scheme. We define a Q-divisor as an element
of the Q-vector space DivQ(X) = Div(X)⊗Q.

We can represent any Q-divisor D as a finite sum

D =
∑

ciDi

for suitable ci ∈ Q, Di ∈ Div(X).
Clearing denominators we can always find c ∈ Q and E ∈ Div(X) such that
D = cE.

Definition 2.16. Let D ∈ DivQ(X) be a Q-divisor. Then:

• D is integral if D ∈ Div(X) ⊆ DivQ(X).

• D is effective if there exist ci ∈ Q+ and Di effective integral divisors
such that D =

∑
ciDi.

We can naturally extend to Q-divisors operations and properties defined in
the integral case:

• D1, D2 ∈ Div(X) are Q-linearly equivalent if there is a positive inte-
ger r such that rD1 and rD2 are integral and linearly equivalent in
Div(X), that is r(D1 −D2) is principal as a Z-divisor.

• Given D1, . . . , Dk ∈ Div(X) and V irreducible k-dimensional subva-
riety of X, the intersection number (D1 · · · · · Dk · V ) is defined via
Q-multilinearity from the same operation in Div(X).

• D1, D2 ∈ DivQ(X) are numerically equivalent (D1 ≡ D2) if

(D1 · C) = (D2 · C)

for any irreducible curve C ⊆ X.
The group of numerical equivalence classes of Q-divisors is denoted by
N1(X)Q. In particular it is a finite-dimensional Q-vector space.

• Let f : Y → X be a finite morphism and let D ∈ DivQ(X).
We define the pullback divisor f∗(D) ∈ DivQ(Y ) by Q-linearity from
the usual pullback of the integral divisors in a representation of D.

Now, we can also extend to the Q-divisors environment the notion of am-
pleness:

Definition 2.17. A Q-divisor D ∈ DivQ(X) is ample if any of the three
following equivalent statements is satisfied:
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1. D =
∑
ciAi, with ci ∈ Q+, Ai ample integral divisors.

2. There exists a positive integer r such that r ·D is ample and integral.

3. For every irreducible subvariety V ⊆ X of dimension k

(Dk · V ) > 0,

that is D satisfies Nakay-Moishezon criterion.

As for Z-divisors, thanks to the third characterization, we observe that am-
pleness is preserved by numerical equivalence, thus it makes sense to speak
of ample classes in N1(X)Q.
The next proposition shows how, in the context of Q-divisors, ampleness is
preserved by small perturbations:

Proposition 2.18. Let X be a variety, let H be an ample Q-divisor and E
an arbitrary Q-divisor.
Then, for all sufficiently small rational numbers 0 < |ε| << 1, we have that
H + εE is ample.
More generally, if E1, . . . , Er ∈ DivQ(X) are arbitrary divisors,

H +
r∑
i=1

εiEi

is ample for all sufficiently small rational numbers 0 < |εi| << 1.

Proof. See [Laz04, I, 1.3.7].

2.3 R-Divisors

The construction of the group DivR(X) of R-divisors faithfully follows that
of DivQ(X). In particular:

Definition 2.19. DivR(X) = Div(X)⊗ R.

Concretely, we can represent any R-divisor D by a finite sum D =
∑
ciDi

for suitable ci ∈ R, Di ∈ Div(X) for all i.
D is effective if there exist ci ≥ 0 and Di effective integral divisors such that
D =

∑
ciDi.

Intersection numbers and pullbacks are defined by linearity as before. More-
over, in obvious way, we can extend to R-divisors the relation of numeri-
cal equivalence ≡ and we can consider the group of numerical equivalence
classes, denoted by N1(X)R. As before, N1(X)R is a finite-dimensional
R-vector space. Furthermore we have the following lemma:
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Lemma 2.20. Let X be a scheme. Then, for all D ∈ DivR(X), with D ≡ 0,
there exist ri ∈ R and Di integral divisors, with Di ≡ 0 for all i = 1, . . . ,m,
such that

D =
m∑
i=1

riDi.

In other words we have an isomorphism

N1(X)R ' N1(X)⊗ R.

Proof. See [Laz04, I, 1.3.10 and proof of Prop. 1.3.13].

Definition 2.21. Let X be a scheme. An R-divisor D is ample if we can
represent it by

D =
∑

ciAi

with ci ∈ R+, Ai ample Z-divisors for all i.

In this case it is not easy to understand if we can characterize ample R-
divisors by using a Nakay-Moishezon-type criterion. In particular if D ∈
DivR(X) is ample, then (DdimV · V ) > 0 for every V ⊆ X irreducible
subvariety, but the opposite implication is not obvious because D is not, in
general, proportional to an integral divisor. However a theorem of Campana
and Peternell shows that, even for R-divisors, positivity of intersection with
every irreducible subvariety of X gives ampleness (see [Laz04, I, 2.3.18]).

Proposition 2.22. Let D1, D2 ∈ DivR(X) such that D1 ≡ D2.
Then D1 is ample if and only if D2 is such.

Proof. See [Laz04, I, 1.3.13].

Also for R-divisors ampleness is an open condition, that is it is not affected
by small perturbations:

Proposition 2.23. Let X be a variety, let H ∈ DivR(X) be ample and let
E1, . . . , Er be arbitrary R-divisors.
Then for all sufficiently small real numbers 0 < |εi| << 1

H +
r∑
i=1

εiEi

is ample.

Proof. See [Laz04, I, 1.3.14].

Corollary 2.24. The finite-dimensional vector space N1(X)R is spanned
by the classes of ample R-divisors.

Proof. See [Laz04, I, 1.3.15]
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2.4 Nef divisors

Definition 2.25. Let X be scheme. A divisor D ∈ Div(X), DivQ(X) or
DivR(X) is nef if

(D · C) ≥ 0

for every irreducible curve C ⊆ X.
A line bundle L is nef if there is a nef Z-divisor D such that L = OX(D).

As this definition only depends on numerical equivalence classes we can
speak of nefness of classes in N1(X), N1(X)Q and N1(X)R.

Proposition 2.26 (Properties of nefness). Let X be a scheme, let L be a
line bundle on X and let f : Y → X be a morphism.
Then

• If L is nef on X, then f∗(L) is nef on Y .

In particular for any Y subscheme of X, the restriction L|Y is nef on
Y .

• If f is surjective and f∗(L) is nef, then L is nef.

• L is nef if and only if Lred is nef on Xred.

• L is nef if and only if the restriction of L to each irreducible component
of X is nef.

Proof. See [Laz04, I, 1.4.4].

Theorem 2.27 (Kleiman). Let X be a scheme and let D be a nef divisor.
Then

(Dk · V ) ≥ 0

for every irreducible subvariety V of X of dimension k.

Proof. See [Laz04, I, 1.4.9].

Theorem 2.28 (Fujita’s vanishing theorem). Let X be a scheme and let
H ∈ Div(X) be an ample divisor.
For any coherent sheaf F on X, there exists an integer m(F , H) such that

H i(X,F ⊗OX(mH +D)) = 0

for all i > 0, m ≥ m(F , H) and for every nef integral divisor D on X.

The essential point is that the integer m(F , H) does not depend on the nef
divisor D.

Proof. See [Laz04, I, 1.4.35].
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Proposition 2.29. Let X be a variety of dimension n and let D be a nef
divisor on X. Then

hi(X,OX(mD)) = O(mn−i).

Proof. See [Laz04, 1.4.40].

Corollary 2.30 (Nef asymptotic Riemann-Roch). Let X be a variety of
dimension n and let D be a nef divisor on X. Then

h0(X,OX(mD)) =
(Dn)
n!

mn +O(mn−1).

2.5 Ample and nef cones

Definition 2.31. Let V be a finite-dimensional real vector space. A subset
K ⊆ V is a cone if positive linear combinations of vectors of K are still in
K.

Denoting by Amp(X) the set of all ample R-divisor classes in N1(X)R, and
by Nef(X) the set of all nef R-divisor classes, we observe that Nef(X) and
Amp(X) are cones.
The following theorem shows how these two cones are closely related.

Theorem 2.32. Let X be a scheme, then

1. Nef(X) = Amp(X).

2. Amp(X) = Int(Nef(X)).

Proof. See [Laz04, I, 1.4.23].

Definition 2.33. Let X be a scheme, we define the R-vector space of real
1-cycles on X by

Z1(X)R = Z1(X)⊗ R.

For any γ ∈ Z1(X)R, we can write γ as a finite linear combination γ =∑
ai · Ci, with ai ∈ R and Ci irreducible curves on X.

We say that two one-cycles γ1 and γ2 are numerically equivalent if

(D · γ1) = (D · γ2)

for any D ∈ DivR(X).

Definition 2.34. N1(X)R is the real vector space of numerical equivalence
classes of real one cycles.
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By construction there is a perfect pairing

N1(X)R ×N1(X)R −→ R

(δ, γ) 7−→ (δ · γ).

In particular N1(X)R is a finite dimensional real vector space on which we
put the Euclidean topology.

Definition 2.35. LetX be a scheme. We define the cone of curves NE(X) ⊆
N1(X)R as the cone spanned by the classes of effective one cycles on X. Its
closure NE(X) is the closed cone of curves in X.

In other words each element γ ∈ NE(X) is of the form

γ =
∑

ai[Ci]

with ai ∈ R+ ∪ {0} and Ci irreducible curves.

Proposition 2.36. For any variety X we have

NE(X) = {γ ∈ N1(X)R | (δ · γ) ≥ 0 ∀ δ ∈ Nef(X)}.

We can express this property saying that NE(X) is the closed cone dual to
Nef(X).

Proof. See [Laz04, I, 1.4.28].

Now for any R-divisor D ∈ DivR(X), not numerically trivial, we can define
a linear map

φD : N1(X)R −→ R
γ 7−→ (D · γ).

We put
D⊥ = Ker(φD) = {γ ∈ N1(X)R | (D · γ) = 0}.

D>0 = {γ ∈ N1(X)R | (D · γ) > 0}.
D≥0 is the disjoint union of D⊥ and D>0.
D<0 and D≤0 are defined similarly.
Now, after observing that, as N1(X)R ∼= Rn as a vector space, any two
norms on it are equivalent, we fix a norm || · || and we put

S = {γ ∈ N1(X)R | ||γ|| = 1}.

With this notation we have the following theorem:

Theorem 2.37 (Kleiman). Let X be a variety and let D ∈ DivR(X). Then

D is ample⇐⇒ NE(X) \ {0} ⊆ D>0.

Equivalently
D is ample⇐⇒ NE(X) ∩ S ⊆ D>0 ∩ S.

Proof. See [Laz04, I, 1.4.29].

25



Chapter 3

Semiample and big line
bundles

3.1 Iitaka dimension and stable base locus

Definition 3.1. Let X be a variety and let L be a line bundle on X. The
semigroup of L is

N(L) = N(X,L) = {m ∈ N | H0(X,Lm) 6= 0} ∪ {0}.

The semigroup N(D) of a divisor D is the semigroup of OX(D).

N(L) is actually a semigroup because if 0 6= s ∈ H0(X,Lm), and 0 6= t ∈
H0(X,Ln), then H0(X,Lm+n) contains the section s · t 6= 0 obtained by
multiplication.

Definition 3.2. Assuming N(L) 6= 0, the exponent of L, denoted by e or
e(L) is the g.c.d. of all the elements of N(L).
The exponent e(D) of D ∈ Div(X) is defined again by passing to the line
bundle OX(D).

Obviously all elements in N(L) are multiples of e(L), while, on the other
hand, all sufficiently large multiples of e(L) appear in the semigroup of L.

Notation. Let X be a variety, let L be a line bundle on X and let m ∈ N(L).
Then we can view the morphism associated to the complete linear series
|Lm|, that, from now on, we denote by

φm : X \Bs(|Lm|) −→ P(H0(X,Lm))

as a rational mapping

φm : X 99K P(H0(X,Lm)).
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Moreover, for the rest of this chapter, we denote by Ym or φm(X) the closure
of the image of φm.

Definition 3.3. Let X be a variety and let L be a line bundle on X. We
define the Iitaka dimension of L, denoted by k(X,L), as follows:

If X is normal

• If N(L) 6= 0

k(X,L) = max
m∈N(L)

{dim φm(X)}.

• If N(L) = 0 (that is H0(X,Lm) = 0 for all m > 0)

k(X,L) = −∞.

If X is not normal, we consider ν : X ′ → X to be the normalization of X
and set

k(X,L) = k(X ′, ν∗(L)).

Finally, we can define the Iitaka dimension of a divisor D ∈ Div(X) as

k(X,D) = k(X,OX(D)).

Proposition 3.4. Let X be a normal variety. If k(X,L) = k ∈ N, then
there exists a positive integer m0 such that dim φm(X) = k, ∀m ≥ m0 in
N(L).

Proof. As all sufficiently large m ∈ N(L) are multiples of the exponent e(L),
we can replace L by Le(L), so that we have e(L) = 1.
Then there exists a positive integer p0 such that H0(X,Lp) 6= 0 for all
p ≥ p0. Now we fix h ∈ N(L) such that dim φh(X) = k and we consider for
every p ≥ p0 the embedding

H0(X,Lh) ⊆ H0(X,Lh+p)

determined by a non-zero section in H0(X,Lp).
This in turn gives rise to a factorization φh = νp ◦ φh+p, where νp is the
rational mapping arising from the linear projection

PH0(X,Lh+p) \ P(
H0(X,Lh+p)
H0(X,Lh)

) −→ PH0(X,Lh)

associated with the above embedding itself.
Therefore we can find an open subset U ⊆ Yh+p such that

ν∗p = νp|U : U −→ Yh
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is a dominant morphism.
Then dimYh+p ≥ dimYh = k and the reverse inequality holds by definition.

Definition 3.5. Let X be a variety and let D be an integral divisor on X.
The stable base locus of D is the algebraic set

B(D) =
⋂
m≥1

Bs(|mD|)

where we disregard the structures of schemes and consider the intersection
just like an intersection of closed subsets.

Proposition 3.6. Let X be a variety and let D be an integral divisor on
X. Then:

1. The stable base locus B(D) is the unique minimal element of the family
of closed sets {Bs(|mD|)}m>0.

2. There exists a positive integer n0 such that, for all k ∈ N, we have

B(D) = Bs(|kn0D|).

Proof.

1. We have that X (if only considered as a topological space) is a noetherian
space, thus every non-empty family of closed subsets in X has a minimal
element. Then in particular the same holds for the family {Bs(|mD|)}m>0.
On the other hand, given any natural numbers m, l, there is a set-theoretic
inclusion

Bs(|lmD|) ⊆ Bs(|mD|)

arising from the reverse inclusion b(|mD|)l ⊆ b(|lmD|) on base ideals (Propo-
sition 1.10). Then the minimal element is unique, because if Bs(|pD|) and
Bs(|qD|) are each minimal they both coincide with Bs(|pqD|); therefore, by
definition, it must coincide with B(D).

2. Let m0 ∈ N be such that Bs(|m0D|) = B(D). Then for all k ∈ N we get

Bs(|km0D|) ⊆ Bs(|m0D|) = B(D)

and the reverse inclusion follows by definition.

Corollary 3.7. Let X be a variety and let D ∈ Div(X). Then

B(pD) = B(D)

for all p ∈ N.
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Proof. By the second statement of Proposition 3.6 there exists a positive
integer m0 such that B(D) = Bs(|km0D|) for all k ∈ N. Analogously we
can find m1 ∈ N such that B(pD) = Bs(|k′m1pD|) for all k′ ∈ N. In
particular

B(pD) = Bs(|m0m1pD|) = B(D).

The previous corollary suggests a natural definition of stable base locus of
a Q-divisor:

Definition 3.8. Let D be a Q-divisor on a variety X. We define B(D) =
B(kD), where k ∈ N is such that kD is integral.

3.2 Semiample line bundles

Definition 3.9. Let X be a scheme. A line bundle L on X is semiample if
Lm is globally generated for some m ∈ N.
A divisor D is semiample if OX(D) is such.

Definition 3.10. Let L be a semiample line bundle on a scheme X,
we denote by M(X,L) = M(L) ⊆ N(L) the sub-semigroup

M(L) = {m ∈ N(L) | Lm is globally generated}.

The exponent of M(L), denoted by f or f(L), is the g.c.d. of all the elements
of M(L).

Note that, for any line bundle L, we conventionally put L0 = OX , whence
we always have 0 ∈M(L).
Besides, as for the exponent e(L), we see that every sufficiently large multiple
of f appear in M(L), that is Lkf is free for every k >> 0.

Definition 3.11. Let X and Y be varieties. An algebraic fibre space is a
surjective morphism f : X → Y such that f∗OX = OY .

Remark 3.12. Note that, given any surjective morphism of varieties g :
V →W , the Stein factorization expresses g as a composition

V
a−→ Z

b−→W

where a is an algebraic fibre space and b is finite (see [Har77, III, 11.5]).
Thus g itself is an algebraic fibre space if and only if the finite part of its
Stein factorization is an isomorphism.
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In particular, all the fibres of an algebraic fibre space f are connected.
Conversely, if Y is normal, then any surjective morphism f : X → Y with
connected fibres is an algebraic fibre space.
Moreover if X is normal, f : X → Y is an algebraic fibre space and µ :
X ′ → X is a birational mapping, then the composition f ◦ µ : X ′ → Y is
again an algebraic fibre space (see [Har77, III, 11.3, 11.4]).

The following lemma gives a very useful property of algebraic fibre spaces:

Lemma 3.13. Let X and Y be varieties, let f : X → Y be an algebraic
fibre space and L a line bundle on Y .
Then for every m > 0 we have

H0(X, f∗Lm) = H0(Y,Lm).

In particular k(Y,L) = k(X, f∗L).

Proof. In general we have

H0(X, f∗Lm) = H0(Y, f∗(f∗Lm)).

But, thanks to the projection formula

f∗(f∗Lm) = f∗OX ⊗ Lm

and f∗OX = OY since f is a fibre space.

Corollary 3.14. Let X and Y be varieties and f : X → Y an algebraic
fibre space. Then the induced homomorphism

f∗ : Pic(Y ) −→ Pic(X)

is injective.

Proof. Let L be a line bundle on Y such that f∗L ' OX . Then, thanks to
Lemma 3.13

H0(Y,L) = H0(X, f∗L) = H0(X,OX)

and similarly

H0(Y,L−1) = H0(X, f∗(L−1)) = H0(X, (f∗L)−1) = H0(X,OX).

Therefore H0(Y,L) 6= 0 and H0(Y,L−1) 6= 0, thus L ' OX .

Proposition 3.15. Let f : X → Y be an algebraic fibre space.
If X is normal, then Y is such.
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Proof. Let ν : Y ′ → Y be the normalization of Y . Then, as ν is a finite
morphism and the algebraic fibre space f factors through ν, by Remark 3.12
we must have that ν is an isomorphism.

From now on, given a line bundle L on a variety X, adopting a slight abuse
of notation, we consider φm as a dominant rational map

φm : X 99K Ym = φm(X).

In particular, if L is semiample, form ∈M(L), ve can view φm as a surjective
morphism

φm : X −→ Ym.

The following theorem shows how, in this case, φm stabilizes to a constant
algebraic fibre space φ for sufficiently large m ∈M(L).

Theorem 3.16 (Semiample fibrations). Let X be a normal variety and let
L be a semiample line bundle on X.
Then there exists a variety Y and an algebraic fibre space φ : X → Y such
that for any sufficiently large m ∈M(L)

Ym = Y and φm = φ.

Furthermore there is an ample line bundle A on Y such that

φ∗(A) = Lf(L),

where f(L) is the exponent of L.

Proof. We prove the theorem in four steps.

1. Preliminary observations.
Let m > 0 such that Lm is globally generated and let k be a positive integer.
Then we can consider the two morphisms

φm : X −→ Ym ⊆ PH0(X,Lm) = Pr

φkm : X −→ Ykm ⊆ PH0(X,Lkm).

Moreover we have a map

νk : Ym −→ νk(Ym) ⊆ PH0(Pr,OPr(k))

obtained by restricting the morphism on Pr determined by the free linear
series |OPr(k)|, that is νk(Ym) is the kth Veronese re-embedding of Ym.
Now, denoting by SkH0(X,Lm) the kth symmetric power of H0(X,Lm), we
have a map

SkH0(X,Lm) −→ Vk ⊆ H0(X,Lkm)

s1 ⊗ · · · ⊗ sk 7−→ s1 · · · · · sk
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where Vk is simply defined as the image of the map.
In particular, using the definition of Veronese embedding, one can easily
check that νk(Ym) ' φ|Vk|(X).
Hence we have the following situation

X
φkm

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
φm // Ym

∼ // νk(Ym) ∼ // φ|Vk|(X) � � // P(Vk)

Ykm

πVk |Ykm

OO

� � // PH0(X,Lmk)

πVk

OO�
�
�

where, using Remark 1.14, the projection πVk follows by the inclusion Vk ⊆
H0(X,Lmk) and πVk |Ykm

is actually a morphism and makes the diagram
commute. Moreover, again by Remark 1.14, it is finite and, looking at it as
a morphism on Ym, we find a factorization of φm given by

φm = πk ◦ φkm

where we define πk = πVk |Ykm
: Ykm → Ym.

Note also that Ym carries a very ample line bundle Am, given by the restric-
tion of the hyperplane bundle on Pr = PH0(X,Lm), such that φ∗m(Am) =
Lm and H0(X,Lm) = H0(Ym,Am).

2. Lemma. Let m ∈ M(X,L), then for all sufficiently large integers
k > 0, the composition

X
φkm // Ykm

πk // Ym

gives the Stein factorization of φm, so that φkm is an algebraic fibre space. In
particular, Ykm and φkm are independent of k for sufficiently large k ∈ N.
To prove the lemma let

X
ψ // V

µ // Ym

be the Stein factorization of φm, so that, in particular, ψ is a fibre space,
V is normal (see Proposition 3.15) and µ is finite. Moreover we have just
proved the existence of a very ample line bundle Am on Ym that pulls back
to Lm on X. Since µ is finite, thanks to Proposition 2.5, we have that
B = µ∗(Am) is an ample line bundle on V . Thus Bk is very ample for all
sufficiently large k ∈ N.
On the other hand

ψ∗(Bk) = Lkm

and, being ψ an algebraic fibre space, thanks to Lemma 3.13, we find

PH0(X,Lkm) = PH0(V,Bk) def= P.
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Hence, we have that

φ∗km(OP(1)) = Lkm = ψ∗(Bk) = (i ◦ ψ)∗(OP(1))

where i : V ↪→ PH0(V,Bk) is the embedding defined by Bk.
Then we obtain φkm = i ◦ ψ; therefore V is the image of X under the
morphism φkm, that is Ykm = V and φkm = ψ. This proves the lemma.

Replacing, if necessary, L by Lf(L), we assume from now on in the proof of
the theorem that f(L) = 1, so that every sufficiently large multiple of L is
free.

3. We define φ and produce an ample line bundle A that pulls back to L.
Thanks to the Lemma we can fix two relatively prime positive integers p and
q such that for all k ≥ 1 we have Ykp = Yp, φkp = φp, Ykq = Yq, φkq = φq.
Thus in particular

Yp = Ypq = Yq
def
= Y and φp = φpq = φq

def
= φ : X −→ Y.

Now, thanks to the first step of the proof, Y carries very ample line bundles
Ap and Aq such that φ∗Ap = Lp and φ∗Aq = Lq. But, since p and q are
relatively prime, we can find r, s ∈ Z such that 1 = rp+ sq.
Then we define

A = Arp ⊗Asq.

We easily see that φ∗A = L. Furthermore, as φ is a fibre space, then
φ∗ : Pic(Y ) → Pic(X) is injective by Corollary 3.14, whence Ap = Ap
and Aq = Aq. Therefore A is ample because it has a very ample positive
multiple.

4. We show that Ym = Y and φm = φ for all m >> 0.
Fix positive integers c, d ≥ 1. Then the product ScH0(Y,Ap)⊗SdH0(Y,Aq)
determines a free linear subseries of

H0(Y,Acp+dq) = H0(X,Lcp+dq).

Arguing as in the first step of the proof we get that φ factors as the composi-
tion of φcp+dq with a finite map. Thus, being φ a fibre space, it follows that
φ = φcp+dq. But, as any sufficiently large integer m is of the form cp + dq
for suitable c, d ∈ N, we obtain the assert.

We have a birational analogue of the last theorem considering all m ∈ N(L):

Theorem 3.17 (Iitaka fibrations). Let L be a line bundle on a normal
variety X with k(X,L) > 0.
Then there exists an algebraic fibre space of normal varieties

φ∞ : X∞ −→ Y∞
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such that φk : X 99K Yk is birationally equivalent to φ∞ for all sufficiently
large k ∈ N(L) and the restriction of L to a very general fibre of φ∞ has
Iitaka dimension zero.

Corollary 3.18. Let L be a line bundle on a normal variety X and set
k = k(X,L).
Then there are two constants c, C > 0 such that for all sufficiently large
m ∈ N(L)

c ·mk ≤ h0(X,Lm) ≤ C ·mk.

3.3 Big line bundles and divisors

Definition 3.19. Let X be a variety. A line bundle L on X is big if
k(X,L) = dimX. A divisor D ∈ Div(X) is big if OX(D) is such.

The following very useful theorem gives different characterizations of big
divisors.

Theorem 3.20. Let X be a variety and let D ∈ Div(X).
Then the following conditions are equivalent:

1. D is big.

2. For any ample divisor A ∈ Div(X) there exists a positive integer m
and an effective divisor N such that

mD ∼ A+N.

3. There exists an ample divisor A ∈ Div(X), a positive integer m and
an effective divisor N such that

mD ≡ A+N.

In particular, since the third characterization of the theorem is numerical,
we see that bigness of a divisor only depends on its numerical equivalence
class.

Proof. (1 ⇒ 2) Let H be a very ample divisor on X and let k ∈ N be
such that dim Yk = n. Then, in particular, φk(H) is strictly contained in
Yk ⊆ PN for a suitable N ∈ N. Hence there exists a hypersurface of PN
containing φk(H) and not containing Yk. Namely there exists a positive
integer α such that |αkD − H| 6= ∅. Thus for every very ample divisor H
on X there exists an effective divisor E and a positive integer m = αk,
depending on H, such that

mD ∼ H + E.
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Now, if A is ample, we can choose an integer r0 > 0 such that rA is very
ample for any r ≥ r0. Then, in particular, for a suitable m ∈ N, there exists
an effective divisor E such that

mD ∼ (r + 1)A+ E ∼ A+ (rA+ E).

But, since rA is very ample it is effective. Therefore the assert follows.

(2⇒ 3) Trivial.

(3 ⇒ 1) mD ≡ A + N ⇒ mD − N ≡ A, with A ample. Then mD − N
is ample itself, because ampleness only depends by numerical equivalence
classes (see Corollary 2.7). After possibly passing to an even larger multiple
of D we can assume that

mD ∼ H +N ′

with H very ample and N ′ effective. Then

k(X,D) ≥ k(X,mD) = k(X,H +N ′) ≥ k(X,H) = dim X.

Therefore D is big.

Corollary 3.21. If D is big, then the exponent e(D) = 1.

In other words, if D is big, then every sufficiently large multiple mD is
linearly equivalent to an effective divisor.

Proof. Thanks to Corollary 2.4 we can choose a very ample divisor H on
X such that H − D is very ample, so that H − D ∼ H1 is effective. By
Theorem 3.20 there is an integer m > 0 and an effective divisor N such that

mD ∼ H +N ∼ N ′

with N ′ effective. On the other hand

(m− 1)D ∼ (H −D) +N ∼ H1 +N

with H1 +N effective.
In other words the two consecutive integers m − 1 and m both lie in the
semigroup N(D). Then

e(D) = g.c.d {n > 0 | n ∈ N(D)} = 1.

Now, using Theorem 3.20 and Corollary 3.21 we can characterize bigness of
D through birationality of the map defined by a multiple of D, and studying
the asymptotic behaviour of the rings of global sections of mD:
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Proposition 3.22. Let X be an n-dimensional variety, let D be a divisor
on X and let L = OX(D). Then the following statements are equivalent:

1. D is big.

2. The rational map φm defined by Lm is birational onto its image for
some m > 0.

3. There exists a constant C > 0 such that for all sufficiently large m ∈ N
we have

h0(X,OX(mD)) ≥ C ·mn.

Proof.

(1⇒ 2)
Let H be a very ample divisor. By Theorem 3.20, since D is big, there exists
an integer m > 0 and E ∈ Div(X) effective such that

mD ∼ H + E.

Hence φm is a birational mapping because it gives an inclusion on X \
Supp(E).

(2⇒ 1) Trivial.

(1 ⇒ 3) As above we choose an integer m0 > 0 such that m0D ∼ A + E,
with A ample and E effective.
Then we can fix a positive integer k0(X,D) such that for all k ≥ k0(X,D)
we have

h0(X,OX(km0D)) ≥ h0(X,OX(kA)) ≥ C ′kn

for a suitable positive constant C ′ only depending on X and D.
Moreover, by Corollary 3.21, there exists a positive integer m1(X,D) such
that for all m ≥ m1(X,D), we have

h0(X,OX(mD)) 6= 0.

Hence there exists an integer s0 > 0 such that for all s > s0 we can write

s = qm0 + r = (q − a0)m0 + a0m0 + r

with

• 0 ≤ r < m0,

• a0m0 + r ≥ m1(X,D),

• q − a0 ≥ k0(X,D).
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Therefore

h0(X,OX(sD)) ≥ h0(X,OX((q − a0)m0D)) ≥ C ′(q − a0)n ≥ Csn

for a suitable positive constant C > 0.

(3 ⇒ 1) Let D satisfy the hypothesis and let F be an effective divisor on
X. Then for all sufficiently large integers m we have

h0(X,OX(mD − F )) 6= 0 :

In fact consider the exact sequence

0→ OX(mD − F )→ OX(mD)→ OF (mD)→ 0.

By hypothesis there exists a positive constant C such that h0(X,OX(mD)) ≥
C ·mn for any sufficiently large m ∈ N.
On the other hand, since F , considered with its structure of closed sub-
scheme, has dimension n − 1, then, thanks to Corollary 2.12, we have that
h0(F,OF (mD)) = O(mn−1). Therefore

h0(X,OX(mD)) > h0(F,OF (mD)),

and, using to the exact sequence above, we find that h0(X,OX(mD−F ) 6= 0.
In particular, choosing F very ample, there exists an effective divisor E such
that

mD ∼ F + E.

Therefore D is big by Theorem 3.20.

Now, in order to extend the notion of bigness to Q-divisors, we note that a
Z-divisor D ∈ Div(X) is big if and only if kD is big for some integer k > 0.
Thus we introduce the following definition:

Definition 3.23. A Q-divisor D on a variety X is big if there exists an
integer n > 0 such that nD is integral and big.

We have again that bigness of a Q-divisor D only depends by its numerical
equivalence class.
The next theorem gives a useful characterization of bigness for nef divisors.

Theorem 3.24. Let D be a nef divisor on an n-dimensional variety X.
Then

D is big⇐⇒ (Dn) > 0.
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Proof. Thanks to Proposition 3.22 we have that D is big if and only if there
exists a constant C > 0 such that

h0(X,OX(mD)) = C ·mn +O(mn−1).

But, as D is nef, using Corollary 2.30, we have that

h0(X,OX(mD)) =
(Dn)
n!

mn +O(mn−1).

Therefore D is big if and only if (Dn) > 0.

3.4 Pseudoeffective and big cones

We begin this section extending the notion of bigness to R-divisors.

Definition 3.25. Let X be a variety, let D ∈ DivR(X).
D is big if it can be written in the form

D =
∑

ai ·Di

where each Di is an integral big divisor and ai ∈ R+.

We can give a numerical characterization of bigness also for R-divisors:

Proposition 3.26. Let D and D′ be R-divisors on a variety X. Then

1. If D ≡ D′, D is big if and only if D′ is such.

2. D is big if and only if there exist an ample R-divisor A and an effective
R-divisor N such that D ≡ A+N .

Proof.

1. It suffices to show that if D is a big R-divisor and B is a numerically
trivial R-divisor, then D + B is big. But, thanks to Lemma 2.20, we can
write B =

∑
riBi with ri ∈ R and Bi integral divisors such that Bi ≡ 0

for all i. Thus, if we prove that for any integral divisors A, B, with A big
and B ≡ 0, the R-divisor A + rB is big for all r ∈ R, then the requested
statement follows by induction.
Let A and B be as above and r ∈ Q, then A + rB is big because bigness
of Q-divisors only depends by numerical equivalence classes. In general, we
can fix two rational numbers r1, r2, with r1 < r < r2, together with a real
number t ∈ [0, 1] such that r = tr1 + (1− t)r2. Then

A+ rB = t(A+ r1B) + (1− t)(A+ r2B),

that is A+rB is a positive R-linear combination of big Q-divisors, therefore
A+ rB is a big R-divisor.
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2. If D is big, then D =
∑n

i=1 aiDi, with ai ∈ R+ and Di big integral
divisors.
By Theorem 3.20 for all i = 1, . . . , n there exists a positive integer mi such
that miDi ≡ Ai +Ni (with Ai ample and Ni effective). Then, denoting by
m the product m = m1 · · · ·mn we have that

mD ≡
n∑
i=1

a′i(Ai +Ni)

where a′i is the positive real number defined by a′i = aim1 · · · ·mi−1mi+1 · · · ·
mn.
Therefore

D =
n∑
i=1

a′i
m
·Ai +

n∑
i=1

a′i
m
·Ni

exhibits D as a sum of an ample R-divisor and an effective one.
For the converse we reduce to show that if B and N are integral divisors,
with B big and N effective, and s ∈ R+, then B + sN is big (combined
with the hypothesis, this easily implies the assert). If s ∈ Q there exists a
multiple of B+sN that is a sum of an integral ample divisor and an integral
effective divisor, then we conclude thanks to Theorem 3.20.
In general we can choose two positive rational numbers s1, s2 and t ∈ [0, 1],
such that s1 < s < s2 and s = ts1 + (1 − t)s2. Then we proceed as in the
proof of the first point and write B + sN as a positive linear combination
of big Q-divisors, whence B + sN is big.

As a corollary we find that bigness is an open condition. In other words:

Corollary 3.27. Let D be a big R-divisor on a variety X and let E1, . . . , Er
be arbitrary R-divisors on X. Then

D +
r∑
i=1

εiEi

is big for all sufficiently small numbers 0 < |εi| << 1.

Proof. This follows from the second statement of the previous proposition
thanks to the open nature of ampleness (Proposition 2.23).

Now, thanks to Proposition 3.26 it makes sense to talk about a big R-divisor
class in N1(X)R. Moreover we see that the subset of all numerical classes
of big R-divisors is a cone and we adopt the following definition:
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Definition 3.28. The big cone

Big(X) ⊆ N1(X)R

is the convex cone of all big R-divisor classes in N1(X)R.
The pseudoeffective cone

Eff(X) ⊆ N1(X)R

is the closure of the cone of all effective R-divisors.
A divisor D ∈ DivR(X) is said to be pseudoeffective if its numerical equiv-
alence class lies in Eff(X).

The next theorem shows the relation between the two cones just defined.

Theorem 3.29. Let X be a variety. Then

1. Big(X) = int(Eff(X)).

2. Eff(X) = Big(X).

Proof. We begin by observing that the pseudoeffective cone is closed by
definition, the big cone is open by Corollary 3.27 and Big(X) ⊆ Eff(X)
because every big R-divisor is a sum of an effective divisor and an ample
one (whence it is effective) (Proposition 3.26). It remains to establish the
inclusions

Eff(X) ⊆ Big(X),
int(Eff(X)) ⊆ Big(X).

For the first, given η ∈ Eff(X), we can write η as a limit η = limk ηk of
classes of effective divisors. Then, fixing an ample class α ∈ N1(X)R, we
have

η = lim
k→∞

(ηk +
1
k
α).

Since each of the classes ηk + 1
k α is big thanks to Proposition 3.26, then η

is a limit of big classes, whence η ∈ Big(X).
The first inclusion implies that int(Eff(X)) ⊆ int(Big(X)), so that, in
order to prove the second one, it suffices to show that

int(Big(X)) ⊆ Big(X).

By absurd let x ∈ int(Big(X)) \ Big(X) and fix a norm || · || on N1(X)R.
Then, as int(Big(X)) is open, there exists an ε > 0 such that the ball of
center x and radius ε

Dε(X) ⊆ int(Big(X)) =⇒ Dε(X) ⊆ Big(X).
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Moreover, as Big(X) is dense in its closure and Dε(X) is a non-empty open
subset of Big(X), we have

Big(X) ∩Dε(X) = A

where A is a non-empty open set.
Now let

A′ = {2x− y | y ∈ A}.

We observe that A′ is open and A′ ⊆ Dε(X) ⊆ Big(X); moreover we claim
that

A′ ∩Big(X) = ∅

so that we obtain a contradiction because Big(X) intersects all the open
sets contained in its closure.
To prove the claim, if by absurd there is an element y′ = 2x − y ∈ A′ ∩
Big(X), then, as Big(X) is a cone, we get 1

2y + 1
2y
′ = x ∈ Big(X), leading

again to a contradiction.
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Chapter 4

The graded ring R(X,D)

4.1 Algebraic preliminaries

Definition 4.1. A graded ring is a ring R, together with a decomposition
R =

⊕
i≥0Ri, with the Ri subgroups of R for all i ≥ 0, such that

RmRn ⊆ Rm+n

for all n, m ≥ 0.

Thus R0 is a subring of R (in particular it contains the identity element)
and each Rn is an R0-module.

Definition 4.2. Given a graded ring R, a graded R-module is an R-module
M , together with a decomposition M =

⊕
i≥0Mi, with the Mi subgroups

of M for all i ≥ 0, such that

RmMn ⊆Mm+n

for all m, n ≥ 0.
An element x ∈M is homogeneous if x ∈Mn for some n (n=degree of x).

We observe that each element y ∈ M can be written uniquely as a sum
y =

∑
yn, where yn ∈ Mn for all n ≥ 0 and all but a finite number of the

yn are 0.

Definition 4.3. Let R =
⊕

i≥0Ri be a graded ring.
For all p ≥ 1 we define the Veronese subring

R(p) =
⊕
i≥0

Rip.
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Lemma 4.4. Let A be a graded ring such that A is generated by A1 as an
A0-algebra (in other words A = A0[A1]), let M be a graded A-module and let
{yi}i∈I be a system of homogeneous generators of M such that deg(yi) ≤ n0

∀i ∈ I.
Then, for all n ≥ n0, for all k ≥ 0

Mn+k = AkMn.

Proof. Let n ≥ n0, k > 0 and x ∈ Mn+k. Since the yi generate M , there
exists a finite set I ⊆ N and a family {ai}i∈I of elements of A such that
x =

∑
i∈I aiyi; we can further suppose that each ai is homogeneous and

of degree n + k − deg(yi). As A = A0[A1] and deg(ai) > 0, we can write
each ai as a sum of elements of the form bb′, with b ∈ A1 and b′ ∈ A, thus
x ∈ A1Mn+k−1.
Therefore

Mn+k = A1Mn+k−1

and the lemma follows by induction on k.

Lemma 4.5. Let A be a graded ring such that A = A0[A1] and let S =⊕
i≥0 Si be a graded A-algebra, which is finitely generated as an A-module.

Then there exists an n0 ∈ N such that

1. Sn+k = Sk · Sn for all n ≥ n0 and k ≥ 0.

2. S(d) = S0[Sd] for all d ≥ n0.

Proof.

1. We can always suppose that S is generated by a finite number of ho-
mogeneous elements. Hence, applying Lemma 4.4, there exists an integer
n0 > 0 such that, for n > n0 and k ≥ 0, Sn+k = AkSn. Then

SkSn ⊆ Sn+k = AkSn ⊆ SkSn =⇒ Sn+k = SkSn.

2. For d ≥ n0 and m > 0, we have that Smd = (Sd)m, as follows by induction
on m applying the first statement. This implies that S(d) = S0[Sd].

Theorem 4.6. Let R =
⊕

i≥0Ri be a graded ring, which is a finitely gen-
erated R0-algebra.
Then there exists an integer l ≥ 1 such that the Veronese subalgebra R(ml)

is generated by Rml as an R0-algebra for all m ≥ 1.
In other words R(ml) = R0[Rml] ∀m ≥ 1.
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Proof. Let {xj}1≤j≤s be a set of generators of R as an R0-algebra. Without
loss of generality we can assume ∀j = 1, . . . , s that xj is an homogeneous
element and hj = deg(xj) > 0. Let q = m.c.m.{hj} and qj = q/hj for all
j = 1, . . . , s.
Let B be the graded R0-subalgebra of R generated by all the xqjj . All these
elements have degree q, thus Bi = 0 if i is not a multiple of q, so that R(q)

is a graded B-module.
In order to have a ring generated by its part of degree one, we define the
graded ring A by putting Ai = Biq. With the same spirit we consider S as
the graded ring such that Si = Riq. In other words A (respectively S) and
B (respectively R(q)) contain the same elements, but we have changed the
graduation so that A = A0[A1] and S is a graded A-module.
Now we consider all the elements of R of the form xα1

1 xα2
2 · · ·xαss such that

• 0 ≤ αj ≤ qj for 1 ≤ j ≤ s,

• α1h1 + · · ·+ αshs ≡ 0 (mod q).

The number of elements of this type is finite and we claim that they generate
R(q) as a B-module. In fact it is enough to show that every element of R(q)

of the form xn1
1 xn2

2 · · ·xnss is a B-linear combination of the above elements.
But, for every j = 1, . . . , s, we can write nj = kjqj + rj , for suitable non
negative integers kj , rj , with rj < qj . Then we have

xn1
1 xn2

2 · · ·x
ns
s = (xq11 )k1 · · · (xqss )ks · (xr11 . . . xrss ).

As these elements are in R(q), their degree is a multiple of q, whence

s∑
i=1

hiqiki +
s∑
i=1

rihi = q(
s∑
i=1

ki) +
s∑
i=1

rihi ≡ 0 (mod q),

so that we have
s∑
i=1

rihi ≡ 0 (mod q).

This proves our claim because the xqjj belong to B by definition.
Therefore, since R(q) is a finitely generated B-algebra, analogously S is a
finitely generated A-algebra. Applying Lemma 4.5, we find an n0 ∈ N such
that S(d) = S0[Sd] for all d ≥ n0, that is R(qd) = R0[Rqd]. The theorem
follows by taking l = qn0.

4.2 Finitely generated line bundles

Definition 4.7. Let X be a variety and let L be a line bundle on X.
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The graded ring associated to L is the graded C-algebra

R(X,L) =
⊕
m≥0

H0(X,Lm).

Analogously, the graded ring associated to a divisor D is

R(X,D) =
⊕
m≥0

H0(X,mD) = R(X,OX(D)).

Definition 4.8. A line bundle L on a variety X is finitely generated if its
graded ring R(X,L) is finitely generated as a C-algebra. A divisor D is
finitely generated if the line bundle OX(D) is such.

Lemma 4.9. Let X be a normal variety and let L be a globally generated
line bundle on X.
Then there exists an integer m0(L) > 0 such that ∀ a, b ≥ m0(L) the map-
pings

H0(X,La)⊗H0(X,Lb) −→ H0(X,La+b)

determined by multiplication of sections are surjective. More generally, for
any coherent sheaf F on X, there exists an integer m0(F ,L) > 0 such that
for any a, b ≥ m0(F ,L)

H0(X,F ⊗ La)⊗H0(X,Lb) −→ H0(X,F ⊗ La+b)

is surjective.

Proof. Thanks to Theorem 3.16 there is an algebraic fibre space φ : X →
Y ⊆ Pr and an ample line bundle A on Y such that L = φ∗A, whence we
have H0(X,Lm) = H0(X,φ∗(Am)) = H0(Y,Am).
Thus, for the first statement, we can suppose L ample, so that the assertion
follows by Proposition 2.8.
For the second, using projection formula, we observe that H0(X,F ⊗La) =
H0(X,F ⊗ φ∗(Aa)) = H0(Y, φ∗F ⊗ Aa), where φ∗F is a coherent sheaf on
Y . Therefore we reduce again to the ample case and use Proposition 2.8.

Theorem 4.10. Let X be a normal variety, let L be a line bundle on X.
If L is semiample, then it is finitely generated.

Proof. As L is semiample there exists an integer k > 0 such that Lk is free.
Hence, applying Lemma 4.9, we obtain that the Veronese subalgebra

R(X,L)(k) =
⊕
m≥0

H0(X,Lmk)
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is finitely generated. In fact there exists an integer m0 such that it is gen-
erated by the generators of H0(X,Lik), for i = 0, . . . ,m0.
Now we use the second statement of the same lemma (taking F in turn to
be each of the sheaves L, L2, . . . , Lk−1) to find the finite generation of the
graded ring R(X,L) itself.

Theorem 4.11 (Wilson). Let X be a normal variety and let D ∈ Div(X)
be a big and nef divisor.
Then there exists an effective divisor N and a natural number m0 such that
for any m > m0

|mD −N |

is a free linear series.

Proof. Let dim(X) = n. Since D is big, thanks to Theorem 3.20, for every
very ample line bundle B there is an integer m0 > 0 and an effective divisor
N such that

m0D ∼ (n+ 1)B +N.

Then
mD −N ∼ (m−m0)D + (n+ 1)B ∼ B + nB + kD,

where k = m−m0 > 0, whence kD is nef.
Thus, for all i = 1, . . . , n, we get

mD −N − iB ∼ kB + P

with k > 0 and P nef. Hence, using Fujita’s vanishing theorem (2.28), we
have that
H i(X,OX(mD −N − iB)) = 0 ∀i > 0.
In other words mD−N is 0-regular with respect to B, whence it is globally
generated by Theorem 2.14, that is |mD −N | is a free linear series.

Definition 4.12. Let X be a variety and let D ∈ Div(X). Given a linear
series |V | ⊆ |D| and a point x ∈ X we define the multiplicity of |V | at x,
denoted by multx|V |, as the multiplicity at x of a general divisor in |V |.
Equivalently

multx|V | = min
D′∈|V |

{multxD′}.

Note that, in the above definition, we use the convention that, denoting by
0 the trivial divisor on X, multx|0| = multx0 = 0 for all x ∈ X.
Note also that, being L a line bundle on X and |V | ⊆ |L| a linear series, a
point x ∈ X is a base point of |V | if and only if multx|V | > 0. In particular
L is globally generated if and only if multx|L| = 0 for all x ∈ X.
Using Wilson’s theorem we can give a bound on multiplicity of big and nef
divisors at every point:
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Corollary 4.13. Let D be a nef and big divisor on a variety X. Then there
exists a constant C > 0 (not depending on m and x) such that

multx|mD| ≤ C

∀ x ∈ X, ∀ m ∈ N(D).

Proof. Wilson’s theorem allows us to take an effective divisor N such that
mD −N is free ∀m > m0.
Thus, for all x ∈ X, multx|mD − N | = 0, whence multx|mD| ≤ multxN
for all m > m0. The assertion follows because the multiplicity of a single
divisor at any point is finite.

Lemma 4.14. Let X be a normal variety and let D ∈ Div(X).
If k(X,D) ≥ 0 and D is finitely generated, then there exists a positive integer
n ∈ N(D) such that

multx|knD| = k ·multx|nD|

∀k ≥ 1, ∀x ∈ X.

Proof.

(≤) For this inequality we do not need the hypothesis of finite generation
and it holds for all n ∈ N(D). In fact let x ∈ X and let E ∈ |nD| be an
effective divisor such that multx|nD| = multxE. Then, for every integer
k > 0, kE ∈ |knD|, whence

multx|knD| ≤ multx(kE) = k ·multxE = k ·multx|nD|.

(≥) D finitely generated means that the graded ring R(X,D) is finitely gen-
erated as anR(X,D)0-algebra. By Theorem 4.6 there is an integer l > 0 such
that H0(X,OX(mlD)) generates the Veronese subring R(X,D)(ml) ∀m ≥ 1.
Moreover since k(X,D) ≥ 0 we have that N(D) 6= (0). Thus, being e = e(D)
the exponent of D, ae ∈ N(D) ∀a >> 0.
Now, if h is a sufficiently large natural number, and putting n = hel, we
have that H0(X,OX(nD)) generates the Veronese subring R(X,D)(n) and
n ∈ N(D) (so that, in particular, |knD| 6= ∅ for all k ≥ 1).
Then, for all k > 0, we can write every section f ∈ H0(X,OX(knD)) as
f = f1 · · · · · fk, for suitable fi ∈ H0(X,OX(nD)).
Thus for each E ∈ |knD| there exist F1, . . . , Fk ∈ |nD| such that E =

∑
Fi,

whence

multxE ≥
k∑
i=1

multxFi ≥ k ·multx|nD|

for all x ∈ X. Therefore

multx|knD| ≥ k ·multx|nD|
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for all k ≥ 1, for all x ∈ X.

Corollary 4.13 and Lemma 4.14 allow us to give a partial converse of Theo-
rem 4.10 in the case big and nef.

Theorem 4.15. Let X be a normal variety and let D ∈ Div(X) be a big
and nef divisor. Then D is finitely generated if and only if it is semiample.

Proof. If D is semiample it is finitely generated by Theorem 4.10.
For the converse as D is big we have that k(X,D) ≥ 0, then we can apply
Lemma 4.14 to find that there exists n ∈ N(D) such that

multx|knD| = k ·multx|nD|

for all k ≥ 1, for all x ∈ X.
But, since D is big and nef, ∀ x ∈ X the left-hand side is bounded when
k → ∞ (Corollary 4.13), therefore multx|nD| = 0, that is x is not in the
base locus of |nD|, whence |nD| is free.

The following theorem gives a characterization of semiampleness in a general
setting. A possible generalization, involving discrete valuations, is presented
in Chapter 5, Theorem 5.46.

Theorem 4.16. Let X be a normal variety and let D be a divisor on X.
Then D is semiample if and only if D satisfies the following three conditions:

1. D is finitely generated.

2. k(X,D) ≥ 0.

3. There exists a constant C > 0 such that ∀ m ∈ N(D), ∀ x ∈ X, we
have

multx|mD| ≤ C.

Proof.

(⇐) As D satisfies the hypothesis of Lemma 4.14, we can find a positive
integer n ∈ N(D) such that

multx|knD| = k ·multx|nD|

for all k ≥ 1, for all x ∈ X.
But the third hypothesis assures that the left-hand side is bounded as
k → ∞, whence we must have multx|nD| = 0. Therefore nD is globally
generated, that is D is semiample.
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(⇒) D is finitely generated thanks to Theorem 4.10.
k(X,D) ≥ 0 because we can consider l ∈ N such that lD is globally gener-
ated, so that H0(X,OX(lD)) 6= 0.
We concentrate on the third statement.
As D is semiample there exists an integer l0 such that l0D is free.
Now let r ∈ {0, . . . , l0 − 1}, so that, thanks to Lemma 4.9, there exists an
integer m0(r,D) such that whenever a, b ≥ m0(r,D) the multiplication map

H0(X, (al0 + r)D)⊗H0(X, bl0D) −→ H0(X, ((a+ b)l0 + r)D)

is surjective.
We define

XD = {r ∈ {0, . . . , l0 − 1} such that |(m0(r,D)l0 + r)D| 6= ∅}

while we denote by m1 the integer m1 = max0≤r<l0{m0(r,D)}.
Hence, for all r ∈ XD we can choose an effective divisor Dr ∈ |(m0(r,D)l0 +
r)D|.
Let

C ′ = max{multx Dr | r ∈ XD; x ∈ X},

C ′′ = max{multx|mD| | m ∈ N(D), m < (2m1 + 1)l0; x ∈ X},

C = max{C ′, C ′′}.

Now we fix x ∈ X, m ∈ N(D), and we want to show that multx|mD| ≤ C.
If m < (2m1 + 1)l0, then multx|mD| ≤ C ′′ ≤ C.
If m ≥ (2m1 + 1)l0 we can write m = ql0 + r, with q ∈ N and 0 ≤ r ≤ l0− 1,
or equivalently m = (q−m0(r,D))l0 +m0(r,D)l0 + r, where q−m0(r,D) ≥
m0(r,D). In fact

q −m0(r,D) ≥ m−m0(r,D)l0 − l0
l0

≥ m0(r,D)l0
l0

= m0(r,D).

Then we can apply Lemma 4.9 to the map

H0(X, (m0(r,D)l0 + r)D)⊗H0(X, (q −m0(r,D))l0D) −→ H0(X,mD)

and we find it is surjective.
Hence, being H0(X,mD) 6= 0, we get H0(X, (m0(r,D)l0 + r)D) 6= 0, that
is r ∈ XD.
Let T ∈ |(q −m0(r,D))l0D| be a general divisor, then multxT = 0 because
|(q −m0(r,D))l0D| is a free linear series. Moreover T + Dr ∼ mD and, in
particular, as T and Dr are effective divisors, T +Dr ∈ |mD|.
Therefore

multx|mD| ≤ multx(T +Dr) = multx(Dr) ≤ C ′ ≤ C.
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4.3 Curves

Let us consider the case of a smooth curve X, let D be a divisor on X.
Properties like semiampleness and finite generation of D are easy to verify
and they are very closely related to its degree and Iitaka dimension.
We can consider three cases:

degD > 0:
One easily checks

degD > 0⇐⇒ D ample⇐⇒ D big⇐⇒ k(X,D) = 1.

In particular thanks to ampleness D is nef and semiample, so that it is
finitely generated.

degD = 0:
Certainly we have that D is nef and it is not ample nor big.
In order to study semiampleness we must distinguish two cases:

• k(X,D) = 0.

This is equivalent to say that D is a torsion divisor, that is there is an m > 0
such that mD ∼ 0.
D is semiample because mD is free, then it is finitely generated.

• k(X,D) = −∞.

This is the case of a non-torsion divisor, that is mD 6∼ 0 for any integer
m > 0, then H0(X,OX(mD)) = 0 ∀m > 0.
In particular D cannot be semiample but it is finitely generated because
R(X,D) = C.

degD < 0:
In this case we cannot find an effective divisor linearly equivalent to any
multiple of D, then the Iitaka dimension k(X,D) = −∞ and D is not
semiample nor nef.
Anyway D is again finitely generated.
We observe that these four situations all really occur. In fact the following
proposition assures the existence of a degree-zero non-torsion line bundle on
a curve.

Proposition 4.17. Let C be a smooth curve of genus g ≥ 1 and let Pic0(C)
be the group of isomorphism classes of line bundles on C of degree zero.
Then Pic0(C) has a structure of abelian variety and all but numerably many
classes of Pic0(C) are represented by non-torsion line bundles.

Summarizing we have:
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1. Any divisor D on a smooth curve X is finitely generated.

2. D is semiample if and only if k(X,D) ≥ 0.

3. We can have a finitely generated nef divisor that is not semiample.

4.4 Zariski’s construction

We have seen in the last section how properties like finite generation and
semiampleness of a divisor D on a smooth irreducible curve are very easy
to verify. In fact the first is trivial while the second holds whenever D has
non-negative Iitaka dimension.
When passing to surfaces things become more complicated. In particular in
this section we deal with an example, provided by Zariski, of a nef and big
divisor on a surface, that is not semiample nor finitely generated.

Let us consider a nonsingular cubic plane curve C0 and let l be a hyperplane
section on P2. Thanks to Proposition 4.17 we can choose twelve points
P1, . . . , P12 ∈ C0 such that η = OC0(P1 + · · · + P12 − 4l) is a non-torsion
line bundle of degree zero (in fact it suffices to fix P2, . . . , P12 ∈ C0, let P1

vary on all X and use the fact that two points on C0 are linearly equivalent
if and only if they are the same point to find a not numerable quantity of
isomorphism classes of line bundles in Pic0(C)). Let

µ : X = Bl{P1+···+P12}P
2 −→ P2

be the blowing up of P2 in these twelve points.
Denoting by E the exceptional divisor, we can decompose it as E =

∑12
i=1Ei,

where Ei is the exceptional component over Pi.
We put H = µ∗l, the pullback of the hyperplane section on P2, and we
denote by C the proper transform of C0 under µ, thus C ' C0.
We have that

C ∈ |3H − E|

because C ∼ µ∗(C0)− E and µ∗(C0) ∼ 3H (in fact 3l ∼ C0 on P2).
Now we consider on X the divisor

D = 4H − E.

Note that

• (C2) = ((3H − E)2) = −3,

• (D · C) = (H · C) + (C2) = (H · (3H − E))− 3 = 0.
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We will show that D is big and nef but it is not finitely generated (then, in
particular, it is not semiample by Theorem 4.10).

D is big: D ∼ H + C, then it is a sum of a big and effective divisors,
whence it is big.

D is nef : We observe that H = D − C is free because it is the pullback
under µ of a hyperplane section on P2, so that it is nef.
If by absurd D is not nef, we can find an irreducible curve C ′ such that
(D ·C ′) < 0. But D = H +C, thus we have (H ·C ′) + (C ·C ′) < 0. H being
nef, we must have (C · C ′) < 0, so that we get C ′ = C. Therefore we find
the contradiction (D · C) < 0.

D is not finitely generated: We will prove that for all m > 0 the linear
series |mD| contains C in its base locus, but |mD − C| is free.
This is enough to show that D is not finitely generated because, by Lemma
4.14, finite generation implies that the multiplicity of a point in a base curve
of |mD| must go to infinity with m.
C ⊆ Bs(|mD|) because, identifying C ' C0 through µ, we have OC(D) =
η−1, whence OC(mD) = η−m has no sections (because deg η = 0 and it is
not a torsion line bundle).

To show that |mD − C| is free we work by induction:
For m = 1 we have that mD − C = D − C ∼ H is globally generated.
We assume now |(m− 1)D − C| free and we prove |mD − C| is such.
We begin observing that mD − C ∼ (m − 1)D + H, thus we can consider
the exact sequence

0→ OX((m− 1)D − C +H)→ OX(mD − C)→ OC(mD − C)→ 0.

The line bundle on the right has degree three on the elliptic curve C, whence
it is free. That on the left is free because both (m − 1)D − C and H are
free. Thus, passing to cohomology, we find that Bs(|mD − C|) ⊆ C.
Now, if, by absurd, there exists x ∈ Bs(|mD − C|), then, as x ∈ C, there
exists a non-zero section τ ∈ H0(C,OC(mD − C)) such that τ(x) 6= 0.
If we prove that the restriction map

δ : H0(X,OX(mD − C)) −→ H0(C,OC(mD − C))

is surjective, we find that there exists a non-zero section
s ∈ H0(X,OX(mD − C)) not vanishing at x, and this leads to a contradic-
tion.
The following lemma completes the proof assuring the surjectivity of δ.

Lemma 4.18. Let X,D,C,H be as above.
Then H1(X,OX((m− 1)D − C +H)) = 0 for all m ≥ 1.
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Proof. We begin observing that C ∼ −KX , where KX is the canonical sheaf
on X, then we must prove that H1(X,OX(KX + (m− 1)D +H)) = 0.
We proceed by induction:
For m = 1, H1(X,OX(KX + H)) = H1(X,OX(−H)) thanks to Serre’s
duality theorem. We use the exact sequence

0→ OX(−H)→ OX → OH → 0.

Passing to cohomology and observing that H0(X,OX) goes isomorphically
into H0(H,OH) and that H1(X,OX) ' H1(P2,OP2) = 0 we have the in-
duction base.
Now, assume that the assertion holds form−2. Thanks to the exact sequence

0→ OX(KX + (m− 2)D +H)→ OX(KX + (m− 1)D +H)→

→ OD(KX + (m− 1)D +H)→ 0

it is enough to show that H1(D,OD(KX + (m− 1)D +H)) = 0.
Now, we observe that Bs(|D|) = C. In fact C ⊆ Bs(|D|) and the other
inclusion follows because D = H + C and H is free.
Then, considering D as a closed subscheme, there exists Γ ∈ |H| such that
D = Γ ∪ C and Γ ' P1.
Hence there is an exact sequence

0→ OΓ(−C)→ OD → OC → 0.

And tensoring by KX + (m− 1)D +H we obtain

0→ OΓ(2KX + (m− 1)D +H)→ OD(KX + (m− 1)D +H)→

→ OC(KX + (m− 1)D +H)→ 0.

But

deg OΓ(2KX + (m− 1)D +H) = 4m− 9 > 2g(Γ)− 2 ∀m > 1

and
deg OC(KX + (m− 1)D +H) = 6 > 2g(C)− 2 ∀m > 1.

Therefore the assert follows because both the term on the left and that on
the right have h1 = 0.
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Chapter 5

Valuations

5.1 Restricted base locus

Definition 5.1. Let X be a normal variety and let D be an R-divisor on
X. The restricted base locus of D is

B−(D) =
⋃
A

B(D +A),

where the union is taken over all ample R-divisors A such that D + A is a
Q-divisor.

We recall that, given a Q-divisor E, we denote by B(E) the stable base locus
of E (see Def. 3.5 and Def. 3.8).

Remark 5.2. Note that if D is an R-divisor and c ∈ R+, then B−(D) =
B−(cD), see [ELMNP06, 1.15].

Lemma 5.3. Let X be a normal variety, let || · || be a norm on N1(X)R
and let D be an R-divisor on X. Then

1. There exists a sequence {Am}m∈N of ample R-divisors such that

• limm→∞ ||Am|| = 0,

• D +Am is a Q-divisor for every m ∈ N.

2. D is nef if and only if B−(D) = ∅.

Proof.

1. Let A be an ample R−divisor. Since the ample cone Amp(X) ⊆ N1(X)R
is open by Proposition 2.23, we have that there exists an ε0 > 0 such that
Dε0([A]), the ball of radius ε0 and centered in the numerical class of A, is
contained in Amp(X).
On the other hand for every ε > 0 we have that
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Dε([D +A]) ∩N1(X)Q 6= ∅,

so that there exists a Q-divisor D′ such that ||D′ −D −A|| < ε0.
Hence [D′ − D] ∈ Dε0([A]) ⊆ Amp(X), that is A′ = D′ − D is ample and
D +A′ = D′ is a Q-divisor.
Thus we can write

A′ =
s∑
i=1

ciA
′
i

for suitable ci ∈ R+ and A′i ample integral divisors.
Moreover, for all i = 1, . . . , s, we can consider a sequence {qim}m∈N such
that

• qim ∈ Q+ ∀m ∈ N;

• qim < ci ∀m ∈ N;

• limm→∞ qim = ci.

We define

Am = A′ −
s∑
i=1

qimA
′
i =

s∑
i=1

(ci − qim)A′i,

so that, for all m ∈ N, we have that Am is ample and D+Am is a Q-divisor.
Moreover ||Am|| → 0, so that the assertion follows.

2. (⇒) Let A be an ample R-divisor on X such that D +A is a Q-divisor.
By the nefness of D it follows that D + A is ample, whence there exists an
integer m > 0 such that m(D +A) is integral and very ample.
Thus B(D +A) ⊆ Bs(|m(D +A)|) = ∅.
(⇐) Let D be an R-divisor with B−(D) = ∅. Then B(D + A) = ∅ for all
ample R-divisors A such that D +A is a Q-divisor.
Let {Am}m∈N be the sequence of ample R-divisors found in the first part of
the lemma. Then, for all m ∈ N, we can choose an integer bm > 0 such that
bm(D +Am) is integral and

B(bm(D +Am)) = B(D +Am) = ∅.

Hence bm(D +Am) is semiample, so that D +Am is nef for all m > 0.
Thus, for every irreducible curve C on X we have

((D +Am) · C) ≥ 0.

In other words
(D · C) ≥ −(Am · C),

and, passing to limit, as ||Am|| → 0, we obtain(D · C) ≥ 0.
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Proposition 5.4. Let X be a normal variety, let || · || be a norm on N1(X)R
and let D be an R-divisor on X.
If {Am}m∈N is a sequence of ample R-divisors such that

• limm→∞ ||Am|| = 0,

• D +Am is a Q-divisor for every m ∈ N,

then
B−(D) =

⋃
m

B(D +Am).

In particular B−(D) is a countable union of Zariski closed subsets of X.

Proof. By definition we obviously have that B−(D) ⊇
⋃
m B(D +Am).

For the converse let A be an ample divisor such that D + A is a Q-divisor.
Then, as ||Am|| → 0, there exists a sufficiently large m ∈ N such that A−Am
is ample (Proposition 2.23). Hence, as D +A = (D +Am) + (A−Am) and
B(A−Am) = ∅, we get

B(D +A) ⊆ B(D +Am) ∪ B(A−Am) = B(D +Am).

We find the assert.

5.2 Discrete valuations and linear series

We begin this section by recalling some basic algebraic notions about discrete
valuations that we will need later.

Definition 5.5. Let B be an integral domain and let K be its field of
fractions. B is a valuation ring of K if, for every x ∈ K∗, either x ∈ B or
x−1 ∈ B.

Definition 5.6. Let K be a field. A discrete valuation on K is an applica-
tion v : K∗ → Z such that

• v(xy) = v(x) + v(y) ∀x, y ∈ K∗,

• v(x+ y) ≥ min {v(x), v(y)} ∀x, y ∈ K∗ such that x+ y 6= 0.

If k ⊆ K is a subfield, a discrete valuation on K/k is a discrete valuation v
on K such that v(x) = 0 for all x ∈ k.

Given a discrete valuation on K we observe that the set consisting of 0
and all x ∈ K∗ with v(x) ≥ 0 is a valuation ring of K. This justifies the
following:
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Definition 5.7. Let v be a discrete valuation on a field K. The ring

Rv = {f ∈ K∗ : v(f) ≥ 0} ∪ {0}

is called the valuation ring of v.

In the next proposition we list some basic properties of the ring Rv.

Proposition 5.8. Let v be a discrete valuation on a field K and let Rv be
the valuation ring of v. Then

1. Rv is a local domain with maximal ideal

mRv = {f ∈ K∗ : v(f) > 0} ∪ {0}.

2. Rv is a PID and each ideal is generated by any element of the ideal of
minimum valuation.

3. Spec Rv = {(0),mRv}.

Proof. See [AM00, Chapter 9, page 94].

Definition 5.9. Let v be a discrete valuation on a field K with valuation
ring Rv. Let a ⊆ Rv be an ideal, a 6= (0). Then we define

v(a) = min{v(f) : f ∈ a, f 6= 0}.

Equivalently, by Proposition 5.8 (2), we have v(a) = v(f) for any f such
that a = (f).

Proposition 5.10. Let K be a field, let v be a discrete valuation on K and
let a, b ⊆ Rv be non-zero ideals. Then

1. a ⊆ b =⇒ v(a) ≥ v(b),

2. v(ab) = v(a) + v(b),

3. v(a) = 0⇐⇒ a = Rv.

Proof.

1. Let a = (f) and b = (g). Then f ∈ (f) ⊆ (g), so that there exists a
non-zero element h ∈ Rv such that f = hg.
Hence v(a) = v(f) = v(hg) = v(h) + v(g) ≥ v(g) = v(b).

2. Let f, g ∈ Rv be such that a = (f) and b = (g), then it is easy to see
that ab = (fg).
Hence v(ab) = v(fg) = v(f) + v(g) = v(a) + v(b).
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3. Let a = (f). Then

v(a) = 0⇐⇒ v(f) = 0⇐⇒ (f) = Rv ⇐⇒ a = Rv.

From now on we deal with discrete valuations of the function field of a
variety that are zero on the subfield of complex numbers. Passing through
the notion of center we will be able to use them to define “valuations” of
ideal sheaves and linear series.
We begin by recalling the relation of domination between two local rings:

Definition 5.11. Let A and B be local rings, respectively with maximal
ideal mA and mB. We say that B dominates A if

• A ⊆ B,

• mA ⊆ mB.

Now, for any variety X, we can define the center of a valuation on the
function field K(X):

Definition 5.12. Let X be a variety, let K = K(X) be the function field
of X and let v be a discrete valuation on K/C.
We say that v has center ξ ∈ X if Rv dominates OX,ξ.

Proposition 5.13. Let X be a variety with function field K = K(X) and
let v be a discrete valuation on K/C. Then v has a unique center ξ ∈ X.

Proof. See [Vaq00, Prop. 6.2 and Prop. 6.3]

From now on, with a slight abuse of notation, when speaking about the
center of v we consider the subvariety Zv ⊆ X with generic point ξ.
Note that every subvariety Z of a variety X is the center of a discrete
valuation on K(X)/C.

Definition 5.14. Let X be a variety and let I be a non-zero quasi-coherent
sheaf of ideals. We denote by Z(I) the closed subset of X defined by I.

Definition 5.15. Let X be a variety with function field K = K(X), let v
be a discrete valuation on K/C with center Zv ⊆ X and let ξ ∈ X be the
generic point of Zv.
If I ⊆ OX is a non-zero quasi-coherent sheaf of ideals, we put

v(I) = v((Iξ)Rv),

where (Iξ)Rv is the ideal generated by the set Iξ in the ring Rv.
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Note that the definition makes sense because Iξ ⊆ OX,ξ ⊆ Rv. Moreover
Iξ is an ideal of OX,ξ, but it is not, in general, an ideal of Rv, whence it is
necessary to pass to (Iξ)Rv .

Proposition 5.16. Let X be a variety with function field K = K(X), let v
be a discrete valuation on K/C with center Zv ⊆ X and let I, I ′ ⊆ OX be
non-zero quasi-coherent ideal sheaves. Then

1. v(I) = 0⇐⇒ Zv 6⊆ Z(I),

2. I ⊆ I ′ =⇒ v(I) ≥ v(I ′),

3. v(I · I ′) = v(I) + v(I ′).

Proof.

1. v(I) = 0 if and only if, by definition, v((Iξ)Rv) = 0. Thanks to Propo-
sition 5.10(3), this is equivalent to say that (Iξ)Rv = Rv. Hence it remains
to show that (Iξ)Rv = Rv if and only if Zv 6⊆ Z(I) or, equivalently, that
(Iξ)Rv = Rv if and only if Iξ = OX,ξ.
Assuming (Iξ)Rv = Rv, if by absurd Iξ 6= OX,ξ, then Iξ ⊆ mξ ⊆ mRv .
Hence (Iξ)Rv ⊆ mRv and we find a contradiction.
On the contrary, if Iξ = OX,ξ, then 1 ∈ Iξ, so that (Iξ)Rv = Rv.

2. I ⊆ I ′ =⇒ Iξ ⊆ I ′ξ =⇒ (Iξ)Rv ⊆ (I ′ξ)Rv .
By Proposition 5.10 (1) it follows that v(I) ≥ v(I ′).
3. By definition v(I ·I ′) = v(((I ·I ′)ξ)Rv). But ((I ·I ′)ξ)Rv = (Iξ ·I ′ξ)Rv =
(Iξ)Rv · (I ′ξ)Rv . Therefore, using Proposition 5.10 (2), we get

v(I · I ′) = v((Iξ)Rv · (I ′ξ)Rv) = v((Iξ)Rv) + v((I ′ξ)Rv) = v(I) + v(I ′).

Definition 5.17. Let X be a variety with function field K = K(X), let
v be a discrete valuation on K/C and let D be a divisor on X such that
|D| 6= ∅. Then we put

v(|D|) = v(b(|D|)),

where b(|D|) is the base ideal of the linear series |D| (Definition 1.9).

Proposition 5.18. Let X be a variety with function field K = K(X), let v
be a discrete valuation on K/C having center Zv on X and let D and E be
divisors on X such that |D| 6= ∅, |E| 6= ∅. Then

1. v(|D|) = 0⇐⇒ Zv 6⊆ Bs(|D|),
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2. v(|D+E|) ≤ v(|D|) + v(|E|) and equality holds if the map of multipli-
cation of sections

µD,E : H0(X,OX(D))⊗H0(X,OX(E)) −→ H0(X,OX(D + E))

is surjective.

3. Zv 6⊆ Bs(|E|) =⇒ v(|D + E|) ≤ v(|D|).

Proof.

1. v(|D|) = 0 if and only if, by definition, v(b(|D|)) = 0. But, by Proposition
5.16 (1), this happens if and only if Zv 6⊆ Z(b(|D|)) = Bs(|D|).
2. By Proposition 1.10 we have that b(|D|) · b(|E|) ⊆ b(|D + E|). Hence,
thanks to Proposition 5.16(2),(3), we find

v(|D + E|) ≤ v(b(|D|) · b(|E|)) = v(b(|D|)) + v(b(|E|)) = v(|D|) + v(|E|).

Moreover, again by Proposition 1.10, if the map of multiplication of sections
µD,E is surjective, then b(|D|) ·b(|E|) = b(|D+E|), so that we get the assert.

3. Follows immediately combining the first and the second part.

5.3 Asymptotic order of vanishing

Now, given an integral divisor D with non negative Iitaka dimension on a
normal variety X, we will define an “asymptotic valuation” of D, that is a
measure of the order of vanishing of |mD| at the center Zv of a valuation v
as m→∞. Before carrying on we recall the following lemma:

Lemma 5.19. Let {αm}m≥m0 be a sequence of real numbers such that

• αm ≥ 0 ∀m ≥ m0,

• αp+q ≤ αp + αq ∀p, q ≥ m0.

Then there exists the limit

lim
m→∞

αm
m

= inf
m≥m0

{αm
m
}.

Proof. See [Mus02, Lemma 1.4].

Definition 5.20. Let X be a normal variety with function field K = K(X),
let D be an integral divisor on X with k(X,D) ≥ 0 and let v be a discrete
valuation on K/C.
If e = e(D) is the exponent of D, we define the asymptotic order of vanishing
of D along v as

v(||D||) = lim
m→∞

v(|meD|)
me

.
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In particular if D is big, since, by Corollary 3.21, D has exponent e(D) = 1,
we have

v(||D||) = lim
m→∞

v(|mD|)
m

.

Remark 5.21. The existence of the limit in Definition 5.20 follows by
Proposition 5.18 and Lemma 5.19:
In fact, if D has exponent e = e(D), then there exists an integer m0 > 0
such that |meD| 6= ∅ for all m ≥ m0. Hence we can use Proposition 5.18 (2)
to find that v(|(p+ q)eD|) ≤ v(|peD|) + v(|qeD|) for all p, q ≥ m0.
Moreover, for all m ≥ m0, we have v(|meD|) ≥ 0 by definition.
Therefore Lemma 5.19 applies to the sequence {v(|meD|)}m≥m0 , so that
there exists

lim
m→∞

v(|meD|)
me

=
1
e
· lim
m→∞

v(|meD|)
m

=
1
e
· inf
m≥m0

{v(|meD|)
m

}.

Thus the asymptotic order of vanishing v(||D||) is well defined.

Proposition 5.22. Let D be an integral divisor on a normal variety with
k(X,D) ≥ 0. Then for any k ∈ N we have

v(||kD||) = k · v(||D||).

Proof. Denoting by e1 the exponent of D and by ek the exponent of kD, we
begin noting that kek/e1 is an integer number:
In fact it is easy to see that ek = e1/g.c.d.(e1, k), whence

kek
e1

=
k

g.c.d.(e1, k)
= n ∈ N.

Thus, by the definition of v(||D||) as a limit it follows that

v(||D||) = lim
m→∞

v(|e1mD|)
e1m

= lim
m→∞

v(|e1
kek
e1
mD|)

e1m
kek
e1

=

=
1
k
· lim
m→∞

v(|ekmkD|)
ekm

=
1
k
· v(||kD||).

The property of Q-linearly-effectiveness described in the following definition
has to be considered in analogy to the property of non negativity of the
Iitaka dimension for integral divisors.

Definition 5.23. Let X be a variety and let D ∈ DivQ(X), we define
the Q-linear series |D|Q as the set of all the effective Q-divisors that are
Q-linearly equivalent to D.
D is Q-linearly-effective if |D|Q 6= ∅.
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Thanks to Proposition 5.22 we can give a natural definition of asymptotic
order of vanishing of Q-linearly-effective Q-divisors:

Definition 5.24. Let X be a normal variety with function field K = K(X),
let D be a Q-linearly-effective Q-divisor on X and let v be a discrete valua-
tion on K/C.
Then the asymptotic order of vanishing of D along v is

v(||D||) =
1
m
· v(||mD||),

where m ∈ N is such that mD is integral.

As D is a Q-linearly-effective Q-divisor we have that k(X,mD) ≥ 0 when-
ever mD is a Z-divisor, so that v(||mD||) is well defined. Moreover by
Proposition 5.22 the definition does not depend on the integer m such that
mD is integral.

Proposition 5.25. If D and E are two Q-linearly-effective Q-divisors on
a normal variety X, then

v(||D + E||) ≤ v(||D||) + v(||E||).

Proof. It is enough to check the statement for integral divisors.
Let e(D) and e(E) be the exponents of D and E respectively and let
e = e(D) · e(E), so that eD, eE and e(D + E) are all divisors with ex-
ponent one.
Thus using Proposition 5.18 (2), we have that

v(|pe(D + E)|) ≤ v(|peD|) + v(|peE|)

for all p >> 0.
Dividing by p and passing to limit for p→∞ we obtain

v(||e(D + E)||) ≤ v(||eD||) + v(||eE||),

so that the assert follows by Proposition 5.22.

5.4 Computation via multiplier ideals

In this section we will show how the asymptotic order of vanishing of divisors
can be computed by using multiplier ideals.
Some important results about asymptotic multiplier ideals, that we will use
in this chapter, are briefly presented in Appendix A, but for a complete
treatment we refer to [Laz04, Part Three].

62



Remark 5.26. Note that if f : X ′ → X is a birational morphism of normal
varieties with function fields K(X) = K(X ′) and v is a discrete valuation
on K(X)/C, then for any Q-linearly-effective Q-divisor D on X we get

v(||D||) = v(||f∗(D)||) :

In fact we restrict to the integral setting and we use the fact that for all
p ∈ N(D) we have H0(X ′,OX′(p · f∗(D))) = H0(X,OX(pD)) (see Remark
3.12 and Lemma 3.13), so that v(|p · f∗(D)|) = v(|pD|).
In particular by taking f such that X ′ is smooth we reduce the computation
of the asymptotic order of vanishing along v to the case of a smooth variety.
In this case we can make use of multiplier ideals.

Notation. Let X be a smooth variety with function field K = K(X) and
let v be a discrete valuation on K/C whose center is the subvariety Zv with
generic point ξ ∈ X.
Then if D is an integral divisor on X with k(X,D) ≥ 0 we denote by
I(X, ||D||) the asymptotic multiplier ideal associated to |D| (see Defini-
tion A.6). We recall that I(X, ||pD||) is a non-zero quasi coherent sheaf of
ideals for all p > 0 (see Remark A.7), so that it makes sense to consider
v(I(X, ||pD||)).
Moreover, for all p ∈ N, we write

jp = jpD = (I(X, ||pD||)ξ)Rv ,

so that by definition we get v(I(X, ||pD||)) = v(jp).
Analogously, whenever |pD| 6= ∅, it will be useful to define

ap = apD = (b(|pD|)ξ)Rv ,

so that, denoting by e the exponent e(D), we have v(|pD|) = v(ap) and
v(||D||) = limp→∞

v(aep)
ep .

The following proposition translates in the language of valuations some im-
portant properties of asymptotic multiplier ideals (see Appendix A).

Proposition 5.27. Let X be a nonsingular variety and let D be an integral
divisor on X with k(X,D) ≥ 0. Then

1. v(jp+q) ≥ v(jp) + v(jq) ∀p, q ∈ N,

2. v(jp) ≤ v(jq) if p < q,

3. v(jp) ≤ v(ap) ∀p ∈ N(D).

Proof.
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1. By using Theorem A.9, we have

I(||(p+ q)D||) ⊆ I(||pD||) · I(||qD||)

for every p, q ∈ N. Hence by Proposition 5.16 (2),(3) we have

v(I(||(p+ q)D||) ≥ v(I(||pD||) · I(||qD||)) = v(I(||pD||)) + v(I(||qD||)),

or equivalently
v(jp+q) ≥ v(jp) + v(jq).

2. We use Theorem A.8(1) to find that

I(||pD||) ⊇ I(||qD||)

whenever p < q. Thus the assert follows again by Proposition 5.16 (2).

3. Follows by Theorem A.8(2) and Proposition 5.16 (2).

Lemma 5.28. Let {βm}m∈N be a sequence of real numbers such that

• βm ≥ 0 ∀m ∈ N,

• βm ≤ βm+1 ∀m ∈ N,

• βmp ≥ mβp ∀m, p ∈ N.

Then there exists the limit

lim
m→∞

βm
m

= sup
m∈N
{βm
m
}.

Proof. See [Mus02, Lemma 2.2].

Remark 5.29. Combining Proposition 5.27 and Lemma 5.28 we deduce
that for any integral divisor D with k(X,D) ≥ 0 there exists

lim
p→∞

v(jp)
p

= sup
p∈N
{v(jp)

p
}.

Proposition 5.30. Let X be a smooth variety, let D be an integral divisor
on X and let v be a discrete valuation on K(X)/C. Then

1. if k(X,D) ≥ 0 we have

v(||D||) ≥ lim
p→∞

v(jp)
p

;

2. if D is big we have

v(||D||) = lim
p→∞

v(jp)
p

.
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Proof.

1. Let us denote by e the exponent e(D). Thus if p is sufficiently large
then ep ∈ N(D), so that, thanks to Proposition 5.27 (3), we find

v(jep) ≤ v(aep)

for all p >> 0.
Now, by Remark 5.29 we have that there exists limp→∞

v(jp)
p .

Therefore

lim
p→∞

v(jp)
p

= lim
p→∞

v(jep)
ep

≤ lim
p→∞

v(aep)
ep

= v(||D||).

2. If D is big, then by Theorem A.11, there exists an effective divisor E
on X such that

I(||pD||)⊗OX(−E) ⊆ b(|pD|)
for all integers p >> 0. Hence, by using Proposition 5.16(2),(3), we get

v(|pD|) ≤ v(I(X, ||pD||)) + v(OX(−E)) = v(jp) + v(OX(−E)).

Then, as D has exponent e(D) = 1,

v(||D||) = lim
p→∞

v(|pD|)
p

≤ lim
p→∞

v(jp) + v(OX(−E))
p

= lim
p→∞

v(jp)
p

.

The opposite inequality is given by the first part of the proposition.

Remark 5.31. Let D be an integral big divisor. Then by Proposition
5.30 (2) and Remark 5.29 we find that v(||D||) = 0 if and only if v(jp) = 0
for every p ∈ N.
Hence, denoting by Zv the center of the discrete valuation v, by Proposition
5.16 (1) we get

v(||D||) = 0⇐⇒ Zv 6⊆ Z(I(X, ||pD||)) ∀p ∈ N.

Now let D be an integral divisor with k(X,D) ≥ 0. By Proposition 5.30 (1)
and Remark 5.29 we have that if v(||D||) = 0, then v(jp) = 0 for every
p ∈ N. Thus, in this case, we can just say that

v(||D||) = 0 =⇒ Zv 6⊆ Z(I(X, ||pD||)) ∀p ∈ N.

We are now able to show how the asymptotic order of vanishing of big
divisors only depends on numerical equivalence classes.

Corollary 5.32. Let X be a normal variety with function field K = K(X),
let D and E be big Q-divisors on X such that D ≡ E and let v be a discrete
valuation on K/C. Then

v(||D||) = v(||E||).
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Proof. First of all, by definition of asymptotic order of vanishing for a Q-
divisor, we can suppose D and E be numerically equivalent integral divisors.
Now let µ : X ′ → X be a resolution of singularities, so that, since µ is
birational, we have that µ∗(D) ≡ µ∗(E) and v(||D||) = v(||µ∗(D)||) (see
Remark 5.26). Hence, without loss of generality, we can suppose that X is
smooth. Thus, thanks to Theorem A.12, we have

I(X, ||pD||) = I(X, ||pE||)

for every integer p > 0. Therefore v(jpD) = v(jpE) for every p ∈ N, so that,
v(||D||) = v(||E||) thanks to Proposition 5.30 (2).

Proposition 5.33. Let X be a smooth variety with function field K = K(X)
and let v be a discrete valuation on K/C, having center Zv on X.
If D is a Q-linearly-effective Q-divisor on X, then

v(||D||) = 0 =⇒ Zv 6⊆ B−(D)

Proof. First of all note that, using Remark 5.2 and Proposition 5.22, we can
assume, without loss of generality, that D is an integral divisor.
Now let ξ ∈ X be the generic point of Zv. Using Remark 5.31 we have that
Zv 6⊆ Z(I(X, ||pD||)) for every p ∈ N , whence I(X, ||pD||)ξ = OX,ξ.
On the other hand if we denote by n the dimension of X and by KX be
the canonical divisor on X, by Corollary 2.4 we can choose a suitable ample
divisor A such that G = KX +(n+1)A is ample. Hence, thanks to Theorem
A.10, we have that I(X, ||pD||)⊗OX(G+ pD) is globally generated for all
p ∈ N.
This shows that ξ is not contained in the base locus of |G+ pD|, or, equiv-
alently, that

Zv 6⊆ Bs(|G+ pD|) ∀p ∈ N.
Now, setting Ap = 1

p · G, we have that the sequence of divisors {Ap}p∈N
satisfies the hypothesis of Proposition 5.4, so that

B−(D) =
⋃
p∈N

B(D +Ap) =
⋃
p∈N

B(G+ pD),

using Corollary 3.7 for the last equality.
Therefore, if by absurd Zv ⊆ B−(D), then

Zv =
⋃
p∈N

(B(pD +G) ∩ Zv),

whence there exists an integer p0 > 0 such that Zv = B(p0D+G)∩Zv, that
is Zv ⊆ B(p0D +G) ⊆ Bs(|p0D +G|), so that we find a contradiction.

Remark 5.34. The opposite implication in the proposition above is not
true in general (see Section 5.6 for a counter-example), but it holds if D is
big (see Theorem 5.36).
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5.5 v-bounded and v-semiample

Definition 5.35. Let X be a normal variety and let v be a discrete valuation
on K(X)/C. If D is an integral divisor on X with k(X,D) ≥ 0 we say that
D is v-bounded if there exists a constant C > 0 such that

v(|pD|) ≤ C

for every p ∈ N(D).
If D is a Q-linearly-effective Q-divisor on X we say that D is v-bounded if
there exists a constant C > 0 and an integer n ∈ N such that nD is integral
and v-bounded.

Theorem 5.36. Let X be a smooth variety with function field K = K(X)
and let v be a discrete valuation on K/C, having center Zv on X.
If D is a big Q-divisor on X, then the following conditions are equivalent:

1. D is v-bounded;

2. v(||D||) = 0;

3. Zv 6⊆ B−(D).

Proof. First of all without loss of generality we assume that D is an integral
divisor.

(1⇒ 2) Trivial.

(2⇒ 3) See Proposition 5.33.

(2 ⇒ 1) Let dim X = n and let A be a suitable very ample divisor such
that G = KX + (n+ 1)A is ample. Repeating the first part of the proof of
Proposition 5.33 we see that

Zv 6⊆ Bs(|G+ pD|) ∀p ∈ N.

On the other hand, since D is big, by Theorem 3.20, there exist an integer
p0 > 0 and an integral effective divisor E such that p0D ∼ G+ E, so that,
for every p > p0, pD ∼ (p− p0)D +G+ E.
Note that, for every p ∈ N, |G + pD| 6= ∅ because Zv 6⊆ Bs(|G + pD|),
whence, by Proposition 5.18 (2), for every p > p0, we have

v(|pD|) ≤ v(|(p− p0)D +G|) + v(|E|).

Now, by Proposition 5.18 (1), we have that v(|(p− p0)D +G|) = 0, so that
v(|pD|) ≤ v(|E|), that is D is v-bounded
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(3 ⇒ 2) Since D is big, by Theorem 3.20, we can find an integer p0 > 0
and integral divisors A and E, with A ample and E effective, such that
p0D is linearly equivalent to A + E, so that, for every p > p0, we get
pD ∼ (p− p0)D +A+ E.
Hence, by Proposition 5.25, we have

v(||pD||) ≤ v(||(p− p0)D +A||) + v(||E||).

Now, for p > p0, we put Ap = 1
p−p0A. Since limp→∞ ||Ap|| = 0, we can use

Proposition 5.4 to find that

B−(D) =
⋃
p>p0

B(D +Ap) =
⋃
p>p0

B((p− p0)D +A).

Thus, using the hypothesis, we get that Zv 6⊆ B((p − p0)D + A), for every
p > p0.
By Proposition 3.6, we find that there exists an integerm0 ∈ N((p−p0)D+A)
such that for all k ≥ 1, Zv 6⊆ Bs(|km0[(p−p0)D+A]|). Hence, by Proposition
5.18 (1), v(|km0[(p− p0)D +A]|) = 0 for all k ∈ N, so that

v(||m0[(p− p0)D +A]||) = 0.

Then, thanks to Proposition 5.22, we get

v(||(p− p0)D +A||) =
1
m0
· v(||m0[(p− p0)D +A]||) = 0.

Therefore
v(||pD||) ≤ v(||E||) ∀p > p0,

or, equivalently, using again Proposition 5.22, v(||D||) ≤ v(||E||)
p for every

p > p0, that is v(||D||) = 0.

As a corollary we find the following characterization of the restricted base
locus of a big divisor:

Corollary 5.37. Let X be a smooth variety and let D be a big integral
divisor. Then we have the equality of sets

B−(D) =
⋃
m∈N
Z(I(X, ||mD||)).

Proof. Let x ∈ X, then there exists a valuation vx on K(X)/C such that
x = Zvx .
Hence, by Theorem 5.36, x 6∈ B−(D) if and only if vx(||D||) = 0. Using
Remark 5.31, this is equivalent to say that Zvx 6⊆ Z(I(X, ||mD||)) for all
m ∈ N, that is x 6∈

⋃
mZ(I(X, ||mD||)).
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Note that the corollary does not hold if D is not big (see Remark 5.47).

Remark 5.38 (Non-big divisors). If we remove the hypothesis of bigness
in Theorem 5.36 only some implications survive.
In particular, if D is a Q-linearly effective Q-divisor, we have that:

• D is v-bounded⇒ v(||D||) = 0, trivially.

• v(||D||) = 0⇒ Zv 6⊆ B−(D), as we have shown in Proposition 5.33.

• v(||D||) = 0 ?⇒ D is v-bounded.
We do not know whether D is v-bounded whenever v(||D||) = 0. However
it is true if D is a divisor on a curve or a normal surface (see Remark 5.44).

• Zv 6⊆ B−(D) 6⇒ v(||D||) = 0.
See Section 5.6 for a counter-example.

Definition 5.39. Let X be a normal variety with function field K = K(X),
let v be a discrete valuation on K/C, having center Zv ⊆ X, and let D be
an integral divisor on X with k(X,D) ≥ 0.
Then D is v-semiample if there exists a positive integer l0 ∈ N(D) such that
v(|l0D|) = 0, or equivalently if Zv 6⊆ B(D).

Remark 5.40. Note that if D is v-semiample, that is v(|l0D|) = 0, then,
thanks to Proposition 5.18(2), we have that v(|kl0D|) = 0 for all k ∈ N.
Note also that D is semiample if and only if D is v-semiample for every
discrete valuation v on K(X)/C.

Proposition 5.41. Let X be a normal variety with function field K = K(X),
let v be a discrete valuation on K/C and let D be an integral divisor on X
with k(X,D) ≥ 0.
If D is v-semiample, then D is v-bounded.

Proof. Let l0 ∈ N(D) be such that v(|l0D|) = 0 and let e = e(D) be the
exponent of D. Then, by definition, there exists an integer m0 > 0 such
that, for all n ≥ m0e,

n ∈ N(D)⇐⇒ e | n,

and, in particular, for all r ∈ {0, . . . , l0−1}, we have that (m0l0+r)e ∈ N(D).
Hence we can define

C ′ = max{v(|mD|) | m ∈ N(D), m < (m0l0 + l0)e}

C ′′ = max
0≤r<l0

{v(|(m0l0 + r)eD|)}

C = max{C ′, C ′′}.

We will show that, for every m ∈ N(D), v(|mD|) ≤ C.
If m < (m0l0 + l0)e, then v(|mD|) ≤ C ′ ≤ C.
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If m ≥ (m0l0 + l0)e, then, as m ∈ N(D), there exists an integer k ≥ m0l0 + l0
such that m = ke.
Thus there exist q ∈ N and r ∈ {0, . . . , l0 − 1} such that k = ql0 + r =
l0(q −m0) +m0l0 + r, so that

mD = keD = l0(q −m0)eD + (m0l0 + r)eD.

Note that (m0l0+r)e ∈ N(D), while v(|l0(q−m0)eD|) = 0 because v(|l0D|) =
0 and q −m0 > 0:
In fact

q −m0 =
k − r
l0
−m0 >

k − l0
l0
−m0 ≥

m0l0
l0
−m0 = 0.

Therefore, by Proposition 5.18 (2), we have v(|mD|) ≤ v(|l0(q −m0)eD|) +
v(|(m0l0 + r)eD|) ≤ v(|(m0l0 + r)eD|) ≤ C ′′ ≤ C.

The following proposition describes what happens when we add the hypoth-
esis of finite generation:

Proposition 5.42. Let X be a normal variety with function field K =
K(X), let v be a discrete valuation on K/C and let D be an integral divisor
on X with k(X,D) ≥ 0. If D is finitely generated, then

1. there exists an integer n ∈ N(D) such that

v(||D||) =
v(|nD|)

n
.

2. v(||D||) = 0 if and only if D is v-semiample.

Proof.

1. D is finitely generated if and only if the graded ring R(X,D) is such.
Hence, by Theorem 4.6, we have that there exists an integer l > 0 such that
H0(X,OX(mlD)) generates the Veronese subring R(X,D)(ml) for all m ≥ 1.
Now if e = e(D) is the exponent of D and h is a sufficiently large natural
number, we put n = hel, so that n ∈ N(D) and H0(X,OX(nD)) generates
the Veronese subring R(X,D)(n). Thus we find that for all k > 1 the map
of multiplication of sections

µ : H0(X,OX((k − 1)nD))⊗H0(X,OX(nD)) −→ H0(X,OX(knD))

is surjective.
By Proposition 5.18 (2) we get

v(|(k − 1)nD|) + v(|nD|) = v(|knD|)
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for all k > 1, so that, working by induction, we find

v(|knD|) = k · v(|nD|).

Thus
v(||D||) =

1
n
· v(||nD||) =

1
n
· lim
k→∞

v(|knD|)
k

=
v(|nD|)

n
.

2. If v(||D||) = 0, then it follows immediately from the first part of the
lemma that D is v-semiample.
For the opposite implication we do not need the hypothesis of finite genera-
tion: In fact if D is v-semiample, then there exists an integer l ∈ N(D) such
that v(|lD|) = 0. Hence, noting that lD has exponent e(lD) = 1, thanks to
Proposition 5.22 we have that

v(||D||) =
1
l
· v(||lD||) =

1
l
· lim
m→∞

v(|mlD|)
m

= 0.

Remark 5.43. Note that, in particular, it follows by Proposition 5.42 and
Proposition 5.41 that, under the hypothesis of finite generation, a divisor
D with non-negative Iitaka dimension is v-bounded if and only if D is v-
semiample if and only if v(||D||) = 0.

Remark 5.44. Using Remark 5.43 we find that, if X is a normal surface
and D is an integral divisor on X with k(X,D) ≥ 0, then v(||D||) = 0 if
and only if D is v-bounded.
In fact, considering a suitable birational modification of X, we can suppose
that X is smooth. Now a theorem of Zariski (see [Bad01, Theorem 14.19])
states that if D is a divisor on a smooth surface such that k(X,D) ≤ 1, then
D is finitely generated. Hence, if v(||D||) = 0 and k(X,D) ≤ 1, then D is
v-bounded by Remark 5.43. On the other hand if k(X,D) = 2, then D is
big and the assertion follows by Theorem 5.36.

Proposition 5.45. Let X be a normal variety, let Z be a subvariety of X
and let D be a big integral divisor on X.
If D is finitely generated and Z 6⊆ B−(D), then Z 6⊆ B(D).

Proof. Let v be a discrete valuation on K(X)/C such that v has center Z.
Then, by Theorem 5.36 we have that D is v-bounded. Hence, thanks to
Remark 5.43, we find that D is v-semiample, that is Z 6⊆ B(D).

The following theorem generalizes Theorem 4.16 giving a different charac-
terization of semiampleness.

Theorem 5.46. Let X be a normal variety with function field K = K(X)
and let D be an integral divisor on X with k(X,D) ≥ 0.
Then the following statements are equivalent:
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1. D is semiample

2. D is finitely generated and there exists a constant C > 0 such that

multx|mD| ≤ C

for every m ∈ N(D), for every x ∈ X.

3. D is finitely generated and, for every discrete valuation v on K/C, D
is v-bounded.

Proof.

(1⇔ 2) See Theorem 4.16.

(1⇒ 3) D is finitely generated by Theorem 4.16. Moreover, as D is semi-
ample, D is v-semiample for every discrete valuation v on K/C. Thus, by
Proposition 5.41, D is v-bounded.

(3 ⇒ 2) Follows immediately from the fact that for every x ∈ X we have
multx|mD| = vx(|mD|), where vx is the discrete valuation whose center is
the point x.

5.6 An example

In the following example we provide an effective, non-big divisor D on a
smooth ruled surface X and a discrete valuation v on K(X)/C, such that
Zv 6⊆ B−(D) but v(||D||) > 0. This shows how the hypothesis of bigness in
Theorem 5.36 is essential (see also Remark 5.38).

Let C be a nonsingular curve of genus g ≥ 1 and let P be a non-torsion
divisor of degree zero on C (whose existence is assured by Proposition 4.17).
Let E = OC ⊕OC(P ). Then E is a locally free sheaf of rank two on C and
we consider the ruled surface X = P(E) (see [Har77, V, §2]).
Note that E is normalized, that is H0(C, E) 6= 0 and H0(C, E ⊗ L) = 0 for
every line bundle L of negative degree. Hence, by [Har77, V, 2.8], there
exists a section D such that OX(D) ' OX(1), so that D is nonsingular and
(D2) = deg E = 0.
Now, let x ∈ D and let v be the discrete valuation on K(X)/C whose center
is Zv = {x}.
We will show that B−(D) = ∅ (so that, in particular, Zv = {x} 6⊆ B−(D)),
while v(||D||) = 1.

B−(D) = ∅: We will prove that D is nef, so that the assert follows by
Lemma 5.3.
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We denote by f a fibre of the morphism π : X → C. It follows by [Har77,
V, 2.20] that, if Y is an irreducible curve on X, then Y ≡ aD + bf , with
b ≥ 0. Thus

(D · Y ) = (D · (aD + bf)) = b ≥ 0.

h0(X,OX(kD)) = 1 for all k ≥ 1: We denote by Sk(E) the kth symmetric
power of E . By [Har77, II, 7.11], for all k ≥ 1 we have that π∗(OX(k)) '
Sk(E). Hence

H0(X,OX(k)) = H0(C, Sk(E)) =
k⊕
t=0

H0(C,OC(tP )) = H0(C,OC).

Thus
h0(X,OX(kD)) = h0(X,OX(k)) = h0(C,OC) = 1

for all k ≥ 1. Note that, in particular, this implies that D is not big.

v(||D||) = 1: Since h0(X,OX(kD)) = 1 for all k ≥ 1, we have that the
exponent e(D) = 1, while dimC|kD| = h0(X,OX(kD)) − 1 = 0, that is
|kD| = {kD}.
Hence, for all k ≥ 1, we get

v(|kD|) = multx|kD| = multx (kD) = k.

Therefore
v(||D||) = lim

m→∞

v(|mD|)
m

= 1.

Remark 5.47. This example also proves that Corollary 5.37 does not work
if the divisor is not big. In fact, for all m ≥ 1, we easily check that
I(X, ||mD||) = OX(−mD). Then, set-theoretically, we have⋃

m∈N
Z(I(X, ||mD||)) = D,

while B−(D) = ∅.
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Appendix A

Asymptotic multiplier ideals

Throughout this appendix, unless clearly specified, X denotes a nonsingular
variety.
Moreover, given a birational morphism µ : X ′ → X, we denote by exc(µ)
the sum of the exceptional divisors of µ.
We begin by giving some preliminary definitions that we will need to define
the asymptotic multiplier ideal associated to a linear series.

Definition A.1. Let D =
∑
aiDi be a Q-divisor on X, with Di prime

divisors. The integral part [D] of D is the integral divisor

[D] =
∑

[ai]Di,

where, for any x ∈ Q, we denote by [x] the greatest integer ≤ x.

Definition A.2. Let Di be distinct prime divisors on X and let D =
∑
Di

be an effective reduced divisor on X. D has simple normal crossings (and D
is an SNC divisor) if each Di is smooth and if D is defined in a neighborhood
of any point by an equation in local analytic coordinates of the type

z1 · · · · · zk = 0

for some k ≤ dim X.
A Q-divisor E =

∑
aiDi has simple normal crossing support if the under-

lying reduced divisor
∑
Di is an SNC divisor.

Definition A.3. Let D be an integral divisor on X and let |V | ⊆ |D|
be a non-empty linear series. A log resolution of |V | is a birational map
µ : X ′ → X, with X ′ nonsingular, such that

µ∗|V | = |W |+ F,

where F + exc(µ) is a divisor with SNC support, and |W | is a free linear
series.
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Given a non-empty linear series |V |, the existence of a log resolution of V is
assured by Hironaka’s theorem (see [Laz04, I, 4.1.3]).
Moreover, given a log resolution µ : X ′ → X, we denote by

KX′/X = KX′ − µ∗KX

the relative canonical divisor of X ′ over X.

Definition A.4. Let D be a divisor on X, let |V | ⊆ |D| be a non-empty
linear series and let µ : X ′ → X be a log resolution of |V | with

µ∗|V | = |W |+ F.

Given a rational number c > 0, the multiplier ideal associated to c and |V |
is

I(c · |V |) = I(X, c · |V |) = µ∗OX′(KX′/X − [c · F ]).

If |V | = ∅ we put I(c · |V |) = 0 for every c > 0.

The definition makes sense because the multiplier ideal does not depend on
the log resolution considered (see [Laz04, II, 9.2.18]).

Lemma A.5. Let D be a divisor on X with k(X,D) ≥ 0, let c ∈ Q+ and
let p ∈ N. Then

1. For every integer k > 0 we have

I
( c
p
· |pD|

)
⊆ I

( c
pk
· |pkD|

)
.

2. The family of ideals {
I
( c
p
· |pD|

)}
p≥1

has a unique maximal element.

Proof. See [Laz04, II, 11.1.1]

We are now able to define the asymptotic multiplier ideal associated to a
linear series:

Definition A.6. Let D be an integral divisor on X with k(X,D) ≥ 0 and
let c ∈ Q+.
The asymptotic multiplier ideal associated to c and |D|,

I(c · ||D||) = I(X, c · ||D||) ⊆ OX ,

is defined as the unique maximal element of the family of ideals
{
I
(
c
p ·|pD|

)}
.
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Remark A.7. Note that for every divisor D on X with k(X,D) ≥ 0 the
asymptotic multiplier ideal I(X, ||D||) is a non-zero quasi-coherent sheaf of
ideals.

We recall here some important results concerning the sheaves of ideals just
defined.

Theorem A.8. Let D be an integral divisor on X with k(X,D) ≥ 0, and
let c > 0 be a fixed rational number. Then

1. For every m ∈ N we have

I(c · ||mD||) ⊇ I(c · ||(m+ 1)D||),

that is the ideals I(c · ||mD||) form a decreasing sequence in m.

2. For every m ∈ N(D) we have

b(|mD|) ⊆ I(X, ||mD||).

Proof. See [Laz04, II, 11.1.8].

Theorem A.9 (Subadditivity). Let D be a divisor on X with k(X,D) ≥ 0
and let c ∈ Q+. Then

I(c · ||(m+ k)D||) ⊆ I(c · ||mD||) · I(c · ||kD||).

for any integers m, k > 0.

Proof. See [Laz04, II, 11.2.4].

Theorem A.10. Let X be an n-dimensional nonsingular variety and let
D, B, A be integral divisors on X such that D has non-negative Iitaka
dimension, B is globally generated and ample and A is big and nef.
Then, if we denote by KX the canonical divisor on X, we have

1. H i(X,OX(KX +mD+A)⊗I(||mD||)) = 0 for any integers i,m > 0.

2. OX(KX + nB + A + mD) ⊗ I(||mD||) is globally generated for all
m ∈ N.

Proof. See [Laz04, II, Theorem 11.2.12 and Corollary 11.2.13].

Theorem A.11. Let D be a big integral divisor on X. Then there exists
an effective divisor E on X and a positive integer t0(D) such that

I(||mD||)⊗OX(−E) ⊆ b(|mD|)

for every m ≥ t0(D).

76



Proof. See [Laz04, II, 11.2.21].

Theorem A.12. Let D1 and D2 be numerically equivalent big divisors on
X. Then

I(X, c · ||D1||) = I(X, c · ||D2||)

for every c ∈ Q+.

Proof. See [Laz04, II, 11.3.12].
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