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Introduction

The main problem in algebraic geometry is the problem of the classifica-

tion of algebraic varieties, that is giving a rational criterion for classifying all

the algebraic varieties up to isomorphism. Actually this is a huge problem

and nobody expects to solve it completely in a reasonable amount of time.

Nevertheless this is certainly a goose that lays the golden egg or, more pro-

saically and respectfully, a guiding problem, that offers impulse to further

research in geometry and that allows geometers to measure their achieve-

ments.

The central core in the classification problem is, of course, the study of

the geometry of algebraic varieties and of their subvarieties. Clearly less

the dimension, easier the study. Thus it is not weird at all, considering

a variety, to analyze its hyperplane sections to get a good grasp over its

basic components. But even the opposite approach can throw some light

on the problem. It is just a change of point of view and it leads to the

notion of extendability. Taking a nondegenerate variety X in Pr we can ask

whether there exists a nondegenerate variety Y in Pr+1 such that X is one

of its hyperplane sections. Stated exactly in this way, the question is easy to

answer, but useless: actually we can build a cone in Pr+1 over every variety in

Pr. Thus we have to expunge the cone from the list of our possible extensions,

and if there still exists Y as before but different from a cone then X is said

to be extendable. In this way, for example, having to handle threefolds in

Pr+1, one can zero in on surfaces in Pr and then asking himself if they are

extendable: if one is not extendable, say X, we are forced to conclude that

a threefold different from a cone with X as one of its hyperplane sections

simply does not exist.

The first thing to note is that the notion of extendability is not an intrinsic

notion of a variety, but it deeply depends on the immersion of the variety in
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the projective space. The second thing to note is that not all the varieties

are extendable. Intuitively if a variety in Pr is too much ‘bent’ one cannot

hope to extend it: even considering the cone over it leads nowhere, since the

vertex of the cone is too entangled and thus it cannot be round off. We see

that one way of dealing with the problem of extendability is to study the

complexity of the shape of the variety in its immersion, that is to study the

normal directions to the variety at every point. Luckily cohomology comes

to our aid: the most general theorem about extendability, Zak’s theorem,

simply states that if the dimension of H0(NX/Pr(−1)) (where NX/Pr is the

normal sheaf of X in Pr) is minimal then X is not extendable at all. It is

an elegant theorem that does not set a limit to the dimensions of the variety

and to the possible extensions. We will prove a simplified version of Zak’s

theorem in the first section of the first chapter.

Unluckily Zak’s theorem is very difficult to apply in practice. However,

in the case of curves, Wahl linked the dimension of the cohomology group

aforesaid to the corank of Gaussian maps, the dimension being minimal when

a certain Gaussian map is surjective. We will give the basic definitions and

the proof of Wahl’s theorem in 1.2. In 1.3 we will discuss the surjectivity

of the Guassian maps, especially stating a theorem of Bertram, Ein, Lazars-

feld. But we are mainly interested in the extendability of surfaces, primarily

because this study is related to the classification of threefolds, while the clas-

sification of surfaces has already been carried out to some extent. In order to

say something about the extendability of surfaces we cannot use Wahl’s the-

orem (that is valid only for curves) but we need some other tools: in the last

section of the first chapter we will state a theorem by Knutsen, Lopez and

Muñoz that, generalizing Wahl’s theorem, gives some sufficient conditions

for a surface to be non-extendable.

The rest of the thesis will be devoted to the application of Knutsen-

Lopez-Muñoz’s theorem (KLM) in some particular cases, that is in the cases

of rational ruled surfaces. To apply KLM it is necessary to have a good

knowledge of the geometry of the surface, e.g. its canonical divisor, its line

bundles and their cohomology, the gonality of the curves lying on it. For

this purpose it is necessary first of all to study (rational) ruled surfaces in

depth. This will be the task of the second chapter: in section 1 we will first
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introduce ruled surfaces, that can be essentially seen as surfaces swept out

by a moving line along a base curve. Then we will compute their Picard

groups in terms of the Picard group of the underlying curve, then we will

look at them as projective bundles. In the second section we will specialize

to rational ruled surfaces, i.e. ruled surfaces where the base curve is a line,

classifying base-point free, ample and very ample linear systems. We will

follow [7].

In the last chapter we will deepen the study of rational ruled surfaces in-

vestigating the cohomology of the line bundles and the gonality of the curves.

Again this could not have been possible without a prior study of the divisors

on the surface. Eventually, at the end of the chapter, having translated, in

the case of rational ruled surfaces, KLM’s conditions in a number of equa-

tions, we will solve the problem of extendability of rational ruled surfaces in

many cases. This is the original result of this thesis.

Remark: throughout this thesis variety will mean an integral, separated

scheme of finite type over the field of complex numbers C.

3



Chapter 1

Extendable varieties and

Wahl-Gaussian maps

The aim of this chapter is to develop some tools to establish if a certain

projective variety is extendable or not, or better, to find out some sufficient

conditions that allow us to conclude that a projective variety, with its em-

bedding in the projective space, is not extendable. Be careful! it is always

possible, passing to a higher dimension, to build a cone over a projective

variety X ⊂ Pr, but in some cases this is the only geometric object which

has X has one of its hyperplane sections. This means that in these cases it

is useless to try to deform the cone to extend X, even if this sounds like a

good idea.

Perhaps the most general result about extendability is a theorem of the

Russian mathematician F.L.Zak. It gives a unique, easy-to-state, sufficient

condition for X not to be extendable. The condition is about the dimension

of the vector space H0(NX/Pr(−1)) (NX/Pr is the normal sheaf), that does

not have to be higher than r+ 1. Zak’s theorem does not put limitations on

the geometry of the extension, but in section 1 we will give a simplified proof

of the theorem (due to A.F. Lopez) only for nonsingular extensions.

Unluckily, as it often happens in mathematics, a general, elegant theorem

is very difficult to apply in practice. And that is the case for Zak’s theorem.

How can we manage to compute the dimension of H0(NX/Pr(−1))? In the

case of a curve C the answer was given by J. Wahl, who related this dimension
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to the corank of a particular map, called Gaussian map. In the second section

we will give the basic definition of a Gaussian map and we will prove Wahl’s

theorem: if the Gaussian map is surjective then C is not extendable. Note

that this theorem does not have a converse as it is, but Wahl (see section 2)

showed that under some other conditions his theorem has actually a converse.

Thus, at least in the case of curves, the problem has been reduced to

show if a Gaussian map is or not surjective. This probably explains the great

amount of work that numerous mathematicians spent in studying Gaussian

maps. Fruitful work, we can say, since there are lots of results about the

surjectivity of Gaussian maps, some of which are stated in section 2. The

two we are more interested in (for a reason that will be clear afterwards) are

a theorem of Bertram, Ein, Lazarsfeld and a theorem of Tendian.

Finally we will go to the study of extendability of surfaces. We will state,

without proof, a theorem of A.L. Knutsen, A.F. Lopez and R. Muñoz that

gives sufficient conditions for a surface in Pr not to be extendable. The

final part of this thesis will be devoted to the application of the theorem in

particular cases.

1.1 Introduction to Extendability

Let X be a smooth nondegenerate (i.e. not contained in any hyperplane)

projective variety in Pr. We say that X is extendable if there exists a non-

degenerate variety Y ⊂ Pr+1 such that:

1. X = Y ∩H, where H = Pr is a hyperplane in Pr+1.

2. Y is not a cone over X.

Condition (2) is essential: otherwise all X would be extendable.

Example 1.1.1. A nondegenerate curve in P2 is always extendable. In fact

a nondegenerate curve is the zero-locus Z(F ) of a homogeneous polynomial

F (X0, X1, X2) of degree at least 2. Now consider G := F +XdegF
3 . G is ho-

mogeneous and Z(G)∩{X3 = 0} = Z(F ). Moreover G is not a cone because

G is not singular at all outside from Z(F ). Actually every complete inter-

section variety (i.e. varieties of dimension r in Pn whose ideal is generated

by n− r elements) is extendable.
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Before going on, we recall some basic definitions and propositions:

1. ([7],II,8.17). Let Y be a nonsingular subvariety of a nonsingular variety

X, defined by a sheaf of ideals I. We call I/I2 the conormal sheaf of

Y in X. It is a locally free sheaf of rank codim(Y,X). Its dual NY/X =

HomOY
(I/I2,OY ) is called the normal sheaf of Y in X. Moreover

there is an exact sequence of sheaves:

0 −→ I/I2 −→ ΩX ⊗OY −→ ΩY −→ 0 (1.1)

2. Let X be a nonsingular variety. We define the tangent sheaf of X to

be TX = HomOX
(ΩX ,OX), i.e. the dual of the sheaf of differentials.

3. Taking the dual of (1.1) we obtain:

0 −→ TY −→ TX ⊗OY −→ NY/X −→ 0 (1.2)

4. Euler’s sequence ([7],II,8.20.1). There is an exact sequence of sheaves:

0 −→ ΩPr −→ OPr(−1)⊕(r+1) −→ OPr −→ 0 (1.3)

Taking its dual we obtain:

0 −→ OPr −→ OPr(1)⊕(r+1) −→ TPr −→ 0 (1.4)

If X is a nonsingular subvariety of Pr then, tensoring by OX we obtain:

0 −→ OX −→ OX(1)⊕(r+1) −→ TPr|X −→ 0 (1.5)

5. Serre’s duality theorem ([7],III,7.8 and 7.12). If X is a projective non-

singular variety of dimension n then for every locally free sheaf F on X

we have H i(X,F) ∼= (Hn−i(X,F∗ ⊗ ωX))∗, where ∗ means ‘dual’ and

ωX is the canonical sheaf of X.

6. Serre’s vanishing theorem ([7],III,5.2). Let X be a projective variety

in Pr. Let F be a coherent sheaf on X. Then there is an integer n0

depending on F , such that for each i > 0 and each n ≥ n0, H i(X,F ⊗
OX(n)) = 0.
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From now on X will be a projective, smooth, nondegenerate variety in Pr

and Y a nonsingular extension of X in Pr+1. We suppose also that codimX ≥
2.

Lemma 1.1.2. NX/Pr(−1) is globally generated. Moreover it has at least

r + 1 global sections.

Proof. We recall that a sheaf of OX-modules is said to be globally generated,

or generated by global sections, if there is a set of global sections such that

for every stalk their images generate the stalk as an OX,x-module. Note that

if a sheaf can be written as a quotient of a free sheaf, it is globally generated.

From (1.5) and (1.2), tensoring by OX(−1) we indeed have a surjection:

O⊕(r+1)
X → TPr|X (−1)→ NX/Pr(−1).

Since H0(OX(−1)) = 0 and H0(TX(−1)) = 0 again from (1.5) and (1.2)

we obtain two injections: H0(O⊕(r+1)
X )→ H0(TPr|X (−1)) and

H0(TPr|X (−1)) → H0(NX/Pr(−1)). Therefore h0(NX/Pr(−1)) ≥ h0(O⊕(r+1)
X )

= r + 1.

Lemma 1.1.3. If h0(NX/Pr(−1)) = r + 1 then H0(NX/Pr(−i)) = 0 for all

i ≥ 2.

Proof. We use induction on i. First of all suppose that h0(NX/Pr(−2)) > 0,

i.e. there exists a global section s that is not the null section. SinceX ⊂ Pr we

know that there is a vector space V ⊂ H0(OX(1)) such that dimV = r + 1.

Let t0, . . . , tr be a basis for V . For all i, s ⊗ ti ∈ H0(NX/Pr(−1)) and, in

addition, they are r+ 1 and linearly independent, thus they form a basis for

H0(NX/Pr(−1)). Since NX/Pr(−1) is globally generated (1.1.2), the sections

s⊗ ti generate the stalk of NX/Pr(−1) at every point x. But then sx ⊗ (ti)x

should generate NX/Pr(−1)x as a OX,x-module. But NX/Pr(−1)x is a free

OX,x-module of rank codimX 6= 1, while OX(1)x is a free OX,x-module of

rank 1 and therefore also the OX,x-module generated by sx⊗ (ti)x if it is free

has rank 1. Contradiction.

Now that the basis of the induction has been proved let us proceed with

the induction step. Consider a hyperplane H in Pr and its defining sequence

on X:

0 −→ OX(−1) −→ OX −→ OX∩H −→ 0 (1.6)
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Tensor it by NX/Pr(−i), we obtain:

0 −→ NX/Pr(−i− 1) −→ NX/Pr(−i) −→ NX/Pr(−i)|X∩H
−→ 0 (1.7)

Taking cohomology we have H0(NX/Pr(−i− 1)) ↪→ H0(NX/Pr(−i)). But

H0(NX/Pr(−i)) is zero by the induction hypothesis and hence H0(NX/Pr(−i−
1)) is zero too.

Lemma 1.1.4. Let NY/Pr+1 be the normal sheaf of Y in Pr+1. Then NY/Pr+1⊗
OX = NY/Pr+1|X is isomorphic to NX/Pr .

Proof. Let us consider the following commutative diagram:

0

��

0

��

0

��
0 // TX

��

// TPr|X

��

// NX/Pr

��

// 0

0 // TY |X

��

// TPr+1|X

��

// NY/Pr+1|X

��

// 0

0 // NX/Y

��

// NPr/Pr+1|X

��

// CK

��

// 0

0 0 0

where CK is the coker of the two maps shown and where the first and the

second row and the first and the second column come from (1.2) and the

inclusions X ⊂ Pr, Y ⊂ Pr+1, X ⊂ Y , Pr ⊂ Pr+1, respectively. Since

NX/Y ∼= OX(1), NPr/Pr+1
∼= OPr(1) and OPr(1)⊗OX ∼= OX(1), then NX/Y ∼=

NPr/Pr+1|X , therefore CK = 0. That is: NY/Pr+1|X is isomorphic to NX/Pr .

Theorem 1.1.5 (Zak). Let X ⊂ Pr be a smooth irreducible nondegenerate

variety of codimension at least 2. If h0(NX/Pr(−1)) = r + 1 then X is not

extendable.

Proof. We will only prove that, under the hypotheses of the theorem, X is

not extendable to a nonsingular variety. Actually we will give a simplified

proof by A. F. Lopez, but the theorem is still valid, even if we allow the
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extension to be singular. Thus, let us suppose that X is extendable and

let us call Y ⊂ Pr+1 the nonsingular extension of X. Recall that X is a

hyperplane section of Y by hypothesis, hence the defining sequence of X in

Y is:

0 −→ OY (−1) −→ OY −→ OX −→ 0 (1.8)

Let i ∈ Z. If we tensor (1.8) with NY/Pr+1(−i) we obtain:

0 −→ NY/Pr+1(−1− i) −→ NY/Pr+1(−i) −→ OX ⊗NY/Pr+1(−i) −→ 0 (1.9)

By 1.1.4, OX ⊗NY/Pr+1(−i) ∼= NX/Pr(−i). By 1.1.3, if i ≥ 2 then

H0(NX/Pr(−i)) = 0, therefore ∀i ≥ 2H0(NY/Pr+1(−1−i)) ∼= H0(NY/Pr+1(−i)).
By Serre’s duality theorem, H0(NY/Pr+1(−i)) ∼= HdimY (N ∗Y/Pr+1⊗ωY ⊗OY (i))

and the second is zero if i is sufficiently large by Serre’s vanishing theorem.

Let us consider (1.9) again, with i = 1. Since by the discussion above

H0(NY/Pr+1(−2)) = 0, taking cohomology we have an injection:

H0(NY/Pr+1(−1)) ↪→ H0(NX/Pr(−i)). But this is impossible because by 1.1.2

h0(NY/Pr+1(−1)) ≥ r + 2 while, by hypothesis, h0(NX/Pr(−i)) = r + 1.

Thus the problem is now how to compute the dimension ofH0(NX/Pr(−1)).

In the case of X curve one possible answer was given by Jonathan Wahl. But

before going on we need some basic definitions.

1.2 Wahl - Gaussian maps and Extendability

Let X be a smooth projective variety and ΩX = ΩX/C its sheaf of dif-

ferentials. Let L be a line bundle on X. Let s ∈ H0(X,L) be a global

section. We would like to define a differential for s, ds. Since L is an in-

vertible sheaf, locally (if U ⊂ X is an open set) L|U is a free OU -module of

rank 1. If σ is a generator for H0(U,L|U ) as a H0(U,OU)-module we can

write s = fσ with f ∈ H0(U,OU). Thus it seems natural to define locally

ds := df ⊗ σ, to obtain a global section of ΩX ⊗ L. Unluckily it clearly

turns out that this definition does not work because it depends on the gen-

erator σ: in fact if ρ is another local generator, σ = gρ, then s = fgρ and

ds := (gdf + fdg)⊗ ρ = df ⊗ σ + fdg ⊗ ρ 6= df ⊗ σ. But this computation

suggests a way to avoid the problem.
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Lemma 1.2.1. Let s, t be two global sections of L. Suppose that locally

s = fσ and t = hσ. Then WL(s, t) = ds⊗ t− dt⊗ s is a well-defined section

of H0(ΩX ⊗ L⊗ L).

Proof. From the discussion above we have only to show that the definition

of WL(s, t) is independent from the local trivialization σ. Suppose that ρ

is another local trivialization and that σ = gρ. Then, depending on the

trivialization, ds⊗t is equal to hdf⊗σ⊗σ or g2hdf⊗ρ⊗ρ+ghfdg⊗ρ⊗ρ =

hdf ⊗ σ⊗ σ+ ghfdg⊗ ρ⊗ ρ. Analogously dt⊗ s is equal to fdh⊗ σ⊗ σ or

fdh⊗σ⊗σ+ghfdg⊗ρ⊗ρ. Now it is clear that WL(s, t) is well-defined.

Definition 1.2.2.

ΦL : ∧2H0(X,L) −→ H0(X,ΩX ⊗ L⊗2)

s ∧ t 7−→ sdt− tds

is called the Gaussian map relative to the line bundle L.

Note that this definition is correct because of the lemma above and because

WL(s, t) is skew-symmetric.

Let us now extend this definition to two line bundles L, M on a smooth

projective variety X. Denoted by µL,M the multiplication map H0(X,L) ⊗
H0(X,M) −→ H0(X,L ⊗M) we define R(L,M) as the space of relations

between L and M , i.e. R(L,M) := Ker µL,M . If we choose two trivialization

on an open set U (σ for L and ρ for M) then locally we can define

ΦL,M : R(L,M) −→ H0(X,ΩX ⊗ L⊗M)

s⊗ t 7−→ s⊗ dt− t⊗ ds

if, as above, we interpret ds as df ⊗σ (s = fσ) and similarly for dt. More in

detail if on U we have r = Σn
i=1figiσ⊗ ρ then ΦL,M(r) = (fidgi− gidfi) · σ⊗

ρ. This formula is well-defined. In fact it is straightforward to show that,

choosing different trivializations, the expression differs from the previous only

by terms in which there appear sums of figi that are null by hypothesis.

It is also clear that if L = M then ΦL, previously defined, essentially coincides

with ΦL,L. In fact H0(L) ⊗ H0(L) ∼= ∧2H0(L) ⊕ S2H0(L), where S2 is
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the second symmetric power. By definition, s ∧ t = s ⊗ t − t ⊗ s, hence

∧2H0(L) ⊂ R(L,L) and ΦL,L(s ∧ t) = 2ΦL(s ∧ t) whilst ΦL,L on symmetric

elements is the null map.

Now let us come back to the problem left unsolved at the end of section

1.

Theorem 1.2.3 (Wahl). Let X be a smooth, irreducible, linearly normal

(i.e.: embedded with a complete linear system) curve in Pr that is not a

conic. Then h0(NX/Pr(−1)) = r + 1 + corank ΦωX ,OX(1).

Before proceeding with the proof of the theorem we previously need a lemma:

Lemma 1.2.4. Let X a smooth, irreducible, linearly normal curve in Pr of

degree d and genus g that is not a conic. Then:

(a) h0(TX(−1)) = 0

(b) h0(TPr|X (−1)) = r + 1.

Proof.

(a) Remember that we are considering a curve, hence by definition ΩX = ωX .

But TX is the dual of ΩX , therefore TX ∼= OX(−KX), where KX is the

canonical divisor. Moreover there exists a divisor D such that OX(1) ∼=
OX(D), with degD equal to d, the degree of the embedded curve. Con-

sequently deg(TX(−1)) = deg(−KX −D) = −2g + 2− d, ([7],IV,1.3.3).

Since X is not a conic −2g + 2− d < 0 and hence H0(TX(−1)) = 0.

(b) Let us consider (1.5). After tensoring it by OX(−1) we obtain:

0 −→ OX(−1) −→ O⊕(r+1)
X −→ TPr|X (−1) −→ 0 (1.10)

Since H0(OX(−1)) = 0, H0(OX) ∼= C, H0(O⊕r+1
X ) = Cr+1, taking coho-

mology we have:

0→ Cr+1 → H0(TPr|X (−1))→ H1(OX(−1))
ψ→ H1(O⊕(r+1)

X ) (1.11)

Thus it remains to prove only that ψ is injective: in this case h0(TPr|X (−1))

would be r + 1. Now this is equivalent to show that
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ψ∗ : (H1(OX(−1)))∗ → (H1(O⊕(r+1)
X ))∗ is surjective. By Serre’s duality

theorem ψ∗ :
⊕r+1

i=1 H
0(ωX) → H0(ωX(1)). Since OX(1) is very am-

ple, we can rewrite this map as a multiplication map from H0(OX(1))⊗
H0(ωX) to H0(ωX(1)), and we know that this is surjective by Arbarello-

Petri-Sernesi’s theorem ([1]).

Proof of 1.2.3. Consider (1.2). Tensoring it by OX(−1) we obtain:

0→ TX(−1)→ TPr|X (−1)→ NX/Pr(−1)→ 0 (1.12)

Taking cohomology, by 1.2.4 we have:

0→ Cr+1 → H0(NX/Pr(−1))→ H1(TX(−1))
φ→ H1(TPr|X (−1))→ . . .

(1.13)

Therefore by the rank-nullity theorem and the exactness of the sequence

h0(NX/Pr(−1)) = r + 1 + dimKerφ. Also dimKerφ = dimCokerφ∗, but φ∗

is exactly the Gaussian map ΦωX ,OX(1). In fact by Serre’s duality

H1(TPr|X (−1))∗ ∼= H0(ΩPr|X (1)⊗ωX) and H1(TX(−1))∗ ∼= H0(ΩX(1)⊗ωX).

Corollary 1.2.5. Let X be a smooth, irreducible, linearly normal curve in

Pr that is not a conic. If ΦωX ,OX(1) is surjective then X is not extendable.

Proof. Simply merge together 1.1.5 and 1.2.3.

It is a natural question to ask whether this result has a converse, that is:

if X is not extendable, the Gaussian map should be surjective? The answer

is in general negative, but in a recent paper [11], J. Wahl has proved that

under certain circumstances the extendability of a curve is equivalent to the

non-surjectivity of the Gaussian map. He has studied only canonical curves,

concluding that:

Theorem 1.2.6. Let X ⊂ Pg−1 be a canonical curve (i.e.: embedded with

the canonical sheaf). Suppose that H1(Pg−1, I2
X(k)) = 0 for all k 6= 2, where

I is the ideal sheaf of X in Pg−1. Then X is extendable if and only if the

Wahl map ΦωX
is not surjective.
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Remark 1.2.7. For k = 2, H1(Pg−1, I2
X(2)) is frequently the kernel of the

Gaussian map of ωX and hence is rarely zero.

Given an embedding X ⊂ Pr (i.e. given a very ample line bundle L), in

which cases H1(Pr, I2
X(k)) = 0 for all k but 2? In the same paper Wahl has

verified that this group is zero for

1. X = Pn for every L (though it is surprisingly non-trivial).

2. whichever X and L any sufficiently high power of a very ample line

bundle.

3. the canonical embedding of a general non-hyperelliptic curve of genus

g ≥ 3.

1.3 Surjectivity of Gaussian Maps on Curves

From 1.1.5 and 1.2.3 we are led back the study of the extendability of a

smooth projective curve C ⊂ Pr of genus g, to the study of the surjectivity

of the Gaussian map. But when is ΦωC ,OC(1) surjective? Or more generally if

L,M are line bundles on C when is ΦL,M surjective? A number of theorems

in this direction have already appeared. First Ciliberto, Harris, Miranda

showed in [4] that if L = M and degL ≥ 5g + 2 then ΦL is surjective. Wahl

proved in [10] that ΦL,M is surjective provided that degL ≥ 5g + 1 and

degM ≥ 2g + 2. He also proved that ΦωX ,L is surjective if degL ≥ 5g + 2.

A. Bertram, L. Ein, R. Lazarsfeld strengthened these results proving two

theorems (see [2]).

Theorem 1.3.1 (B-E-L 1). Let L,M have degree d and e respectively. As-

sume that both d, e ≥ 2g + 2. Then

1. If d+ e ≥ 6g + 3 then ΦL,M is surjective.

2. If C is non-hyperelliptic, and d+ e ≥ 6g + 2 then ΦL,M is surjective.

3. If C is hyperrelliptic, then given L of degree 2g + 2 ≤ d ≤ 4g there

exists a line bundle M on C of degree 6g + 2− d for which ΦL,M fails

to be surjective.
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But the main result in [2] we are primarily concerned with, is the second

theorem (1.3.5).

Definition 1.3.2. Let C be a smooth projective curve. Then we define

the Clifford index for C, Cliff C, to be min{deg(L) − 2r(L) : h0(OC(L)) ≥
2, h1(OC(L)) ≥ 2}, where L varies in Pic C and r(L) = h0(L)− 1.

Theorem 1.3.3 (Coppens-Martens [5]). Let C be a smooth projective curve.

Then Cliff C ≥ gon(C)−3.

Remark 1.3.4. gon(C) stands for gonality of C: see 3.2.1. Hyperelliptic and

trigonal mean gon(C) = 2, 3 respectively.

Theorem 1.3.5 (B-E-L 2). Assume that C is neither hyperelliptic, trigonal

nor a plane quintic. If deg(L) ≥ 4g + 1− 2Cliff C, then ΦωC ,L is surjective.

If C ⊂ Pr is trigonal ΦωC ,OC(1) could be surjective in any case. Tendian,

in fact, in an unpublished paper, has showed that:

Theorem 1.3.6 (Tendian). Assume C trigonal. Let A be an invertible sheaf

that defines the map of degree 3 onto P1. Suppose g ≥ 5. If

1. h0(ω⊗2
C ⊗OC(−1)) ≤ 1

2. h0(ω⊗3
C ⊗A⊗(4−g) ⊗OC(−1)) = 0

3. h1(OC(1)) = 0

then ΦωC ,OC(1) is surjective.

1.4 Extendable Surfaces

Since now we have only discussed some general questions about extend-

ability and the extendability of curves. Though the problem of extendability

of surfaces is more complex, even in this case we can say something. In fact

A.L. Knutsen, A.F. Lopez and R. Muñoz proved a general theorem on the

extendability of surfaces ([8]), that is actually a generalization of 1.2.3:
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Theorem 1.4.1 (Knutsen, Lopez, Muñoz). Let X be a smooth surface in

Pr, embedded with a complete linear system related to a very ample divisor

L (i.e.: Pr ∼= PH0(OX(L))). If there exists an invertible sheaf OX(D) such

that for a generic C ∈ |D| the following hypotheses are verified,

1. |D| is base-point free

2. D2 > 0 and g(C) > 0

3. H1(OX(L−D)) = 0

4. H1(OX(L− 2D)) = 0 and (L−D).D ≥ 2g(C) + 1

5. L.D > 2D2

6. ΦωC ,L|C is surjective

then X is not extendable.

Remark 1.4.2. Actually condition 4 is a simplification of another weaker but

less calculable condition, that is the surjectivity of the multiplication map

µ : VC⊗H0(ωC)→ H0(ωC⊗OX(L−C)⊗OC), where VC is defined as follow.

Consider the defining sequence for C,

0 −→ OX(−C) −→ OX −→ OC −→ 0 (1.14)

Tensor it by OX(L− C), obtaining

0 −→ OX(L− 2C) −→ OX(L− C) −→ OC(L− C) −→ 0 (1.15)

Taking cohomology we have:

. . .→ H0(OX(L−C))
π→ H0(OC(L−C))→ H1(OX(L−C))→ . . . (1.16)

Well, VC := Imπ.

By Arbarello-Petri-Sernesi’s theorem we know that µ is surjective if VC is

a complete linear system and it is very ample, that is: there exists a divisor

E on C such that VC = H0(OC(E)) and OC(E) is very ample. By (1.16)

we see that if H1(OX(L− 2C)) = 0 then π is surjective and therefore VC is

complete. Moreover if (L− C).C ≥ 2g(C) + 1 then (L− C)|C is very ample

(see [7], IV, 3.2).
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Chapter 2

Ruled Surfaces

Remark. Throughout this and the next chapter surface will mean a non-

singular projective variety of dimension 2 over C (or, actually, any other

algebraically closed field of characteristic 0). A curve on a surface will be

an effective divisor. Therefore, if not clearly stated, a curve may be also

reducible or singular or even have multiple components. A point will be a

closed point.

In this chapter first of all we will study ruled surfaces and their geometry

(Picard group, canonical divisor...) and in some way we will classify them,

viewing them as projective space bundles. In particular our attention will

be concerned with rational ruled surfaces, for which we will be able to say

lots of things: we will compute the Picard group and we will classify all the

ample and very ample divisors on them.

2.1 Ruled Surfaces

Definition 2.1.1. A ruled surface is a surface X together with a morphism

π : X → C, where C is a nonsingular curve, such that π−1(p) ∼= P1 for every

p ∈ X and such that there exists a section, that is: there exists a morphism

σ : C → X that composed with π is the identity on C.

Notation 2.1.2. Every time we speak of ruled surfaces we will consider the

surface endowed with the projection π on the curve C of genus g and the
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section σ like in the definition. We set C0 := σ(C). Moreover we will call fp

the fibre π−1(p). If it is not necessary to specify the point p, we will call the

fibre f .

Remark 2.1.3. f ∼= P1. C0 is a curve on X that is isomorphic to C through

π|C0 . In fact π|C0 ◦ σ = idC by definition and σ ◦ π|C0 = idC0 because π is

injective on C0 and π|C0(σ(π|C0(p))) = π|C0(p)⇒ σ(π|C0(p)) = p.

Definition 2.1.4. A rational ruled surface is a ruled surface with C ∼= P1.

The simplest example is P1 × P1, which has two rulings associated with the

projection on the first and on the second factor.

Lemma 2.1.5. Let X be a ruled surface. All the fibres of X are numerically

equivalent (i.e.: D.fp = D.fq for all p, q ∈ C).

Proof. For a general proof see [7], V, 2.1. However in the case of rational

ruled surfaces the proof is very simple. In fact all the points on P1 are

linearly equivalent and hence fp = π∗(p) ∼ π∗(q) = fq. Therefore D.f is

independent on the fibre because the intersection pairing depends only on

the linear equivalence class of divisors ([7],V,§1).

Corollary 2.1.6. Let D be a divisor on X. D.f is independent on the choice

of the fibre.

Lemma 2.1.7. Let X be a ruled surface and D a divisor. Suppose that

D.f = n ≥ 0. Then π∗(OX(D)) is a locally free sheaf on C of rank n+ 1. In

particular π∗OX = OC.

Proof. See [7], V, 2.1.

Proposition 2.1.8. If X is a ruled surface then there exists a locally free

sheaf E of rank 2 on C such that X ∼= P(E) (for the definition of the projective

space bundle P(E) see [7], II, §7). Conversely every such P(E) is a ruled

surface X over C. Moreover if two ruled surfaces over the same curve are

isomorphic then the sheaves are isomorphic up to the tensorization by an

invertible sheaf, and vice versa.

Proof. See [7], V, 2.2.
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Proposition 2.1.9. Let X be a ruled surface. Pic X ∼= Z⊕ π∗Pic C, where

Z is generated by C0. Also Num X ∼= Z ⊕ Z generated by C0 and f and

satisfying C0.f = 1, f 2 = 0.

Proof. First of all we see that C0.f = 1 because C0 and f meet at only one

point and they are transversal there. It is also clear that f 2 = 0 since two

distinct fibres do not intersect.

Now π∗ :Pic C → Pic X is injective, since (π|C0)
∗ is injective (because it

is invertible) and if OX(D) ∼= OX(D′) then OX(D)⊗OC0
∼= OX(D′)⊗OC0 .

Let D be a divisor on X and n = D.f . Then we can write D = nC0 +

(D − nC0). Let D′ = D − nC0. D′ is such that D′.f = 0, hence, by 2.1.7,

π∗(OX(D′)) is an invertible sheaf on C. But then π∗π∗(OX(D′)) ∼= OX(D′).

Thus , since π∗ is injective, π∗ Pic C = {D ∈ X s.t. D.f = 0}, therefore

Pic X ∼= Z⊕ π∗Pic C, where Z is seen as the additive group generated by C0.

The conclusion about Num X is obvious, remembering that all the fibres are

numerically equivalent.

Remark 2.1.10. On the rational ruled surfaces, since all the fibres are linearly

equivalent, we have Pic X ∼= Z⊕Z, where the first Z is generated by C0 and

the second Z is generated by f . Or, in another way: for every D in Pic X

there exist a, b ∈ Z such that D ∼ aC0 + bf .

Lemma 2.1.11. Let D be a divisor on X. Assume that D.f ≥ 0. Then, for

all i, H i(X,OX(D)) ∼= H i(C, π∗OX(D)).

Proof. See ([7], V, 2.4).

Remark 2.1.12. Since C is a curve, by the vanishing theorem of Grothendieck

([7],III,2.7), for all sheaves F on C we have H2(C,F) = 0. Consequently for

all D on X such that D.f ≥ 0 we have H2(OX(D)) = 0.

Corollary 2.1.13. h0(OX) = 1, h1(OX) = g, h2(OX) = 0.

Proof. Use the lemma above (0.f = 0) remembering that π∗OX ∼= OC by

2.1.7.

Proposition 2.1.14. Let E be a locally free sheaf of rank 2 on C, and let X

be the ruled surface P(E). Then there is a one-to-one correspondence between
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sections σ : C → X and surjections E → L, where L = σ∗(OX(1)). Under

this correspondence if N = ker(E → L) then N is an invertible sheaf on

C and N ∼= π∗(OX(1) ⊗ OX(−D)), where D = σ(C) and π∗N ∼= OX(1) ⊗
OX(−D).

Proof. See [7], V, 2.6.

Proposition 2.1.15. If X is a ruled surface it is possible to write X as

P(E), where E is a locally free sheaf of rank 2 on C such that H0(C, E) 6= 0,

but for every invertible sheaf L on C of negative degree, H0(E ⊗ L) = 0.

In this case the integer e = − deg E := − deg∧2E is an invariant of X.

Additionally in this case we can choose a section σ0 : C → X such that

OX(σ0(C)) ∼= OP(E)(1).

Proof. See [7], V, 2.8.

Notation 2.1.16. From now on, when we will speak of a ruled surface we will

intend the data of a locally free sheaf E as in the proposition above (i.e. E
is normalized), a curve C of genus g, a projection map π : X = P(E) → C,

and a particular section σ0, with its image C0, as in the proposition above.

By abuse of notation, if d is a divisor on C we will write df for π∗(d).

Proposition 2.1.17. Let σ : C → X be any section on X, corresponding

(2.1.14) to a surjection E → L, where L ∼= σ∗(OX(1)). Let D = σ(C). Let

d be a divisor on C such that OC(d) ∼= L. Let e = ∧2E. Then we have D ∼
C0 + (d− e)f . Moreover deg d = C0.D and, in particular, C2

0 = deg e = −e.

Proof. D is a section, hence D.f = 1. Therefore by 2.1.9 D ∼ C0 + π∗(D −
C0)f . What is π∗(D − C0)? Let N be the kernel of the surjection E → L.

From 2.1.15 we know that N ∼= π∗(OX(1)⊗OX(−D)). But, by the choice of

C0, OX(1) ∼= OX(C0) and hence N ∼= π∗(OX(C0 −D)). But N = OC(e− d)

by [7], 2, ex. 5.16d, thus the first part of the thesis follows.

L = σ∗(OX(1)) ∼= σ∗OX(C0). We consider σ : C → D. Clearly

σ∗(OX(C0)) = σ∗(OX(C0) ⊗ OD). Since C and D are nonsingular (C by

hypothesis and D because it is isomorphic to C) we can apply [7],II,6.9: σ

has degree 1, then deg σ∗(OX(C0)) = degOX(C0)⊗OD = C0.D by [7],V,§1.

In particular if D = C0, deg d = C0.C0 andN = π∗(OX) = OC . Therefore

OC(e− d) = OC ⇒ d ∼ e. But then C2
0 = deg d = deg e = −e.
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Theorem 2.1.18 (Adjunction Formula). If C is a nonsingular curve of

genus g on a surface Y we have ωC ∼= ωY ⊗ OY (C) ⊗ OC. In particular

if K is the canonical divisor on Y we have:

2g − 2 = C.(C +K) (2.1)

Theorem 2.1.19 (Riemann-Roch for curves). If D is any divisor on a pro-

jective nonsingular curve Γ of genus g, then

h0(OΓ(D))− h1(OΓ(D)) = degD + 1− g

Theorem 2.1.20 (Riemann-Roch for surfaces). If D is any divisor on a

surface Y and if K is the canonical divisor of Y , then:

h0(OY (D))− h1(OY (D)) + h0(OY (K −D)) =
1

2
D.(D −K) + χ(OY )

where χ(OY ) is the Euler characteristic of OY , i.e. χ(OY ) = h0(OY ) −
h1(OY ) + h2(OY ).

Theorem 2.1.21 (Projection Formula). If θ : (Z,OZ) → (W,OW ) is a

morphism of ringed spaces, if F is an OZ-module and if G is a locally free OW -

module of finite rank, then there is a natural isomorphism θ∗(F ⊗OZ
θ∗G) ∼=

θ∗(F)⊗OY
G.

Remark 2.1.22. Note that, by [7],II,7.11, π∗(OX(1)) = π∗(OX(C0)) = E .

Lemma 2.1.23. The canonical divisor K on X is given by K ∼ −2C0 +

(l + e)f , where l is the canonical divisor on C.

Proof. By 2.1.9 we know that there exists b divisor on C such that K ∼
aC0+bf . Using the adjunction formula for a fibre f ∼= P1 we have: −2 = (f+

K).f = a (clearly π∗(b).f = 0). Now we use the adjunction formula for C0 on

X. ωC0
∼= ωX⊗OX(C0)⊗OC0

∼= OX(K+C0)⊗OC0
∼= OX(−C0 +bf)⊗OC0 .

C0
∼= C through π, hence we have ωC ∼= (∧2E)−1⊗OC(b), that is: l ∼ −e+b.

This implies that b ∼ e + l.

Corollary 2.1.24. If X is rational ruled surface then the canonical divisor

K on X is linearly equivalent to −2C0 + (−2− e)f .
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Proof. Since by definition a rational ruled surface is ruled over P1 we have

deg l = degωC = −2. By 2.1.10 and 2.1.23 (l + e)f depends only on the

degree of l + e. Since deg(l + e) = deg l + deg e = −2 − e we have K ∼
−2C0 + (−2− e)f .

Theorem 2.1.25. Let X be a ruled surface. If E is decomposable (i.e., it is

a direct sum of two invertible sheaves) then E ∼= OC ⊕ L, with degL ≤ 0.

Therefore e ≥ 0. If E is indecomposable, then −2g ≤ e ≤ 2g − 2.

Proof. By definition if E is decomposable we can write E = OC(D1)⊕OC(D2),

where D1 and D2 are divisors on C. Since E is normalized, degD1 ≤ 0

and degD2 ≤ 0, otherwise, if for example degD1 > 0, we would have

H0(E ⊗ OC(−D1)) = H0(OC ⊕ OC(D2 − D1)) = H0(OC) ⊕ H0(OC(D2 −
D1)) 6= 0, while deg(−D1) < 0. However, again from the normalization of

E , H0(E) = H0(OC(D1))⊕H0(OC(D2)) 6= 0 and hence we can suppose that

H0(OC(D1)) 6= 0. H0(OC(D1)) 6= 0 and degD1 ≤ 0 imply that D1 ∼ 0, i.e.

OC(D1) ∼= OC . Thus we have the short exact sequence:

0 −→ OC −→ OC ⊕OC(D2) −→ OC(D2) −→ 0 (2.2)

Since the degree is additive for exact sequences we have deg E = degD2 ≤
0⇒ e = − deg E ≥ 0. Now suppose E is indecomposable. By 2.1.14 we have

an exact sequence, corresponding to the section C0:

0 −→ N −→ E −→ L −→ 0 (2.3)

By 2.1.14 N ∼= π∗(OX(1)⊗OX(−D)), where D = σ(C) = C0. But by 2.1.16

OX(1) ∼= OX(C0), hence N ∼= π∗OX = OC by 2.1.7. Hence 2.3 becomes:

0 −→ OC −→ E −→ L −→ 0 (2.4)

This says that E is an extension of L by OC . It cannot be a trivial extension

by hypothesis (trivial means E = OC ⊕ L) hence this extension corresponds

to a nonzero element ξ ∈ Ext1(L,OC) ∼= H1(L∗) (see [7], III, §6 and ex.

6.1). In particular H1(L∗) 6= 0. Remember that L is an invertible sheaf on

C curve, hence, by Serre’s duality, H1(L∗) = H1(L−1) ∼= H0(ωC ⊗ L)∗ 6= 0.

Therefore deg(ωC ⊗ L) ≥ 0 ⇒ 2g − 2 + degL ≥ 0 ⇒ degL ≥ 2− 2g. From
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2.4, since the degree is an additive function for exact sequences, we have:

deg E = degOC + degL ⇒ e := − deg E = − degL ≤ 2g − 2.

On the other hand consider a point p on C. After tensoring 2.4 byOC(−p)
we have:

0 −→ OC(−p) −→ E ⊗OC(−p) −→ L⊗OC(−p) −→ 0 (2.5)

Taking cohomology, since E is normalized and thus H0(E ⊗OC(−p)) = 0, we

obtain an injection 0 → H0(L ⊗ OC(−p)) → H1(OC(−p)). Hence h0(L ⊗
OC(−p)) ≤ h1(OC(−p)). But, by Riemann-Roch, since h0(OC(−p)) = 0,

h1(OC(−p)) = g and hence h0(L ⊗ OC(−p)) ≤ g. But, again by Riemann-

Roch, h0(L ⊗ OC(−p)) ≥ degL − g (in fact deg(L ⊗ OC(−p)) = degL +

degOC(−p)). Combining the two inequalities we have degL − g ≤ g ⇒
degL ≤ 2g ⇒ e = − degL ≥ −2g.

Corollary 2.1.26. If g = 0 (i.e. X is a rational ruled surface), then e ≥ 0

and E is decomposable as OP1 ⊕OP1(−e). Conversely for each e ≥ 0 there is

one rational ruled surface with invariant e, given by E = OP1 ⊕OP1(−e).

Proof. If g = 0 then E must be decomposable. Hence E = OP1 ⊕F , where F
is an invertible sheaf on P1 of degree −e. But on P1 all the invertible sheaves

of the same degree d are isomorphic to OP1(d), therefore E ∼= OP1⊕OP1(−e).
On the other hand ∀e ≥ 0 E = OP1 ⊕ OP1(−e) is normalized and hence

e = − deg E .

Corollary 2.1.27. On any ruled surface X for which the normalized sheaf

E is decomposable, E = OC ⊕ L, we have:

1. if e > 0, the normalized sheaf is unique.

2. if e = 0,L ∼= OC, the normalized sheaf is unique.

3. if e = 0,L 6∼= OC, we have two choices for the normalized sheaf: namely

E and E ⊗ L−1.

In particular for the rational ruled surfaces the normalized sheaf is always

unique.
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Proof. If E ′ is another normalized sheaf for X then by 2.1.8 E ′ = E ⊗ F ,

therefore E ′ is decomposable and E ′ = F ⊕ (L ⊗ F). By the theorem either

F ∼= OC (and thus E ′ ∼= E) or L ⊗ F ∼= OC ⇒ F ∼= L−1. Again by the

theorem, degF ≤ 0. But also degL ≤ 0, hence F can be isomorphic to L−1

only if e = − degL = 0. In particular for the rational ruled surfaces the

normalized sheaf is unique: in fact on P1 every invertible sheaf of degree 0 is

isomorphic to OP1 .

2.2 Rational Ruled Surfaces

Now we concentrate our attention on rational ruled surfaces. From the

preceding paragraph we know that for all invariant e ≥ 0 there exists one and

only one rational ruled surface X = P(E) where E is the unique normalized

sheaf OP1 ⊕OP1(−e).

Theorem 2.2.1. Let X be the rational ruled surface with invariant e. Then:

(a) there is a section D ∼ C0 + nf if, and only if, n = 0 or n ≥ e. In

particular, there is a section C1 ∼ C0 + ef with C0 ∩C1 = ∅ and C2
1 = e;

(b) the linear system |C0 + nf | is base-point free if and only if n ≥ e;

(c) the linear system |C0 + nf | is very ample if and only if n > e.

Proof.

(a) If D is a section, by 2.1.17, D ∼ C0 + (C0.D + e)f . Since both C0 and

D are isomorphic to P1, and hence irreducible, we have only two cases:

C0 = D and C0 and D without common irreducible components. In the

first case C0.D = −e, in the second case C0.D ≥ 0 by [7], V, 1.4.

Now let us prove the converse. We can suppose n ≥ e, because if n = 0

we already know that C0 is a section. By 2.1.14 and 2.1.17, we know

that finding a section D linearly equivalent to C0 + nf is equivalent to

finding a surjection OP1 ⊕ OP1(−e) → OP1(n − e). For this purpose let

us consider 2n− e distinct points on P1, p1, . . . , pn−e and q1, . . . , qn. We
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have:

0→ OP1(−(n− e))→ OP1 → O{p1,...,pn−e} → 0 (2.6)

0→ OP1(−n)→ OP1 → O{q1,...,qn} → 0 (2.7)

Tensor (2.6) and (2.7) by OP1(n− e). We have:

0→ OP1 → OP1(n− e)→ O{p1,...,pn−e} → 0 (2.8)

0→ OP1(−e)→ OP1(n− e)→ O{q1,...,qn} → 0 (2.9)

Looking at the stalk of each exact sequence above, we notice that for

every stalk, at least one of the maps OP1 → OP1(n − e) or OP1(−e) →
OP1(n − e) is surjective. Therefore we can construct a surjective map

OP1 ⊕OP1(−e)→ OP1(n− e).

In particular if n = e there is a section C1 ∼ C0 +ef . C2
1 = e. C0.C1 = 0,

therefore by [7], V, 1.4, C0 ∩ C1 = ∅.

(b) If |C0 + nf | is base-point free then, in particular, it contains an effective

divisor D ∼ C0 + nf such that D does not contain C0 as one of its

irreducible components. But then D.C0 ≥ 0 by [7],V,1.4. D.C0 = (n −
e) ≥ 0⇒ n ≥ e.

On the contrary suppose now n ≥ e. Let p be a point of X, and f a

fibre different from π−1(π(p)). If p does not belong to C0, then C0 + nf

does not pass through p. If p ∈ C0 then C1 + (n − e)f is an effective

divisor that does not pass through p: in fact, by a), C1 ∩ C0 = ∅. Thus

whichever p we fix, there exists an effective divisor linearly equivalent to

C0 + nf that does not contain p, i.e. |C0 + nf | is base-point free.

(c) First suppose that |C0 + nf | is very ample: remember that a linear

system is very ample if and only if it separates points and tangent vectors

([7],II,7.8.2). In particular a very ample linear system is without base

point then, by b), n ≥ e. Furthermore n cannot be e: in fact if E ∈
|C0 + ef | then, since C0.(C0 + ef) = 0, either E contains C0 as one of

its irreducible components, or E is a curve that does not intersect C0.

We see that, in both cases, C0 + ef cannot separate points on C0. Or,
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more easily: if C0 + nf is very ample then (C0 + nf).C0 = n − e must

be strictly greater than 0, because this number is the degree of C0 in the

projective embedding determined by C0 + nf .

Suppose now n > e. We will show that, in this case, D = C0 + nf is

very ample. Actually we will show that |D| separates points and tangent

vectors.

1. If p 6= q are two points not both in C0 and not in the same fibre,

then C0 + nfp and C0 + nfq (both in |D|) separate them. (This is

true also if n = e. We will use this result later).

2. Le p be a point and t a tangent vector at p. Suppose that p and t

are neither both in C0 neither both in any fibre. Then a divisor of

the form C0 +
∑n

i=1 fpi
, for suitable pi, will separate them.

3. Suppose now that p, q or p, t are both in C0. Then C1 +
∑n−e

i=1 fpi
,

for suitable pi, will separate them.

4. Suppose now that p, q or p, t are both on the same fibre. Let us

consider the following exact sequence:

0 −→ OX(−f) −→ OX −→ Of −→ 0 (2.10)

After tensoring it by OX(C0 +nf), since f ∼= P1 and f.(C0 +nf) = 1

we obtain:

0 −→ OX(C0 +(n−1)f) −→ OX(C0 +nf) −→ OP1(1) −→ 0 (2.11)

But OP1(1) is very ample on P1, therefore it separates points and

tangent vectors. It is clear that if H0(OX(C0 +nf))→ H0(Of (C0 +

nf)) = H0(OP1(1)) is surjective then |C0 + nf | separates points and

tangent vectors on the fibre f . Thus, taking cohomology, we have

only to show that H1(OX(C0 + (n − 1)f)) = 0. By 2.1.11, since

(C0 +(n−1)f).f = 1, H1(OX(C0 +(n−1)f)) = H1(P1, π∗(OX(C0 +

(n−1)f))). But OX(C0 +(n−1)f) = OX(C0)⊗π∗(OP1(n−1)), thus,

by the projection formula and by 2.1.22, π∗(OX(C0 + (n − 1)f)) =

(OP1⊕OP1(−e))⊗OP1(n−1) = OP1(n−1)⊕OP1(n−e−1). Therefore

H1(OX(C0 + (n− 1)f)) = H1(OP1(n− 1)) +H1(OP1(n− e− 1)) = 0

because n > e.
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Corollary 2.2.2. Let D be the divisor aC0 +bf on the rational ruled surface

X with invariant e ≥ 0. Then:

a) D is very ample ⇔ D is ample ⇔ a > 0 and b > ae;

b) the linear system |D| contains an irreducible nonsingular curve ⇔ it con-

tains an irreducible curve ⇔ a = 0, b = 1 (i.e. f); or a = 1, b = 0 (i.e.

C0); or a > 0, b ≥ ae, e 6= 0; or a > 0, b > 0, e = 0.

Proof.

a) If D is very ample then D is ample. If D is ample then there exists n ∈ N
such that nD is very ample, therefore nD.f > 0 and nD.C0 > 0, that is:

a > 0, b > ae. Moreover if we write D as (a − 1)(C0 + ef) + (C0 + (b −
ae + e)f) we see that if a > 0, b > ae D is very ample: in fact, by the

theorem, C0 + ef is base-point free and C0 + (b− ae+ e)f is very ample.

b) if |D| contains an irreducible nonsingular curve then, in particular, it

contains an irreducible curve. An irreducible curve in |D| can be f (a =

0, b = 1), or can be C0 (a = 1, b = 0). If it is not f then we have D.f >

0 ⇒ a > 0. Moreover if it is not C0 we have also D.C0 ≥ 0 ⇒ b ≥ ae.

In addition if e = 0, X ∼= P1 × P1, i.e. |C0| and |f | play the same role:

simply they are the two different rulings of X. Hence, in this case, if

the irreducible curve is not C0 we have D.C0 > 0 ⇒ b > 0. Thus the

restriction on a, b are necessary.

On the contrary, if a > 0, b > ae there exists an irreducible nonsingular

curve in |D|, by Bertini’s theorem, because D is very ample. If a > 0, b =

ae, e > 0 then |D| is without base-points (D = a(C0 + ef) and C0 + ef

is base-point free by 2.2.1). To apply Bertini’s theorem again and thus

to conclude that |D| contains an irreducible nonsingular curve we have

only to show that |D| is not composite with a pencil. Let us call φD the

morphism X → P(H0(OX(D))) = Pr induced by |D|. To prove that |D|
is not composite with a pencil (i.e.: dimφD(X) ≥ 2) it is enough to show

that every fibre f has an image of dimension 1, because we already know
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that |D| separates points that are not both on C0 or on a given fibre f

(see proof of 2.2.1). Therefore let us consider φD|f . We know that this

morphism is given by the image of H0(OX(D))
ψ→ H0(OX(D)⊗Of ). But

ψ is surjective: in fact H1(OX(D − f)) = H1(OX(aC0 + (ae − 1)f) = 0

by 3.1.7. Moreover, since D.f = a, H0(OX(D) ⊗ Of ) = H0(P1,OP1(a))

and, since a > 0, OP1(a) is very ample on P1. Therefore φD|f is a closed

immersion of f in Pr.

We could have proved more easily that |D| is not composite with a pencil

simply noting that D2 = a2e > 0 (see 3.3.2).

Definition 2.2.3. Let X be a ruled surface embedded in Pr. If for every p

in C, π−1(p) has degree 1 (i.e.: every fibre has degree 1) then we call X a

scroll.

Corollary 2.2.4. For every n > e ≥ 0, there is an embedding of the rational

ruled surface X of invariant e as a rational scroll in P2n−e+1.

Proof. Consider the divisor D = C0 + nf . D is very ample by the previous

corollary. Thus D defines an embedding in Pd, where d = h0(OX(D)) − 1.

Since D.f = 1 the embedding is a scroll. Moreover by 2.1.11, the projection

formula and 2.1.22, as already seen, we have:

H0(OX(D)) ∼= H0(P1, (OP1⊕OP1(−e))⊗OP1(n)) ∼= H0(OP1(n)⊕OP1(n−e))
(2.12)

Since n− e > 0 then h0(OX(D)) = n+ 1 + n− e+ 1 = 2n− e+ 2.
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Chapter 3

Extendability of Rational

Ruled Surfaces

The aim of this chapter is to study the extendability of rational ruled

surfaces. We will use Knutsen-Lopez-Muñoz’s theorem (1.4.1), together with

B-E-L 2 (1.3.5) or Tendian (1.3.6) to render explicit the condition about the

surjectivity of the Gaussian map. In order to apply the theorem we need to

know something about cohomology of line bundles on rational ruled surfaces,

i.e. we have to characterize those line bundles for which the first cohomology

group is zero. The first section will be devoted to this problem. Afterwards,

in section 2, we will compute the gonality of a generic irreducible curve in

a base-point free linear system. We will see that, although gonality could

depend a priori on the specific curve, actually gonality of curves on rational

ruled surfaces depends only on the linear system. Eventually, in section 3,

using the results of sections 1 and 2, we will translate 3.3.1 for rational ruled

surfaces in a system of numerical conditions and we will solve it.

Remark: From now on X will be a rational ruled surface. We will use the

notation of chapter 2.
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3.1 Cohomology of Line Bundles on Rational

Ruled Surfaces

Definition 3.1.1. A divisor D on a smooth surface is called numerically

effective (nef) if E.D ≥ 0 for every E effective divisor.

For example any fibre f of X is nef. Indeed if E is effective then E ∼
E ′ + nf with n ≥ 0 and E ′ such that none of its irreducible components

is linearly equivalent to f . But then E.f = E ′.f ≥ 0 by [7],V,1.4. On the

contrary C0 is not nef as soon as e > 0: indeed C0.C0 = −e.

Lemma 3.1.2. If a < 0 then H0(OX(aC0 + bf)) = 0.

Proof. Suppose by contradiction that H0(OX(aC0 + bf)) 6= 0. Then there

exist D ∼ aC0 + bf such that D is effective. However this is not possible

since f is nef but D.f = a < 0.

Let us start trying to characterize a, b for which H1(OX(aC0 + bf)) = 0.

The case a = −1 will be treated separately. Then we will use induction to

cover all the cases with a ≥ 0. Then, by Serre’s duality, we will extend the

results to the cases with a ≤ −2.

Proposition 3.1.3. If D = −C0 + bf then H1(OX(D)) = 0 for all b ∈ Z

Proof. By 3.1.2 H0(OX(D)) = 0 and, using Serre’s duality, also

H2(OX(D)) = 0. Hence we can use Riemann-Roch to compute H1(OX(D)).

Let K be the canonical divisor for X: χ(OX(D)) = 1
2
D.(D−K) +χ(OX) =

0⇒ H1(OX(D)) = 0.

Lemma 3.1.4. If b ≥ −1 then H1(OX(bf)) = 0.

Proof. After tensoring the defining exact sequence of C0 by OX(bf) we have:

0 −→ OX(−C0 + bf) −→ OX(bf) −→ OX(bf)⊗OC0 −→ 0 (3.1)

Since C0
∼= P1 and degC0

(OX(bf) ⊗ OC0) = C0.bf = b, taking cohomology

we have:

. . .→ H1(OX(−C0 + bf))→ H1(OX(bf))→ H1(OP1(b))→ . . . (3.2)

H1(OX(−C0 + bf)) = 0 (3.1.3), H1(OP1(b)) = 0 (b ≥ −1) ⇒ H1(OX(bf)) =

0.
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Proposition 3.1.5. Let D be the divisor aC0+bf , with a ≥ 0. H1(OX(D)) =

0 if, and only if, b ≥ ae− 1.

Proof. Let b ≥ ae − 1. If a = 0 then H1(OX(D)) = 0 because of 3.1.4.

We use induction on a: suppose H1(OX(D)) = 0 for a fixed and for every

b ≥ ae−1. We will prove that H1(OX(D)) = 0 for a+1 and b ≥ (a+1)e−1.

Consider the exact sequence

0 −→ OX(−C0) −→ OX −→ OX ⊗OC0 −→ 0 (3.3)

Tensoring it with OX((a+ 1)C0 + bf) we obtain:

0→ OX(aC0 + bf)→ OX((a+ 1)C0 + bf)→ OX((a+ 1)C0 + bf)⊗OC0 → 0

(3.4)

Taking cohomology:

. . .→ H1(OX(aC0 + bf))→ H1(OX((a+ 1)C0 + bf))→
→ H1(OX((a+ 1)C0 + bf)⊗OC0)→ . . . (3.5)

Now:

1. Since C0
∼= P1,H1(OX((a+ 1)C0 + bf)⊗OC0)

∼=
H1(OP1(−(a+ 1)e+ b) = 0 since b ≥ (a+ 1)e− 1.

2. H1(OX(aC0 + bf)) = 0 by the induction hypothesis.

Therefore H1(OX((a+ 1)C0 + bf)) = 0 too, by (3.5), for b ≥ (a+ 1)e− 1.

Let us now conclude proving that if a ≥ 0 and b < ae− 1 then

H1(OX(aC0 + bf)) 6= 0. Consider the exact sequence (3.3) and, after tensor-

ing it by OX(aC0 + bf), consider its cohomology:

. . .→ H1(OX(aC0 + bf))→ H1(OC0(aC0 + bf))→
→ H2(OX((a− 1)C0 + bf))→ . . . (3.6)

Now:

1. H1(OC0(aC0 + bf)) ∼= H1(OP1(b− ae)) 6= 0 since b− ae < −1.
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2. Since −(a + 1) < 0, by 3.1.2 H0(OX(−(a + 1)C0 − (2 + e + b)f) = 0

and, by Serre’s duality, it is isomorphic to H2(OX((a − 1)C0 + bf))∗

that therefore is the null vector space.

Consequently H1(OX(aC0 + bf)) cannot be zero.

Corollary 3.1.6. Let D be the divisor aC0+bf , with a ≤ −2. H1(OX(D)) =

0 if, and only if, b ≤ e(a+ 1)− 1

Proof. Simply apply Serre’s duality to 3.1.5.

To sum up what we have proved:

Proposition 3.1.7. Let D be the divisor aC0 +bf on X. H1(OX(D)) = 0 if,

and only if, a ≥ 0 and b ≥ ae−1, or a = −1, or a ≤ −2 and b ≤ e(a+1)−1.

We have computed what we needed in a relatively simple manner, using

only basic facts about cohomology and geometry of ruled surfaces. Alter-

natively we could have used a more powerful tool (an application of Leray’s

spectral sequence) to obtain the same results, and much more, quicker and

tidier. In fact if X is our ruled surface P(E), where E ∼= OP1 ⊕ OP1(−e) on

P1, and if π is the natural projection from X to P1 then, if D = aC0 + bf

with a ≥ 0, H i(OX(D)) ∼= H i(P1, π∗(OX(D)))∀i. Moreover π∗(OX(D)) =

π∗(OX(aC0) ⊗ π∗OP1(b)) ∼= SaE ⊗ OP1(b), where Sa is the a-th symmetric

power. In general if L,F are two line bundles Sa(L⊕F) ∼=
⊕a

i=0(Li⊗Fa−i),
therefore SaE ⊗OP1(b) ∼=

⊕a
i=0(OP1(−ie))⊗OP1(b). In this way the proposi-

tion 3.1.5 immediately follows. Moreover we can compute H0(OX(D)) when

requested and we see that H2(OX(D)) = 0.

3.2 Gonality of Curves on Rational Ruled Sur-

faces

The aim of this section is to compute the gonality (see below) of a smooth,

irreducible curve in the linear system |D|, where D is a divisor on a rational

ruled surface X. Not every linear system contains an irreducible, nonsingular

curve (see 2.2.2): if it does, we will first easily find an upper bound for the

gonality, then we will show that in most cases this is the correct answer.
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Before discussing the gonality of divisors on ruled surfaces we will com-

pute the gonality of plane curves, as this is a paradigmatic example that it

is not only interesting by itself, but it allows also to understand better the

techniques of proof that come next.

Definition 3.2.1. Let C be an irreducible and nonsingular curve. We call

gonality of C (gon(C)) the least n ≥ 1 for which there exists a finite morphism

φ : C −→ P1 of degree n

Example 3.2.2. The gonality of a hyperelliptic curve, i.e. a curve of genus

≥ 2 and with a finite morphism onto P1 of degree 2, is trivially 2.

Remark 3.2.3. Finding a finite morphism φ from C to P1 of degree k is the

same as finding a vector space V ⊆ H0(OC(L)) with L divisor on C, degL=k,

|V | without base points and dimV=2.

Remark 3.2.4. With the notation as above, if gon(C)=k the linear system PV
is complete. Indeed on the contrary h0(OC(L)) ≥ 3, hence if P is not a base-

point, and the generic point is not since base-points are finite, h0(OC(L −
P )) ≥ 2. Hence there would exist W ⊆ H0(OC(L − P )) with dimW=2. It

would define a rational map C − −− > P1 that can be extended to a finite

morphism because of [7],I,6.8. But now deg(L− P )=k − 1. Contradiction.

Remark 3.2.5. Because of 3.2.3 and 3.2.4, using the same notation, gon(C)

= min{degL : L ∈ DivX, dim |L| = 1}.

Theorem 3.2.6 (Bertini ([7],III, 10.9 and III, ex. 11.3). Let X be a smooth

projective variety and let |L| be a base-point free linear system. The generic

divisor in |L| is smooth. Moreover if |L| is not composite with a pencil (i.e.

if f : X → Pn is the morphism determined by |L| then dim f(X) ≥ 2) then

every divisor in |L| is connected, and thus the generic divisor in |L| is smooth

and irreducible.

Proposition 3.2.7 (Gonality of plane curves). Let C be a smooth curve in

P2 of degree d ≥ 3. Then gon(C)=d− 1.

Proof. Let P be a closed point on C. Projecting C −{P} from this point to

a line l ∼= P1 we obtain a rational map C − −− > P1 that can be extended

to a morphism φ.
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Since C is projective and does not lie on a line, φ is a finite morphism

(see [7], II, 6.8). By Bezout’s theorem ([7], V, 1.4.2) the degree of φ is d− 1.

Thus gon(C)≤ d− 1.

Let us now prove that gon(C) is exactly d−1. Suppose that k = gon(C)≤
d− 2. Because of 3.2.5 there exists L ∈ DivX such that dim |L| = 1,degL =

k, |L| is base-point free. Using Bertini’s theorem (3.2.6) we can suppose

L ∼ P1 + . . .+ Pk where P1, . . . , Pk are distinct points.

Let K be the canonical divisor on C. Consider the following exact se-

quence, obtained by tensoring the defining sequence of Z = {P1, . . . , Pk} by

OC(K):

0 −→ OC(K − L) −→ OC(K) −→ OC(K)⊗OZ −→ 0 (3.7)

Since OZ is a skyscraper sheaf sitting at the points P1, . . . , Pk and OC(K) is

an invertible sheaf, tensoring by it does not affect OZ .

Taking cohomology:

0→ H0(OC(K − L))→ H0(OC(K))
ψ→ H0(OZ)→ . . . (3.8)

Now ψ : H0(OC(K))→ H0(OZ) ∼= Ck sends sections s to

(s(P1), . . . , s(Pk)), but while h0(OC(K)) = g (g is the genus of C), h0(OC(K−
P1− . . .−Pk) = g− k+ 1 by Riemann-Roch (h0(OC(K−L) = h1(OC(L)) =

h0(OC(L)) − degL + g − 1 = 2 − k + g − 1). Therefore ψ is not surjective.

Without loss of generality we can suppose that (1, 0, . . . , 0) does not belong

to the image of ψ. That is: if a global section in the canonical sheaf of the

curve is zero in the k − 1 points P2, . . . , Pk then it is zero in P1 too. Or,

analogously ([7],II, 7.7), if a divisor in |K| has P2, . . . , Pk in its support then

it passes also through P1. But this is not true. Indeed by the adjunction

formula ([7],V, 1.5 and II, 8.20.1) OC(K) ∼= OP2(−3)⊗OP2(C)⊗OC . Since

C has degree d, OC(K) ∼= OP2(d− 3)⊗OC . When k < d− 2 consider other

different points Pk+1, . . . , Pd−2. We can find l2, . . . , ld−2 lines such that Pi ∈ li
but P1 6∈ li for all i. Now l2 + . . . + ld−2 restricted to C is in |K| and passes

through Pi for every i except i=1.

We now go back to rational ruled surfaces. The way of computing the

gonality for an irreducible nonsingular curve in |D|, where D = aC0 + bf
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on X, is similar to the one just discussed. In fact π, the projection to P1

with which every ruled surface is endowed by definition, will play the role of

the projection onto a line in 3.2.7. And since we cannot speak of lines that

separate points as in 3.2.7, we will speak instead of special divisors that,

even if they are not very ample, separate the points that we are interested

in. Therefore first of all we characterize base-point free linear systems.

Lemma 3.2.8. Let D be a divisor on a smooth projective surface S. If |D|
is base-point free then D is nef.

Proof. Suppose that D is not nef. Thus there exists an effective irreducible

divisor E for which D.E < 0. Therefore for every D′ ∈ |D|, since D′.E =

D.E < 0, by [7],V,1.4, E and D′ have a common irreducible component,

that is: E is an irreducible component of D′. But this means that E is a

base-component for |D|. Contradiction.

Lemma 3.2.9. Let D be the divisor aC0 + bf on the surface X. |D| is

base-point free if, and only if, a ≥ 0, b ≥ ae.

Proof. If |D| is base-point free then by 3.2.8 D.f ≥ 0 and D.C0 ≥ 0, that is:

a ≥ 0 and b ≥ ae.

If a ≥ 0 and b ≥ ae then D = a(C0 + ef) + (b − ae)f with b − ae ≥ 0.

|C0 + ef | is base-point free by 2.2.1 and |kf | (k ≥ 0) is base-point free since

all the fibres are linearly equivalent. Therefore |D| is base-point free.

Lemma 3.2.10. Let D be the divisor aC0 + bf on the rational ruled sur-

face X. Every irreducible, nonsingular curve C in |D| has gonality at most

max{1, a}.

Proof. From 2.2.2 we already know that |D| contains an irreducible and

nonsingular curve C if and only if a = 0, b = 1 or a = 1, b = 0 or e = 0, a >

0, b > 0, or e > 0, a > 0, b ≥ ae. C is a projective curve. Let us now consider

π ◦ i : C ↪→ X → P1, where i is the inclusion. If it is constant then C ⊆ f ,

where f is a fibre. But then C = f ∼= P1 and therefore a = 0, b = 1 and

gon(C)=1.

If π ◦ i is not constant then it is a finite morphism ([7], II, 6.8), and

a ≥ 1. By [7],II,6.9 if p is a point in P1 the degree of this morphism is

deg(π ◦ i)∗(p) = C.f = a.
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Corollary 3.2.11. If a = 1 then gon(C)= 1.

Lemma 3.2.12. Let D be the divisor aC0 + bf on the rational ruled surface

X. Let C be an irreducible, nonsingular curve in |D|. Then C is rational if,

and only if, either a = 1, or a = 0, b = 1, or e = 0, b = 1, or e = 1, a =

2, b = 2.

Proof. C is rational if, and only if, g(C) = 0. By 3.3.3 we have g(C) = 0⇔
a = 1, or b = ae

2
+ 1. But by 2.2.2 we know that if a 6= 0, 1 and e > 0 then

a > 0 and b ≥ ae. Thus b = ae
2

+ 1 if and only if e = 2, a = 1, b = 2, or

a = 0, b = 1, or e = 0, b = 1, or e = 1, a = 2, b = 2.

Lemma 3.2.13. Let e 6= 0. Let D be the divisor aC0 + bf on the rational

ruled surface X. Suppose e 6= 1 if a = b. Then every irreducible, nonsingular

curve C in |D| has gonality at least a.

Proof. By the previous lemma we can take a ≥ 3. Suppose that gon(C)=

k < a, i.e. there exists a finite morphism φ from C to P1 of degree k. From

3.2.3 and 3.2.4 there exists a divisor L on C such that OC(L) ∼= φ∗(OP1(1))

and h0(OC(L)) = 2 and deg(L) = k and |L| is base-point free. Since C0 6= C

(a > 1), C0 ∩ C is a finite number of points. Therefore by Bertini’s theorem

we can suppose that L ∼ P1 + . . . + Pk where P1, . . . , Pk are distinct points

not lying on C0.

Let K be the canonical divisor on C. Following exactly the same proof of

3.2.7 we obtain the same conclusion: if a divisor in |K| has P2, . . . , Pk in its

support then it passes also through P1. As usual, if k < a− 1 consider other

different points Pk+1, . . . , Pa−1. Now we will find an effective divisor N such

that P1 6∈ supp(N) and Pi ∈ supp(N), for all 2 ≤ i ≤ a − 1 and such that

N ∼ K, in order to arrive to a contradiction. In fact we will find divisors on

X and then we will restrict them to C.

At first we have to compute, by adjunction formula, the canonical divisor

on C: by 2.1.24 the canonical divisor on X is linearly equivalent to −2C0 +

(−2− e)f , hence OC(K) ∼= OX((a− 2)C0 + (b− 2− e)f)⊗OC .

Let E = C0 + ef and 2 ≤ i ≤ a− 1. If P1 and Pi are not on the

same fibre, since they does not belong to C0, Mi = C0 + eπ−1(π(Pi))) ∈ |E|
separates them. Instead if P1 and Pi are on the same fibre f consider this

exact sequence:
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0→ H0(OX(C0 + (e− 1)f)→ H0(OX(C0 + ef))
ψ→

ψ→ H0(Of (C0 + ef))→ H1(OX(C0 + (e− 1)f))→ . . . (3.9)

First notice that ψ is surjective because H1(OX(C0 + (e − 1)f)) = 0 by

3.1.7.

Since ψ is surjective and Of (C0 +ef) ∼= OP1(1) and OP1(1) is very ample,

there exists Mi ∈ |E| such that Pi ∈ supp(Mi) but P1 6∈ supp(Mi).

Let us now consider the divisor (b − ae + e − 2)f . By 3.2.9 this divisor

is base-point free if and only if b ≥ ae − e + 2, but since we are considering

only the cases with a > 0, b ≥ ae and e 6= 0 and e 6= 1 if a = b, this divisor

is always base-point free. Let T ∈ |(b− ae + e− 2)f | be an effective divisor

that does not pass through P1.

Let F = M2 + . . .Ma−1 + T . F is an effective divisor linearly equivalent

to (a− 2)C0 + (b− 2− e)f that passes through every point Pi except P1. Let

N = F |C .

In the case e = 0, X ∼= P1 × P1 and |C0| and |f | are the two rulings.

Therefore, in fact, C0 and f play the same role and besides the projection

π for which f is the fibre there is a projection π′ for which C0 is the fibre.

Then it is natural to argue that gon(aC0 + bf) is min{a, b}. In fact:

Lemma 3.2.14. Let e = 0. Let D be the divisor aC0 + bf on the rational

ruled surface X, with a > 0, b ≥ a. Every irreducible, nonsingular curve C

in |D| has gonality a.

Proof. We already know that the gonality is at most a (3.2.10). Following the

proof of 3.2.13 we only have to find another E, since |C0| does not separate

points in different fibres. Let E = C0 + f . This is a very ample divisor by

2.2.2, thus in particular it separates points. Therefore it is possible to find

M2, . . . ,Ma−1 that behave as in the proof of 3.2.13. Since b ≥ a, |(b− a)f | is
base-point free and we can find also T . By construction F = M2+. . .Ma−1+T

is an effective divisor linearly equivalent to K. We can conclude.

Corollary 3.2.15. Let e = 0. Let D be the divisor aC0 + bf on the rational

ruled surface X, with a > 0, b > 0. Every irreducible, nonsingular curve C

in |D| has gonality min{a, b}.
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Proof. if b ≥ a the result follows from the preceding lemma. If b < a consider

the isomorphism θ : P1 × P1 → P1 × P1 such that θ(x, y) = (y, x). Naturally

gon(C)=gon(θ(C))= b, since θ simply exchanges the two rulings.

Now it remains only the case e = 1, a = b. We could not use the proof in

3.2.13 since H0(OX(−f)) = 0, hence there are not effective divisors in |− f |.
But we can adapt that proof to show that gon(C) is not lower than a − 1:

we simply forget the point Pa−1 and the associated divisor Ma−1. As T we

take an effective divisor in |C0| that does not pass through P1: it is possible

since C0 itself does not pass through P1.

Lemma 3.2.16. Let e = 1. Let D be the divisor aC0 + af on the rational

ruled surface X, with a > 1. Every irreducible, nonsingular curve C in |D|
has gonality a− 1.

Proof. The idea of the proof is to find a linear system on C of dimension 2

determined by a divisor of degree a, and then remove a non-base-point. It is

similar to what we have done for plane curves of degree d: the linear system

determined by all the intersections of lines in P2 with the curve was a g2
d.

As usual let us first consider the defining sequence of C:

0 −→ OX(−C) −→ OX −→ OC −→ 0 (3.10)

Tensoring it with OX(C0 + f) and taking cohomology:

0→ H0(OX(C0 + f − C))→ H0(OX(C0 + f))→
→ H0(OX(C0 + f)⊗OC))→ H1(OX(C0 + f − C))→ . . . (3.11)

Since C0 + f − C ∼ (1 − a)C0 + (1 − a)f its H0 and its H1 are zero,

hence |(C0 + f) |C | has the same dimension as |C0 + f | that is 2. Moreover

deg((C0 + f) |C) = (C0 + f).C = a. Note that |C0 + f | separates points

that are not on C0 (the proof is analogous to 3.2.13). But C ∩ C0 = ∅ since

C.C0 = 0 and they are different irreducible curves. It follows that no points

in C are base points and that |(C0 + f)|C − P | (where P is any point on C)

is a complete linear system without base-points: hence it is a g1
a−1.

Summing up what we have proved:
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Proposition 3.2.17. Let C be an irreducible, non singular curve on the

rational ruled surface X, linearly equivalent to aC0 + bf , with a ≥ 2. Then

1. e = 0⇒ gon(C) = min{a, b}

2. e = 1, a = b⇒ gon(C) = a− 1

3. in the other cases gon(C) = a

3.3 Extendability

Having all the information we need it is now time to try to answer the

question we are interested in. That is: if we have a rational ruled surface

X = P(E) (E = OP1 ⊕ OP1(−e), e ≥ 0) embedded in Pn with a very ample

divisor L, when is it extendable? What we can do is to find some examples

in which X turns out to be non-extendable and other examples in which X

turns out to be extendable. Certainly it is much more difficult to conclude

that a surface is not extendable, since in this case we need a correct logical

proof and not only a specific example. Luckily, as we have already seen

in the previous chapter, there are many results that help us. Combining

Knutsen-Lopez-Muñoz’s theorem with B-E-L 2 we can say that:

Theorem 3.3.1. Let S be a smooth projective surface in Pr, embedded with

a complete linear system related to a very ample divisor L (i.e.: Pr ∼=
PH0(OS(L))). If there exists an invertible sheaf OS(D) such that for a

generic C ∈ |D| the following hypotheses are verified,

1. |D| is base-point free

2. D2 > 0 and g(C) > 0

3. H1(OS(L−D)) = 0

4. H1(OS(L− 2D)) = 0 and (L−D).D ≥ 2g(C) + 1

5. L.D > 2D2

6. gon(C) ≥ 4, C 6∼= plane quintic and L.D ≥ 4g(C) + 7− 2gon(C)
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then S is not extendable.

Remark 3.3.2. Since |D| is base-point free, by Bertini’s theorem it follows

that the generic C ∈ |D| is nonsingular. It is also irreducible because D2 > 0

implies that |D| is not composite with a pencil. In fact if it were we can find

two disjoint divisors in |D| and thus D2 would be 0 by [7], V, 1.4.

From now on, as in the preceding paragraphs, we will consider only ra-

tional ruled surfaces. Hence X will be the rational ruled surface P(E) (E =

OP1 ⊕OP1(−e), e ≥ 0), L will be a very ample divisor linearly equivalent to

αC0 + βf . Since L is very ample on X then α > 0, β > αe (2.2.2). K will

be the canonical divisor on X. For each e, α, β, i.e. for every rational ruled

surface and for every embedding, we can ask if such a D exists, that is: if

there exist a, b ∈ Z such that D ∼ aC0 + bf verifies all the hypothesis. Let

C be a generic smooth and irreducible curve in |D|.

Lemma 3.3.3. The genus of C is (a−1)(−ae+2(b−1))
2

.

Proof. By the adjunction formula ([7],V,1.5) 2g(C)− 2 = C.(C +K). Since

we already know that K ∼= −2C0 + (−2 − e)f , we have: 2g(C) = (aC0 +

bf).((a− 2)C0 + (b− e− 2)f) + 2 = (a− 1)(−ae+ 2(b− 1)).

Lemma 3.3.4. If a ≥ 3 conditions 1 and 2 of 3.3.1 are satisfied if and only

if e > 1, b ≥ ae or e = 0, b ≥ 2.

Proof. |D| is base-point free ⇔ a ≥ 0, b ≥ ae (3.2.9). In this case D2 =

−a2e + 2ab = a(2b − ae) > 0 ⇔ b > ae
2

. By 3.3.3, since a ≥ 3,g(C) > 0 ⇔
b > ae

2
+ 1. If e > 0 the condition b > ae

2
+ 1 is already implied by b ≥ ae

and a ≥ 3, if e = 0 it gives an additional information: b > 1.

Lemma 3.3.5. A curve C on X is isomorphic to a smooth plane quintic if,

and only if, e = 1 and C is linearly equivalent to 4C0 + 5f or 5C0 + 5f .

Proof. A plane quintic has genus 6 and gonality 4 (3.2.7). If C ∼ aC0 + bf

is isomorphic to a plane quintic then, looking at its gonality, by 2.2.2 and by

3.2.17 we have four possibilities: e = 0,min{a, b} = 4 or e = 1, a = 4, b > 4

or e = 1, a = 5, b = 5 or e ≥ 2, a = 4, b ≥ ae. Now, looking at the

genus, by 3.3.3 we see that in the first case g(C) ≥ 9 > 6; in the second
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case g(C) = 6 ⇔ b = 5; in the third case g(C) = 6; in the fourth case

g(C) ≥ 9 > 6. Thus the conditions on e, a, b are necessary. Now we will

see that actually, if e = 1, every smooth irreducible curve C in |D| where

D = 4C0 + 5f or D = 5C0 + 5f is isomorphic to a plane quintic. In fact

consider the divisor C0 + f over X, that is base-point free by 3.2.9. Clearly

E = (C0 + f)|C is a base-point free linear system on C. The degree of the

linear system is (C0 +f).C = 5. Moreover h0((C0 +f)⊗OC) = 3 (the proof is

analogous to other proofs already examined: consider the defining sequence

for C, tensor it by OX(C0+f) and pass to cohomology). Therefore |E| is a g2
5

over C. It is also very ample: in fact if it is not, by [7], IV, 3.1, there exist P,Q

points on C (possibly coincident) such that dim |E − P −Q| = dim |E| − 1.

But then dim |E−P −Q| = 1, while deg(E−P −Q) = 3. This is impossible

because C is not trigonal.

Lemma 3.3.6. On the rational ruled surface X conditions 1 ... 6 of 3.3.1

are equivalent to:

(i) e = 0, a ≥ 4, b ≥ 4 or e > 0, a ≥ 4, b ≥ ae

(ii) if e = 1, a = b then a ≥ 5

(iii) if e = 1 then (a, b) 6= (4, 5) and (a, b) 6= (5, 5)

(iv) H1(OX(L− 2D)) = 0

(v) L.C > 2D2

Proof. By 3.2.17 and 3.3.4 and 3.3.5 if there exists D such that the generic

smooth curve C ∈ |D| satisfies 1 ... 6 of 3.3.1, then D satisfies also (i), ...,

(v).

On the contrary: suppose that there existsD such that the generic smooth

curve C ∈ |D| satisfies (i), ..., (v). Then D,C satisfy 1,2 of 3.3.1 and the

condition about gonality by 3.2.17 and 3.3.4. Furthermore, by 3.3.5, C is not

isomorphic to a plane quintic.

Moreover(L−D).D ≥ 2g(C) + 1. In fact (L−D).D = L.C − C2, while

2g(C)+1 by the adjunction formula is C.(C+K)+3. From (v) L.C−C2 > C2.

But C.K + 3 = ae− 2b− 2a+ 3 ≤ 0 by (i), therefore the thesis follows.
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Moreover H1(OX(L−D)) = 0. In fact let us consider this exact sequence:

0 −→ OX(L− 2C) −→ OX(L− C) −→ OX(L− C)⊗OC −→ 0 (3.12)

Taking cohomology:

. . .→ H1(OX(L−2C))→ H1(OX(L−C))→ H1(OC(L−C))→ . . . (3.13)

We prove that H1(OC(L−C)) = 0. In fact (L−C)|C has degree (L−C).C

on C and L.C −C2 ≥ 2g(C) + 1 > 2g(C)− 2. Since L−C on C has degree

greater than 2g(C)−2, by [7], IV, 1.3.4 its H1 is zero. But H1(OX(L−2C))

is zero too by (iv), hence H1(OX(L− C)) = 0.

Moreover L.D ≥ 4g(C) + 7− 2gon(C). In fact 4g(C) + 7− 2gon(C) is at

most 2C2 + 2K.C − 2a + 13. Since L.C > 2C2, we have only to show that

2K.C − 2a+ 13 = 2ae− 4b− 6a+ 13 is ≤ 0. But this is true by (i).

Eventually note that if e = 1 then by (i), since b ≥ a, conditions (ii) and

(iii) can be stated as b ≥ 6.

Lemma 3.3.7. Let X be a rational ruled surface embedded in Pr with a very

ample line bundle L ∼ αC0 + βf . Let D be the divisor aC0 + bf . Conditions

1 ... 6 of 3.3.1 are equivalent to four systems of equations:

1. (a) e = 0, a ≥ 4, b ≥ 4 or e > 0, a ≥ 4, b ≥ ae

(b) if e = 1 then b ≥ 6

(c) a ≤ α
4

(d) b ≤ −αe
2

+ ae+ 1
2

+ β
2

(e) b(α− 4a) > a(αe− β − 2ae)

2. (a) e = 0, a ≥ 4, b ≥ 4 or e > 0, a ≥ 4, b ≥ ae

(b) if e = 1 then b ≥ 6

(c) α
4
< a ≤ α

2

(d) b ≤ −αe
2

+ ae+ 1
2

+ β
2

(e) b < a
4a−α(β − αe+ 2ae)
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3. (a) e = 0, a ≥ 4, b ≥ 4 or e > 0, a ≥ 4, b ≥ ae

(b) if e = 1 then b ≥ 6

(c) a = α
2

+ 1
2

(d) b = b

(e) b < a
4a−α(β − αe+ 2ae)

4. (a) e = 0, a ≥ 4, b ≥ 4 or e > 0, a ≥ 4, b ≥ ae

(b) if e = 1 then b ≥ 6

(c) a ≥ α
2

+ 1

(d) b ≥ −αe
2

+ ae+ 1
2

+ β
2
− e

2

(e) b < a
4a−α(β − αe+ 2ae)

Proof. Conditions (a),(b) of all the systems come directly from 3.3.6 (i),

(ii), (iii). Conditions (c) and (d) are the translations into equations of the

condition H1(OX(L− 2D)) = 0, using 3.1.7. Condition (e) is L.C > 2D2 ⇔
b(α− 4a) > a(αe− β − 2ae). Note that α− 4a < 0⇔ a > α

4
.

Given e, α, β > αe, we can surely conclude that X embedded in Pn with

L is not extendable at all as soon as we can find a solution of one of the four

systems. Hence the next step is to say when the four systems have solutions.

Lemma 3.3.8. System (1) of 3.3.7 has a solution if, and only if, either

e ≥ 2, α ≥ 16 or e = 0, α ≥ 16, β ≥ 7 or e = 1, α ≥ 20 or e = 1, 16 ≤ α <

20, β > α + 2.

Proof. The condition α ≥ 16 cannot be eliminated in all the cases: otherwise

a should be lower than 4. Moreover condition (e) is always verified since the

left hand term is ≥ 0 while the right hand term is strictly negative.

If e ≥ 2 then a = 4, b = 4e + 1 is a solution (note that in (d) β−αe
2
≥ 1

2
,

since β > αe by hypothesis).

If e = 1 and 16 ≤ α < 20 then a = 4. Therefore by (b) b ≥ 6. By (d)

this implies β ≥ α + 3. Actually in this case a = 4, b = 6 is a solution.

If e = 1 and α ≥ 20 then a = 5, b = 6 is a solution.

If e = 0 β ≥ 7 is a necessary condition, since from (a) and (d) we have

that 4 ≤ β+1
2
⇔ β ≥ 7. But this is also a sufficient condition: in fact if

β ≥ 7, a = 4, b = 4 is a solution.
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Lemma 3.3.9. System (2) of 3.3.7 has a solution if, and only if, either e ≥
2, α ≥ 8 or e = 0, α = 8, β ≥ 9 or e = 0, α = 9, β ≥ 8 or e = 0, α ≥ 10, β ≥ 7

or e = 1, α = 8, β ≥ 13 or e = 1, α = 9, β ≥ 12 or e = 1, α = 10, β ≥ 13 or

e = 1, α ≥ 11.

Proof. If e ≥ 1, α ≥ 8 is a necessary and sufficient condition for the system to

be solved. In fact (a)+(c) ⇒ α ≥ 8. Moreover a =
[
α
2

]
, b = ae is a solution:

in fact, when e ≥ 2, (e) ⇔ e < β−αe+2ae
4a−α ⇔ β > 2ae, but by hypothesis

β > αe ≥ 2
[
α
2

]
e = 2ae.

If e = 0 it is necessary that β ≥ 7 (3.3.8). Another necessary condition

is (a)+(e) ⇒ β > 16 − 4α
a
. If α = 8 then a = 4, therefore β > 8. In such

cases a = 4, b = 4 is a solution. If α = 9 then a = 4, therefore β > 7. In such

cases a = 4, b = 4 is a solution. If α ≥ 10 for every β ≥ 7, a = 4, b = 4 is a

solution.

If e = 1 and α ≥ 12 then a =
[
α
2

]
, b = a is a solution (note that a ≥ 6).

First note that if b ≥ 6 then, by (d) and by (e) we get

β ≥ 11− 2a+ α (3.14)

β > 24− 2a+ α− 6α/a (3.15)

If 8 ≤ α < 12, a is at most 5, thus, by (b), b shall be at least 6. By (c), if

α = 8, 9 then a = 4, if α = 10, 11 then a = 4 or a = 5. Looking at all the

possibilities in (3.14), (3.15) we have the following necessary conditions for

the system to have a solution: α = 8⇒ β ≥ 13;α = 9⇒ β ≥ 12;α = 10⇒
β ≥ 13;α = 11 ⇒ β ≥ 12 (this is already implied by β > αe). Actually if

α = 8, 9 then a = 4, b = 6 is a solution; if α = 10, 11 then a = 5, b = 6 is a

solution.

Lemma 3.3.10. System (3) of 3.3.7 has a solution if, and only if, either

e ≥ 2, α ≥ 7, α odd, β ≥ αe + e + 1 or e = 0, α ≥ 9, α odd, β ≥ 9 or e =

0, α = 7, β ≥ 10 or e = 1, α ≥ 11, α odd, β ≥ α+2 or e = 1, α = 7, 9, β ≥ 13.

Proof. If e ≥ 2 a necessary condition is α ≥ 7. Also (a)+(e) ⇒ ae <
a

4a−α(β − αe + 2ae), that is β > 2ae, hence β > αe + e. In such cases

a = α+1
2
, b = ae is a solution.
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If e = 0 a necessary condition is (a)+(e)⇒ 4 < 1
2
α+1
α+2

β, that is: β > 8α+2
α+1

.

If α = 7 this condition is equivalent to β > 9, if α ≥ 8 it is equivalent to

β > 8. In both cases a = α+1
2
, b = 4 is a solution.

If e = 1 and α ≥ 11 then a = α+1
2
, b = a is a solution as soon as β ≥ α+2

(a is at least 6). As we have already seen this is also a necessary condition.

If α = 7 then a = 4 but then necessarily by (b) b ≥ 6, therefore by (e)

⇒ 6 < 4
16−7

(β − 7 + 8), that is β ≥ 13. In such cases a = 4, b = 6 is a

solution. If α = 9 then a = 5, therefore b ≥ 6⇒ 6 < 5
11

(β+ 1)⇒ β ≥ 13. In

such cases a = 5, b = 6 is a solution.

Lemma 3.3.11. If for given α, β, e with α ≥ 7 system (4) has a solution,

then for the same α, β, e one of the previous systems has a solution too.

Proof. (a) + (e) implies that if e 6= 0 then β > 2ae, if e = 0 then β > 16−4α
a
.

If e 6= 0 by (c) we get β > αe+ 2e and β > 10e if α = 7, since a ≥ 5.

If e = 0 then β > 16 − 8 α
α+2

, that is: β > 8 in general and β ≥ 10 if

α = 7.

If e = 1, as already said,

β > 2a (3.16)

This implies β > α + 2. But in this case we have also b ≥ 6. This with

(e) implies

β > 24 + α− 2a− 6α/a (3.17)

Combining (3.16) and (3.17), we have: if α = 7, 8 then β ≥ 13 (by (3.16) if

a ≥ 6, and by (3.17) if a = 5). Moreover if α ≥ 9 then, by (c), a ≥ 6⇒ β ≥
13.

Lemma 3.3.12. If α ≤ 6 then system (4) has no solutions.

Proof. A necessary condition for system (4) to have a solution is (d)+(e)

⇒ −αe
2

+ ae+ 1
2

+ β
2
− e

2
< a

4a−α(β − αe+ 2ae). This is equivalent to

(a− α

2
)β +

α

2
(e− 1) + 2e

(
a2 − aα− a+

α2

4

)
+ 2a < 0 (3.18)

By (c), a ≥ α
2

+ 1 and we know that β > αe hence 2a ≥ α + 2 and(
a− α

2

)
β ≥ αe. Thus 3.18 implies that α

2
(e+1)+2e

(
a2 − aα− a+ α2

4
+ α

2

)
+
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2 < 0. But α
2
(e+ 1) ≥ 0 and, since a ≥ 4, a2 − a(α+ 1) + α2

4
+ α

2
≥ 0 for all

α ≤ 6. Therefore, if α ≤ 6, (3.18) is never verified.

To sum up what we have proved:

Proposition 3.3.13. Let X = P(E) (E = OP1⊕OP1(−e), e ≥ 0) be a rational

ruled surface embedded in Pr with a complete linear system related to a very

ample divisor L ∼ αC0 + βf with α > 0 and β > αe. In all the following

cases the embedding of X is not extendable:

1. e ≥ 2, α ≥ 8

2. e ≥ 2, α = 7, β ≥ 8e+ 1

3. e = 0, α ≥ 10, β ≥ 7

4. e = 0, α = 9, β ≥ 8

5. e = 0, α = 8, β ≥ 9

6. e = 0, α = 7, β ≥ 10

7. e = 1, α ≥ 11

8. e = 1, α = 10, β ≥ 13

9. e = 1, α = 9, β ≥ 12

10. e = 1, α = 8, β ≥ 13

11. e = 1, α = 7, β ≥ 13

Remark 3.3.14. Notice that almost all the cases listed in 3.3.13 (except when

α = 7) actually are solutions of system 2.

We can now try to add items to the list above by allowing a to be lower

than 4. Actually in the case of trigonal curves we can use 1.3.6 instead of 1.3.5

to cope with the surjectivity of the Gaussian map. Thus let us now begin

the study of the conditions of 1.3.6, keeping in mind that every irreducible

non singular curve C in |3C0 + bf | (b ≥ 3e if e 6= 0, or b > 0 if e = 0) has

gonality 3 as soon as e ≥ 2, or e = 1, b ≥ 4, or e = 0, b ≥ 3 and that in all
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these cases |f|C | is the linear system that defines the finite map of degree 3

of C onto P1 (see 3.2.10).

Lemma 3.3.15. Let X = P(E) (E = OP1 ⊕ OP1(−e), e ≥ 0) be a rational

ruled surface embedded in Pr with a complete linear system related to a very

ample divisor L ∼ αC0 + βf with α ≥ 4 and β > αe. Let D be the divisor

3C0 + bf , with b ≥ 3e if e ≥ 2, or b ≥ 4 if e = 1, or b ≥ 3 if e = 0. Let

C in |D| be an irreducible nonsingular curve. Let g be the genus of C and

KC its canonical divisor. Then H0(C,OC(3KC − (g− 4)f|C −L|C)) = 0 and

H1(OC(L|C)) = 0.

Proof. By the adjunction formula we know that KC = (K + C)|C , where K

is the canonical divisor of X, i.e. K ∼ −2C0 + (−2 − e)f . Therefore let us

consider the defining sequence of C. After tensoring it by OX(3K + 3C +

−(g − 4)f − L) and considering its cohomology we have:

H0(OX((3− α)C0 + (d+ b)f)) → H0(OC(3KC − (g − 4)f|C − L|C))→
→ H1(OX(−αC0 + df)) → . . . (3.19)

where d = −2− 3e+ 2b− g − β = −β by 3.3.3.

Now, since α ≥ 4, H0(OX((3− α)C0 + (d+ b)f)) = 0 by 3.1.2. Moreover

d ≤ (−α+ 1)e− 1, because β > αe. Therefore H1(OX(−αC0 + df)) = 0 too

by 3.1.7. By (3.19), H0(OC(3KC − (g − 4)f|C − L|C)) = 0.

Analogously, let us consider the defining sequence of C and tensor it by

OX(L). Taking cohomology we have:

. . .→ H1(OX(L))→ H1(OC(L|C))→ H2(OX(L− C))→ . . . (3.20)

H1(OX(L)) = 0 by 3.1.7; H2(OX(L− C)) = 0 by 2.1.12. Thus

H1(OC(L|C)) = 0 by (3.20).

Lemma 3.3.16. Using the hypotheses and notation above, g(C) ≥ 5 if and

only if b ≥ 3e+7
2

.

Proof. Simply apply 3.3.3.

Lemma 3.3.17. Using the hypotheses and notation above, if b(8 − α) ≤
3(β − αe) + 12e+ 14, then h0(OC(2KC − L|C)) ≤ 1.
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Proof. Remember that C is trigonal, therefore if degC(2KC − L|C) ≤ 2 then

h0(OC(2KC − L|C)) ≤ 1. In fact, on the contrary, we could find a linear

system of dimension 1 and degree ≤ 2.

Now degC(2KC−L|C) = (2(K+C)−L).C = 3(αe−β)−12−12e+b(8−α).

Hence degC(2KC − L|C) ≤ 2⇔ b(8− α) ≤ 3(β − αe) + 12e+ 14.

Now to improve the list of 3.3.13, we use again K-L-M but combined with

Tendian’s theorem instead of B-E-L 2. By 3.3.15, 3.3.16, 3.3.17 we have to

solve again four system of equations as in 3.3.7 but in which, using the same

notation, α ≥ 4 and condition (a) and (b) are now:

(a) e = 0, a = 3, b ≥ 3 or e > 0, a = 3, b ≥ 3e

(b) if e = 1 then b ≥ 4

and in which we add conditions (f) and (g):

(f) b ≥ 3e+ 7

2

(g) β ≥ b

3
(8− α)− 4e− 14

3
+ αe

Note that if e ≥ 3 then (f) follows from (a). Note also that condition (e),

except for system 1, can be rewritten as:

(e) β > (α− 6)e+ b(4− α

3
)

Note eventually that condition (g) is always verified if α ≥ 8 (in fact β > αe).

Now, since a is fixed, the strategy of resolution of these new four systems

is much more simple: in every system condition (c) determines the values of α

for which the system may have solutions, conditions (a),(b),(f) determine the

minimal possible value of b (that is always the best value to take) and con-

sequently condition (d),(e),(g) determine necessary and sufficient conditions

on β for the system to be solved.

Lemma 3.3.18. The modified system 1 in 3.3.7 does not improve the list

3.3.13.

Proof. By (c) α ≥ 12. If e = 0 then (f)+(d) implies β ≥ 7.
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Lemma 3.3.19. The modified system 2 in 3.3.7 has a solution if and only

if either e ≥ 3, 6 ≤ α < 12, or e = 2, α = 6, β > 14, or e = 2, 7 ≤ α < 12, or

e = 1, α = 6, β > 10 or e = 1, 7 ≤ α < 12, β ≥ α + 3, or e = 0, α = 6, β > 8

or e = 0, 7 ≤ α < 12, β ≥ 7.

Proof. By (c) 6 ≤ α < 12.

Let e ≥ 3. Then (a) implies b ≥ 3e. We take b = 3e. Note that (d)

and (e) are always verified because β > αe ≥ 6e. But also (g) is always

verified: trivially if α ≥ 8; if 6 ≤ α ≤ 7 the condition is β ≥ 4e − 14
3

. But

β > αe > 4e− 14
3

.

Let e = 2. Then (f) implies b ≥ 7. We take b = 7. (d) is verified

(β − αe ≥ 1). (g) is verified. Thus in these cases the system has a solution

if and only if (e): β > 16 − α
3
. But for 7 ≤ α < 12 (e) is always verified

(β > αe), while for α = 6 we have (e) ⇔ β > 14.

Let e = 1. Then (f) implies b ≥ 5. We take b = 5. (g) is verified. Thus in

these cases the system has a solution if and only if (d)+(e): β ≥ α + 3, β >

14− 2
3
α. Note that if α = 6, (e) ⇒ (d); if α ≥ 7 the converse is true.

Let e = 0. Then (f) implies b ≥ 4. We take b = 4. (g) is verified. Thus

in these cases the system has a solution if and only if (d)+(e): β ≥ 7, β >

16− 4
3
α. Note that if α = 6, (e) ⇒ (d); if α ≥ 7 the converse is true.

Lemma 3.3.20. The modified system 3 in 3.3.7 has a solution if and only if

either e ≥ 3, α = 5, β > 6e, or e = 2, α = 5, β ≥ 15, or e = 1, α = 5, β ≥ 11,

or e = 0, α = 5, β ≥ 10.

Proof. By (c) α = 5.

Let e ≥ 3. As before b = 3e and (g) is verified. (d) is verified. Thus in

these cases the system has a solution if and only if (e): β > 6e.

Let e = 2. As before b = 7. (d) is verified . (g) is verified. Thus in these

cases the system has a solution if and only if (e): β ≥ 15.

Let e = 1. As before b = 5. (d) is verified. (g) is verified. Thus in these

cases the system has a solution if and only if (e): β ≥ 11.

Let e = 0. As before b = 4. (d) is verified. (g) is verified. Thus in these

cases the system has a solution if and only if (e): β ≥ 10.

Lemma 3.3.21. The modified system 4 in 3.3.7 has no solutions.
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Proof. Recall that α ≥ 4. By (c), α ≤ 4 ⇒ α = 4. (d)+(e) ⇒ (3.18) ⇒
β < 2e− 4. Contradiction.

Putting together 3.3.13 and these last results we can conclude that:

Theorem 3.3.22. Let X = P(E) (E = OP1 ⊕ OP1(−e), e ≥ 0) be a rational

ruled surface embedded in Pr with a complete linear system related to a very

ample divisor L ∼ αC0 + βf with α > 0 and β > αe. In all the following

cases the embedding of X is not extendable:

1. e ≥ 2, α ≥ 7

2. e ≥ 3, α = 6

3. e = 2, α = 6, β ≥ 15

4. e ≥ 3, α = 5, β ≥ 6e+ 1

5. e = 2, α = 5, β ≥ 15

6. e = 0, α ≥ 7, β ≥ 7

7. e = 0, α = 6, β ≥ 9

8. e = 0, α = 5, β ≥ 10

9. e = 1, α ≥ 11

10. e = 1, 7 ≤ α ≤ 10, β ≥ α + 3

11. e = 1, α = 6, β ≥ 11

12. e = 1, α = 5, β ≥ 11

To conclude let us find some examples of embedded rational ruled surfaces

that actually are extendable. For this purpose we will consider only rational

scrolls, that is: our rational ruled surface X will be embedded in Pr with a

very ample divisor D = C0 + nf (n > e). In this embedding every fibre f

has degree D.f = 1, i.e. it is a line in the projective space.

A rational normal scroll S of dimension d in Pr can be defined with

the following standard construction (see [3] or [6], 8.26). Choose a1, . . . , ad
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non-negative integers with ai ≥ ai+1 and
∑d

i=1 ai = r − d + 1. Choose

d complementary linear subspaces Λi ⊂ Pr each of dimension ai, ratio-

nal normal curves Ci ⊂ Λi and isomorphisms φi : P1 → Ci. Then define

S :=
⋃
p∈P1 φ1(p), . . . , φd(p), where φ1(p), . . . , φd(p) denotes the span of these

points in Pr. The scroll S, which we also denote S(a1, . . . , ad), is determined

up to projective equivalence by the numbers ai which are called the invariants

of the scroll.

First of all we state a definition and a result from [3] that we will use to

extend our scrolls.

Definition 3.3.23. Let S = S(a1, . . . , ad) be a d-dimensional rational nor-

mal scroll defined by the invariants a1, . . . , ad. We define the index of relative

balance of S, r(S), to be min
{
n ∈ N : (d− n)an ≤

∑d
i=n ai

}
.

Theorem 3.3.24. Let S = S(a1, . . . , ad) be a d-dimensional rational nor-

mal scroll in Pr with index of relative balance r(S) = k. Then a general

hyperplane section of S is a (d− 1)-dimensional rational normal scroll with

invariants bi (bi ≥ bi+1) satisfying:

1.
∑d−1

i=1 bi =
∑d

i=1 ai

2. bk ≤ bd−1 + 1

3. bi = ai ∀i, 1 ≤ i ≤ k − 1

Now we have to show that our rational ruled surface X = P(E), with

E = OP1 ⊕ OP1(−e), embedded in P2n−e+1 with the complete linear system

C0 +nf (n > e) (see 2.2.4) is actually a rational normal scroll S(b1, b2). The

next step is then to find a scroll S(a1, a2, a3) different from a cone that has

S(b1, b2) as one of its hyperplane sections. We will use 3.3.24.

Lemma 3.3.25. Let X = P(E), with E = OP1 ⊕ OP1(−e), embedded in

P2n−e+1 with the very ample line bundle L = OX(C0 + nf) (n > e). Then

X is a rational normal scroll of invariants (n, n− e), i.e. X ∼= S(n, n− e),

where in this case ∼= means projectively equivalent.
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Proof. Let us consider the two sections C0 and C1 as in 2.2.1. Considering

0→ OX(L− C1)→ OX(L)→ OC1(L)→ 0 (3.21)

0→ OX(L− C0)→ OX(L)→ OC0(L)→ 0 (3.22)

we see that |L|C1| has dimension n and degree n. Therefore C1 is a rational

normal curve lying in the linear subspace Λ1
∼= Pn ⊂ P2n−e+1. Analogously

|L|C0| has dimension n−e and degree n−e, therefore C0 is a rational normal

curve lying in the linear subspace Λ2
∼= Pn−e ⊂ P2n−e+1. Note that Λ1∩Λ2 =

∅. In fact X ⊂ Λ1,Λ2, but X is P2n−e+1 because X is nondegenerate. Hence

Λ1,Λ2 = P2n−e+1, thus 2n − e + 1 = dim(Λ1) + dim(Λ2) − dim(Λ1 ∩ Λ2)

⇒ dim(Λ1∩Λ2) = −1⇒ Λ1∩Λ2 = ∅. Now consider the morphisms φ1 = π|C1

and φ2 = π|C0 and the rational normal scroll of dimension 2, S = S(n, n− e),
build as explained above, starting from the two rational normal curves C1, C0.

X ⊂ S. Since both are irreducible we have X = S.

Proposition 3.3.26. Let X = P(E), with E = OP1 ⊕OP1(−e), embedded in

P2n−e+1 with the very ample line bundle L = OX(C0 +nf) (n ≥ e+2). Then

X is extendable.

Proof. By the previous lemma we know that X is projectively equivalent to

S(n, n−e) ⊂ P2n−e+1. Thus we have only to find S = S(a1, a2, a3) ⊂ P2n−e+2

with all the ai 6= 0 (in this case S is not a cone) such that S(n, n − e) is a

hyperplane section of S.

Let e = 0. Let a1 = n, a2 =
[
n+1

2

]
, a3 =

[
n
2

]
. Since n ≥ 2 we have

a1 ≥ a2 ≥ a3 ≥ 1. We have also a1 + a2 + a3 = 2n. Moreover r(S) = 1.

Therefore by 3.3.24 the general hyperplane section of S is S(b1, b2) such that

b1 + b2 = 2n, b1 ≥ b2, b1 ≤ b2 + 1. The only possibility is b1 = n, b2 = n.

Let e ≥ 1. Let a1 = n, a2 = n − e − 1, a3 = 1. Since n ≥ e + 2 we

have a1 ≥ a2 ≥ a3 ≥ 1. We have also a1 + a2 + a3 = 2n − e. Moreover

r(S) = 2. Therefore by 3.3.24 the general hyperplane section of S is S(b1, b2)

such that b1 + b2 = 2n − e, b1 ≥ b2, b1 = a1 = n. The only possibility is

b1 = n, b2 = n− e.

Remark 3.3.27. Also if e = 1 and n = 2 then X is extendable. In fact let

a1 = a2 = a3 = 1. We have a1 + a2 + a3 = 3. In this case r(S) = 1, and

therefore the only possibility is b1 = 2, b2 = 1.
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Eventually if e = 0 and n = 1 then X is the quadric in P3, and therefore

it is extendable.
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genus bound for Enriques-Fano threefolds. In preparation.

[9] Gianluca Pacienza. Tesi di laurea in matematica. Alcune questioni
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