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Introduction

This thesis, as its title suggests, has been realized with the intent to collect and
expand the most important convex geometry’s criteria used to determine when
subcones of a salient convex cone are extremal. However, a considerable part of this
paper is concentrated on algebraic geometry. Indeed, these criteria can be applied to
the pseudoeffective cone of divisors of a generic algebraic variety, hence an entity
which belongs to the classical theory of positivity.
This theory and its keystones are largely developed and discussed in the first chapter
of this work. It begins first of all with the basic definitions of line bundles and Cartier
divisors, which are the only kind of divisors we will treat throughout. Once seen
that a line bundle is characterized by isomorphisms of structure sheaves of a certain
covering of the variety, we will underline how these functions are related to the
ones which define a Cartier divisor. For completion we will also follow Hartshorne’s
discussion about linear systems to express how, on a nonsingular projective variety,
global sections of a line bundle are connected to a set of effective divisors all linearly
equivalent to each other.
Another weaker but fundamental equivalence between divisors is the numerical one. In
order to describe it, we will recall the definition of the intersection number of a set of
divisors and that of a divisor and a generic subvariety, and explain briefly how it can
be calculated. Its interpretation is really intuitive when we intersect a divisor D with
a curve C ⊆ X not contained in D, since it reflects the simple idea of counting with
multiplicity the points of intersection of D and C. The numerical equivalence between
two divisors then holds if their intersection numbers with any irreducible curve or any
one-cycle of the variety are equivalent. The group of numerical equivalence classes of
divisors is called Néron-Severi group. Its dual space will be the group of numerical
equivalence classes of one-cycles, as better discussed in Section 1.6.
As a natural progression, we will focus on the notion of amplitude, which, according
to [L], represents the property of a line bundle to possess a tensor power which
is very ample, i.e. it is isomorphic to the twisting sheaf of Serre of a projective
space. Amplitude has two important characterizations, cohomological and numerical.
The first one is proven in the theorem of Cartan-Serre-Grothendieck 1.4.2. The
Nakai-Moishezon-Kleiman criterion represents instead the numerical characterization
of amplitude, which is the most useful to our purposes. According to this criterion a
line bundle on a projective scheme is ample if and only if the intersection number
of any positive-dimensional and irreducible subvariety of the scheme with the line
bundle raised to the dimension of the subvariety is positive. This means that the
amplitude of a line bundle is determined only upon its numerical equivalence class.
The other remarkable property of line bundles and divisors we have to deal with is
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numerical effectiveness. It is weaker than amplitude since a line bundle is numerical
effective or shortly nef, if its intersection number with any irreducible curve of a
complete variety is non negative. Kleiman’s criterion extends this definition to any
irreducible subvariety. Note that a nef divisor has non negative self-intersection.
Before proceeding in defining the cones of divisors of a complete variety, Q-divisors
and R-divisors will be introduced, because of their behavior with respect to amplitude.
Roughly, these two types of divisors can be represented with a sum of integral divisors
with rational or real coefficients respectively. Their properties are similar to those of
integral divisors, for instance the amplitude of a R-divisor is determined only upon
its numerical equivalence class. Moreover, both Q-divisors and R-divisors preserve
the property of being ample on a suitable neighborhood. This is, in a few words, the
reason why the cones we will describe in this work lie in the Néron-Severi group of
the R-divisors of a complete variety.
In this real vector space the classes of the ample divisors span the first cone studied
here, the so called ample cone. A cone strongly related to this one is made up by the
classes of the numerical effective divisors and it is called nef cone. The Kleiman’s
theorem shows how the ample cone is the interior of the nef cone, while the nef cone
is the closure of the ample cone. The nef cone is also the cone dual to the closed
cone of curves, which is the closure of the cone spanned by the classes of all the
effective one-cycles of the variety, called simply cone of curves. This cone and its
closure lie in the real vector space dual to the Néron-Severi group, formed by all the
numerical equivalence classes of the one-cycles. Analogously to what we just said
about one-cycles, effective cone and pseudoeffective cone of divisors can be defined in
the Néron-Severi group. To complete our list of cones we will first need to introduce
another class of divisors, the big divisors, i.e. those of maximal Iitaka dimension.
These divisors are characterized by the property of being linearly and numerically
equivalent to a positive linear combination of an ample divisor and an effective
divisor. The classes of all the big divisors span the big cone in the Néron-Severi
group, bond to the pseudoeffective cone of divisors in the same fashion as the ample
cone is related to the nef one.
We will end our overview of the classical algebraic geometry theory with some
examples of the construction of the cones defined so far. What is interesting to notice
is that these cones can assume pretty different structures depending on the variety on
which they are defined. For example, consider a smooth projective curve with a vector
bundle of rank two on it. Then the projective space bundle of the vector bundle is a
ruled surface where the effective cone is not closed. If instead we consider an elliptic
curve E, then E×E is an abelian variety, that is a variety with a structure of abelian
group. In this setting the nef cone coincides with the closed cone of curves, and it is
circular. The last example proposed is about the blowing-up of the projective plane
at ten or more very general points. In this remarkable case the cone of curves has
rays clustering towards K⊥X .
Before explaining the details of our results about extremality it is appropriate to
highlight its importance. The cone theorem and the contraction theorem discussed
in [D] imply that we can find a morphism which contracts a curve that generates
an extremal ray and whose intersection with the canonical divisor of the variety is
negative. If we keep contracting we shall obtain a variety with nef canonical divisor.
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This variety is called minimal model and it is crucial in the birational classification of
varieties. It is conjectured that this operation can be performed only if the Kodaira’s
dimension of the variety is non negative. Such conjecture is called Mori’s program or
Minimal Model Program. By now, it has been proven only for general type varieties
and this result is due to the Birkar-Cascini-Hacon-McKernan’s theorem, which can
be found in [BCHM]. Refer to [KM] for a deeper study of the Mori’s program, and
look at [CC] for another recent work about extremality.
Once our cone theory has been established, we come to the second chapter, which is
the heart of this composition. We will approach the cones more generically from the
convex geometry point of view. We will only consider closed convex salient cones,
namely those that do not contain lines. These cones also have an interesting property
which assure that we can always find a linear function that is positive on the nonzero
elements of the cone. It is a well-known fact that the pseudoeffective cone of divisors
is salient and then it is in the scope of our results.
In order to better illustrate these results, we briefly recall what a face of a cone is.
Faces are characterized by the property that if we take two points of the cone with
their sum being an element of the face, then they must lie in the face. A face of
dimension 1 is called extremal ray. If a face has some additional properties, i.e. there
exist linear functions that vanish on the face and keep the cone in the intersection of
their non negative half-spaces, then we will call it a perfect face, or simply an edge
if it has dimension 1. To better understand the geometrical difference between an
extremal ray and an edge, we shall observe that the cone can be rounded near an
extremal ray, but not near an edge.

Extremal
ray

Edge

Figure 1: Geometrical difference between an edge and an extremal ray

The first criterion we discuss is useful to determine when a subcone of a given
salient cone is a face. This criterion comes directly from a lemma which allows us to
decompose a generic element of a cone with respect to a certain subset of vectors.
Indeed in this criterion we assume that the cone is generated by a set of vectors and
then we consider a subset {v1, . . . , vs}. We also suppose that there exists s linear
functions σi which satisfy two conditions. The first one is that σi(vj) = 0 if i 6= j and
σi(vj) < 0 if i = j. The second one is that all these linear functions are non negative
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on the subset of vectors which generates the cone and that are not contained in the
subcone generated by v1, . . . , vs. One application of this criterion allows to prove
very quickly that on a smooth projective surface the class of an irreducible curve
with negative self-intersection spans an extremal ray of the closed cone of curves (cfr.
[D, 6.2, (b)]) for the classical proof).
The second criterion is a new and original result that we introduce for the first time,
realized as a generalization of the one provided in [O] (that corresponds to the case
s = 1). It exposes a way to determine when a subcone generated by a subset of
elements of the cone is a perfect face.

Theorem 0.1 (Perfect faces criterion). Consider a subset I ⊆ V such that
K := K(I) is salient. Let v1, . . . , vs ∈ I, and suppose there exist s linear functions
σi : V → R such that

(a) σi(vj)

= 0 if i 6= j

< 0 if i = j

(b) σi(w) ≥ 0 ∀w ∈ I \ F (v1, . . . , vs) and ∀i.

Then F (v1, . . . , vs) is a perfect face of K(I).

The hypotheses for this criterion are the same as the previous, this means basically
that we strengthened it, since in our construction a perfect face is also a face for
the cone. The proof is based on two essential facts. The first one is that a cone K is
salient if and only if there exists an affine hyperplane H which intersects the cone
in a bounded, nonempty set. The second one is that we can find a specific basis for
the real vector space in which the cone lies. This basis is made up of the elements
which generate the subcone and elements {x1, . . . , xc} (where c is the codimension of
the subcone) contained in the intersection T of the subspaces in which the σi vanish.
Moreover, the intersection of the non negative half-spaces of the dual functions of
the xi contains the intersection between K, H and T .
Our conclusion is dedicated to convert this result to a criterion especially addressed
to algebraic geometry. We put ourselves in a smooth projective variety. If we can find
an arbitrary number of effective divisors with no intersection between each other and
if moreover any of these divisors admit a covering of irreducible curves all numerically
equivalent to each other and negative on the divisor, then the divisors generate a
perfect face of the pseudoeffective cone.

Corollary 0.2 (Perfect faces criterion in algebraic geometry). Let X be a
smooth projective variety. Given irreducible effective divisors D1, . . . , Ds ∈ Pseff1(X)
with Di ∩Dj = ∅ while i 6= j and collections of curves {Ci,t}t∈Ti

so that for each i
we have ∪t{Ci,t}t∈Ti

= Di and that Ci,t ·Di < 0 for some t ∈ Ti, then the divisors
D1, . . . , Ds generate a perfect face of the pseudoeffective cone of X.

A practical example in which this situation can be realized is the blowing-up of a
smooth projective variety at the union of closed smooth subvarieties of arbitrary
dimension with no intersection between each other.
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Example 0.3 (Perfect faces criterion applied to a practical case). Let X be
a smooth projective variety, and let Z1, . . . , Zs be closed smooth subvarieties of X
of arbitrary dimensions. Suppose also that Zi ∩ Zj = ∅ if i 6= j. Now consider the
blowing-up of X with center Z1 ∪ · · · ∪ Zs, and let E1, . . . , Es be the exceptional
divisors generated by the Zi, giving the diagram

Bl∪s
i=1Zi

(X)

⊆

ϕ // X

⊆

Ei
� // Zi

In this situation, Ei ∩ Ej = ∅ if i 6= j since ϕ−1(Zi) = Ei ∀i. We should also recall
that Ei ∼= P(N∗Zi

) = P(Ei) =: Pi and that Ei|Ei
∼= OPi

(−1) (cfr. [H, II,8.24]). This
property lets us found families of irreducible curves {Ci,j}j∈J , with ∪j∈JCi,j = Ei
and Ci,j · Ei < 0 ∀j. The first assertion is clear if we regard the Ei as unions of
projective spaces and we think about the curves represented by the inverse images of
the points of each Zi. The second one can be seen in the following manner:

Ci,j · Ei = Ci,j · Ei|Ei
= Ci,j · OPi

(−1) < 0.

We now find ourselves in the hypotheses of Corollary 0.2. This means that the Ei
generates a perfect face of the pseudoeffective cone of Bl∪s

i=1Zi
(X).
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Notation and Conventions

We will generally adopt the notation established in [H] and [L]. This is a list of our
most significant conventions:

• In this thesis we will work over the complex numbers C, if not specified otherwise
while dealing with more general results.

• A scheme is a separated algebraic scheme of finite type over an algebraically
closed field k. A variety is an integral (reduced and irreducible) scheme.

• A divisor is a Cartier divisor, as better specified in Section 1.1.
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Chapter 1

Ample and Nef Line Bundles

This chapter is essentially devoted to recollect some fundamental facts of classical
theory about positivity in algebraic geometry. Starting from the basic definitions of
line bundles and divisors, we will move on and expose that, with good hypotheses, they
are in one-to-one correspondence. Moreover, we will follow Hartshorne’s discussion
about linear systems to show how global sections of a line bundle are connected to
a set of effective divisors all linearly equivalent to each other. A brief overview of
intersection theory is provided in the second section, because it is required to better
understand the last sections of the chapter. In particular, the notion of numerical
equivalence between divisors is pivotal. In fact, as we will see in the fourth section,
numerical equivalence preserves amplitude of divisors. This property holds not only
for integral divisors, but for Q-divisors and R-divisors as well. Once the definition
of numerical effectiveness for Q-divisors and R-divisors is given, we can finally talk
about cones of divisors, which belong to the Néron-Severi group. Ample cone, nef
cone, big cone and pseudoeffective cone of divisors will be introduced, with detailed
results about their bonds. We will conclude the chapter providing some examples of
how these cones are constructed in special and remarkable cases.

1.1 Preliminaries: Divisors and Line Bundles
In the following we will give our standard definitions for line bundles and divisors
along with some important properties. At the end of this section we will show that
under certain hypotheses there exists a bijection between line bundles and divisors
on a scheme. Once this correspondence is shown it is clear that the results exposed
in this work regarding divisors hold for line bundles as well.

Definition 1.1.1 (Line Bundles). Let (X,OX) be a ringed space, and let F be
a sheaf of OX-modules on X. We say that F is free if it is isomorphic to a direct
sum of copies of OX . If there exists an open covering U = {Ui}i∈I of X such that
F |Ui

∼= Or
Ui
, ∀i ∈ I then F is locally free and r will be its rank on the open covering

U . Note that if X is connected the rank will be the same on every open covering. A
line bundle is a locally free sheaf of rank 1.

Lemma 1.1.2 (Gluing property). Let X be a topological space, and let U =
{Ui}i∈I be an open covering with a sheaf Fi assigned on Ui ∀i ∈ I such that there

1



Chapter 1. Ample and Nef Line Bundles

exist isomorphisms
ϕij : Fj|Ui∩Uj

−→ Fi|Ui∩Uj

with the following properties:

(i) ϕii = 1Fi
, ∀i ∈ I

(ii) ϕik = ϕij ◦ ϕjk, ∀i, j, k ∈ I on Ui ∩ Uj ∩ Uk .

Then there exists a sheaf F on X along with isomorphisms ϕi : F |Ui
→ Fi , ∀i ∈ I

such that
ϕij = ϕi ◦ ϕ−1

j , ∀i, j ∈ I.

F and the isomorphisms ϕi are unique up to unique isomorphism.

Proof. Given any open subset U ⊂ X we define

Γ(U,F ) =
{

(σi) ∈
∏
i

Γ(Ui ∩ U,Fi) : ϕij(ρUj∩U
Ui∩Uj∩U(σj)) = ρUi∩U

U∩Uj∩U(σi) ∀i, j ∈ I
}

It is easy to verify that F is a sheaf (cf. [S, Lemma 15.1]). The isomorphisms ϕi are
defined in the natural way

ϕi(U) : Γ(U,F |Ui
)→ Γ(U,Fi) (σh) 7→ σi.

Now suppose G is another sheaf provided with isomorphisms

ψi : G |Ui
→ Fi

such that ϕij = ψi ◦ ψ−1
j . We can then uniquely determine isomorphisms

ϕ−1
i ◦ ψi : G |Ui

→ F |Ui

that glue to a isomorphism G ∼= F uniquely determined by the data {Fi, ϕij}.

This result gives us a way to assign a line bundle on a scheme X. Given an open
covering U = {Ui}i∈I and isomorphisms

ϕij : OUi∩Uj
−→ OUi∩Uj

∀i, j ∈ I

that satisfy conditions (i) and (ii) of Lemma 1.1.2, we have a uniquely determined
line bundle L on X. These isomorphisms are called transition functions of L . The
viceversa is still true, so every line bundle L on X has its own transition functions
on a suitable open covering. In general the ϕij are represented with a multiplication
by a non-zero regular function over Ui ∩ Uj, in other words ϕij ∈ Γ(Ui ∩ Uj,O∗X),
where O∗X is the sheaf of germs of regular functions that do not vanish at any point.

Now we will consider the set of isomorphism classes of line bundles, describing it
with some fundamental results. We will see that this set has a group structure under
the tensor product and how it is useful to express the relation between line bundles
and divisors.

2



Chapter 1. Ample and Nef Line Bundles

Proposition 1.1.3. If L and M are two line bundles on a ringed space X, so is
L ⊗M . If L is a line bundle on X, then there exists a line bundle L −1 on X such
that L ⊗L −1 ∼= OX .

Proof. Since L and M are both locally free of rank 1 and OX ⊗ OX
∼= OX , the

first statement is proved. For the second, given L any line bundle on X, we take
L −1 to be the dual sheaf L ∨ = H om(L ,OX). Then L ∨ ⊗L ∼= OX (see [H, II,
Exercise 5.1]).

Definition 1.1.4 (Picard Group). For any ringed space X we define the Picard
group of X, denoted by Pic(X), as the set of isomorphism classes of line bundles on
X. Proposition 1.1.3 shows that Pic(X) is a group under the tensor product.

In order to describe Pic(X) properly, we give a result which characterizes the
isomorphism class of a line bundle using its transition functions.

Lemma 1.1.5. Let L and M be two line bundles on a ringed space X, defined
on the same open covering U = {Ui}i∈I by transition functions {ϕij} and {ψij}
respectively. Then L ∼= M ⇔ there exist ai ∈ Γ(Ui,O∗X) such that

ψij = a−1
i ϕijaj, ∀i, j ∈ I. (1.1)

Proof. (⇒) : Suppose that ρ is the isomorphism between L and M . We define

ai = ϕi ◦ ρ|Ui
◦ ψ−1

i , ∀i ∈ I.

The ai defined above satisfy condition (1.1).
(⇐) : Conversely, suppose that the ai exist. Then for every i ∈ I we define an
isomorphism

ρi : M |Ui
→ L |Ui

putting ρi = ϕ−1
i ◦ (ai · ψi). The ρi glue to an isomorphism ρ : M → L .

Theorem 1.1.6. Let X be a ringed space. There exists an isomorphism

Pic(X) ∼= H1(X,O∗X). (1.2)

Proof. Let U = {Ui}i∈I be an open covering of X. The transition functions {ϕij} of
any line bundle on X satisfy (i) and (ii) of Lemma 1.1.2, this means that {ϕij} is a
1-cocycle of Čech for the sheaf O∗X towards the covering U , so {ϕij} ∈ Ž1(U ,O∗X) :=
Ker(δ1). The result of Lemma 1.1.5 shows that two different 1-cocycles {ϕij}, {ψij}
are isomorphic if and only if

{ψij} = {ϕij}δ0({ai}).

We then have a bijection between isomorphism classes of line bundles defined with
transition functions on U and Ȟ1(U ,O∗X). Since this isomorphism is preserved if we
refine our open covering and since we can apply this proof to any open covering we
conclude that

Pic(X) ∼= lim−→
U
Ȟ1(U ,O∗X).

The thesis follows immediately by [S, Lemma 11.7].

3



Chapter 1. Ample and Nef Line Bundles

We will now introduce divisor theory. There are two main notions of divisors, Weil
divisors and Cartier divisors. Weil divisors are the easiest to understand geometrically,
but they are defined uniquely on certain schemes. In the rest of our work we will then
treat only Cartier divisors, since they give a more generalized notion of divisors on an
arbitrary scheme, and from now on we will refer to them merely with the word divisors.

We begin our construction by considering a reduced and irreducible scheme X and
its field of rational functions K, with K∗ = K\{0} ⊂ K being the subgroup of
invertible elements. We define a constant sheaf KX on X by putting, for any open
subset ∅ 6= U ⊂ X

Γ(U,KX) = K.

We denote with K∗X ⊂ KX the subsheaf defined by

Γ(U,K∗X) = K∗.

Observe that O∗X ⊂ OX is also a subsheaf of K∗X .
Definition 1.1.7 (Cartier divisors). A Cartier divisor on an integral scheme X
is a global section of the sheaf K∗X/O∗X . In other words, every Cartier divisor can be
defined giving a suitable open covering U = {Ui}i∈I and, for every i ∈ I, an element
fi ∈ Γ(Ui,K∗X) = K∗, such that for every i, j ∈ I one has fif−1

j ∈ Γ(Ui ∩ Uj,O∗X). A
Cartier divisor is principal if it belongs to the image of the natural map

Γ(X,K∗X) −→ Γ(X,K∗X/O∗X).

Cartier divisors form an abelian group Div(X), we will denote the operation defined
on it additively. The principal divisors form a subgroup of Div(X), denoted with
Pr(X). Two Cartier divisors D1,D2 are linearly equivalent if their difference D1−D2 is
principal. In that case we will write D1 ≡lin D2. A Cartier divisor D is effective if there
exists an open covering V = {Vi}i∈I in which D can be defined by {fi ∈ Γ(Vi,OX)},
we indicate this property writing D < 0. The notation D < D′ indicates that D−D′
is effective.
We can now give a fundamental result about the correspondence between line bundles
and divisors.
Proposition 1.1.8. Let X be a reduced and irreducible scheme. Then there exists
an isomorphism

Div(X)
Pr(X)

∼= Pic(X). (1.3)

Proof. Consider the exact sequence of sheaves on X:

0 −→ O∗X −→ K∗X −→ K∗X/O∗X −→ 0

Since K∗X is constant then it is also flasque and so the following exact sequence of
abelian groups is obtained:

0 −→ Γ(X,O∗X) −→ K∗
ψ−−→ Div(X) δ−−→ H1(X,O∗X) −→ 0.

Since Pr(X) = Im(ψ) = Ker(δ) and since δ is surjective we have Div(X)
Pr(X)

∼= H1(X,O∗X).
We conclude the proof using Theorem 1.1.6 .

4



Chapter 1. Ample and Nef Line Bundles

We can explicitly construct the isomorphism (1.3) in the following manner. Consider
D ∈ Div(X) defined by a system {fi ∈ Γ(Ui,K∗X)}. We can associate a line bundle
L (D) to D by defining its transition function

ϕij = fif
−1
j ∈ Γ(Ui ∩ Uj,O∗X)

that clearly satisfy conditions (i) and (ii) of Lemma 1.1.2. Moreover, given a divisor
D ∈ Pr(X) represented by f ∈ K∗ then L (D) is defined by transition functions
fif
−1
j = ff−1 = 1, so L (D) = OX and then Pr(X) ⊆ Ker(D 7→ L (D)). For the

converse, suppose D ∈ Ker(D 7→ L (D)) defined by the system {fi, Ui}i∈I .This
means that L (D) ∼= OX and so, thanks to Lemma 1.1.5, there exist ai ∈ Γ(Ui,O∗X)
such that fif−1

j = aia
−1
j over Ui∩Uj for every i, j. We now have fi

ai
= fj

aj
over Ui∩Uj ,

these functions glue to an f ∈ K∗ that represents D, so D ∈ Pr(X).

1.2 Intersection theory
The purpose of this section is to define the intersection number of n divisors or
that of a divisor and a subvariety of X. In particular, as we will see, this notion
is really simple when we intersect a divisor D with a curve C ⊆ X not contained
in D, since it reflects the simple idea of counting with multiplicity the points of
intersection of D and C. The basic facts of intersection theory introduced here will
lead to the definition of numerical equivalence between divisors. Before we explain
how the intersection number of a set of divisors can be calculated (following [D]
construction), we shall begin with a couple of basic definitions.

Definition 1.2.1 (Euler characteristic of a sheaf). LetX be a projective scheme
over a field k, and let F be a coherent sheaf on X. We define the Euler characteristic
of F by

χ(F ) =
∑
i

(−1)i dimkH
i(X,F ).

Definition 1.2.2 (Hilbert polynomial). Let S be the polynomial ring k[x0, . . . , xn],
and let M be a finitely generated graded S-module. The Hilbert polynomial of M is
the polynomial PM(z) ∈ Q[z] such that ϕM(l) = PM(l) for all l � 0, where ϕM(l)
is the Hilbert function of M, given by ϕM(l) = dimkMl. This polynomial exists
and it is unique (see [H, I, Theorem 7.5]). Now let X ⊆ Pn be a projective scheme
of dimension r. The Hilbert polynomial of X is the Hilbert polynomial PX of its
homogeneous coordinate ring S(X). We define the degree of X to be r! times the
leading coefficient of PX .

Remark 1.2.3. Thanks to the definition above and to the characterization of
amplitude exposed in Theorem 1.4.2, if X is a subscheme of PNk of dimension r, then
the function l 7→ χ(X,OX(l)) is polynomial of degree r for l� 0.

Theorem 1.2.4. Let D1, . . . , Dr be divisors on a proper scheme X, and let F be a
coherent sheaf on X. The function

(m1, . . . ,mr) 7→ χ(X,F (m1D1 + · · ·+mrDr))

5



Chapter 1. Ample and Nef Line Bundles

takes the same values on Zr as a polynomial with rational coefficients of degree at
most the dimension of the support of F .

Proof. See [D, Theorem 1.5].

Definition 1.2.5 (Intersection number). Let D1, . . . , Dr be divisors on a proper
scheme X, with r ≥ dim(X). The intersection number

D1 · · ·Dr

is the coefficient of m1 · · ·mr in the polynomial χ(X,m1D1 + · · ·+mrDr).

[D, Proposition 1.8] shows that this number is an integer, that is multilinear and
symmetric as a function of its arguments, while Theorem 1.2.4 shows that it vanishes
for r > dim(X). [D, Proposition 1.8] also states that if Dr is effective with associated
subscheme Y , one has

D1 · · ·Dr = D1 · · ·Dr−1 · Y.

Note that D1 · · ·Dr depends only on the linear equivalence classes of the Di. If
D1, . . . , Dr are effective and meet properly in a finite number of points, the intersection
number does have a geometric interpretation as the number of points in {D1∩. . .∩Dr},
counted with multiplicity. If Y is a subscheme of X of dimension at most s, we set

D1 · · ·Ds · Y = D1|Y · · ·Ds|Y .

Once we have Kleiman’s characterization of ample divisors in terms of their intersec-
tion numbers with one-cycles (Theorem 1.4.5 and Corollary 1.4.6) we will in most
cases intersect a divisor D with a curve C ⊆ X. In this case things are very simple:
when D is an hypersurface that does not contain C, the intersection number counts
with multiplicity the number of points of intersection of D and C.

Proposition 1.2.6 (Projection Formula). Let π : Y → X be a surjective mor-
phism between proper varieties. Let D1, . . . , Dr be divisors on X with r ≥ dim(Y ).
We have

π∗D1 · · · π∗Dr = deg(π)(D1 · · ·Dr).

Proof. See [D, Proposition 1.10] for the complete proof.

Now we assume that X is a complete algebraic scheme over C. We want to define the
numerical equivalence between two divisors, which is the weakest natural equivalence
relation on Div(X).

Definition 1.2.7 (Numerical equivalence). Two divisors D1, D2 ∈ Div(X) are
numerically equivalent, written D1 ≡num D2, if D1 · C = D2 · C for every irreducible
curve C ⊆ X, or equivalently if D1 · γ = D2 · γ for all one-cycles γ on X. Numerical
equivalence of line bundles is defined in the analogous manner. A divisor is numerically
trivial if it is numerically equivalent to zero, and Num(X) ⊆ Div(X) is the subgroup
consisting of all numerically trivial divisors.

6
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Definition 1.2.8 (Néron-Severi Group). The Néron-Severi group of X is the
group

N1(X) = Div(X)/Num(X)

of numerical equivalence classes of divisors on X.

Proposition 1.2.9 (Theorem of the base). The Néron-Severi group N1(X) is a
free abelian group of finite rank.

Proof. See [L, Proposition 1.1.16] for the integral proof.

Definition 1.2.10 (Picard number). The rank of N1(X) is called the Picard
number of X, written ρ(X).

1.3 Linear Systems and Projective Morphisms
We now consider a nonsingular projective variety X over an algebraically closed field
k. In this setting the isomorphism (1.3) holds and for every line bundle L on X, the
global sections Γ(X,L ) form a finite-dimensional k-vector space (see [H, II, Theorem
5.19]). What we want to show in the following is that giving a certain set of global
sections of L is the same as giving a set of effective divisors all linearly equivalent
to each other, which is the historical notion of linear system.

Definition 1.3.1 (Divisor of zeros of a global section of a line bundle). Let
L be a line bundle on X, and let s ∈ Γ(X,L ) be a nonzero section of L . We define
an effective divisor D = (s)0, the divisor of zeros of s, as follows. Given an open
covering of X where L is trivial and ϕi isomorphisms between L |Ui

and OUi
we

clearly have ϕi(s) ∈ Γ(Ui,OUi
). The collection {ϕi(s), Ui} determines an effective

divisor D on X. Indeed, ϕi is determined up to multiplication by an element of
Γ(Ui,O∗Ui

) so we get a well-defined divisor.

Proposition 1.3.2. Let X be a variety as defined above. Let D0 be a divisor on X,
and let L ∼= L (D0) be its corresponding line bundle. Then:

(a) for each nonzero s ∈ Γ(X,L ), the divisor of zeros (s)0 is an effective divisor
linearly equivalent to D0;

(b) every effective divisor linearly equivalent to D0 is (s)0 for some s ∈ Γ(X,L );

(c) two sections s, s′ ∈ Γ(X,L ) have the same divisor of zeros if and only if there
is a λ ∈ k∗ such that s′ = λs.

Proof. (a) Regarding L (D0) as a subsheaf of KX we see that s corresponds to a
rational function f ∈ K. IfD0 is locally defined by {fi, Ui}, with fi ∈ K∗, then L (D0)
is locally generated by f−1

i , so the isomorphism ϕi : L (D0)|Ui
→ OUi

is obtained by
multiplying by fi. So D = (s)0 is locally defined by fif . Thus D = D0 + (f), which
means that D ≡lin D0.
(b) If D < 0 and D = D0 + (f) then (f) < −D0. Thus f gives a global section of
L (D0) whose divisor of zeros is D.

7
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(c) Using the same construction seen in (a), if (s)0 = (s′)0 then s and s′ correspond to
rational functions f, f ′ ∈ K∗ such that (f/f ′) = 0. Therefore f/f ′ ∈ Γ(X,O∗X). Since
X is a scheme over k algebraically closed then Γ(X,OX) = k (see [H, I, Theorem
3.4]) and then f/f ′ ∈ k∗.

Definition 1.3.3 (Complete linear system). A complete linear system on a
nonsingular projective variety is defined as the set (maybe empty) of all effective
divisors linearly equivalent to some given divisorD0. It is denoted by |D0|. Proposition
1.3.2 shows that there is a one-to-one correspondence between (Γ(X,L )− {0})/k∗
and |D0|. This gives to the complete linear system a structure of the set of closed
points of a projective space over k.

Definition 1.3.4 (Linear system). A linear system δ on X is a subset of a
complete linear system |D0|, which is a linear subspace, since |D0| has a projective
space structure. Thus δ corresponds to a sub-vector space V ⊆ Γ(X,L ), where
V = {s ∈ Γ(X,L )|(s)0 ∈ δ} ∪ {0}. The dimension of the linear system δ is its
dimension as a linear projective variety. Hence dim δ = dimV − 1.

Remark 1.3.5. The dimensions of linear systems are finite because, as we outlined
in the introduction, Γ(X,L ) is a finite-dimensional vector space.

Definition 1.3.6 (Base point of a linear system). A point p ∈ X is a base point
of a linear system δ if p ∈ Supp(D) for all D ∈ δ. Supp(D) means the union of the
prime divisors of D (see [H, II, Section 6] to better understand the notion of prime
divisor of a Weil divisor, that in this situation corresponds to a Cartier divisor).

We now recall the definition of globally and locally generated sheaf in order to
characterize base points and to start talking about projective morphisms.

Definition 1.3.7 (Globally and locally generated sheaf). Let X be a scheme,
and let F be a sheaf of OX-modules. We say that F is globally generated (or generated
by its global sections) if there is a family of global sections {si}i∈I ∈ Γ(X,F ) such
that for each p ∈ X the images of si in the stalk Fp generate it as an Op-module.
We say that F is locally generated at a point p ∈ X if the stalk Fp is generated as
an Op-module by the images of a family of global sections of F .

Lemma 1.3.8. Let δ be a linear system on X corresponding to the sub-space V ⊆
Γ(X,L ). Then a point p ∈ X is a base point of δ if and only if sp ∈ mpLp for all
s ∈ V . In particular δ is base-point-free if and only if L is globally generated by the
sections in V .

Proof. This follows immediately from the fact that for any s ∈ Γ(X,L ), the support
of the divisor of zeros (s)0 is the complement of Xs (in [H]’s notation this is the open
set of points p ∈ X where sp /∈ mpLp).

The section is concluded with a result on how a morphism of a scheme X to a
projective space can be determined giving a line bundle L on X and a set of its
global sections.

Theorem 1.3.9. Let A be a ring, and let X be a scheme over A.

8
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(a) If ϕ : X → PnA = ProjA[x0, . . . , xn] is an A-morphism then ϕ∗(O(1)) is a line
bundle on X, which is globally generated by si = ϕ∗(xi), i = 0, 1, . . . , n.

(b) Conversely, if L is a line bundle on X, and if s0, . . . , sn ∈ Γ(X,L ) are global
sections which generate L , then there exists a unique A-morphism ϕ : X → PnA
such that L ∼= ϕ∗(O(1)) and si = ϕ∗(xi) under this isomorphism.

Proof. (a): On PnA we have the line bundle O(1), and the homogeneous coordinates
x0, . . . , xn give rise to global sections x0, . . . , xn ∈ Γ(PnA,O(1)). The sheaf O(1) is
globally generated by these global sections, this means that the images of these
sections generate the stalk O(1)p as a module over the local ring Op, for each point
p ∈ PnA. Then L = ϕ∗(O(1)) is a line bundle on X, and the global sections s0, . . . , sn
where si = ϕ∗(xi), si ∈ Γ(X,L ), generate the sheaf L .
(b): Suppose given L and the global sections s0, . . . , sn which generate it. For each
i, let Xi = {p ∈ X | (si)p /∈ mpLp}. These are open subsets of X and since
the si generate L , the Xi must cover X. We define a morphism from Xi to the
standard open set Ui = {xi 6= 0} of PnA as follows. Recall that Ui ∼= SpecA[y0, . . . , yn]
where yj = xj/xi, with yi = 1 omitted. We can then define a ring homomorphism
A[y0, . . . , yn] → Γ(Xi,OXi

) by sending yj 7→ sj/si and making it A-linear. sj/si is
a well-defined element of Γ(Xi,OXi

) since for each p ∈ Xi, (si)p /∈ mpLp and L
is locally free of rank 1. Now by ([H, II, Exercise 2.4]) this ring homomorphism
gives rise to a morphism of schemes (over A) Xi → Ui. These morphisms glue, so
we obtain a morphism ϕ : X → PnA. It is clear from the construction that ϕ is an
A-morphism, that L ∼= ϕ∗(O(1)), that the sections si correspond to ϕ∗(xi) and that
ϕ is unique.

1.4 Amplitude of Line Bundles
In this section we will introduce one of the most important concepts of this work,
that is the notion of amplitude of line bundles. Once given the standard definitions
(following [L] construction, which slightly differs from [H]’s one), we will characterize
the amplitude from different point of views. Cartan-Serre-Grothendieck’s theorem
provides a cohomological characterization, while the Nakai-Moishezon’s criterion
establishes a relation between amplitude and the intersection number of the line
bundle. This criterion directly implies that the amplitude of a line bundle depends
only on its numerical class, which is the concluding and most remarkable result of
this section.

Definition 1.4.1 (Ample and very ample line bundles and divisors on a
complete scheme). Let X be a complete scheme, and L a line bundle on X.

(i) L is very ample if there exists a closed embedding X ⊆ P of X into some
projective space P = PN such that

L = OX(1) := OPN (1)|X .

(ii) L is ample if L ⊗m is very ample for some m > 0.

9
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A divisor D on X is ample or very ample if the corresponding line bundle L (D) is
so.

Theorem 1.4.2 (Cartan-Serre-Grothendieck theorem). Let L be a line bundle
on a complete scheme X. The following are equivalent:

(i) L is ample.

(ii) Given any coherent sheaf F on X, there exists a positive integer m1 = m1(F )
having the property that

H i(X,F ⊗L ⊗m) = 0 for all i > 0, m ≥ m1(F ).

(iii) Given any coherent sheaf F on X, there exists a positive integer m2 = m2(F )
such that F ⊗L ⊗m is generated by its global sections for all m ≥ m2(F ).

(iv) There is a positive integer m3 > 0 such that L ⊗m is very ample for every
m ≥ m3.

Proof. (i) ⇒ (ii). We assume to begin with that L is very ample, defining an
embedding of X into some projective space P. In this case, extending F by zero to
a coherent sheaf on P, we are reduced to the vanishing of H i(P,F (m)), for m� 0,
which is the content of [H, III, Theorem 5.2]. In general, when L is merely ample,
fix m0 such that L ⊗m0 is very ample. Then apply the case already treated to each
of the sheaves F ,F ⊗L , . . . ,F ⊗L ⊗m0−1.
(ii) ⇒ (iii). Fix a point x ∈ X, and denote by mx ⊂ OX the maximal ideal sheaf of x.
By (ii) there is an integer m2(F , x) such that

H1(X,mx ·F ⊗L ⊗m) = 0 for m ≥ m2(F , x).

It then follows from the exact sequence

0 −→ mx ·F −→ F −→ F/mx ·F −→ 0

upon twisting by L ⊗m and taking cohomology that F ⊗L ⊗m is globally generated
in a neighborhood of x for every m ≥ m2(F , x). By quasi-compactness we can then
choose a single natural number m2(F ) that works for all x ∈ X.
(iii) ⇒ (iv). It follows first of all from (iii) that there exists a positive integer p1 such
that L ⊗m is globally generated for all m ≥ p1. Denote by

Φm : X −→ PH0(X,L⊗m)

the corresponding map to projective space. We need to show that we can arrange for
Φm to be an embedding by taking m� 0, for which it is sufficient to prove that Φm

is one-to-one and unramified ([H, II, Proposition 7.3]). To this end, consider the set

Um = {y ∈ X | L⊗m ⊗my is globally generated}.

This is an open set [L, Example 1.2.9], and Um ⊂ Um+p for p ≥ p1 thanks to the fact
that L ⊗p is generated by its global sections. Given any point x ∈ X we can find by
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(iii) an integer m2(x) such that x ∈ Um for all m ≥ m2(x), and therefore X = ∪Um.
By quasi-compactness there is a single integer m3 ≥ p1 such that L ⊗m ⊗ mx is
generated by its global sections for every x ∈ X whenever m ≥ m3. But the global
generation of L ⊗m ⊗mx implies that Φm(x) 6= Φm(x′) for all x 6= x′, and that Φm is
unramified at x. Thus Φm is an embedding for all m ≥ m3 as required.
(iv) ⇒ (i). It follows immediately from the definition.

Proposition 1.4.3 (Finite pullbacks). Let f : Y → X be a finite mapping of
complete schemes, and L an ample line bundle on X. Then f ∗L is an ample line
bundle on Y . In particular, if Y ⊆ X is a subscheme of X, then the restriction L |Y
of L to Y is ample.

Proof. Let F be a coherent sheaf on Y . Then f∗(F ⊗ f ∗L ⊗m) = f∗F ⊗L ⊗m by
the projection formula, and Rjf∗(F ⊗ f ∗L ⊗m) = 0 for j > 0 thanks to the finiteness
of f . Therefore

H i(Y,F ⊗ f ∗L ⊗m) = H i(Y, f∗F ⊗L ⊗m) ∀i,

and the statement then follows from the characterization (ii) of Theorem 1.4.2.

Corollary 1.4.4 (Globally generated line bundles). Suppose that L is globally
generated, and let

Φ = Φ|L | : X → P = PH0(X,L )
be the resulting map to projective space defined by the complete linear system |L |.
Then L is ample if and only if Φ is a finite mapping, or equivalently if and only if

L · C > 0

for every irreducible curve C ⊆ X.

Proof. The preceding proposition shows that if Φ is finite, then L is ample. In this
case evidently L · C > 0 for every irreducible curve C ⊆ X. Conversely, if Φ is not
finite then there is a subvariety Z ⊆ X of positive dimension that is contracted by Φ
to a point. Since L = Φ∗(OP(1)), we see that L restricts to a trivial line bundle on
Z. In particular L |Z is not ample, and so thanks again to the previous proposition,
neither is L . Moreover, if C ⊆ Z is any irreducible curve, then L · C = 0.

Theorem 1.4.5 (Nakai-Moishezon-Kleiman criterion). Let L be a line bundle
on a projective scheme X. Then L is ample if and only if

L dim(V ) · V > 0 (1.4)

for every positive-dimensional irreducible subvariety V ⊆ X (including the irreducible
components of X).

Proof. See [L, Theorem 1.2.23].

Corollary 1.4.6 (Numerical nature of amplitude). If D1, D2 ∈ Div(X) are
numerically equivalent divisors on a projective variety or scheme X then D1 is ample
if and only if D2 is so.

Proof. The thesis comes directly from the theorem above, along with the result
exposed in [L, Lemma 1.1.18].
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1.5 Q-Divisors and R-Divisors
Q-divisors and especially R-divisors are essential to develop the theory exposed
throughout our work. In this section we will explain how these divisors are defined
and constructed, proceeding then to analyze some interesting properties. In particular,
it is useful to point out how both these types of divisors preserve the property of
being ample on a suitable neighborhood. Moreover, the amplitude of a R-divisor is
determined only upon its numerical equivalence class.

Definition 1.5.1 (Q-divisors). Let X be an algebraic variety or scheme.
A Q-divisor on X is an element of the Q-vector space

DivQ(X) := Div(X)⊗Z Q.

We represent a Q-divisor D ∈ DivQ(X) as a finite sum, called representation,

D =
∑

ci · Ai,

where ci ∈ Q and Ai ∈ Div(X). By clearing denominators we can also write D = cA
for a single rational number c and integral divisor A, and if c 6= 0 then cA = 0 if and
only if A is a torsion element of Div(X). A Q-divisor D is integral if it lies in the
image of the natural map Div(X)→ DivQ(X).The Q-divisor D is effective if it is of
the form D = ∑

ciAi with ci ≥ 0 and Ai effective.

Definition 1.5.2 (Supports of Q-divisors). Let D ∈ DivQ(X) be a Q-divisor. A
codimension one subset E ⊆ X supports D, or is a support of D, if D admits a
representation in which the union of the supports of the Ai is contained in E.

Definition 1.5.3 (Equivalences and operations on Q-divisors). We assume
that X is complete.

(i) Given a subvariety or subscheme V ⊆ X of pure dimension k, a Q-valued
intersection product

DivQ(X)× · · · ×DivQ(X)→ Q
(D1, . . . , Dk) 7→ D1 · · · · ·Dk · [V ]

is defined via extension of scalars from the analogous product on Div(X).

(ii) Two Q-divisors D1, D2 ∈ DivQ(X) are numerically equivalent, written
D1 ≡num D2 (or D1 ≡num,Q D2 when confusion is possible) if

D1 · C = D2 · C

for every curve C ⊆ X. We denote by N1(X)Q the resulting finite-dimensional
Q-vector space of numerical equivalence classes of Q-divisors.

(iii) Two Q-divisors D1, D2 ∈ DivQ(X) are linearly equivalent, written D1 ≡lin D2
(or D1 ≡lin,Q D2) if there is an integer r such that rD1 and rD2 are integral
and linearly equivalent in the usual sense, i.e. if r(D1 −D2) is the image of a
principal divisor in Div(X).

12
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(iv) If f : Y → X is a morphism such that the image of every associated subvariety
of Y meets a support of D ∈ DivQ(X) properly, then f ∗D ∈ DivQ(Y ) is defined
by extension of scalars from the corresponding pullback of integral divisors
(this property is independent from the representation of D).

(v) If f : Y → X is an arbitrary morphism of complete varieties or projective
schemes, extension of scalars give rise to a functorial induced homomorphism
f ∗ : N1(X)Q → N1(Y )Q compatible with the divisor-level pullback defined in
(iv).

Definition 1.5.4 (Amplitude for Q-divisors). A Q-divisor D ∈ DivQ(X) is
ample if and only if one of the following three equivalent conditions is satisfied:

(i) D is of the form D = ∑
ciAi where ci > 0 is a positive rational number and Ai

is an ample divisor, for each i ∈ I.

(ii) There is a positive integer r > 0 such that r ·D is integral and ample.

(iii) D satisfies the Nakai’s criterion, i.e.

DdimV · V > 0

for every irreducible subvariety V ⊆ X of positive dimension.

As in the case of classical Cartier divisors, amplitude is preserved by numerical
equivalence, so we speak of ample classes in N1(X)Q.

Proposition 1.5.5 (Openness of amplitude for Q-divisors). Let X be a pro-
jective variety, H an ample Q-divisor on X, and E an arbitrary Q-divisor. Then
H + εE is ample for all sufficiently small rational numbers 0 ≤ |ε| � 1. More
generally, given finitely many Q-divisors E1, . . . , Er on X,

H + ε1E1 + · · ·+ εrEr (1.5)

is ample for all sufficiently small rational numbers 0 ≤ |εi| � 1

Proof. Clearing denominators, we may assume that H and each Ei are integral. By
taking m� 0 we can arrange for each of the 2r divisors mH ± E1, . . . ,mH ± Er to
be ample [L, Example 1.2.10]. Now provided that |εi| � 1 we can write any divisor
of the form (1.5) as a positive Q-linear combination of H and some of the Q-divisors
H ± 1

m
Ei. In fact, if we set ai = m|εi|, q = 1−∑r

i=1 ai, if we choose the εi in order
to satisfy |εi| < 1

rm
∀i and if we assume that

sgn(x) =


0 if x = 0
−1 if x < 0
1 if x > 0

, x ∈ R,
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then we have:

H + ε1E1 + · · ·+ εrEr = H + m

m
(ε1E1 + · · ·+ εrEr) =

=H +m
(
sgn(ε1) |ε1|

m
E1 + · · ·+ sgn(εr)

|εr|
m
Er
)

=

=H +
r∑
i=1

ai
(sgn(εi)

m
Ei
)

=
(
1 +

r∑
i=1

ai −
r∑
i=1

ai
)
H +

r∑
i=1

ai
(sgn(εi)

m
Ei
)

=

=
(
1−

r∑
i=1

ai)H +
r∑
i=1

ai
(
H + sgn(εi)

m
Ei
)

= qH +
r∑
i=1

ai
(
H + sgn(εi)

m
Ei
)
.

Since q > 0, we have obtained a positive linear combination of ample Q-divisors that
is therefore ample.

The definition of R-divisors proceeds in an exactly analogous fashion. Thus one
defines the real vector space

DivR(X) = Div(X)⊗ R

of R-divisors on X. Supposing X is complete, there is an associated R-valued
intersection theory, giving rise in particular to the notion of numerical equivalence.
Very concretely, an R-divisor D is represented by a finite sum D = ∑

ciAi where
ci ∈ R and and Ai ∈ Div(X). It is numerically trivial if and only if ∑ ci(Ai · C) = 0
for every curve C ⊆ X. The resulting vector space of equivalence classes is denoted
by N1(X)R. We say that D is effective if D = ∑

ciAi with ci ≥ 0 and Ai effective.
Pullbacks and supports of R-divisors are likewise as before.

Definition 1.5.6 (Amplitude for R-divisors). Assume that X is complete. An
R-divisor D on X is ample if it can be expressed as a finite sum D = ∑

ciAi where
ci > 0 is a positive real number and Ai is an ample divisor.

Proposition 1.5.7 (Ample classes of R-divisors). The amplitude of an R-divisor
depends only upon its numerical equivalence class.

Proof. It is sufficient to show that if D and B are R-divisors, with D ample and
B ≡num 0, then D+B is again ample. To this end, observe first that B is an R-linear
combination of numerically trivial integral divisors. Indeed, the condition that an
R-divisor

B =
∑

riBi, ri ∈ R, Bi ∈ Div(X)
be numerically trivial is given by finitely many integer linear equations on the ri,
determined by intersecting with a set of generators of the subgroup of H2(X,Z)
spanned by algebraic 1-cycles on X. The assertion then follows from the fact that
any real solution to these equations is an R-linear combination of integral ones. We
are now reduced to showing that if A and B are integral divisors, with A ample and
B ≡num 0, then A+ rB is ample for any r ∈ R. If r is rational we already know this.
In general, we can fix rational numbers r1 < r < r2, together with a real number
t ∈ [0, 1], such that r = tr1 + (1− t)r2. Then

A+ rB = t(A+ r1B) + (1− t)(A+ r2B),

exhibiting A+ rB as a positive R-linear combination of ample Q-divisors.
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The openness of amplitude for Q-divisors seen in Proposition 1.5.5 holds for R-divisors
as well.

Proposition 1.5.8 (Openness of amplitude for R-divisors). Let X be a pro-
jective variety and H an ample R-divisor on X. Given finitely many R-divisors
E1, . . . , Er, the R-divisor

H + ε1E1 + · · ·+ εrEr

is ample for all sufficiently small real numbers 0 ≤ |εi| � 1.

Proof. When H and each Ei are rational this follows from the proof of Proposition
1.5.5, and one reduces the general case to this one. To begin with, since each Ej is
a finite R-linear combination of integral divisors, there is no loss of generality in
assuming at the outset that all of the Ej are integral. Now write H = ∑

ciAi with
ci > 0 and Ai ample and integral, and fix a rational number 0 < c < c1. Then

H +
∑

εjEj = (cA1 +
∑

εjEj) + (c1 − c)A1 +
∑
i≥2

ciAi.

The first term on the right is governed by the case already treated, and the remaining
summands are ample.

1.6 Nef Divisors and cones
This section introduces cones for the first time in this work and it is the heart of
the first chapter. After giving the definition of numerically effectiveness, both for
divisors and one-cycles, and once seen a couple of properties regarding numerical
effective divisors, we will introduce the ample and the nef cone in the real vector
space N1(X)R. Thanks to Kleiman’s result we will show that the ample cone is the
interior of the nef cone, and that the closure of the ample cone is the nef cone. We
will also define effective and pseudoeffective cones of one-cycles which are also known
as the cone of curves and the closed cone of curves. These two structures are in the
real vector space N1(X)R and in particular, the pseudoeffective cone is the dual cone
to the nef one.

Definition 1.6.1 (Nef line bundles and divisors). Let X be a complete variety
or scheme. A line bundle L on X is numerically effective, or nef, if

L · C ≥ 0

for every irreducible curve C ⊆ X. Similarly, a divisor D on X (with Z, Q, or R
coefficients) is nef if

D · C ≥ 0
for all irreducible curves C ⊂ X.

Example 1.6.2. If X is a surface and C ⊆ X is an irreducible curve, then C is nef
if and only if C2 ≥ 0. If C is nef then C2 ≥ 0 by definition. For the converse, given
any irreducible curve C ′ ⊆ X, if C 6= C ′ then C has non-negative intersection with
C ′ and so C · C ′ ≥ 0. If C = C ′ then by hypothesis C · C ′ = C2 ≥ 0.
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Theorem 1.6.3 (Kleiman’s Theorem). Let X be a complete variety (or scheme).
If D is a nef R-divisor on X, then

Dk · V ≥ 0

for every irreducible subvariety V ⊆ X of dimension k. Similarly,

L dim(V ) · V ≥ 0

for every nef line bundle on X.
Proof. See [L, Theorem 1.4.9].
Corollary 1.6.4. Let X be a projective variety or scheme, and D a nef R-divisor
on X. If H is any ample R-divisor on X, then

D + ε ·H

is ample for every ε > 0. Conversely, if D and H are any two divisors such that
D + εH is ample for all sufficiently small ε > 0, then D is nef.
Proof. If D + εH is ample for ε > 0, then

D · C + ε(H · C) = (D + εH) · C > 0

for every irreducible curve C. Letting ε → 0 it follows that D · C ≥ 0, and hence
that D is nef. Assume conversely that D is nef and H is ample. Replacing εH by
H, it suffices to show that D +H is ample. To this end, the main point is to verify
that D +H satisfies the Nakai’s criterion stated in Definition 1.5.4 (iii). Provided
that D +H is (numerically equivalent to) a rational divisor, this will establish that
is ample; the general case will follow by an approximation argument.
So fix an irreducible subvariety V ⊆ X of dimension k > 0. Then

(D +H)k · V =
k∑
s=0

(
k

s

)
Hs ·Dk−s · V. (1.6)

Since H is a positive R-linear combination of integral ample divisors, the intersection
Hs · V is represented by an effective real (k − s)-cycle. Applying Kleiman’s theorem
to each of the components of this cycle, it follows that Hs ·Dk−s · V ≥ 0. Thus each
of the terms in (1.6) is non-negative, and the last intersection number Hk · V is
strictly positive. Therefore (D +H)k · V > 0 for every V , and in particular if D +H
is rational then it is ample.
It remains to prove that D + H is ample even when it is irrational. To this end,
choose ample divisors H1, . . . , Hr whose classes span N1(X)R. By the open nature of
amplitude seen in Proposition 1.5.8, the R-divisor

H(ε1, . . . , εr) = H − ε1H1 − · · · − εrHr

remains ample for all 0 ≤ εi � 1. But the classes of these divisors fill up an open subset
of N1(X)R, and consequently there exist 0 < εi � 1 such that D′ = D+H(ε1, . . . , εr)
represents a rational class in N1(X)R. The case of the corollary already treated shows
that D′ is ample. Consequently so too is

D +H = D′ + ε1H1 + · · ·+ εrHr

as required.
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Definition 1.6.5 (Numerical equivalence classes of curves). Let X be a com-
plete variety. We denote by Z1(X)R the R-vector space of real one-cycles on X,
consisting of all finite R-linear combinations of irreducible curves on X. An element
γ ∈ Z1(X)R is thus a formal sum

γ =
∑
i

ai · Ci

where ai ∈ R and Ci ⊂ X is an irreducible curve. Two one-cycles γ1, γ2 ∈ Z1(X)R
are numerically equivalent if

D · γ1 = D · γ2

for every D ∈ DivR(X). The corresponding vector space of numerical equivalence
classes of one-cycles is written N1(X)R. Thus by construction one has a perfect
pairing

N1(X)R ×N1(X)R → R , (δ, γ) 7→ δ · γ ∈ R.

In particular N1(X)R is a finite dimensional real vector space on which we put the
standard Euclidean topology.

Definition 1.6.6 (Intersection form associated to a divisor). Let X be a
scheme, and let D ∈ DivR(X). The intersection form associated to D is the function

ϕD : N1(X)→ R
γ 7→ D · γ.

Proposition 1.6.7 (Continuity of the intersection form). The intersection
form associated to an R-divisor D on a scheme X is continuous.

Proof. We will show that the intersection form associated to D is a linear function,
and therefore is continuous. Assuming N1(X) has dimension s, we can find a basis
{γ1, . . . , γs} and then write a generic element γ ∈ N1(X) as γ = ∑

i xiγi, xi ∈ R.
Now

ϕD(γ) = ϕD
( s∑
i=1

xiγi
)

=
( s∑
i=1

xiγi
)
·D =

s∑
i=1

xiγi ·D.

Before introducing ample and nef cones, we clarify that if V is a finite-dimensional
real vector space, by a cone we understand a set K ⊆ V stable under multiplication
by positive scalars and we do not require that cones contain the origin.

Definition 1.6.8 (Ample and nef cones). The ample cone

Amp(X) ⊂ N1(X)R

of X is the convex cone of all ample R-divisor classes on X. The nef cone

Nef(X) ⊂ N1(X)R

is the convex cone of all nef R-divisor classes.

17



Chapter 1. Ample and Nef Line Bundles

Theorem 1.6.9 (Kleiman). Let X be any projective variety or scheme.

(i). The nef cone is the closure of the ample cone:

Nef(X) = Amp(X).

(ii). The ample cone is the interior of the nef cone:

Amp(X) = int
(
Nef(X)

)
.

Proof. Thanks to the continuity of the intersection form shown in Proposition 1.6.7,
the nef cone is closed, and it follows from Proposition 1.5.8 that Amp(X) is open.
This gives the inclusions

Amp(X) ⊆ Nef(X) and Amp(X) ⊆ int(Nef(X)).

The remaining two inclusions

Amp(X) ⊇ Nef(X) and Amp(X) ⊇ int(Nef(X))

are consequences of Corollary 1.6.4. In fact let H be an ample divisor on X. If D
is any nef R-divisor then Corollary 1.6.4 shows that D + εH is ample for all ε > 0.
Therefore D is a limit of ample divisors, establishing the inclusion Amp(X) ⊇ Nef(X).
For Amp(X) ⊇ int(Nef(X)), observe that if the class of D lies in the interior of
Nef(X), then D − εH remains nef for 0 < ε� 1. Consequently

D = (D − εH) + εH

is ample thanks again to Corollary 1.6.4.

Proposition 1.6.10. If D ∈ DivR(X) is nef then D2 ≥ 0.

Proof. Thanks to Theorem 1.6.9, since D is nef there exists {Am}m ⊆ Amp(X)
such that limm→∞Am = D. If this implies that D2 = limm→∞A

2
m then the proof

is concluded, in fact A2
m > 0 ∀m. Let {D1, . . . , Dρ} be a basis of N1(X)R. Then

we can write D = ∑
xiDi, xi ∈ R and Am = ∑

xi,mDi, xi,m ∈ R. This means that
Am → D ⇔ limm→∞ xi,m = xi ∀i. We can now write

A2
m = (

∑
i

xi,mDi)(
∑
j

xj,mDj) =
∑
i,j

xi,mxj,mDiDj →
∑
i,j

xixjDiDj = D2.

Definition 1.6.11 (Cone of curves). Let X be a complete variety. The cone of
curves

Eff1(X) ⊆ N1(X)R
is the cone spanned by the classes of all effective one-cycles on X. Concretely,

Eff1(X) =
{∑

i

ai[Ci] | Ci ⊂ X an irreducible curve, ai ≥ 0
}
.

Its closure
Pseff1(X) ⊆ N1(X)R

is the closed cone of curves on X.
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Proposition 1.6.12. Pseff1(X) is the closed cone dual to Nef(X), i.e.

Pseff1(X) =
{
γ ∈ N1(X)R | δ · γ ≥ 0 for all δ ∈ Nef(X)

}
.

Proof. This is a consequence of the theory of duality for cones. Specifically, suppose
that K ⊆ V is a closed convex cone in a finite-dimensional real vector space. Recall
that the dual of K is defined to be the cone in V ∗ given by

K∗ =
{
ϕ ∈ V ∗ | ϕ(x) ≥ 0 ∀x ∈ K

}
.

The duality theorem for cones states that under the natural identification of V ∗∗
with V , one has K∗∗ = K. In the situation at hand take

V = N1(X)R , K = Pseff1(X).

Then Nef(X) = Pseff1(X)∗ by definition. Consequently

Pseff1(X) = Nef(X)∗,

which is the assertion of the proposition.

Continue to assume that X is complete, and fix a divisor D ∈ DivR(X), not numeri-
cally trivial. We denote by

ϕD : N1(X)R → R

the linear functional determined by intersection with D, and we set

D⊥ =
{
γ ∈ N1(X)R | D · γ = 0

}
, D>0 =

{
γ ∈ N1(X)R | D · γ > 0

}
.

Thus D⊥ = KerϕD is a hyperplane and D>0 an open half-space in N1(X)R. One can
define D≥0, D≤0, D<0 ⊂ N1(X)R similarly.

Theorem 1.6.13 (Amplitude via cones). Let X be a projective variety (or
scheme), and let D be an R-divisor on X. Then D is ample if and only if

Pseff1(X)− {0} ⊆ D>0.

Equivalently, choose any norm ‖ · ‖ on N1(X)R, and denote by

S = {γ ∈ N1(X)R | ‖γ‖ = 1}

the ”unit sphere” of classes in N1(X)R of length 1. Then D is ample if and only if(
Pseff1(X) ∩ S

)
⊆
(
D>0 ∩ S

)
.

Proof. See [L, Theorem 1.4.29].
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Figure 1.1: Test for amplitude via the cone of curves

1.7 Semiample line bundles
In this section we will first of all recall some basic definitions of asymptotic theory,
needed to understand the notion of semiample line bundle. These particular line
bundles have at least one tensor power that is globally generated and on a normal
projective variety the property of being semiample implies that the line bundle is
also globally generated.

Definition 1.7.1 (Semigroup and exponent of a line bundle). Let L be a
line bundle on the irreducible projective variety X. The semigroup of L consists of
those non-negative powers of L that have a non-zero section:

N(L ) = N(X,L ) = {m ≥ 0 | H0(X,L ⊗m) 6= 0}.

Assuming N(L ) 6= (0), all sufficiently large elements of N(X,L ) are multiples of a
largest single natural number e = e(L ) ≥ 1, which we may call the exponent of L .
The exponent e is the g.c.d. of all the elements of N(L ). The semigroup N(X,D)
and exponent e = e(D) of a divisor D are defined analogously.

Given m ∈ N(X,L ), consider the rational mapping

Φm = Φ|L⊗m| : X 99K PH0(X,L ⊗m)

associated to the complete linear system |L ⊗m|. We denote by

Ym = Φm(X) ⊆ PH0(X,L ⊗m)
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the closure of its image, i.e. the image of the closure of the graph of Φm.
Definition 1.7.2 (Iitaka dimension). Assume that X is normal. Then the Iitaka
dimension of L is defined to be

κ(L ) = κ(X,L ) = max
m∈N(L )

{dim Φm(X)},

provided that N(L ) 6= (0). If H0(X,L ⊗m) = 0 for all m > 0, one puts κ(X,L ) =
−∞. For a divisor D one takes κ(X,D) = κ(X,OX(D)).
Definition 1.7.3 (Algebraic fibre space). An algebraic fibre space is a surjective
projective mapping f : X → Y of reduced and irreducible varieties such that
f∗OX = OY .
Definition 1.7.4 (Section ring associated to a line bundle). Given a line
bundle L on a projective variety X, the graded ring or section ring associated to L
is the graded C-algebra

R(L ) = R(X,L ) =
⊕
m≥0

H0(X,L ⊗m).

The graded ring R(D) = R(X,D) associated to a divisor D is defined similarly.
Definition 1.7.5 (Finitely generated line bundles and divisors). A line bun-
dle L on a projective variety X is finitely generated if its section ring R(X,L ) is a
finitely generated C-algebra. A divisor D is finitely generated if OX(D) is so.
Definition 1.7.6 (Semiample line bundles and divisors). A line bundle L on
a complete scheme is semiample if L ⊗m is globally generated for some m > 0. A
divisor D is semiample if the corresponding line bundle is so.
Fixing a semiample line bundle L , we denote by M(X,L ) ⊆ N(X,L ) the sub-
semigroup

M(X,L ) = {m ∈ N | L ⊗m is free}.
We write f = f(L ) for the exponent of M(X,L ), i.e. the largest natural number
such that every element of M(X,L ) is a multiple of f (so that in particular L ⊗kf

is free for k � 0).
Theorem 1.7.7 (Semiample fibrations). Let X be a normal projective variety,
and let L be a semiample line bundle on X. Then there is an algebraic fibre space

Φ : X → Y

having the property that for any sufficiently large integer m ∈M(X,L ),
Ym = Y and Φm = Φ.

Furthermore there is an ample line bundle A on Y such that Φ∗A = L ⊗f , where
f = f(L ) is the exponent of M(X,L ).
In other words, for m� 0 the mappings Φm stabilize to define a fibre space structure
on X.

Proof. See [L, Theorem 2.1.27] for the full proof.
Theorem 1.7.8. Let L be a semiample line bundle on a normal projective variety
X. Then L is finitely generated.
Proof. See [L, Example 2.1.30] for the full proof.
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1.8 Big divisors
In this section we study a particularly important class of line bundles, namely those
of maximal Iitaka dimension. We will first state the basic facts about those divisors,
then we discuss the big and pseudoeffective cones of divisors. These two cones have
a tie which is comparable to the one the ample and the nef cone have. In fact, the
big cone is the interior of the pseudoeffective cone, furthermore the pseudoeffective
cone is the closure of the big cone.

Definition 1.8.1 (Big). A line bundle L on an irreducible projective variety X is
big if κ(X,L ) = dimX. A divisor D on X is big if OX(D) is so.

Lemma 1.8.2. Assume that X is a projective variety of dimension n. A divisor D
on X is big if and only if there is a constant C > 0 such that

h0(X,OX(mD)) ≥ C ·mn

for all sufficiently large m ∈ N(X,D).

Proof. See [L, Lemma 2.2.3] for the complete proof.

Proposition 1.8.3 (Kodaira’s Lemma). Let D be a big divisor and F an arbitrary
effective divisor on X. Then

H0(X,OX(mD − F )) 6= 0

for all sufficiently large m ∈ N(X,D).

Proof. Suppose that dimX = n, and consider the exact sequence

0→ OX(mD − F )→ OX(mD)→ OF (mD)→ 0.

Since D is big, there is a constant c > 0 such that h0(X,OX(mD)) ≥ c · mn for
sufficiently large m ∈ N(X,D). On the other hand, F being a scheme of dimension
n− 1, h0(F,OF (mD)) grows at most like mn−1 (see [L, Example 1.2.20]). Therefore

h0(X,OX(mD)) > h0(F,OF (mD))

for large m ∈ N(X,D), and the assertion follows from the displayed sequence.

Corollary 1.8.4 (Characterization of big divisors). Let D be a divisor on an
irreducible projective variety X. Then the following are equivalent:

(i) D is big.

(ii) For any ample integer divisor A on X, there exists a positive integer m > 0
and an effective divisor N on X such that mD ≡lin A+N .

(iii) Same as in (ii) for some ample divisor A.

(iv) There exists an ample divisor A, a positive integer m > 0, and an effective
divisor N such that mD ≡num A+N .
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Proof. Assuming that D is big, take r � 0 so that rA ≡lin Hr and (r+1)A ≡lin Hr+1
are both effective. Apply Lemma 1.8.3 with F = Hr+1 to find a positive integer m
and an effective divisor N ′ with

mD ≡lin Hr+1 +N ′ ≡lin A+ (Hr +N ′).

Taking N = Hr + N ′ gives (ii). The implications (ii) ⇒ (iii) ⇒ (iv) being trivial,
we assume (iv) and deduce (i). If mD ≡num A + N , then mD − N is numerically
equivalent to an ample divisor, and hence ample by Corollary 1.4.6. So after possibly
passing to an even larger multiple of D we can assume that mD ≡lin H +N ′, where
H is very ample and N ′ is effective. But then

κ(X,D) ≥ κ(X,H) = dimX,

so D is big.

Corollary 1.8.5 (Numerical nature of bigness). The bigness of a divisor D
depends only on its numerical equivalence class.

Proof. This follows from statement (iv) in the previous corollary.

Definition 1.8.6 (Big Q-divisors). A Q-divisor is big if there is a positive integer
m > 0 such that mD is integral and big.

Definition 1.8.7 (Big R-divisors). An R-divisor on an irreducible projective
variety X is big if it can be written in the form

D =
∑
i

ai ·Di

where each Di is a big integral divisor and ai is a positive real number.

Proposition 1.8.8 (Formal properties of big R-divisors). Let D and D′ be
R-divisors on X.

(i) If D ≡num D′, then D is big if and only if D′ is big.

(ii) D is big if and only if D ≡num A+N where A is an ample R-divisor and N is
an effective R-divisor.

Proof. See [L, Proposition 2.2.22] for a sketch of the proof.

Example 1.8.9 (Big and nef R-divisors). Let D be a nef and big R-divisor. Then
there is an effective R-divisor N such that D − 1

k
N is an ample R-divisor for every

k ∈ N, k ≥ 1.

Proof. Proposition 1.8.8 (ii) lets us find an ample R-divisor A and an effective
R-divisor N such that D ≡num A+N . Given k ∈ N, this numerical equivalence can
be written as kD ≡num (k − 1)D + A+N . If we take k ≥ 1 then (k − 1)D + A is a
sum of a nef and an ample R-divisor, hence it is ample by Corollary 1.6.4. Now we
have that

D − 1
k
N ≡num

1
k
· ((k − 1)D + A) ∈ Amp(X), ∀k ≥ 1.

The conclusion follows from Corollary 1.4.6.

23



Chapter 1. Ample and Nef Line Bundles

Corollary 1.8.10. Let D ∈ DivR(X) be a big R-divisor, and let E1, . . . , Et ∈
DivR(X) be arbitrary R-divisors. Then

D + ε1E1 + · · ·+ εtEt

remains big for all sufficiently small real numbers 0 ≤ |εi| � 1.

Proof. This follows from statement (ii) of the previous proposition thanks to the
open nature of amplitude (Proposition 1.5.8).

Definition 1.8.11 (Big and pseudoeffective cones). The big cone

Big(X) ⊆ N1(X)R

is the convex cone of all big R-divisor classes on X. The pseudoeffective cone

Pseff1(X) ⊆ N1(X)R

is the closure of the convex cone spanned by the classes of all the effective R-divisors.
A divisor D ∈ Div(X)R is pseudoeffective if its class lies in the pseudoeffective cone.

Lemma 1.8.12. Let X = Rn with the standard topology, A an open convex subset
of X, and Y a subset of X such that Y ⊆ A. Then int(Y ) ⊆ A.

Proof. By hypothesis we have int(Y ) ⊆ Y ⊆ A. Since int(Y ) is open we must have
int(Y ) ⊆ int(A). Thanks to [R, Theorem 6.3] we also have int(A) = int(A) and then
we conclude int(Y ) ⊆ int(A) = A.

Theorem 1.8.13. The big cone is the interior of the pseudoeffective cone and the
pseudoeffective cone is the closure of the big cone:

Big(X) = int
(
Pseff1(X)

)
, Pseff1(X) = Big(X).

Proof. The pseudoeffective cone is closed by definition, the big cone is open by
Corollary 1.8.10, and Big(X) ⊆ Pseff1(X) thanks to Proposition 1.8.8 (ii). It remains
to establish the inclusions

Pseff1(X) ⊆ Big(X) , int
(
Pseff1(X)

)
⊆ Big(X).

To prove the first of these, consider ν ∈ Pseff1(X). Then one can write ν as the limit
ν = limk νk of the classes of effective divisors. Fixing an ample class α ∈ N1(X)R
one has

ν = lim
k→∞

(νk + 1
k
α).

Each of the classes νk + 1
k
α is big thanks to Proposition 1.8.8 (ii), so ν is a limit of

big classes. For the second one, once the first is shown, we can apply Lemma 1.8.12
by taking A = Big(X) and Y = Eff1(X).
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1.9 Examples of cones
We end our introductory chapter with some examples of the construction of the cones
defined so far. What is interesting to notice, is that these cones can assume pretty
different structures depending on the variety on which they are defined. We will see
cones that are not closed, circular cones and cones with clustering rays.

1.9.A Ruled surface where Eff1(X) is not closed
Let E be a smooth projective curve of genus g, let U be a vector bundle on E of
rank two, and set X = P(U) with

π : X = P(U)→ E

the bundle projection. We can assume, after twisting by a suitable divisor and without
loss of generality that degU = 0. In this setting N1(X)R is generated by the two
classes

ξ = [D] , f = [F ],

where F is a fibre of π and D is the divisor associated to the line bundle OP(U)(1).
The intersection form on X is determined by the relations

ξ2 = degU = 0 , ξ · f = 1 , f 2 = 0.

In particular ((af + bξ)2) = 2ab. If we represent the class (af + bξ) by the point
(a, b) in the f − ξ plane, it follows that the nef cone Nef(X) must lie within the
first quadrant a, b ≥ 0. In fact, since (aε + bf) is nef and f is effective, we have
0 ≤ (aε + bf) · f = a. Thanks again to the nefness of (aε + bf), along with the
continuity of the intersection form, we can also conclude that 0 ≤ (aε+ bf)2 = 2ab.
So if a > 0 it must be b ≥ 0. On the other hand, if a = 0, then bf is our nef divisor
and then b ≥ 0, because given any ample divisor A one has f · A > 0 (Theorem
1.4.5) and bf · A ≥ 0. We have seen that the nef cone lies within the first quadrant,
now also note that the fibre F is clearly nef (see [L, Example 1.4.6]). Therefore
the non-negative f -axis forms one of the two boundaries of Nef(X). The second
one depends on the geometry of U . Consider the case in which U is semistable,
which means, by definition, that it does not admit any quotients of negative degree.
When U is semistable all its symmetric powers SmU are so (cfr. [L, 6.4.14]). In
the present situation this implies that if A is a line bundle of degree a such that
H0(E, SmU ⊗ A) 6= 0, then a ≥ 0. Now suppose that C ⊂ X is an effective curve.
Then C arises as a section of OP(U)(m)⊗ π∗A for some integer m ≥ 0 and some line
bundle A on E. On the other hand,

H0(P(U),OP(U)(m)⊗ π∗A) = H0(E, SmU ⊗ A),

so by what we have just said a = degA ≥ 0. In other words, the class (af + mξ)
of C lies in the first quadrant. So in this case Nef(X) = Pseff1(X) and the cones
in question fill up the first quadrant of the f − ξ plane. Now we ask whether the
positive ξ-axis R≥0ξ actually lies in the cone Eff1(X) of effective curves, or merely in
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its closure. In other words we ask whether there exists an irreducible curve C ⊂ X
with [C] = mξ for some m ≥ 1. The presence of such a curve is equivalent to the
existence of a line bundle A of degree 0 on E such that H0(E, SmU ⊗A) 6= 0, which
implies that SmU is semistable but not strictly stable. Thanks to ([H1], 1.10.5) if E
has genus g ≥ 2 then there exist bundles U of degree 0 on E having the property
that

H0(E, SmU ⊗ A) = 0 for all m ≥ 1
whenever degA ≤ 0: in fact this holds for a sufficiently general semistable bundle
U . Thus there is no effective curve C on the resulting surface X = P(U) with class
[C] = mξ, and therefore the positive ξ-axis does not itself lie in the cone of effective
curves.

1.9.B Products of curves
Before we start discussing our next example, we will expose some remarkable prop-
erties of abelian varieties. Recall that a variety A is abelian if it has a structure of
an abelian group. We will denote its binary operation with +. Thanks to this group
structure we can define translations of a subvariety Z ⊆ A,

ta : Z → Z + a z 7→ z + a.

Proposition 1.9.1. If Z is an irreducible divisor of an abelian variety A then for
every x ∈ A there exists a ∈ A such that x /∈ Z + a.

Proof. Suppose that x ∈ Z + a for every a ∈ A, then x = z + a for some z ∈ Z
depending on a. Then for all a ∈ A and for some z ∈ Z one should have a = x− z ∈
(x− Z) ∼= Z. This is absurd, because since Z has codimension 1 then it must exist
a′ ∈ A\(x− Z).

Proposition 1.9.2. Let A be an abelian variety. If Z ∈ Div(A) is irreducible then
it is nef.

Proof. Suppose that Z is not nef, then we can find an irreducible curve C ⊆ A such
that Z ·C < 0. This implies that C ⊆ Z, otherwise Z ·C = #{Z∩C} ≥ 0. Let x ∈ C.
Then, for Proposition 1.9.1, we can find an element a ∈ A such that x /∈ Z + a. This
means that C * (Z + a), so (Z + a) · C ≥ 0. On the other hand, Z ≡num (Z + a).
The conclusion 0 > Z · C = (Z + a) · C ≥ 0 is clearly a contradiction.

Proposition 1.9.3. If A is an abelian variety, then Pseff1(A) = Nef(A).

Proof. The inclusion ⊇ holds for a generic variety X, since Amp(X) ⊆ Eff1(X) and
then, switching to the closures, Nef(X) = Amp(X) ⊆ Pseff1(X). For the opposite
inclusion, Proposition 1.9.2 states that Eff1(A) ⊆ Nef(A), so we can conclude simply
by switching to the closures, since the nef cone is closed.

Let E be a smooth irreducible complex projective curve of genus g = g(E). We set
X = E × E, with projections pr1, pr2 : X → E. Fixing a point P ∈ E, consider in
N1(X)R the three classes

f1 = [{P} × E] , f2 = [E × {P}] , δ = [∆],
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where ∆ ⊂ E × E is the diagonal. Provided that g(E) ≥ 1 these classes are
independent, and if E has general moduli then it is known that they span N1(X)R.
Intersections among them are governed by the formulae

δ · f1 = δ · f2 = f1 · f2 = 1 , f 2
1 = f 2

2 = 0 , δ2 = 2− 2g

Assume that g(E) = 1. Then X = E × E is an abelian surface, and one has

Lemma 1.9.4. Any effective curve on X is nef, and consequently

Pseff1(X) = Nef(X).

A class α ∈ N1(X)R is nef if and only if

α2 ≥ 0 , α · h ≥ 0, (1.7)

for some ample class h. In particular, if

α = x · f1 + y · f2 + z · δ,

then α is nef if and only if

xy + xz + yz ≥ 0, x+ y + z ≥ 0. (1.8)

Proof. To prove the first equality we observe that since X is a surface then
Pseff1(X) = Pseff1(X). X is also abelian, so we conclude using Proposition 1.9.3.
Now, consider a class α ∈ Nef(X). Then, for the previous equality, α is also effective,
so by definition of nefness α2 ≥ 0. Given an ample class h, it is also nef thanks to
Theorem 1.6.9, and then we have α · h ≥ 0. To end the proof we need to show that if
α ∈ N1(X)R satistifes conditions (1.7) then α is nef. Given a divisor A with A2 > 0
and A · h > 0 then [A] = α ∈ Eff1(X). The thesis will then follow by switching to
closures. Given an integer m� 0 and applying Riemann-Roch to mA we obtain

h0(mA) = h1(mA)− h2(mA) + 1
2mA(mA−KX) + χ(X).

Clearly h1(mA) ≥ 0 and for m� 0 we have 1
2mA(mA−KX)+χ(X) ∼ 1

2m
2A2. Then

h0(mA) ≥ 1
2m

2A2 − h2(mA). Thanks to Serre’s duality h2(mA) ∼= h0(KX −mA).
This number must be zero, otherwise |KX −mA| 6= ∅ and then there would exist an
effective divisor E ≡lin (KX −mA). Thus we would have

0 ≤ E · h = (KX −mA) · h.

On the other A · h > 0 by hypothesis so if m � 0 we would necessarily have
(KX −mA) · h < 0 that is evidently a contradiction. At this point we have shown
that h0(mA) ≥ 1

2m
2A2 > 0. As we have seen before, this implies that |mA| 6= ∅

and so there exists an effective divisor F ≡lin mA. We can now conclude that
α = 1

m
[F ] ∈ Eff1(X) ⊆ Eff1(X). In particular, if we regard α as an element of the

space generated by f1, f2 and δ, we see with some easy computations that it is nef if
and only if it lies in the circular cone described by conditions (1.8).
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1.9.C Blow-ups of P2

Let X be the blowing up of the projective plane at ten or more very general points.
Denote by ei ∈ N1(X) the classes of the exceptional divisors, and let l be the pullback
to X of the hyperplane class on P2. We may fix 0 < ε� 1 such that h := l−ε ·∑ ei is
an ample class. [H, V, Exercise 4.15] shows that we can find (-1)-curves of arbitrarily
high degree on X. In other words there exists a sequence Ci ⊆ X of smooth rational
curves with

Ci · Ci = −1 and Ci · h→∞ with i.
By Corollary 2.3.1 each [Ci] generates an extremal ray in Pseff1(X). On the other
hand, let KX denote as usual the canonical divisor on X. Then Ci ·KX = −1 does
not grow with i.

o

i

i i
i

c

c=

=

1 [C ]

ii [C ]0

.h = 1

KX

(K  )<0X
(K  )>0

T

X

R

C  h

Figure 1.2: Cone of curves on blow-up of P2

The purple plane shown in figure is given by {α ∈ N1(X) : α · h = 1}. We can
see that the points represent the extremal rays R≥0[Ci] generated by the [Ci]. In
particular if we put a[Ci] · h = 1 with a ≥ 0, we note that the extremal rays intersect
our plane when a = 1

[Ci]·h . We also observe that the rays R≥0[Ci] generated by the
Ci cluster in N1(X)R towards the plane K⊥X defined by the vanishing of KX . In fact,
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γi ·KX = − 1
Ci·h → 0, since Ci · h→ +∞ and Ci ·KX = −1. It is conjectured that

Pseff1(X) is circular on the region (KX)>0 but this is not yet known.
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Chapter 2

Criteria of extremality

This chapter differs from the previous, since it is not focused on algebraic geometry.
Indeed, the results exposed in the following descend more generally from notions
of convex geometry. The final purpose of this work is to apply these results to the
entities introduced before. In fact, obviously the cones of divisors and curves defined
in the first chapter can be studied from the convex geometry point of view. In
particular, we are interested in finding criteria to establish when certain elements of
these cones give rise to faces or extremal rays, which are faces of dimension 1. Faces
are characterized by the property that if we take two points of the cone with their
sum being an element of the face, then they must lie in the face. If a face has some
additional properties, i.e. there exist linear functions that vanish on the face and
keep the cone in the intersection of their non negative half-spaces, then we will call
it a perfect face or simply an edge if it has dimension 1. To better understand the
geometrical difference between an extremal ray and an edge, we shall observe that
the cone can be rounded near an extremal ray, but not near an edge. In the second
section we will expose a criterion to determine when a subcone generated by a subset
of elements of the cone is a perfect face. We will conclude our thesis providing an
example of a smooth projective variety in which the conditions required from the
criterion are satisfied, in a few words a practical example of a variety in which we
can determine the perfect faces of the pseudoeffective cone of divisors.

2.1 Preliminaries of convex geometry
In this section we will first of all recall basic definitions about convex geometry,
which will be useful throughout the entire chapter. Then we will discuss a criterion
to determine when a subcone of a given salient cone is a face. This criterion comes
directly from a lemma which allows us to decompose a generic element of a cone
with respect to a certain subset of vectors. In the following discussion V will always
be a finite-dimensional R-vector space.

Definition 2.1.1 (Convex cone). A subset K ⊆ V is a convex cone if ∀ x, y ∈ K
and ∀ α, β ≥ 0 then αx+ βy ∈ K.

Definition 2.1.2 (Salient cone). A convex cone K ⊆ V is salient if it does not
contain subspaces of dimension ≥ 1. In other words, if x,−x ∈ K then x = 0.
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Definition 2.1.3 (Cone generated by a subset). Let I be a subset of V . The
closed convex cone generated by I is

K(I) :=
{
w ∈ V | w =

p∑
j=1

ajvj , p ≥ 1, aj ≥ 0, vj ∈ I
}
.

Given a subset {v1, . . . , vs} ⊆ I we define the subcone generated by v1, . . . , vs as
follows

F (v1, . . . , vs) :=
{
w ∈ V | w =

s∑
j=1

aivi , ai ≥ 0
}
.

Definition 2.1.4 (Extremal faces and rays). Let K ⊆ V be a closed convex
cone. An extremal face F ⊆ K is a closed convex subcone having the property that
if v + w ∈ F for some vectors v, w ∈ K, then necessarily v, w ∈ F . An extremal ray
of K is an extremal face of K of dimension 1.

Lemma 2.1.5. Let I be a subset of V such that K(I) is salient. Let v1, . . . , vs ∈ I,
then every w ∈ K(I) can be written as

w =
s∑
i=1

aivi + u (2.1)

with ai ≥ 0 ∀i and u ∈ K(I \ F (v1, . . . , vs)).

Proof. We can assume vi 6= 0 ∀i. Let w ∈ K(I). Then w = limm→∞wm, and by
Definition 2.1.3 each of the wm can be decomposed as

wm =
s∑
i=1

ai,mvi +
sm∑
j=1

bj,mvj,m, vj,m ∈ I \ F (v1, . . . vs), aj,m, bj,m ≥ 0 ∀j,m.

All we need to show is that the limits of the ai,m exist, the Lemma will follow by
setting ai = limm ai,m and u = limm um, with um := ∑sm

j=1 bj,mvj,m. Observe that,
choosing any vk ∈ {v1, . . . vs}, wm can be rewritten as

wm = ak,mvk + u′m u′m ∈ K(I), ak ≥ 0.

Since K(I) is salient, we have that K(I)∗ spans V ∗ (cf. [D, Lemma 6.7 (a)]) and
then there exists a linear function Φ : V → R such that Φ(z) > 0 ∀z ∈ K(I), z 6= 0.
This lets us prove that there exists M > 0 such that ak,m ≤M , ∀m. In fact, since
ak,mΦ(vi) ≥ 0 and Φ(u′m) ≥ 0 we have that

ak,mΦ(vk) ≤ ak,mΦ(vk) + Φ(u′m) = Φ(wm)→ Φ(w)

and then necessarily ak,m is bounded. Once shown this, we may suppose, switching
to subsequences if necessary, that ak,m →m ak ≥ 0. We can repeat this argument for
any i to conclude the proof.

Corollary 2.1.6. Consider a subset I ⊆ V such that K := K(I) is salient. Let
v1, . . . , vs ∈ I, and suppose there exist s linear functions σi : V → R such that
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(a) σi(vj)

= 0 if i 6= j

< 0 if i = j

(b) σi(w) ≥ 0 ∀w ∈ I \ F (v1, . . . , vs) and ∀i.

Then F (v1, . . . , vs) is an extremal face of K.

Proof. To prove that F (v1, . . . , vs) is an extremal face for K we need to show that
chosen z1, z2 ∈ K such that z1 + z2 = ∑s

j=1 αjvj with αj ≥ 0 ∀j then z1, z2 ∈
F (v1, . . . , vs). Since z1, z2 ∈ K, thanks to Lemma 2.1.5 we can write

zi = z′i +
s∑

k=1
ak,ivk,

with ak,i ≥ 0, z′i ∈ K(I \ F (v1, . . . , vs)). We can then rewrite z1 + z2 = ∑s
k=1 αkvk as

z1 + z2 =
s∑

k=1
ak,1vk + z′1 +

s∑
k=1

ak,2vk + z′2 =
s∑

k=1
αkvk,

having then
z′1 + z′2 =

s∑
k=1

(αk − ak,1 − ak,2)vk. (2.2)

Observe that, thanks to (b), σk(z′i) ≥ 0 ∀i, k, so ∀k′ one has, applying (a) and (2.2),

0 ≤ σk′(z′1 + z′2) = σk′
( s∑
k=1

(αk − ak,1 − ak,2)vk
)

= (αk′ − ak′,1 − ak′,2)σk′(vk′).

Again by (a) holds σk′(vk′) < 0, so it must be αk − ak,1 − ak,2 ≤ 0 ∀k.
On the other hand, using (2.2) again and taking Φ ∈ Int(K(I)∗), the conditions

0 ≤ Φ(z′1 + z′2) =
s∑

k=1
(αk − ak,1 − ak,2)Φ(vk) and Φ(vk) > 0 ∀k

let us conclude that αk − ak,1 − ak,2 must be 0 ∀k. So z′1 + z′2 = 0 and this implies,
since K is a salient cone, that z′1 = z′2 = 0, which gives us the Corollary.

2.2 Perfect faces of convex cones
This section is completely dedicated to perfect faces of convex cones. Once given the
definitions, we will first show that a perfect face of dimension 1, which is called an
edge, is also an extremal ray for the cone. This may not be true for perfect faces of
higher dimension, that is why we will in general assume that perfect faces are also
faces. The rest of the section contains a result which gives conditions for a subcone
generated by a set of vectors to be a perfect face of a salient cone. In the next section
we will then see how this result of convex geometry can be applied to algebraic
geometry. In the following, as in the previous section, we set V as a R-vector space
of dimension N , with N < +∞.
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Definition 2.2.1 (Edges and perfect faces of a convex cone). Given a convex
cone K ⊆ V and a face F ⊆ K, we say that F is a perfect face of K if F = K or if
there exist linear functions h1, . . . , hc, where c ≥ 1 is the codimension of F in V , so
that

〈F 〉 =
c⋂
i=1
{hi = 0} and K ⊆

c⋂
i=1
{hi ≥ 0}. (2.3)

If F is one-dimensional and perfect, then F is called an edge for K.

We shall observe that in general the definition above cannot be weakened. In fact,
if we take F as a subcone of dimension 1 which satisfies (2.3) this automatically
implies that it is an extremal ray (the proof is contained in the next lemma), but
the same is not true in higher dimensions. Since (2.3) is not sufficient to guarantee
that the subcone will be a face, we give it as a requirement in the general definition
of perfect face. See 2.2.3 for a counter-example.

Lemma 2.2.2. Let K be a convex cone in V , and let v ∈ K be an element so that

〈v〉 =
N−1⋂
i=1
{hi = 0} and K ⊆

N−1⋂
i=1
{hi ≥ 0},

then either −v ∈ K and Rv is extremal, or −v /∈ K and R≥0v is extremal.

Proof. Suppose at first that −v ∈ K. Then what we need to prove is that given
z1, z2 ∈ K with z1 + z2 = αv, α ∈ R then z1, z2 ∈ Rv. Applying the functions hi we
have 0 = αhi(v) = hi(z1) + hi(z2) for each i ≤ N − 1. Since zi ∈ K, hi(zi) ≥ 0 by
Definition 2.2.1. This means that necessarily hi(z1) = hi(z2) = 0, ∀i. Hence, thanks
again to Definition 2.2.1 z1, z2 ∈ Rv as desired. Now suppose that −v /∈ K. Then
what we need to prove is that given z1, z2 ∈ K with z1 + z2 = αv, α ≥ 0 then
z1, z2 ∈ R≥0v. Repeating the steps of the first case we obtain once again z1, z2 ∈ Rv.
We conclude observing that z1, z2 ∈ K ∩ Rv = R≥0v.

Example 2.2.3. Suppose that V has dimension ≥ 3. Let K ⊆ V be a convex
cone with triangular section and let the origin be its vertex. Choose two linearly
independent vectors v1, v2 ∈ F , with F being one of the faces of K. Suppose also
that v1, v2 are not extremal. In this setting there exist h1, . . . , hN−2 linear functions
which satisfy (2.3) with respect to F (v1, v2). At the same time, according to our
construction, F (v1, v2) is not a face of K.

Proposition 2.2.4. Let K ⊆ V be a closed convex cone of dimension ≥ 2. Then K
is salient if and only if there exists an affine hyperplane H ⊆ V such that 0 /∈ H and
H ∩K is nonempty and bounded.

Proof. Suppose K is salient in the first place. As seen in the proofs of the previous
section, since K is salient there exists a linear function Φ : V → R such that Φ(z) > 0
∀z ∈ K, z 6= 0, according to [D, Lemma 6.7 (a)]. We define H := {w ∈ V | Φ(w) = 1}.
With this construction 0 /∈ H and H ∩ K 6= ∅. In fact, given v ∈ K, v 6= 0, we
have Φ(v) > 0 so if we set λ = 1

Φ(v) , clearly λv ∈ H ∩ K. At this point only the
boundedness of H ∩ K is left to be seen. Suppose by absurd that there exists a
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sequence wm ∈ H ∩K such that ‖wm‖ → +∞. This implies that there exists m0 ∈ N
such that if m ≥ m0 then ‖wm‖ > 0, which means

wm
‖wm‖

∈ SN−1 ∀m ≥ m0.

This sequence has a subsequence that admits a limit w ∈ SN−1. We reach a contra-
diction by observing that

Φ(w)← Φ
( wm
‖wm‖

)
= 1
‖wm‖

→ 0,

and then Φ(w) = 0. This implies that w = 0, and this is absurd since we had
w ∈ SN−1.
Now assume that there exists an affine hyperplane H ⊆ V such that 0 /∈ H and
H ∩K is nonempty and bounded. Suppose by absurd that K is not salient, then
there exists x 6= 0 such that x,−x ∈ K. We will reach the absurd by finding an
unbounded sequence of points which lies in H ∩K in every possible case. Without
loss of generality we can represent H = {w ∈ V | g(w) = 1}, with g : V → R a
linear function. Suppose at first that g(x) = 0. Since H ∩ K 6= ∅, we can choose
a point y ∈ K with g(y) = 1. Consider the sequence y + λx, λ ≥ 0. Observe that
g(y + λx) = g(y) + λg(x) = 1, and since λ ≥ 0 then y + λx ∈ H ∩K, ∀λ. Moreover

‖y + λx‖2 = λ2‖x2‖+ 2λ〈x, y〉+ ‖y2‖ → +∞

which gives us the absurd. Now, we have obtained g(x) 6= 0. This implies that there
exists a multiple λx with g(λx) = 1, since x,−x ∈ K, and we replace x with it in the
following. We now claim that we can find an element y ∈ H ∩K linearly independent
from x. In fact, since K has dimension ≥ 2, we can choose y ∈ K linearly independent
from x. If g(y) = 0, then we can consider the sequence λy + x, λ ≥ 0. This sequence
lies in H ∩K and

‖λy + x‖2 = λ2‖y‖2 + 2λ〈x, y〉+ ‖x‖2 → +∞,

it then contradicts the boundedness of H ∩K. If instead we assume that g(y) < 0,
we will consider the sequence λ1x+ λ2y, with λ1 > 1 and λ2 = λ1−1

|g(y)| . This sequence
lies in H ∩K and∥∥∥λ1x+ λ1 − 1

|g(y)| y
∥∥∥2

= λ2
1

∥∥∥x+ y

|g(y)|
∥∥∥2
− 2 λ1

|g(y)| 〈x+ y

|g(y)| , y〉+ 1
|g(y)|2‖y‖

2 → +∞.

This is again a contradiction. We are now sure that there exists an element y ∈ K
linearly independent from x with a multiple y′ which lies in H ∩K. We have then
g(y′) = 1 and g(x) = 1. Consider the points λ1y

′ + λ2(−x), with λ1 > 1 and
λ2 = λ1 − 1. Since −x ∈ K, these points still lie in K, but this means that once
again we have found an unbounded sequence also lying in H, because

g(λ1y
′ + λ2(−x)) = λ1 − λ1 + 1 = 1,

and
‖λ1y

′ − (λ1 − 1)x‖2 = λ2
1‖y′ − x‖2 + 2λ1〈y′ − x, x〉+ ‖x‖2 → +∞.
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Lemma 2.2.5. Consider a subset I ⊆ V such that K := K(I) is salient. Let
v1, . . . , vs ∈ I, and suppose there exist s linear functions σi : V → R such that

(a) σi(vj)

= 0 if i 6= j

< 0 if i = j

(b) σi(w) ≥ 0 ∀w ∈ I \ F (v1, . . . , vs) and ∀i.

Then F (v1, . . . , vs) is a perfect face of K(I).

Proof. Before we begin, note that we are under the same hypotheses of Corollary
2.1.6 and then F (v1, . . . , vs) is a face for K(I). From now on we will prove that
F (v1, . . . , vs) is perfect. In the first place, we should observe that the vectors v1, . . . vs
are linearly independent, and so are the linear functions σ1, . . . , σs. To see this,
consider a linear combination ∑i aivi = 0. Apply each of the σi to this combination
to obtain, thanks to (a),

aiσi(vi) = 0 ∀i.

Again by (a) we have σi(vi) < 0 so it must be ai = 0, ∀i. In almost the same fashion
we consider a linear function ∑i biσi = 0. Apply this function to each of the vi to get
once again by (a)

biσi(vi) = 0 ∀i

and conclude as above. Now the first case to discuss is when s = N . In this situation
〈v1, . . . , vs〉 = V and we would like to prove that F (v1, . . . , vs) = K(I). The Lemma
will then follow from Definition 2.2.1. Obviously F (v1, . . . , vs) ⊆ K(I) since it is
a subcone of K(I). What we need to show is that K(I) ⊆ F (v1, . . . , vs). Consider
w ∈ K(I). Using Lemma 2.1.5 along with the fact that the vi are a basis for V we
have

s∑
j=1

βjvj = w =
s∑
j=1

αjvj + u,

βj ∈ R, αj ≥ 0, u ∈ K(I \ F (v1, . . . , vs)).

We can then rewrite u as
u =

s∑
j=1

(βj − αj)vj.

Since u ∈ K(I \F (v1, . . . , vs)) we have from (b) that σj(u) ≥ 0, ∀j and then, thanks
to (a),

(βj − αj)σj(vj) ≥ 0 ∀j.

This means, again by (a), that βj − αj ≤ 0, ∀j. On the other hand, since K(I) is
salient there exists a linear function Φ : V → R such that Φ(z) > 0 ∀z ∈ K(I), z 6= 0,
according to [D, Lemma 6.7 (a)]. Then it must be Φ(u) ≥ 0 and Φ(vj) > 0, ∀j. In
other words

s∑
j=1

(βj − αj)Φ(vj) ≥ 0, Φ(vj) > 0, ∀j.
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This lets us conclude that βj − αj = 0, ∀j and then u = 0. This proves that given
any w ∈ K(I),

w =
s∑
j=1

αjvj ∈ F (v1, . . . , vs),

which means that K(I) ⊆ F (v1, . . . , vs). We move on to the case s < N . We
assume throughout that I contains at least two points that are not multiples of
each other, since the lemma is clear when I is a ray or line. With this assertion
along with the fact that K(I) is salient, it can also be supposed that there exists
an affine hyperplane H ⊆ V such that 0 /∈ H and H ∩ K(I) is nonempty and
bounded, which is the statement of Lemma 2.2.4. Without loss of generality we can
set H := {z ∈ V | Φ(z) = 1}, with Φ ∈ K(I)∗ which is nonempty for [D, Lemma
6.7 (a)] as seen before. For any x ∈ I, x 6= 0, some positive multiple of x lies in H,
since setting λ = 1

Φ(x) , we have λx ∈ H and λ > 0 thanks to the properties of Φ. Let
B := K(I) ∩H. We have shown that B is closed, bounded, and convex, and that

K(I) = {λx | x ∈ B, λ ≥ 0}.

Now let T denote the subspace {y ∈ V | σi(y) = 0 ∀i} ⊆ V , where σi are supplied
by (a). Since s < N , T is non-zero and it is (N − s)-dimensional because, as argued
before, all the σi are linearly independent.
Claim 2.2.6. Let c denote the codimension of F (v1, . . . , vs) in V . There exists a
basis {v1, . . . , vs, x1, . . . , xc} for V so that, if we let hi denote the coordinate function
naturally associated to the element xi of the basis {vj, xi}:

(i) xi ∈ T for 1 ≤ i ≤ c.

(ii) B ∩ T ⊆ ⋂ci=1{hi ≥ 0}.

Let us assume Claim 2.2.6. With notation as above, we have that

I ⊆
c⋂
i=1
{hi ≥ 0}.

Indeed, let y ∈ F (v1, . . . , vs), with y = ∑s
j=1 γjvj. Since {σ1, . . . σs, h1, . . . , hc} is the

dual basis of the basis defined in the claim above, we have hi(vj) = 0 ∀i, j and then

hi(y) =
s∑
j=1

γjhi(vj) = 0 ∀i. (2.4)

This in particular implies that y ∈ ∩ci=1{hi ≥ 0}. Now let y ∈ I \F (v1, . . . , vs). Then

y = −
s∑
j=1

αjvj +
c∑
i=1

aixi

for some uniquely determined coefficients αj, ai. Moreover

σj(y) = −αjσj(vj) ≥ 0 ∀j
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by assumption (b). Since σj(vj) < 0, we must have αj ≥ 0 ∀j. Then ∑s
j=1 αjvj + y =∑c

i=1 aixi ∈ K(I) ∩ T , so that ai ≥ 0 by choice of the basis xi in Claim 2.2.6 (ii).
This shows that

K(I) ⊆
c⋂
i=1
{hi ≥ 0}.

To prove that F (v1, . . . , vs) is a perfect face we still need to see
c⋂
i=1
{hi = 0} = 〈v1, . . . , vs〉. (2.5)

(⊇) : Consider y ∈ 〈v1, . . . , vs〉. As seen in (2.4) (the sign of the coefficients does not
matter) we have hi(y) = 0 ∀i.
(⊆) : Consider y ∈ ⋂ci=1{hi = 0}. Since {σ1, . . . σs, h1, . . . , hc} is the dual basis of the
basis {v1, . . . , vs, x1, . . . , xc} we have that, supposing y = ∑s

j=1 bjvj +∑c
i=1 aixi,

ai = hi(y) = 0 ∀i.

In other words, ai = 0 ∀i, and then

y =
s∑
j=1

bjvj ∈ 〈v1, . . . , vs〉

as required.
Now that equality (2.5) is proven, we can conclude that F (v1, . . . , vs) is a perfect
face for K(I) as required.
To prove Claim 2.2.6, let B0 := B ∩ T . Since B = K(I) ∩H, we have that

B0 ⊆ H ∩ T = {x ∈ T | Φ(x) = 1},

where as before Φ is a linear function in K(I)∗ so that H = {x ∈ V | Φ(x) = 1}. Now
B0 is nonempty. In fact since s < N we can always find x 6= 0, x ∈ K(I\F (v1, . . . , vs)),
and then by (a) we have σj(x) ≥ 0 ∀j, so putting βj = σj(x), γj = σj(vj) we can
define

x′ = x−
s∑
j=1

βj
γj
vj with βj

γj
≤ 0 ∀j.

Clearly x′ 6= 0, otherwise x would be 0 since K(I) is salient, x′ ∈ K(I) and σj(x′) = 0
∀j so x′ ∈ T . As argued previously, some positive multiple of x′ lies in H, therefore
in B0. Take T0 = T ∩ {w ∈ V | Φ(w) = 0} ⊆ T . This subspace is (N − s − 1)-
dimensional because if we take the linear function ∑s

i=1 biσi + γΦ = 0 and x ∈ B0 we
have Φ(x) > 0 and ( s∑

i=1
biσi + γΦ

)
(x) = γΦ(x) = 0.

This implies that γ = 0 independently from the choice of the bi, and in particular that
σ1, . . . , σs,Φ are linearly independent, since the linearly independence of the σi has
already been shown in the first part. Observe that T0 ∩B0 = ∅. Let x′1 be a normal
vector to T0 in T with Φ(x′1) > 0. Let x′2, . . . , x′c be a basis for T0. This means that
x′1, x

′
2, . . . , x

′
c is a basis for T . Now let h′i denote the coordinate functions associated
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to this basis, and by boundedness of B0 we have that for each i, h′i(B0) ⊆ [ai, bi]
for some finite ai, bi. Note that by assumption a1 > 0. In fact, taking a generic
u ∈ B0 ⊆ T , we have

u =
c∑
i=1

cix
′
i

and so h′1(u) = c1. On the other hand

1 = Φ(u) = c1Φ(x′1),

so c1Φ(x′1) = 1, and if c1 < 0 this identity would be false, since Φ(x′1) > 0. Now
define new coordinates by xi = x′i for i ≥ 2, and

x1 = x′1 +
c∑
i=2
ai<0

ai
a1
x′i.

If y ∈ B0, then y = λ1x
′
1 + ∑c

i=2 λix
′
i for λi ≥ ai. Substituting to express y with

respect to the basis {xi}. we obtain

y = λ1x1 +
c∑
i=2
ai<0

(
− λ1

a1
ai + λi

)
xi +

c∑
i=2
ai≥0

λixi.

All coordinates of vectors in B0 are non negative with respect to the new basis, since
−λ1
a1
ai + λi ≥ −λ1

a1
ai + ai ≥ 0 for ai < 0. In conclusion, note that 〈x1, . . . , xc〉 = T

and by (a) T ∩ 〈v1, . . . , vs〉 = 0. It is then clear that x1, . . . , xc, v1, . . . , vs is a basis
for V .

2.3 Criteria of extremality for cones of divisors
In this last section we will go back to the algebraic geometry point of view. Indeed, our
final goal is to apply the results studied in this second chapter to the pseudoeffective
cone of a smooth projective variety. Once these applications are shown, we will
proceed with some practical examples of projective varieties in which the hypotheses
of our theorems hold.

Corollary 2.3.1. Let X be a smooth projective surface. The class of an irreducible
curve on X satisfying C2 < 0 spans an extremal ray of Pseff1(X).

Proof. We find ourselves in the hypotheses of Corollary 2.1.6. We assume that our
finite dimensional R-vector space is N1(X), consider then the cone Pseff1(X) in it.
It is a well-known fact (cfr. [BFJ, Proposition 1.3]) that the pseudoeffective cone
of a smooth projective variety is salient. We can then take an irreducible curve
C ∈ Pseff1(X) in place of the v1, . . . , vs seen in 2.1.6. What is left to do is to find a
linear function σ : N1(X)→ R with suitable properties. This function can be easily
chosen by putting σ(C ′) = C ′ · C, ∀C ′ ∈ N1(X).
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We will now expose a more general result that holds for a generic smooth projective
variety X. Begin with a set of irreducible divisors D1, . . . , Ds ∈ Pseff1(X) with
Di ∩Dj = ∅ while i 6= j. If there exist irreducible curves C1, . . . , Cs so that for each
i, Ci ·Di < 0 and Di is covered by irreducible curves numerically equivalent to Ci,
then D1, . . . , Ds generate a perfect face of the pseudoeffective cone.

Definition 2.3.2 (Collection of curves). A set of curves {Ci}i∈I of a scheme X
is a collection if Ci ≡num Ci′ for all i 6= i ∈ I.

Corollary 2.3.3. Let X be a smooth projective variety. Given irreducible effective
divisors D1, . . . , Ds ∈ Pseff1(X) with Di ∩ Dj = ∅ while i 6= j and collections of
curves {Ci,t}t∈Ti

so that for each i we have ∪t∈Ti
Ci,t = Di and that Ci,t ·Di < 0 for

some t ∈ Ti, then the divisors D1, . . . , Ds generate a perfect face of the pseudoeffective
cone of X.

Proof. Our purpose is to apply Lemma 2.2.5 to Pseff1(X). Choose i ∈ {1, . . . , s},
fix ti,1 ∈ T and consider the function

σi : N1(X)→ R
B 7→ B · Cti,1 .

By hypothesis σi(Di) < 0 ∀i, moreover σi(D′) ≥ 0 for any irreducible divisor D′ 6= Di.
In fact, if there existed D′ such that σi(D′) < 0, this would mean that Ci,t ·D′ < 0
∀t ∈ Ti since {Ci,t}t is a collection. But this would also imply that Ci,t ⊆ D′ for
all t ∈ Ti, and then Di = ∪tCi,t ⊆ D′. Since D′ is irreducible, it can not contain
another irreducible divisor, so in this case we would have Di = D′. This argument
can evidently be repeated for each i. Moreover, since Di ∩Dj = ∅ if i 6= j we can
also conclude that σi(Dj) = 0 if i 6= j. In other words the requirement (a) of Lemma
2.2.5 is satisfied by the σi. On the other hand, it is a well-known fact that the
pseudoeffective cone is salient (cfr. [BFJ, Proposition 1.3]), so (b) is also satisfied.
We can then apply Lemma 2.2.5 and state that D1, . . . , Ds generate a perfect face of
Pseff1(X).

We conclude our work with a practical example of a smooth algebraic variety of
arbitrary dimension in which the hypotheses of Corollary 2.3.3 are satisfied. Before
introducing this example, we will recall for completion the standard definitions about
blowing-ups. We will first of all impose a condition which is required from now on.

Condition 2.3.4. Let X be a noetherian scheme, and let S be a quasi-coherent
sheaf of OX-modules, which has a structure of a sheaf of graded OX-algebras. Thus
S ∼=

⊕
d≥0 Sd, where Sd is the homogeneous part of degree d. We assume furthermore

that S0 = OX , that S1 is a coherent OX-module, and that S is locally generated
by S1 as an OX-algebra.

Definition 2.3.5 (Projective space bundle). Let X be a noetherian scheme,
and let E be a locally free coherent sheaf on X. We define the associated projective
space bundle P(E ) as follows. Let S = S (E ) be the symmetric algebra of E ,
S = ⊕

d≥0 S
dE . Then S is a sheaf of graded OX-algebras satisfying Condition 2.3.4,
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and we define P(E ) = Proj(S ). As such, it comes with a projection morphism
π : P(E ) → X and a line bundle O(1). Check [H, p.160] for the details about the
construction of Proj(S ).

Definition 2.3.6 (Blowing-ups). Let X be a noetherian scheme, and let I be a
coherent sheaf of ideals on X. Consider the sheaf of graded algebras S = ⊕

d≥0 I d,
where I d is the dth power of the ideal I , and we set I 0 = OX . Then X,S clearly
satisfy Condition 2.3.4, so we can consider BlI (X) = Proj(S ). We define BlI (X)
to be the blowing-up of X with respect to the coherent sheaf of ideals I . If Y is the
closed subscheme of X corresponding to I , then we also write BlY (X) and we call
it the blowing-up of X along Y or with center Y .

Definition 2.3.7 (Exceptional divisors). Let X be a nonsingular variety over
k, and let Y ⊆ X be a nonsingular closed subvariety, with ideal sheaf I . Let
π : BlI (X)→ X be the blowing-up of I . We call exceptional divisor the subscheme
Y ′ ⊆ BlI (X) defined by the inverse image ideal sheaf I ′ = π−1I · OBlI (X).

Example 2.3.8. Let X be a smooth projective variety, and let Z1, . . . , Zs be closed
smooth subvarieties of X of arbitrary dimensions. Suppose also that Zi ∩ Zj = ∅ if
i 6= j. Now consider the blowing-up of X with center Z1∪ · · ·∪Zs, and let E1, . . . , Es
be the exceptional divisors generated by the Zi, giving the diagram

Bl∪s
i=1Zi

(X)

⊆

ϕ // X

⊆

Ei
� // Zi

In this situation, Ei ∩ Ej = ∅ if i 6= j since ϕ−1(Zi) = Ei ∀i. We should also recall
that Ei ∼= P(N∗Zi

) = P(Ei) =: Pi and that Ei|Ei
∼= OPi

(−1) (cfr. [H, II,8.24]). This
property lets us found families of irreducible curves {Ci,j}j∈J , with ∪j∈JCi,j = Ei
and Ci,j · Ei < 0 ∀j. The first assertion is clear if we regard the Ei as unions of
projective spaces and we pick lines in the inverse images of the points of each Zi.
The second one can be seen in the following manner:

Ci,j · Ei = Ci,j · Ei|Ei
= Ci,j · OPi

(−1) < 0.

We now find ourselves in the hypotheses of Corollary 2.3.3. This means that the Ei
generates a perfect face of the pseudoeffective cone of Bl∪s

i=1Zi
(X).
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