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Introduction

Algebraic geometry is a subject that somehow connects and uni�es several
mathematical disciplines, �rst of all algebra and geometry, but also others (such
as number theory, string theory,...), and it has as many applications.
Because of this interdisciplinarity, studying it requires an appropriate background.
I will therefore try to make this text as self-contained as possible: only a good
knowledge of general topology and commutative algebra will be required, as well
as a minimal familiarity with category theory and cohomology. All remaining pre-
requisites (about sheaves, schemes, varieties,...) will be exposed and summarized
in chapter 1-Prerequisites. However it would be useful to have a good smattering
of classical algebraic geometry (about quasi-projective varieties, also called pre-
varieties). Instead we will follow the approach developed by Grothendieck and
his many coworkers in the 1960's in Paris, concerning the theory of schemes.

What is algebraic geometry? Roughly, it is the kind of geometry you can de-
scribe with polynomials. In particular, the closed subsets of a space are loci of
points described by a system of polynomial equations.
What are the bene�ts? What may seems like a limitation, working only with
polynomials, however, becomes a powerful tool for studying singular objects (non-
smooth varieties). Moreover we do not need to work only on R or C, and we can
generalize by taking any �eld k. Note that starting from chapter 2 (so excluding
just the chapter 1-Prerequisites) we will assume that k is algebraically closed.

What is the idea behind the theory of schemes? As described in [5], just as topo-
logical manifolds are made by gluing together open balls from Euclidean space,
schemes are made by gluing together open sets of a simple kind, called a�ne
schemes. There is already some subtlety here: when you glue things together,
you have to specify what kind of gluing is allowed. For example, about topolog-
ical manifolds, if the transition functions are required to be di�erentiable, then
you get the notion of a di�erentiable manifold.
Note that a di�erentiable manifold M is obviously a topological space, but it is a
little bit more: specifying its structure as di�erentiable manifold is equivalent to
specifying which of the continuous functions on any open subset of M are di�er-
entiable, and these functions form a sheaf C∞(M) such that the pair (M,C∞(M))
is locally isomorphic to an open subset of Rn with its sheaf of di�erentiable func-
tions; hence the idea of associating a sheaf of rings OX to a topological space X,
and to follow that of scheme.
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What is the purpose of this text? I want to use the acquired notions to explic-
itly describe something: curves. The �rst step towards a greater knowledge of
the varieties is clearly to start from the one-dimensional case.
The question this text wants to answer is very simple: what are the curves and
how are they made? With curve, we mean a one-dimensional smooth variety over
an algebraically closed �eld k (see section 2.1 for more information).
A �rst more explicit question could be: are all curves isomorphic? Obviously
not, indeed some are a�ne and some (such as P1) are not. The question could
become: are all projective curves isomorphic? In this regard, we will assume that
all curves are projective (i.e. complete). Once again the answer to this question
is no, indeed we will de�ne an invariant, the genus, and we will show that P1 has
genus 0, while there exist curves of positive genus. One more question: are all
curves of genus 0 isomorphic to P1? This is true.
Regarding curves of genus 1 (called elliptic) we will see that they are plane cubics.
For genus greater than 1, we will distinguish 2 di�erent types: hyperelliptic and
non; and in particular we will study non-hyperelliptic curves of low genus.

In order to discuss interesting issues like these we will introduce some useful
tools, such as divisors, line bundles and linear systems (in chapter 3 and 4), af-
ter brie�y summarizing the necessary prerequisites (in chapter 1 and 2), to then
deepen the study of curves (in chapter 5).
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Chapter 1

Prerequisites

In this chapter we will quickly review all notions and results of algebraic
geometry that we need. Consider it a handbook to keep on the tip of the tongue
during the whole reading of the text.
Here the main goal is de�ning schemes and showing their properties.
Note that with ring we will mean a unitary commutative ring.

1.1 Sheaves

First, we recall notions about sheaves on a topological space X.

1. A presheaf F on X is a covariant functor from the open subsets of X to a
category C, that is it consists of

• An object F(U) ∈ C for each open subset U of X.
(An element s ∈ F(U) is called section).

• A morphism, called restriction, ρUV : F(U) → F(V ) for each couple of
open subsets V ⊆ U of X, such that:
1) ρUU = id for every open subset U .
2) ρVW ◦ ρUV = ρUW for every triple of open subsets W ⊆ V ⊆ U .
(We will usually indicate with a section s, also its restrictions, as abuse
of notation).

In particular if C is the category of rings/modules/groups/sets, we will call
F presheaf of rings/modules/groups/sets.
From now on, we will assume that C is the category of abelian groups.

2. A sheaf F on X is a presheaf with the following property:
Let U be an open subset of X, with {Uh} an open cover of U
and sh ∈ F(Uh) sections s.t. ρ

Uh
Uh∩Uk

(sh) = ρUk
Uh∩Uk

(sk) ∀h, k
then ∃!s ∈ F(U) : ρUUh

(s) = sh ∀h.

3. We can de�ne a sheaf F on a topological basis β of X and then extend to
all open subsets U in the following way (see [17, Proposizione 2.1]):
F(U) = lim←−F(W ), where the inverse limit is on {W ∈ β|W ⊆ U}.
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In other words F(U) = {(sW ) ∈
∏

F(W )|ρWW ′(sW ) = sW ′}.
(Restrictions are projections).

4. A stalk of a presheaf F on X is Fp = lim−→F(U) where p ∈ X and the direct
limit is on its open neighborhoods U .
In other words Fp =

∐
F(U)/ ∼, where taken s ∈ F(U), t ∈ F(V ) we de�ne

the equivalence relation:
s ∼ t ⇐⇒ there is an open neighborhoodW ⊆ U∩V of p : ρUW (s) = ρVW (t).
(An element sp := [s] ∈ Fp is called germ).

5. Let s, t ∈ F(U) be sections of a sheaf.
sp = tp ∀p ∈ U ⇐⇒ s = t (see [17, Lemma 3.2]).

6. We can extend a presheaf F to a sheaf F+ so de�ned (see [17, Teor. 3.7]):
F+(U) = {s : U →

∐
p∈X Fp| For any p ∈ X, s(p) ∈ Fp and there is an open

neighborhood V ⊆ U of p and a section σ ∈ F(V ) s.t. s(x) = σx ∀x ∈ V }.
(Restrictions are natural restrictions of maps).

7. A morphism of sheaves on X, φ : F → G, is a natural transformation of
functors, that is a collection of maps
{φ(U) : F(U)→ G(U)|U ⊆ X open subset}
compatible with the restrictions.
(We will usually indicate φ(U)(s) simply with φ(s), as abuse of notation).

8. Let φ : F → G be a morphism of sheaves, we can de�ne for each point p ∈ X:
φp : Fp −→ Gp

sp 7→ (φ(s))p
(morphism on the stalks).

9. We say that φ is injective/surjective/bijective if φp is such ∀p ∈ X.
Note that (see [17, Proposizione 3.3 e 3.5]):
φp is injective/isomorphism ⇐⇒ φ(U) is such for any open subset U of X.

1.2 Cohomology of sheaves

Cohomology is a very useful tool. In particular it is good to note that the
zero-index case corresponds to the global sections of a sheaf.
Let X be a topological space and let F be a sheaf of rings or modules on X.

1. A sequence of sheaves is exact if it is exact on the stalks.

2. We de�ne Γ(X,F) := F(X).
In particular Γ(X,−) is a functor from {sheaves of rings on X} to {rings}.
Note that it is covariant, additive and left-exact (see [17, Proposizione 5.2]).

3. A sheaf is �asque if its restrictions are surjective.

4. H i(X,F) := H i(Γ(X,K•)), where K• is a �asque resolution of F.
(There exists always a �asque resolution of F, see [17, De�nizione 5.5]).

5. H0(X,F) = Γ(X,F) (see [17, Proposizione 5.8]).
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1.3 Locally ringed spaces

The notion of locally ringed spaces is the starting point to de�ne schemes.

1. A ringed space is a couple (X,OX) where

• X is a topological space

• OX is a sheaf of rings on X.

2. Let f : X → Y be a continuous map of topological spaces, and let F be a
sheaf on X, the push-forward of F is the sheaf f∗F on Y so de�ned:
f∗F(U) = F(f−1(U)) for each open subset U of X.
(Restrictions are induced by restrictions of F).

3. A morphism of ringed spaces is a pair (f, f ]) : (X,OX)→ (Y,OY ), where:

• f : X → Y is a continuous map of topological spaces.

• f ] : OY → f∗OX is a morphism of sheaves on Y .

4. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
For each p ∈ X we have a ring homomorphism f ]p : OY,f(p) → OX,p, de�ned
in the following way:

OY,f(p) = lim−→
V 3f(p)

OY (V )
f]→ lim−→

V 3f(p)
OX(f−1(V ))→ lim−→

U3p
OX(U) = OX,p

Note that f ]p (with p ∈ X) is di�erent from (f ])q (with q ∈ Y ).

5. A locally ringed space is a ringed space (X,OX) s.t the stalk OX,x is a local
ring for each x ∈ X (i.e. OX,x has a unique maximal ideal mx).

6. A morphism of locally ringed spaces (f, f ]) : (X,OX) → (Y,OY ) is a mor-
phism of ringed spaces s.t (f ]x)

−1(mx) = mf(x) ∀x ∈ X (i.e. f ]x is a morphism
of local rings).

Now we introduce some conventions:

- We denote a ringed space (X,OX) only with X, and a morphism of ringed
spaces (f, f ]) only with f .

- Let X be a locally ringed space.
For each p ∈ X, we de�ne its residue �eld K(p) := OX,p/mp.

- Let s ∈ OX(U) be a section, we can consider it as a function
s : U →

∐
x∈U K(x), p 7→ sp

(In particular s(p) = 0 ⇐⇒ sp ∈ mp).
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1.4 OX-modules

Dealing with schemes, we will work on particular sheaves, treated below.
Let (X,OX) be a ringed space.

1. A sheaf of OX-modules (or simply an OX-module) is a sheaf F on X such
that for each open subset U , F(U) is an OX(U)-module
(and the restrictions of F are compatible with the module structure via the
restrictions of OX).

2. A morphism of OX-modules is a morphism of sheaves φ consisting in ho-
momorphisms of modules.
Note that Ker(φ), Im(φ),Coker(φ) are OX-modules
(as de�ned in [9, Chapter II.1]).

3. Let F,G be OX-modules, then F/G,HomOX
(F,G),F⊗OX

G are OX-modules
(as de�ned at the beginning of [9, Chapter II.5]).

1.5 Schemes

Let A be a ring. We consider the set X = Spec(A) ={prime ideals of A}, and
we denote with Px the corresponding ideal of A to an element x ∈ X, and with
[P ] ∈ X the corresponding element to an ideal P of A.
First, we recall notions about the Zarisky topology on X:

1. We equip X with the topology whose closed subsets are
V (S) := {x ∈ X|S ⊆ Px} where S ⊆ A.

2. Every closed subset is of the form V (J) where J is a radical ideal of A
(see [17, Esercizio 6.1]).

3. Given a closed subset Z ofX, we can associate to it an ideal I(Z) =
⋂
z∈Z Pz

of A. In particular we have V (I(Z)) = Z (see [17, Esercizio 6.1]).

4. A closed subset Z is irreducible ⇐⇒ I(Z) is prime.
Moreover, a point {x} is closed ⇐⇒ Px is maximal.
(see [17, Proposizione 6.5]).
In particular, for every x ∈ X we will say that x is a generic point of the
closed subset {x} = V (Px).
(If A is an ID, then X = {[0]}).

5. A principal open subset of X is Uf := X r V (f), where f ∈ A.
The principal open subsets give a topological basis (by [17, Esercizio 6.2]).

6. X is compact (see [17, Esercizio 6.3]).

7. We de�ne a sheaf OX on X, called structure sheaf, in the following way:

• Let Uf be a principal open subset, we have
OX(Uf ) = Af := { a

fn
|a ∈ A, n ∈ N}.
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• Let Ug ⊆ Uf be principal open subsets
(i.e. ∃m ∈ N, b ∈ A such that gm = bf , see [17, Esercizio 6.1]).

We have ρ
Uf

Ug
: Af → Ag,

a
fn
7→ abn

gnm

Note that it is de�ned on a topological basis, then we can extend it to all
open subsets (by section 1.1(3)).
(If A is an ID, then OX(U) =

⋂
x∈U APx , see [17, Lemma 7.4]).

Finally, we can de�ne a scheme in the following way:

a. A standard a�ne scheme is a ringed space (X,OX) with:

• X = Spec(A) with Zarisky topology (where A is a ring).

• OX is its structure sheaf.

Note that OX,x = APx∀x ∈ X, hence X is locally ringed.
(see [17, Proposizione 7.2]).

b. An a�ne scheme is a locally ringed space (X,OX) ∼= (Spec(A),OSpec(A))
for some ring A (called coordinate ring of X).

c. A scheme is a ringed space (X,OX) s.t. there exists an open cover U of X:
(U,OX |U) is an a�ne scheme ∀U ∈ U.

d. A morphism of schemes is a morphism of locally ringed spaces which are
schemes.

Some remarks about schemes:

i. Let X = Spec(A) be an a�ne scheme.
A principal open subset Uf ∼= Spec(Af ) is an a�ne scheme.

ii. Every irreducible closed subset Z of a scheme has a unique generic point
z ∈ Z : Z = {z} (by [17, Lemma 10.2]).

iii. There is a category equivalence: {a�ne schemes} ↔ {rings}op
(see [17, Teorema 8.2]).
Given a ring homomorphism φ : A → B, we can de�ne a morphism of
schemes in the following way:

• φ̄ : Spec(B)→ Spec(A), [P ] 7→ [φ−1(P )] is a continuous map.

• φ̄] : OSpec(A) → φ̄∗OSpec(B) is a morphism of sheaves so de�ned (on
principal open subsets):

φ̄](Ug) : Ag → Bφ(g),
a
gn
7→ φ(a)

φ(g)n
.

Conversely, given a morphism of ringed spaces f : Spec(B)→ Spec(A), we
can de�ne a ring homomorphism φf := f ](Spec(A)) : A→ B.
More generally (see [17, Es. 11.4]): let X be a scheme, let Y = Spec(A) be
an a�ne scheme, then there is a bijection: Mor(X, Y )↔ Mor(A,OX(X)).
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1.6 An and Pn

Let k be a �eld.

1. Let R = k[X1, ..., Xn] be the ring of polynomials.
The scheme An := Spec(R) is called a�ne n-space.

2. Let S = ⊕d≥0Sd be a graded ring.
S+ := ⊕d>0Sd is maximal ideal.
Proj(S) := {P ⊆ S|P is a homogenous prime ideal, P 6= S+}
is the topological space whose closed subsets are of the form
V (Q) = {P ∈ Proj(S)|P ⊇ Q} for some homogeneus ideal Q of S.

X = Proj(S) is a scheme, where the structure sheaf (analogously to a�ne
schemes) is so de�ned (as presheaf on principal open subsets):
Let f ∈ S be homogeneous of degree d,
OProj(S)(Uf ) = S(f) := { m

fn
|m ∈ S homogeneous of degree dn}.

In particular for each x ∈ X, we have

OX,x = S(Px) := {m
a
|m, a homogeneus polynomials in S of the same degree,

a ∈ S r Px}.
Moreover principal open subsets Uf ∼= Spec(S(f)) are a�ne.

3. Let P = k[X0, ..., Xn] be a (graded) ring of polynomials.
The scheme Pn := Proj(P ) is called projective n-space.
Its standard open cover is {U0, ..., Un} with Ui := UXi

.

4. An hypersurface of Pn is a closed subset V = V (F ) for some homogeneus
polynomial F , and its degree is deg(V ) := deg(F ).
An hyperplane of Pn is a hypersurface of degree 1.

5. Let P = k[X0, ..., Xn]. We consider the graded ring P (l) := ⊕d≥0Pl+d.
The twist sheaf O(l) is the sheaf on Pn associated to the graded ring P (l)
(in analogous way of above). Moreover, by [17, Teorema 15.1]:

• Γ(Pn,O(l)) ∼=

{
Pl if l ≥ 0

0 if l < 0

• dimk Γ(Pn,O(l)) =
(
n+l
l

)
∀l ≥ 0.

• O(l)⊗ O(m) ∼= O(l +m).

1.7 Subschemes

Let X be a scheme.

1. An open subscheme of X is a scheme (U,OX |U) with U open subset of X.

2. A closed subscheme of X is a scheme Z ⊆ X such that there exists a closed
embedding i : Z ↪→ X, that is a morphism of schemes s.t.

10



• i : Z → i(Z) is homeomorphism.

• i] : OX → i∗OZ is surjective.

3. Given a closed subscheme Z, we can associate to it a sheaf of ideals
IZ/X := Ker(i]) such that OZ

∼= OX/IZ/X .

4. Note that a closed subscheme of an a�ne scheme is a�ne.
In detail if X = Spec(A) and Z is closed subscheme, we can associate to Z
an ideal I of A s.t Z ∼= Spec(A/I).

5. Let Z,Z ′ be closed subschemes of X, the intersection scheme Z ∩Z ′ is the
closed subscheme associated to the ideal sheaf IZ/X + IZ′/X .

1.8 Properties of schemes

We give some useful de�nitions. Let X be a scheme.

1. X is reduced if OX(U) is a reduced ring for every open subset U .

2. X is irreducible if it is irreducible as topological space.

3. X is integral if OX(U) is an ID for every open subset U .
Note that: integral ⇐⇒ reduced and irreducible (see [9, Prop. II.3.1]).

4. Let k be a �eld. X is a k-scheme if it is equipped with a morphism of
schemes X → Spec(k), called structure morphism.
A morphism of k-schemes is a morphism of schemes compatible with the
structure morphisms.

5. A k-scheme X is projective if it is a closed k-subscheme of Pn.

Now, let f : X → Y be a morphism of k-schemes (for some �eld k).

a. f is of �nite type if there is an a�ne open cover {Vi = Spec(Bi)} of Y
such that ∀i, f−1(Vi) can be covered by a �nite a�ne open cover
{Uj = Spec(Aj)}, where Aj are �nitely generated Bi-algebras.

X is of �nite type if X → Spec(k) is of �nite type, i.e. there exists a �-
nite a�ne open cover {Ui = Spec(Ai)} of X, where Ai are �nitely generated
k-algebras (equivalently it holds on every a�ne open subset, see [17, Propo-
sizione 10.4]).

b. f is a�ne if there is an open cover V of Y s.t. f−1(V ) is a�ne ∀V ∈ V.
(E.g. closed embeddings are a�ne).

c. f is �nite if for every a�ne open subset V = Spec(B) of Y , we have that
f−1(V ) = Spec(A) is a�ne and A is a B-algebra, �nitely generated as
module.

d. f is separated if the diagonal morphismX → X×YX is a closed embedding.
X is separated if X → Spec(k) is separated.
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e. f is proper if it is separated and universally closed (i.e. it is closed and for
each morphisms g : Z → Y , we have that Z ×Y X → Z is closed).
Note that: �nite ⇐⇒ proper with �nite �bers (see [6, Appendix B2]).
X is proper (or complete) if X → Spec(k) is proper.

1.9 Varieties

A variety X is an integral (reduced and irreducible) k-scheme of �nite type
over an algebraically closed �eld k.
In this case we can associate X to a prevariety (see [17, Proposizione 10.6]).
Prevarieties (or quasi-projective varieties) are topic of classical algebraic geom-
etry. See [9, Chapter I] for more information, in particular for the meaning of
rational and regular functions, and that of dimension.
In detail, there exists a scheme (X ′,OX′) where

• X ′ is a prevariety.

• OX′ is the sheaf of regular functions, so de�ned:
OX′(U) = {f ∈ k(X)|f is regular on U}.

such that
1) X = X ′ ∪ {[W ]|W ⊆ X ′ is irreducible sub-prevariety of positive dimension}.
2) The open subsets of X are of the form U := U ′∪{[W ] ∈ X|W ∩U ′ 6= ∅} where
U ′ is an open subset of X ′.
3) OX(U) = OX′(U

′) for each open subset U of X.

1.10 Cohomology of projective varieties

There are many important results about cohomology of schemes, in particular
involving the notions of coherent and quasi-coherent sheaves, which an interested
reader can deepen in [9, Chapter III].
We recall just two of these about a projective variety X.

1. Global sections [9, Theorem I.3.4].
H0(X,OX(X)) ∼= k.

2. Serre duality [9, Remark III.7.12.1].
Let X be nonsingular of dimension n (see de�nitions in section 2.2).
Let F be a locally free OX-module (see de�nition in section 4.1).
Let ωX be the canonical sheaf (see de�nition in section 5.4).
There are isomorphisms H i(X,F) ∼= Hn−i(X,F∨ ⊗ ωX)∨.

1.11 The Gluing Lemma

Finally we recall a very useful tool, used in particular to characterize the no-
tion of line bundle (in section 4.1).
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Gluing Lemma. [17, Lemma 17.1]
Let X be a topological space.
Let {Ui} be an open cover of X.
Given a sheaf Fi on Ui, for each i,

and ("transition") isomorphisms φij : Fj |Uij

∼=→ Fi|Uij
on Uij := Ui ∩ Uj s.t.

• φii = idFi

• φik = φij ◦ φjk on Uijk.

Then there exists a unique sheaf F (up to isomorphism) s.t.
1) F|Ui

∼= Fi ∀i (via isomorphisms φi)
2) φij = φi ◦ φ−1j on each Uij.

13



Chapter 2

First notions

After having seen notions about schemes in the previous chapter, we will
rede�ne them in a more congenial way. Then using the new de�nitions, we will
review other notions and results of algebraic geometry about the local case, which
will be essential for understanding what we are going to see in this text.

2.1 Notations and conventions

Let k be an algebraically closed �eld.

• A scheme will be a separated k-scheme of �nite type.

• A variety will be an integral (reduced and irreducible) scheme.

• A subvariety of a scheme will be a closed subscheme which is a variety.

• A point will be a closed point (and we will write just "p ∈ X").

In the next section we will de�ne the dimension of a variety and the notion of
smoothness. In particular

• A curve will be a one-dimensional projective (i.e. complete) smooth variety.

(Note that for a one-dimensional smooth variety: projective ⇐⇒ complete,
see [9, Proposition II.6.7])

2.2 Local geometry of schemes

First, we give some de�nitions.

1. The �eld of rational functions on a variety X is R(X) := OX,η, where η is
the generic point of X.
Note that R(X) ∼= R(U) = Q(A), where U = Spec(A) is an a�ne open
subscheme of X (and Q(A) is the quotient �eld of A).
The non-zero elements of this �eld form the multiplicative group R(X)∗.

14



2. A regular function is an element f ∈ OX(X).
We can see f as a function f : X → qp∈XK(p).
The zero-set of f is V (f) := {p ∈ X|f(p) = 0} = {p ∈ X|fp ∈ mp}.

3. A rational function is an element f ∈ R(X), i.e. f =
g

h
, with g, h ∈ OX(U)

for some a�ne open subscheme U of X.

Moreover, we say that f is regular at p ∈ X if f =
g

h
, with g, h ∈ OX(U)

for some a�ne open neighborhood U of p such that h(p) 6= 0.

4. Remark. Let p ∈ X be a point where f ∈ R(X)∗ is regular, then
f(p) = 0 (i.e. p is a zero)⇐⇒ f−1 is not regular at p (i.e. p is a pole).
(See [3, Corollario 3.6.7])

5. The local ring of a scheme X along a subvariety V is OX,V := OX,µ, where
µ is the generic point of V .
Note that OX,V

∼= AP (where U = Spec(A) is an a�ne open subscheme
such that U ∩ V 6= ∅ and P is the ideal associated to U ∩ V ). In particular
OX,V is a local ring (with maximal ideal mX,V ).
If X is a variety, OX,V = {f ∈ R(X)|f ∈ OX(U) for some a�ne open
subscheme U s.t. U ∩ V 6= ∅}.

6. If V is a point x ∈ X, the notion of local ring coincides with that of stalk,
moreover OX,x

∼= OU,x for every open subset U of X containing x.
In particular we can locally assume X = Spec(A) a�ne, and OX,x = APx .

7. Let X be a scheme, its dimension is
dim(X) := max.lenght{∅ 6= V0 ( V1 ( ... ( Vn ⊆ X|Vi are irreducible
closed subsets}.
If X is variety, dim(X) = TrdegkR(X).

Now some notions of local geometry.
Let X be a variety of dimension n. Let x ∈ X be a point.

a. The Zarisky cotangent space of X at x is (TxX)∗ := mx/m
2
x regarded as a

k-vector space (of dimension at most n).
In particular if we assume X a�ne, (TxX)∗ ∼= Px/P

2
x .

b. The Zarisky tangent space TxX is the dual space of (TxX)∗.
In particular if X ⊂ An = Spec k[X1, ..., Xn] and x = (a1, ..., an).
TxAn = V (dxF |F ∈ Px) where dxF :=

∑
∂Xi

F (x)(Xi − ai).

c. Note that dimk(TxX) ≥ dim(X) (see [3, Teorema 5.4.3]).
x is a non-singular point if dimk(TxX) = dim(X), otherwise it is singular.
(If X = V (F ) ⊂ An is a hypersurface, x is singular ⇐⇒ ∂Xi

F (x) = 0 ∀i).

d. X is a non-singular (or smooth) variety if every point is non-singular.

e. Let Z ⊆ X be a closed subscheme.
Z is locally principal if (IZ/X)p is a principal ideal ∀p ∈ X.
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f. X is locally factorial if every local ring OX,p is an UFD.

g. X is normal if every local ring OX,p is integrally closed.

h. Remark. X is smooth ⇒ X is locally factorial (see [12, Th.48, p.142])
⇒ X is normal (by [18, Lemma 10.119.11]).
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Chapter 3

Divisors

We take a smooth variety X (e.g. a curve).
We could de�ne divisors in a more general case, but we are interested to this
case. Divisors are the �rst important tool that we introduce. Here the main goal
is showing that (in our case) the notions of Weil divisors and Cartier divisors
coincide (as well as showing their properties).
Note that on curves, the divisors could be simply seen as �nite sums of points.

3.1 Weil divisors

We report below the de�nition of Weil divisors (which we call just divisors),
followed by a very useful notion: the degree of a divisor on a projective space.

De�nition 3.1.1.

1. A prime divisor on X is a subvariety V of codimension 1.

2. Div(X) is the free abelian group generated by the prime divisors on X.

3. A Weil divisor (or simply a divisor) on X is an element D =
∑
niVi of

Div(X). (Note that ni 6= 0 for at most a �nite number of indexes).

4. A divisor D =
∑
niVi is e�ective if ni ≥ 0 ∀i. (We will write "D ≥ 0").

5. The support of a divisor D is the closed subscheme Supp(D) :=
⋃
i:ni 6=0 Vi.

De�nition 3.1.2. Let X = Pn.

1. Let D =
∑
niVi ∈ Div(Pn), the degree of D is deg(D) :=

∑
ni deg(Vi)

where deg(Vi) is the degree as hypersurface.

2. Divd(Pn) := {divisors on Pn of degree d}.

Note that Div0(Pn) is a subgroup of Div(Pn).
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3.2 Orders of Zeros and Poles

In the next section we will de�ne a kind of divisors called principal, but �rst
we need another notion: the order of f ∈ R(X)∗ along a prime divisor V .
Note that OX,V = OX,η where η is the generic point of V , hence OX,V is integrally
closed (as seen in section 2.2(h)).
Since OX,V has dimension 1, applying [2, Proposition 9.2], we have that:

• OX,V is a DVR.

• mX,V is a principal ideal.

• Each ideal of OX,V is of the form (td) where t is a generator of mX,V .

De�nition 3.2.1. ordV is the discrete valuation associated to OX,V . Explicitly:

• If f ∈ OX,V , we have ordV (f) = max{d ∈ N|f ∈ (td)}.

• If f ∈ R(X)∗, that is f = a
b
where a, b ∈ OX,V , we have

ordV (f) = ordV (a)− ordV (b).

De�nition 3.2.2.

1. If ordV (f) > 0, we say that f has a zero along V .

2. If ordV (f) < 0, we say that f has a pole along V .

3.3 Principal divisors

Principal divisors are essential to studying divisors, in particular to de�ning
the linear equivalence and the Class group (section 3.5).
In section 3.7, we will see that Cartier divisors are exactly the locally principal di-
visors; we will also see that in our case Cartier divisors and Weil divisors coincide,
hence every divisor is locally principal.

De�nition 3.3.1. Let f ∈ R(X)∗.
The divisor associated to f is div(f) :=

∑
prime divisor V ordV (f)V .

Remark 3.3.2. Note that div(f) ∈ Div(X), that is ordV (f) 6= 0 for at most a
�nite number of prime divisors V .

Proof. Let U ⊆ X be an open a�ne subset on which f is regular.
Let V be a prime divisor on X such that ordV (f) 6= 0. We consider two cases:

1. If V ∩ U = ∅, then V ⊆ X r U and it is an irreducible component. Since
X r U has a �nite number of irreducible components, we have a �nite
number of possible choices for V .

2. If V ∩U 6= ∅, then f is regular on an open subset meeting V , hence f ∈ OX,V ,
or better ordV (f) > 0, that is f ∈ mX,V = IU(V ∩ U)OU,V ∩U .
It follows that f ∈ IU(V ∩U), hence V ∩U ⊆ VU(f) and it is an irreducible
component. If we take the closures, we get that V ⊆ VX(f) and it is an
irreducible component, hence we have a �nite number of possible choices
for V .
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Remark 3.3.3. Supp(div(f)) = {zeros of f} ∪ {poles of f}
(by de�nition of zeros and poles).

Proposition 3.3.4. Let f, g ∈ R(X)∗.

1. div(
f

g
) = div(f)− div(g).

2. f is regular (i.e. f ∈ OX(X)) ⇐⇒ div(f) ≥ 0.

3. If f ∈ k∗, then div(f) = 0.

4. If X is projective, then
f ∈ k∗ ⇐⇒ div(f) = 0.

Proof.

1. By properties of the valuations ordV .

2. [⇒] Let V be a prime divisor on X. Since f is regular, we have f ∈ OX,V ,
hence ordV (f) ≥ 0. In conclusion div(f) is e�ective.
[⇐] Let U be the open subset where f is regular.
Now if we assume that f is not regular (on X), then X r U 6= ∅.
By [3, Corollario 4.6.3], X r U has pure codimension 1.
Let V be an irreducible component of X r U , then V is a prime divisor
on X. For any p ∈ V , f is not regular at p (i.e. f−1(p) = 0), then
f−1 ∈ IX(V ), in particular f−1 ∈ mX,V , that is ordV (f−1) > 0, hence
ordV (f) = −ordV (f−1) < 0. It follows that div(f) is not e�ective.

3. Let f = c be a non-zero constant, then c ∈ OX,V is invertible for each prime
divisor V , hence ordV (c) = 0 . It follows that div(c) = 0.

4. By point 2, div(f) = 0 implies that f is regular. Since X is projective,
Γ(X,OX) = k, that is every regular function is constant, hence f ∈ k∗.

De�nition 3.3.5.

1. D ∈ Div(X) is principal if there exists f ∈ R(X)∗ such that D = div(f).

2. Princ(X) := {principal divisors on X}

Note that Princ(X) is a subgroup of Div(X) by Proposition 3.3.4(1).
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3.4 Principal divisors on An and Pn

On An and Pn there is an easy way to see principal divisors.

Proposition 3.4.1. Let X = An.

1. Let f ∈ R(An)∗, that is f = F
G
with F,G ∈ k[X1, ..., Xn].

Let F = F d1
1 ...F dt

t , G = Gr1
1 ...G

rs
s be their factorizations into irreducible

polynomials. Then
div(f) =

∑
diV (Fi)−

∑
riV (Gi).

2. div : R(An)∗ −→ Div(An) is surjective.
In particular Div(An) = Princ(An).

Proof.

1. By Proposition 3.3.4(1).

2. Let D =
∑l

i=0 niVi be an e�ective divisor. We have Vi = V (Fi), where Fi
are irreducible polynomials. Taken fD :=

∏l
i=0 F

ni
i , then div(fD) = D.

Let D ∈ Div(An), then D = E − E ′, with E,E ′ ≥ 0, and div(
fE
fE′

) = D.

Proposition 3.4.2. Let X = Pn.

1. Let f ∈ R(Pn)∗, that is f = F
G

with F,G ∈ k[X0, ..., Xn] homogenous
polynomials of the same degree.
Let F = F d1

1 ...F dt
t , G = Gr1

1 ...G
rs
s be their factorizations into irreducible

polynomials, then
div(f) =

∑
diV (Fi)−

∑
riV (Gi).

2. Note that div(f) ∈ Div0(Pn).

3. div : R(Pn)∗ −→ Div(Pn) is not surjective, but it has image Div0(Pn).
In particular Div0(Pn) = Princ(Pn).

Proof.
Note that deg(div(f)) = deg(div(F ))− deg(div(G)) = deg(F )− deg(G) = 0.
The remaining proof is analogous to the case X = An.

3.5 Linear equivalence and Class Group

Finally we can de�ne the Class Group and see some particular cases.

De�nition 3.5.1.

1. Let D,D′ ∈ Div(X),
D,D′ are linearly equivalent (D ∼ D′) if D −D′ ∈ Princ(X).

2. The Class Group of X is Cl(X) = Div(X)/Princ(X).
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Examples 3.5.2.

1. Cl(An) = 0 (by Proposition 3.4.1).
Equivalently, every divisor on An is principal.
More generally, let X = Spec(A) (with X still smooth variety), we have
A is an UFD ⇐⇒ Cl(X) = 0 (see [9, Proposition II.6.2]).

2. deg : Cl(Pn) −→ Z is a group isomorphism (by Proposition 3.4.2).
In particular Cl(Pn) ∼= Z and it is generated by a hyperplane H.
Note that each equivalence class is of the form dH (d ∈ Z).

3.6 Cartier divisors

We have assumed X to be a smooth variety, but the de�nition of a Cartier
divisor applies to any scheme.
We consider the sheaf of total quotient rings K, de�ned on the open a�ne subsets
U = Spec(A) in the following way: K(U) := Q(A).
We denote with K∗ the sheaf (of multiplicative groups) of invertible elements in
the sheaf of rings K∗.
In our case, since X is variety, we have that:

• A is a domain.

• Q(A) is the quotient �eld of A (equal to R(X)).

• K is a constant sheaf, constantly R(X).

De�nition 3.6.1.

A Cartier divisor D on X is a global section of the sheaf K∗/O∗.
In other words D is represented by {(Ui, fi)}i∈I , where

• {Ui}i∈I is an open cover of X.

• fi ∈ K∗(Ui) such that fi
fj
∈ O∗(Ui ∩ Uj) ∀i, j.

As abuse of notation, we will write D = {(Ui, fi)}.
Moreover let D′ = {(Vj, gj)} be a Cartier divisor, we have
D = D′ ⇐⇒ fi

gj
, gi
fj
∈ O∗(Ui ∩ Vj) ∀i, j.

Remark 3.6.2. The following conditions are equivalent:

1. fi
fj
∈ O∗(Ui ∩ Uj) ∀i, j.

2. fi
fj

is a unit on Ui ∩ Uj (i.e. regular and nowhere vanishing function) ∀i, j.

3. div(fi) = div(fj) on Ui ∩ Uj ∀i, j.
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Proof.

• [1 ⇐⇒ 2] fi
fj
∈ O∗(Ui ∩ Uj) (i.e. regular in Ui ∩ Uj) ∀i, j

⇐⇒ fi
fj
,
fj
fi
are regular in Ui ∩ Uj ∀i, j

⇐⇒ fi
fj
,
fj
fi
are nowhere vanishing in Ui ∩ Uj ∀i, j (by section 2.2(4))

⇐⇒ fi
fj

is unit in Ui ∩ Uj ∀i, j.

• [3 ⇐⇒ 1] div(fi) = div(fj) on Ui ∩ Uj ∀i, j
⇐⇒ div( fi

fj
) = 0 on Ui ∩ Uj ∀i, j

⇐⇒ fi
fj

is regular on Ui ∩ Uj ∀i, j (by Propositon 3.3.4(2)).

De�nition 3.6.3. Let D = {(Ui, fi)} be a Cartier divisor on X.
The support of D is Supp(D) :=

⋃
i{zeros and poles of fi in Ui}

De�nition 3.6.4.

1. CaDiv(X) is the group of Cartier divisor onX, with the following operation:
{(Ui, fi)}+ {(Vj, gj)} = {(Ui ∩ Vj, figj)}.
Note that (X, 1) is the zero and {(Ui, 1

fi
)} is the inverse of {(Ui, fi)}.

2. A Cartier divisor D is principal if D ∈ Im{K∗(X) −→ K∗/O∗(X)},
in other words, if D = (X, f) with f ∈ R(X)∗. We will write D = (f).

3. CaPrinc(X) is the subgroup of CaDiv(X) of principal divisors on X.

4. Two Cartier divisors D,D′ are linearly equivalent if D−D′ ∈ CaPrinc(X).

5. CaCl(X) := CaDiv(X)/CaPrinc(X).

3.7 CaDiv(X)=Div(X)

Now we see that, in our case, Cartier divisors and Weil divisors are the same
(from smoothness, or better from locally factoriality), but this is not true for any
scheme.

De�nition 3.7.1.

1. Let D = {(Ui, fi)} ∈ CaDiv(X), we can de�ne the Weil divisor associated
to it as D :=

∑
prime-divisor V ordV (fi)V , where i is such that Ui ∩ V 6= ∅.

2. Let D =
∑
nV V ∈ Div(X), we can de�ne the Cartier divisor associated to

it in the following way: let p ∈ X, then there is an its open neighborhood
Up = Spec(A) such that A is an UFD (because X is locally factorial).
Now by Example 3.5.2(1), Cl(Up) = 0, that is every divisor is principal, in
particular D|Up = divUp(fp) for some rational function fp ∈ R(Up)

∗.
The Cartier divisor associated is D := {(Up, fp)}p∈X .
(Note that nV = ordV (fp) for every prime divisor V such that V ∩ Up 6= ∅,
in fact this construction is inverse to the previous one).
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Remark 3.7.2. The previous de�nitions are well-de�ned, in particular:

1. It does not depend on the choice of fi.

2. It does not depend on the choice of fp.

Proof.

1. Let V be a prime divisor. Let fi ∈ R(Ui)
∗, fj ∈ R(Uj)

∗ be such that
Ui ∩ V 6= ∅ and Uj ∩ V 6= ∅. By de�nition of Cartier divisor, fi

fj
is a

unit on Ui ∩ Uj, hence 0 = ordV ( fi
fj

) = ordV (fi) − ordV (fj). In conclusion

ordV (fi) = ordV (fj).
Moreover note that since X is of �nite type (hence there is a �nite a�ne
cover), the de�nition gives a �nite sum (hence a Weil divisor).

2. Given fp, gp ∈ R(Up)
∗ for any p ∈ X.

Let p, q ∈ X, we have divUp∩Uq(fp) = D|Up∩Uq = divUp∩Uq(gq).
By Remark 3.6.2, we have {(Up, fp)} = {(Up, gp)}.
Moreover, for the same reason, {(Up, fp)} is well-de�ned as a Cartier divisor.

These two constructions are inverse to each other, in particular they give an
isomorphism CaDiv(X) ∼= Div(X) (see [9, Proposition II.6.11]).
It is clear that this isomorphism carries principal divisors to principal divisors,
hence we get an isomorphism CaCl(X) ∼= Cl(X).
From now, we talk just of divisors.

From these constructions, we can see that every divisor is locally principal.
Moreover by this (and by Remark 3.3.3), the two de�nitions of support agree.

3.8 E�ective Divisors

In the next chapter we will introduce the notion of linear system, and e�ective
divisors play a key role for it. In this last section of this chapter we will go onto
them before moving on the next chapter.

De�nition 3.8.1. A Cartier divisor D is e�ective (we will write "D ≥ 0") if
D = {(Ui, fi)} with fi ∈ OX(Ui) ∀i.
Remark 3.8.2. Note that the de�nition of e�ective for a Cartier divisor agrees
with the de�nition for a Weil divisor (see De�nition 3.1.1(4)).
Again, we will talk just of e�ective divisors.

Proof. Let D be an e�ective Cartier divisor. Given a prime divisor V , we take
an index i : Ui ∩ V 6= ∅, then fi ∈ OX,V , hence ordV (fi) ≥ 0.
Conversely, let D be an e�ective Weil divisor. Let f ∈ R(U)∗ and let U be an
open subset such that D|U = divU(f). Now we have that divU(f) ≥ 0, hence by
Proposition 3.3.4(2), f ∈ OX(U).

Remark 3.8.3. LetD be an e�ective divisor. We can de�ne the closed subscheme
de�ned by the ideal sheaf OX(−D) (see De�niton 4.2.1).
We can identify an e�ective divisor D with this subscheme, and write D ⊆ X.
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Chapter 4

Line bundles and linear systems

Now we introduce other two essential tools: line bundles and linear systems.
Main goals of this chapter are: proving that in our case line bundles and divisors
coincide (up to isomorphism or to linear equivalence), showing the relation be-
tween linear systems and global sections of line bundles, and �nally their relation
with projective morphisms (in particular with closed embeddings).

Let X be a scheme.
Note that (as speci�ed in the following sections) we will assume X to be smooth
when we will work with divisors, and also projective when we will work with
linear systems. In particular everything in this chapter holds for curves.

4.1 Line Bundles

Line bundles are particular sheaves. We introduce this notion because when
X is smooth, it gives a new way to see divisors (as we will see in the next section).

De�nition 4.1.1. Let L be an OX-module.
L is locally free of rank r if there is an open cover U of X such that L|U ∼= O⊕rU
for each U ∈ U.
L is a line bundle (or an invertible sheaf ) if it is locally free of rank 1. In particular
there exist isomorphisms fi : L|Ui

→ OUi
for an open cover {Ui} of X.

In other words L is represented by {(Ui, fij)} where

• {Ui} is an open cover of X,

• fij : OUij
→ OUij

are transition isomorphisms (as in the Gluing Lemma, see
section 1.11), and we can identify fij with a section fij(1) of O∗Uij

.

Example 4.1.2. Let X = Pn, then O(l) is a line bundle ∀l ∈ Z.
In particular its transition maps are fij =

Xl
j

Xl
i
(seen as sections).

(See de�nition of O(l) in section 1.6(5)).

Proof. Let X = Pn = Proj(P ), where P = k[X0, ..., Xn].
Let U = {U0, ..., Un} be its standard open cover.
We consider the multiplications by X−li :
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fi : Γ(Ui,OPn(l)) = (PXi
)l → Γ(Ui,OPn) = (PXi

)0
r

Xh
i

7→ r

Xh+l
i

These are isomorphisms, hence O(l) is invertible.
In particular its transition maps fij = fi ◦ f−1j are the isomorphisms given by the

multiplications by X−li X
l
j =

Xl
j

Xl
i
.

De�nition 4.1.3. The Picard Group of X, Pic(X), is the group of the line
bundles on X, up to isomorphism, with the operation ⊗ (tensor product between
OX-modules).

Note that Pic(X) is a group by the following remark:

Remark 4.1.4. Let L,L′ ∈ Pic(X), with transition maps fij, gij respectively on
an open cover {Ui} of X.

1. L⊗ L′ is the line bundle with transition maps fijgij.

2. The neutral element is OX .

3. L∨ := HomOX
(L,OX) is the inverse of L.

In particular it is the line bundle with transition maps f−1ij .

Proof.

1. Note that(L⊗ L′)|Ui
= L|Ui

⊗ L′|Ui
∼= OUi

⊗ OUi
∼= OUi

.
The transition maps are

OUij
∼= OUij

⊗ OUij

fij⊗gij−→ OUij
⊗ OUij

∼= OUij

1 7→ 1⊗ 1 7→ fij ⊗ gij 7→ fijgij
.

2. OX is the line bundle with transition map 1 on whole X.
By 1, it is neutral element.

3. L∨ is a line bundle, indeed L∨|Ui
= HomOUi

(OUi
,OUi

) ∼= OUi
.

By [9, Ex.II.5.1(b)], L∨⊗L ∼= HomOX
(L,L) ∼= OX , hence L

∨ is the inverse
of L. In particular, by 1, its transition maps are f−1ij .

4.2 Pic(X)=CaCl(X)

Assume in the remainder of this chapter, that X is a smooth variety (so
divisors are well de�ned). We will show that line bundles and divisors coincide
(up to isomorphism or to linear equivalence).

De�nition 4.2.1. Let D = {(Ui, fi)} ∈ CaDiv(X).
The line bundle associated to D is the line bundle OX(D) ⊆ K generated by f−1i
on Ui, that is OX(D)|Ui

= OUi
f−1i (see de�nition of K in section 3.6),

i.e. it is the line bundle with transition maps fij =
fi
fj
∈ O∗X(Uij)).
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By this construction, we have a one-to-one correspondence:
CaDiv(X)↔ {invertible subsheaves of K}.

Lemma 4.2.2. Let D,D′ ∈ CaDiv(X).

1. OX(D −D′) ∼= OX(D)⊗ OX(D′)−1.

2. OX(D)−1 ∼= OX(−D).

3. D ∼ 0 ⇐⇒ OX(D) ∼= OX ,
in particular D ∼ D′ ⇐⇒ OX(D) ∼= OX(D′).

Proof.

1. Let D = {(Ui, fi)}, D′ = {(Ui, gi)}, then OX(D −D′) = OX({(Ui, fig−1i )})
is the line bundle generated by f−1i gi on Ui, that is OX(D)⊗ OX(D′)−1.

2. By de�nition.

3. [⇒] Assume D ∼ 0, that is D = (X, f) with f ∈ R(X)∗.
We have that OX(D) is generated by f−1 on X, that is there exists an
isomorphism OX → OX(D), 1 7→ f−1; hence OX(D) ∼= OX .
[⇐] Let D = {(Ui, fi)}. We have isomorphisms OUi

→ OX(D)|Ui
, 1 7→ f−1i .

Taken an isomorphism OX → OX(D), 1 7→ g, then we have g|Ui
= af−1i ,

where a ∈ OX(Ui)
∗; hence gfi ∈ OX(Ui)

∗, that is D = (X, g−1).

By this Proposition, we have that CaCl(X) → Pic(X), D 7→ OX(D) is an
injective homomorphism of groups, and it should be also surjective (since the one-
to-one correspondence above) if every line bundle onX is isomorphic to a subsheaf
of K. Now we will show that in our case this happens (because X is integral, in
particular K is a constant sheaf), hence the map is a group isomorphism.

Theorem 4.2.3. Pic(X) ∼= CaCl(X)

Proof.
As we said above we should show that, given L ∈ Pic(X), there exists a line
bundle L′ ⊆ K such that L ∼= L′.
In our case, by the smoothness, K is constantly R(X).
Let U be an open cover of X, where L|U ∼= OU ∀U ∈ U, then L ⊗ K|U ∼= K|U
constantly R(X) ∀U ∈ U, hence L ⊗ K is isomorphic to the constant sheaf
constantly R(X), that is K.
Let i : OX → K be the injective morphism given by the structure of OX-module.
Tensoring with L, we get i : L→ L⊗K ∼= K, then L ∼= i(L) ⊆ K.

Example 4.2.4. Let X = Pn.
Pic(Pn) ∼= Z and it is generated by O(1).
In particular every line bundle is isomorphic to O(l), ∃l ∈ Z.
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Proof. Pn = Proj k[X0, ..., Xn] and Pic(Pn) ∼= Cl(Pn) ∼= Z.
Let H = {X0 = 0} be the hyperplane class of Cl(Pn), that is a generator.
Let {U0, .., Un} be the standard open a�ne cover of Pn, then H|Ui

= divUi
(X0

Xi
),

hence the Cartier divisor associated to H is H = {(Ui, X0

Xi
)}, and the line bundle

associated has transition maps fij =
Xj

Xi
.

Now by Example 4.1.2, OX(H) = O(1).

4.3 Pullback of line bundles

Let φ : X → Y be a morphism of schemes.
Let L be a line bundle on Y with transition maps fij on an open cover {Ui}.
First, we de�ne the pullback of a line bundle, then the pullback of a section and
�nally we will see how this notion becomes on divisors.

De�nition 4.3.1. The pullback of L is the line bundle φ∗L with transition maps
φ]fij on the open cover {φ−1(Ui)} of X.
It de�nes a group homomorphism φ∗ : Pic(Y )→ Pic(X).

Remark 4.3.2. The pullback is well-de�ned.

Proof. Note that φ](fij) ∈ Γ(Uij, φ∗OX) = Γ(φ−1(Uij),OX).
Moreover since fij ∈ O∗Uij

(i.e. fij is a unit, that is nowhere vanishing), we have

(fij)φ(x) /∈ mφ(x) = (φ]x)
−1(mx) ∀x ∈ φ−1(Uij), that is φ]x((fij)φ(x)) = φ](fij)x /∈ mx

∀x ∈ φ−1(Uij); hence φ]fij ∈ O∗φ−1(Uij)
.

De�nition 4.3.3. Let s ∈ Γ(Y,L) be a global section,
we can write s = {si}, where si ∈ Γ(Ui,OUi

).
The pullback of s is the global section φ∗s = {φ]si} of φ∗L.

Remark 4.3.4. Let L be the line bundle generated by fi ∈ L(Ui) on Ui, then
φ∗(f−1i ) = (φ∗fi)

−1 and φ∗(L−1) = (φ∗L)−1 (by de�nition).
Hence on the divisors the de�nition of pullback becomes φ∗{(Ui, fi)} := {(φ−1(Ui), φ∗fi)}.

Note that the pullback sends e�ective divisors to e�ective divisors,
indeed if fi ∈ OY (Ui) then φ

∗fi ∈ OX(f−1(Ui)).

4.4 Line bundles generated by global sections

After having introduced line bundles and a useful tool that is the pullback,
we want to de�ne linear systems. A notion related to them is that of line bundle
generated by global sections. This is particularly relevant for the correspondence
with projective morphisms (at the end of this chapter).

Let L be a line bundle on X.

Remark 4.4.1. Let s ∈ Γ(U,L) be a section.

1. Note that we can see s as a function
s : U →

∐
p∈U K(p), where s(p) := s̄p ∈ Lp/mpLp

∼= OX,p/mp = K(p).
In particular for any p ∈ U, s(p) = 0 ⇐⇒ sp ∈ mpLp.
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2. Let p ∈ U . Since Lp
∼= OX,p (where lp ↔ 1), there is fs ∈ OX,p : sp = fslp.

(In particular s(p) = 0 ⇐⇒ fs ∈ mp).

3. Let φ : X → Y be a morphism of schemes, then for any p ∈ X we have
s(φ(p)) = 0 ⇐⇒ φ∗s(p) = 0
(as in the proof of Remark 4.3.2).

De�nition 4.4.2.

1. L is generated by global sections at p ∈ X if there is s ∈ Γ(X,L) : s(p) 6= 0.

2. L is generated by global sections if it is such at every point p ∈ X.
In other words there are global sections {si} s.t. ∀p ∈ X, ∃i : si(p) 6= 0,
i.e. ∀p ∈ X, {(si)p} generate Lp as OX,p-module.

Example 4.4.3. OPr(1) is generated by global sections.

Proof. Let Pr = Proj(P ) with P = k[X0, ..., Xr]. Let x ∈ Pr be a point corre-
sponding to the homogeneus prime ideal Px ⊆ k[X0, ..., Xr].
Since Px 6= P+ = (X0, .., Xr), we have that ∃i : Xi /∈ Px. Now note that:

• Xi ∈ P1 = Γ(Pr,OPr(1)).

• (Xi)x =
Xi

1
∈ (OPr(1))x = P (1)(Px) = {m

a
|m ∈ P (1), a ∈ P r Px homo-

geneus polynomials of the same degree}.

• (Xi)x =
Xi

1
/∈ mx = {m

a
|m ∈ Px, a ∈ P r Px homogeneus polynomials of

the same degree}, that is Xi(x) 6= 0.

In conclusion OPr(1) is generated by the global sections X0, ..., Xr.

4.5 (E�ective) divisors of zeros

Before de�ning linear systems, we see as global sections of a line bundle are
related with e�ective divisors. In this way we can describe a linear system through
them.

De�nition 4.5.1. Let L be a line bundle of X.
There are an open cover U of X and isomorphisms φU : L|U

∼=→ OU (U ∈ U), which
de�ne L.
Let s ∈ Γ(X,L) be a non-zero global section.
The divisor of zeros of s is the e�ective divisor (s)0 := {(U, φU(s))}.

Proposition 4.5.2. Let D ∈ Div(X) and let L = OX(D).

1. For any s ∈ Γ(X,L) we have that D ∼ (s)0.

2. Let E be an e�ective divisor on X such that D ∼ E, then
there exists s ∈ Γ(X,L) : E = (s)0 (or better E = D + div(s)).
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3. Let X be projective. Let s, s′ ∈ Γ(X,L).
(s)0 = (s′)0 ⇐⇒ s′ = λs ∃λ ∈ k∗.

Proof. Let D = {(Ui, fi)}.

1. L is generated by f−1i on Ui, hence s = fsf
−1
i with fs ∈ OUi

(Ui), or better
fs = φUi

(s) (note that fs = sfi).
We have (s)0 = {(Ui, sfi)} = div(s) + D. (Note that s ∈ L ⊆ K, hence it
is a rational function and div(s) is well-de�ned). In conclusion (s)0 ∼ D.

2. Let s ∈ R(X)∗ be such thatD−E = div(s), then E = {(Ui, fis)}. Since E is
e�ective, we have fis ∈ OUi

(Ui), in particular s = fsf
−1
i with fs ∈ OUi

(Ui),
hence s ∈ Γ(X,L) and (s)0 = {(Ui, sfi)} = E.

3. By de�nition of Cartier divisors, (s)0 = (s′)0 ⇐⇒
φUi

(s)

φUi
(s′)
∈ O∗Ui

(Ui) ∀i.
Since X is projective, O∗Ui

(Ui) ∼= k∗, hence φUi
(s) = λiφUi

(s′) = φUi
(λis

′)
for some scalar λi ∈ k∗. Now since φUi

is an isomorphism, s = λis
′ on Ui.

Note that λi = λj =: λ ∀i, j (because λis′|Uij
= s|Uij

= λjs
′
|Uij

).

In conclusion we have s = λs′ on each Ui, hence s = λs′.

Remark 4.5.3. Let D ∈ Div(X) and let L = OX(D).

1. Γ(X,L) = {s ∈ R(X)∗|D + div(s) ≥ 0} ∪ {0}.

2. Γ(X,L) is a k-vector space.

Proof.

1. [⊆] Let s ∈ Γ(X,L) be a non-zero section, then D + div(s) = (s)0 ≥ 0 by
Proposition 4.5.2(2).
[⊇] Let s ∈ R(X)∗. If D + div(s) ≥ 0 then there is s′ ∈ Γ(X,L) such that
D+div(s) = (s′)0 by Proposition 4.5.2(2), and div(s) = (s′)0−D = div(s′),
hence s

s′
= f ∈ Γ(X,OX). In conclusion s = fs′ ∈ Γ(X,L).

2. Since X is of �nite type, we have that R(X) is k-vector space.
We want to show that Γ(X,L) ⊆ R(X) is sub-vector space.
Let D =

∑
nV V . Let f, g ∈ Γ(X,L) and c ∈ k∗.

• By Prop.3.3.4(1), D+div(cf) = D+div(c)+div(f) = D+div(f) ≥ 0,
hence cf ∈ Γ(X,L).

• Assume f + g 6= 0.
Note that div(f) =

∑
ordV (f)V and ordV (f) is a valuation. We have

nV + ordV (f + g) ≥ nV + min{ordV (f), ordV (g)} ≥ 0 for each prime
divisor V ; hence D + div(f + g) ≥ 0, that is f + g ∈ Γ(X,L)).
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4.6 Linear systems

Assume now (and in the following sections) that X is also projective.
We can �nally de�ne linear systems.

De�nition 4.6.1. A complete linear system on X is
|D| := {E ∈ Div(X) e�ective |E ∼ D}, where D ∈ Div(X).

Remark 4.6.2.

By Proposition 4.5.2, taken L = OX(D), we have a one-to-one correspondence
|D| ↔ (Γ(X,L) r {0})/k∗.
By [9, Theorem II.5.19], Γ(X,L) is a vector space over k of �nite dimension.
We de�ne l(D) := dimk Γ(X,L) and dim |D| := l(D)− 1.

De�nition 4.6.3.

A linear system on X is Λ ⊆ |D|, where D ∈ Div(X), corresponding to a k-vector
subspace V ⊆ Γ(X,L), where L = OX(D); that is Λ = {(s)0|s ∈ V r {0}}.
We will also denote Λ = (V,L).
Moreover dim(Λ) := dim(V )− 1.

De�nition 4.6.4. Let Λ be a linear system on X.
A basepoint of Λ is a point p ∈ X such that p ∈ Supp(E), ∀E ∈ Λ.

4.7 Linear systems and projective morphisms

We introduce one of the theorems that we will use most, which relates linear
systems and projective morphisms. First we will see the version for line bundles
and then we will rephrase it for linear systems.

Lemma 4.7.1. Let L be a line bundle on X and let s be a global section of L.

1. Supp(s)0 = V (s) := {zeros of s}.
Equivalently, for any p ∈ X, p ∈ Supp((s)0) ⇐⇒ s(p) = 0.

2. Let Λ = (V,L) be a linear system on X.
Λ is basepoint-free ⇐⇒ L is generated by the global sections in V .

3. Xs := V (s)c = {x ∈ X|s(x) 6= 0} is open in X.

Proof.

1. Let (s)0 = {(U, φU(s))}. Since it is e�ective, we have that φU(s) ∈ OU(U)
is regular in U , i.e. it has no poles.
Moreover since φU is an isomorphism, we have
p is a zero of s ⇐⇒ p is a zero of φU(s).
Hence Supp(s)0 =

⋃
{zeros and poles of φU(s) in U} = {zeros of s}.

2. Λ is basepoint-free ⇐⇒ ∀p ∈ X, ∃s ∈ V : p /∈ Supp((s)0)
⇐⇒ ∀p ∈ X, ∃s ∈ V : s(p) 6= 0 (by 1)
⇐⇒ L is generated by the global sections in V .
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3. Let U be an open a�ne cover of X such that L|U ∼= OU ∀U ∈ U.
For every U = Spec(A) ∈ U we have
ρXU : Γ(X,L)→ Γ(U,L|U) = Γ(U,OU) = A. Let s̃ := ρXU (s) ∈ A.
Moreover ∀x ∈ U , Lx

∼= OU,x
∼= APx .

Now U ∩Xs = Us̃ (principal open subset),
indeed ∀x ∈ U , we have x ∈ Xs ⇐⇒ sx /∈ mxLx ⇐⇒ s̃

1
/∈ PxAPx

⇐⇒ s̃ /∈ Px ⇐⇒ x /∈ V (s̃) ⇐⇒ x ∈ Us̃.
In conclusion U ∩Xs is open in the open U , hence in X. It follows that Xs

is union of open subsets, hence it is open in X.

Theorem 4.7.2 (Projective morphisms and line bundles).

1. To give a morphism of schemes f : X → Pn is equivalent to give a line
bundle L and n+ 1 global sections s0, ..., sn which generate L.
In detail, f is the unique morphism s.t. L ∼= f ∗(O(1)) and si = f ∗Xi.

2. Let f be the morphism corresponding to the line bundle L and global
sections s0, ..., sn which generate a sub-vector space V ⊆ Γ(X,L).
Then f is a closed embedding if and only if

• V separates points,
i.e. for any two distinct points p, q ∈ X, there exists s ∈ V such that
s(p) = 0 and s(q) 6= 0.

• V separates tangent vectors,
i.e. for any point p ∈ X, mpLp/m

2
pLp is spanned by {s ∈ V |s(p) = 0}.

Proof.

1. [⇒] f ∗O(1) is a line bundle (by de�nition of pullback) and it is generated
by global sections f ∗X1, ..., f

∗Xn (by Remark 4.4.1(3)).
[⇐] Since L is generated by global sections {si}, we have that {Xsi} is an
open cover of X.

Let {Ui} be the standard open cover of Pn, where Ui ∼= Spec k[
X0

Xi

, ...,
Xn

Xi

].

Consider the ring homomorphisms

φi : k[
X0

Xi

, ...,
Xn

Xi

]→ Γ(Xsi ,OXsi
)

Xj

Xi

→ sj
si

By section 1.5(iii), they correspond to morphisms of schemes fi : Xsi → Ui,
that we can glue to a morphism f : X → Pn.
Moreover f ∗Xi = f ∗{Xi

Xj

}j = {φj
Xi

Xj

}j = { si
sj
}j = si and f

∗O(1) = L.

Finally this morphism is unique by construction, indeed let f ′ : X → Pn be
a such morphism. It induces morphisms f ′i : Xsi → Ui
(because t ∈ Xsi ⇐⇒ si(t) 6= 0 ⇐⇒ Xi(f(t)) 6= 0 ⇐⇒ f(t) ∈ Ui), and
we call φ′i the corresponding ring homomorphisms.
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Now f ∗Xi = si = (f ′)∗Xi, where Xi = {Xi

Xj

}j,

hence f ∗i (
Xi

Xj

) = (f ′i)
∗(
Xi

Xj

), that is φi(
Xi

Xj

) = (φ′i)(
Xi

Xj

), hence f = f ′.

2. [⇒] Since f is a closed embedding, we can consider X ⊂ Pn.
In this case L = OX(1), and V ⊆ Γ(Pn,OX(1)) = {hyperplanes in Pn
meeting X} is just spanned by the images of X0, ..., Xn ∈ Γ(Pn,O(1)).

• Let p, q ∈ X be two distinct points. Since p 6= q, there is a hyperplane
V (s) in Pn containing p but not q, that is there is s =

∑
aiXi such

that s(p) = 0 and s(q) 6= 0, hence f ∗s ∈ V separates p and q.

• Let p = (a0 : ... : an) ∈ X. We can consider p = (1 : 0 : ... : 0)
(without loss of generality).

In U0
∼= Spec k[

X1

X0

, ...,
Xn

X0

] = Spec k[y1, ..., yn], we have p = (0, ..., 0).

The space mpLp/m
2
pLp
∼= mp/m

2
p is spanned by y1, ..., yn.

[⇐] Note that f is injective (by Remark 4.7.3 below).
By [9, Theorem II.4.9], f is proper, hence closed. Being a morphism, it is
also continuous. It follows that f is homeomorphism on f(X).
Moreover we have

• OPn,p/mPn,p
∼= k ∼= OX,p/mX,p (because they are projective).

• mPn,p → mX.p/m
2
X,p, tp 7→ sp = f ∗tp is surjective

(indeed let sp be a generator of mX.p/m
2
X,p, with s ∈ V , then ∃t ∈ O(1)

such that s = f ∗t. Since s(p) = 0, i.e. sp ∈ mX,p, we have tp ∈ mPn,p).

• OX,p is �nitely generated as OPn,p-module (by Corollary [9, II.5.20]).

It follows that f ] is surjective (by [9, Lemma II.7.4]).
In conclusion f is a closed embedding.

Given global sections s0, ..., sn which generate a line bundle L. The morphism
associated to them is set-theoretically given by

f : X −→ Pn, p 7→ (s0(p) : ... : sn(p))

Note that si(p) are not all zero because L is generated by the global sections si.

Remark 4.7.3. V separates two points p and q ⇐⇒ f(p) 6= f(q)

Proof.

f(p) 6= f(q) ⇐⇒ ∃H = V (F ) hyperplane in Pn s.t.

{
f(p) ∈ H
f(q) /∈ H

⇐⇒ ∃F =
∑
aiXi :

{
F (f(p)) = 0

F (f(q)) 6= 0
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⇐⇒ ∃s = f ∗F =
∑
aif
∗Xi ∈ V :

{
s(p) = f ∗F (p) = 0

s(q) = f ∗F (q) 6= 0

⇐⇒ V separates p and q.

Remark 4.7.4. By Theorem 4.7.2(1), a morphism f : X → Pn corresponds to a
basepoint-free linear system Λ = (V,L).
Indeed given a morphism f we can take L ∼= f ∗(O(1)) and V generated by
si = f ∗Xi. The linear system (V,L) is basepoint-free (by Lemma 4.7.1(2)).
Conversely, given a basepoint-free linear system (V,L) we can take a basis {s0, ..., sn}
of V as global sections. They generate L (by Lemma 4.7.1(2)), hence we can apply
Theorem 4.7.2(1) and get the morphism f .

Lemma 4.7.5. A basepoint-free linear system (V,L) on X of dimension n cor-
responds (taking a basis s0, ..., sn of V ) to a morphism f : X → Pn. Moreover

1. f depends by the chosen of the basis of V ,
but it is unique up to automorphism of Pn.

2. Assume that s0, ..., sn are generators of V .
{s0, ..., sn} is basis of V ⇐⇒ f(X) is not contained in any hyperplane.

3. Supp((s)0) is preimage of a hyperplane ∀s ∈ V .

Proof. Taken a basis s0, ..., sn of V , by the theorem for line bundles it corresponds
to a unique morphism f : X → Pn.

1. Let s′0, ..., s
′
n be another basis of V associated to the morphism f ′, and

let A = (aij) ∈ GLn+1(k) be the change-of-basis matrix. We have that
s′i =

∑
j aijsj. Taken the isomorphism

φA : k[X0, ..., Xn]→ k[X0, ..., Xn]

Xi 7→
∑
j

aijXj

it induces an automorphism φA : Pn → Pn such that f ′ = φA ◦ f .

2. s0, ..., sn are linear independent (i.e. basis)
⇐⇒

∑
aisi 6= 0 (∀ai ∈ k not-all zero)

⇐⇒
∑
aisi(p) 6= 0 ∃p ∈ X (∀ai ∈ k not-all zero)

⇐⇒
∑
aiXi(f(p)) 6= 0 ∃p ∈ X (∀ai ∈ k not-all zero)

⇐⇒
∑
aiXi|f(X) 6= 0 (∀ai ∈ k not-all zero)

⇐⇒ f(X) 6⊆ V (
∑
aiXi) for each hyperplane V (

∑
aiXi).

3. s =
∑
aif
∗Xi = f ∗F with F ∈ Γ(Pn,O(1)).

V (s) = V (f ∗F ) = {p ∈ X|f ∗F (p) = 0} = {p ∈ X|F (f(p)) = 0} =
= {p ∈ X|f(p) ∈ V (F )} = f−1V (F ) and V (F ) is a hyperplane.
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Theorem 4.7.6 (Projective morphisms and linear systems).

1. To give a non-degenerate morphism f : X → Pn is equivalent to give a
basepoint-free linear system Λ = (V,L) on X of dimension n.
(Non-degenerate means that f(X) is not contained in any hyperplane).
Moreover L ∼= f ∗(O(1)) and it is generated by global sections si = f ∗Xi.

2. Let f be the morphism corresponding to a linear system Λ.
f is a closed embedding if and only if

• Λ separates points,

i.e. for any distinct points p, q ∈ X, ∃E ∈ Λ :

{
p ∈ Supp(E)

q /∈ Supp(E)

• Λ separates tangent vectors,
i.e. for any point p ∈ X and any tangent vector t ∈ Tp(X),

∃E ∈ Λ :

{
p ∈ Supp(E)

t /∈ Tp(E)

(Note that E is e�ective, so we can see it as a closed subscheme of X).

Proof. Rephrasing Theorem 4.7.2 in terms of linear systems.

We can see an application of the theorem:

Example 4.7.7.

Every automorphism of Pn is of the form φA (as de�ned in the proof of Lemma
4.7.5(1)). In particular Aut(Pn) ∼= GLn+1(k)/k∗.

Proof. Let A ∈ GLn+1(k). Clearly φA = φλA ∀λ ∈ k∗.
Let φ : Pn → Pn be an automorphism, it induces a group isomorphism
φ∗ : Pic(Pn)→ Pic(Pn).
We know that Pic(Pn) ∼= Z and O(1) is a generator of Pic(Pn), hence also φ∗O(1)
is a generator, that is O(1) or O(−1). Note that Γ(Pn,O(−1)) = 0, i.e. it has no
non-zero global sections. It follows that φ∗O(1) ∼= O(1).
Now the sections si = φ∗Xi give a basis of the vector space Γ(Pn,O(1)), hence
∃A = (aij) ∈ GLn+1(k) such that si =

∑
j aijXj.

Note that φ is the morphism associated to these global sections but also φA is
such. By the uniqueness in Theorem 4.7.2(1), φ = φA.
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Chapter 5

Curves

Finally we can apply our knowledge so far acquired to study the one-dimensional
case, hence to better describe curves.
As already established in section 2.1, with curve we mean a one-dimensional pro-
jective (i.e. complete) smooth variety over an algebraically closed �eld k.
Our main interest is to understand in which projective spaces a curve can be
embedded and in what way. Studying closed embeddings, we will use the relation
between morphisms and linear systems. In this light, divisors and line bundles
assume fundamental importance.
In the �rst part of this chapter, we will review what a divisor on a curve is and
we will introduce the notion of degree of a curve, in particular we will see the
Bézout's theorem. After that we will de�ne a particular divisor called canonical
and we will introduce the notion of genus of a curve. Finally we will arrive at
the Riemann-Roch Theorem, that is a formula involving notions of genus, degree
and dimension of a complete linear system.
In the second part, our �rst goal is showing that every curve can be embed-
ded in P3; after that we will study curves of low genus, in particular we will
distinguish two di�erent kinds of curves of genus at least 2: hyperelliptic and
non-hyperelliptic curves, and we will focus on the latter, which correspond to
canonical curves. Finally, we will give a brief exhibition about higher genus.

5.1 Divisors on curves

On a curve X, we have Div(X) ∼= CaDiv(X) and Cl(X) ∼= Pic(X).
The prime divisors are the points of X, hence a divisor is of the form D =

∑
niPi

(with Pi points of X), and its degree is deg(D) :=
∑
ni.

In particular ni =: mD(Pi) is called multiplicity of Pi in D.

To every divisor D we can associate a line bundle L = OX(D) and a complete
linear system |D|. We have de�ned l(D) = dimkH

0(X,L) and dim |D| = l(D)−1.
Now, we want to de�ne the degree of a linear system.

Remark 5.1.1. Let X be a curve. By [9, Corollary II.6.10], we have that
the map deg : Cl(X)→ Z, D 7→ deg(D) is a surjective homomorphism.
In particular, let D,D′ ∈ Div(X) : D ∼ D′, then deg(D) = deg(D′).
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De�nition 5.1.2. Let X be a curve.
The degree of a linear system Λ on X is the degree of any divisor in Λ.

Note that it is well-de�ned by the previous remark, because in Λ the divisors
are linearly equivalent.

5.2 Degree of curves and degree of morphisms

The �rst important notion for curves is that of degree of a curve in Pn.
Note that this is not an invariant, but depends by the closed embedding. For
example in the next sections we will see that plane curves of degree 1 and plane
curves of degree 2 have genus 0 (by the Genus-degree Formula), hence they are
both isomorphic to P1.

De�nition 5.2.1. Let X be a curve, with a closed embedding i : X ↪→ Pn.
Taken the divisor D corresponding to the line bundle i∗(O(1)),
the degree of X is deg(X) := deg(D).

Lemma 5.2.2.

Let f : X → Y be a morphism of curves, then f is constant or surjective.
Moreover if f is non-constant, then
R(Y ) ⊆ R(X) is a �nite extension of �elds and f is �nite.

Proof.

Since X is complete, then f(X) is closed (and complete) in Y (by [9, Ex. II.4.4]).
Since dim(Y ) = 1 and f(X) is an irreducible closed subset, we either have that
f(X) is a point or f(X) = Y , that is f is either constant or surjective.

Now if f is non-constant, hence surjective, R(Y ) ↪→ R(X) is an extension of
�elds. We want to show that it is �nite.
We know that R(X) ∼= A(0), where U = Spec(A) is an a�ne open subscheme ofX,
hence R(X) is a �nitely generated k-algebra. Since TrdegkR(X) = dim(X) = 1,
we have that k ⊂ R(X) is a �nitely generated extension of �elds of transcendence
degree 1.
Analogously, k ⊂ R(Y ) is such.
Now TrdegR(Y )R(X) = TrdegkR(X)− TrdegkR(Y ) = 1− 1 = 0. It follows that
R(Y ) ⊆ R(X) is an algebraic extension, hence �nite.

Finally, we want to show that f is �nite. Let V = Spec(B) be an a�ne open
subscheme of Y . Note that B ⊆ Q(B) ∼= R(Y ) ⊆ R(X), and we can take

A := B
R(X)

, that is the integral closure of B in R(X).
We know that A is a B-algebra, �nitely generated as B-module (by [21, Ch.V,
Th.9, p.267]) and there is an open subset U ∼= Spec(A) of X (by [9, I.6.7]), or
better U = f−1(V ), hence f is �nite.

De�nition 5.2.3. Let f : X → Y be a non-constant (�nite) morphism of curves.
The degree of f is deg(f) := [R(X) : R(Y )].

Note that deg(f) is �nite and well-de�ned by the previous lemma.

Remark 5.2.4. Let D ∈ Div(Y ), then deg(f ∗D) = deg(f) deg(D).
(See [9, Proposition II.6.9]).
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Examples 5.2.5. Let Λ be the linear system associated to a non-constant mor-
phism f : X → P1, then deg(Λ) = deg(f).

Proof. Let Λ ⊆ |D|, then D = f ∗H with H hyperplane (by Theorem 4.7.6(1)).
By Remark 5.2.4, we have deg(Λ) = deg(D) = deg(f) deg(H) = deg(f).

5.3 Bézout's Theorem

Let X ⊂ Pn be a curve.
We saw that we can see the divisors of a basepoint-free linear system as pullbacks
of hyperplanes (so as intersections, if the corresponding morphism is a closed
embedding). For this reason, it is useful to study the intersection of X and a
hypersurface V = V (F ) ⊂ Pn s.t. X 6⊆ V .

De�nition 5.3.1. Let j : X ↪→ Pn be a closed embedding.
We de�ne the intersection X · V := j∗V in Pic(X).

Note that it is well-de�ned, indeed
since X 6⊆ V , we have F

∣∣
X
6= 0, hence j∗V = j∗div(F ) = j∗(Pn, F ) = (X,F

∣∣
X

).
Moreover, let V ′ ⊂ Pn be another hypersurface s.t. X 6⊆ V ′,
if deg(V ) = deg(V ′) (i.e. V = V ′ in Pic(Pn)), then X · V = X · V ′ in Pic(X).

De�nition 5.3.2. Let P ∈ X be a point.

The intersection multiplicity at P is (X · V )P := ordP (
F

G

∣∣
X

) where G is a homo-

geneus polynomial of the same degree of F s.t. G(P ) 6= 0.

Proposition 5.3.3.

1. X · V =
∑

(X · V )PP in Pic(X).

2. (X · V )P does not depend by the choice of G.
We could rede�ne X · V :=

∑
(X · V )PP (well-de�ned in Div(X)).

3. Let P ∈ X.
If P ∈ V , then (X · V )P ≥ 1.
If P /∈ V , then (X · V )P = 0,.
In particular ](X ∩ V ) ≤ deg(X · V ).

4. (X · V )P ≥ 2 ⇐⇒ TpX ⊆ TPV (i.e. V is tangent to X at P ).

Proof.

1. Note that V = V (F ) = {(UG,
F

G
)} as divisor.

Indeed we assume that F is an irreducible polynomial of degree d, then

divUi
(
F

Xd
i

) = divUi
(F )−d ·divUi

(Xi) = VUi
(F ). Hence divUi

(
F

Xd
i

) = V ∩Ui,

that is V = {(Ui,
F

Xd
i

)}, or better V = {(UG,
F

G
)} .

Now X · V = j∗V = {(UG ∩X,
F

G

∣∣
X

)} =
∑

ordP (
F

G
)P where P ∈ UG ∩X.
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2. By the proof of previous point.

3. If P ∈ V (F ), then
F

G
is regular at P ; hence (X · V )P := ordP (

F

G

∣∣
X

) ≥ 1.

If P /∈ V (F ), then P /∈ Supp(divUG
(
F

G
)); hence ordP (

F

G
) = 0.

4. Let P ∈ UG.
F

G
is regular in UG and TPV = TP (V ∩ UG) = V (dP

F

G
).

TPX ⊆ TPV ⇐⇒ dP
F

G

∣∣
X

= 0 ⇐⇒ F

G

∣∣
X
∈ m2

P

⇐⇒ (X · V )P = ordP (
F

G

∣∣
X

) ≥ 2.

Theorem 5.3.4 (Bézout).

1. deg(X) = deg(X ·H), with H hyperplane of Pn s.t. X 6⊆ H.
In particular we have that
deg(X) = max{](X ∩H)|H ⊂ Pn hyperplane s.t. X 6⊆ H}.

2. deg(X · V ) = deg(X) · deg(V ).
In particular ](X ∩ V ) ≤ deg(X) · deg(V ).

Proof.

1. By the de�nition of degree, deg(X) = deg(j∗H) = deg(X ·H).
Let H ′ be a hyperplane not tangent to X, then (X ·H ′)P = 1 ∀P ∈ X ∩H ′;
hence deg(X) = deg(X ·H ′) = ](X ∩H ′).

2. Let d = deg(V ). We have V ∼ dH with H hyperplane, d ∈ Z.
deg(X ·V ) = deg(X · dH) = d ·deg(X ·H) = d ·deg(X) = deg(X) ·deg(V ).

5.4 The canonical divisor

The most important divisor is the canonical divisor. We will �nd it in the
de�nition of genus, in the Riemann-Roch Theorem and in the notion of canonical
embedding (closely related to that of non-hyperelliptic curves). Therefore the
notion of canonical divisor will be strongly present throughout this chapter.

De�nition 5.4.1. Let X be a scheme.
Since X is separated, the diagonal map ∆: X → X ×Spec(k)X is a closed embed-
ding.
Let I be the sheaf of ideals of ∆(X).
The sheaf of relative di�erentials is the sheaf ΩX/k := ∆∗(I/I2).

Remark 5.4.2. If X is variety of dimension n, then
X is smooth ⇐⇒ ΩX/k is locally free of rank n
(see [9, Theorem II.8.15]).
If X is a curve, then ΩX/k is a line bundle.

38



De�nition 5.4.3.

1. Let X be a smooth variety of dimension n.
The canonical sheaf of X is ωX :=

∧n ΩX/k.
In particular if X is a curve, then it is the line bundle ωX = ΩX/k.

2. Let X be a curve.
A canonical divisor on X is a divisor K ∈ Div(X) such that OX(K) ∼= ωX .
Note that K is unique in Cl(X).

5.5 Genus of a curve

The most important invariant for curves is the genus. It allows us to make
a �rst distinction between curves, hence (as seen in the introduction) to answer
some �rst questions.

De�nition 5.5.1. Let X be a smooth projective variety of dimension n.

1. The Euler characteristic of a coherent sheaf F on X is
χ(F) :=

∑n
i=0(−1)i dimkH

i(X,F).

2. The arithmetic genus of X is pa(X) := (−1)n(χ(OX)− 1).

3. The geometric genus of X is pg(X) := dimk Γ(X,ωX).

Remark 5.5.2. Let X be a curve, then pa(X) = pg(X) = dimkH
1(X,OX)

and we call this number the genus of X. (See [9, Remark III.7.12.2]).

Note that the genus of a curve is invariant under isomorphism.
Moreover it is always non-negative, and conversely for any g ≥ 0, there exist
curves of genus g (see [9, Remark IV.1.1.1]).

Remark 5.5.3 (Genus-degree formula).
If X is a plane curve of degree d, then pg(X) = 1

2
(d− 1)(d− 2).

Proof. By [9, Ex. II.8.4(e)], we have that ωX ∼= OX(d− 3).
It follows that pg(X) =

(
2+d−3
d−3

)
= 1

2
(d− 1)(d− 2).

5.6 The Riemann-Roch Theorem for curves

A �rst important formula involving the genus is given by the Riemann-Roch
Theorem.

Theorem 5.6.1. (Riemann-Roch)
Let X be a curve of genus g and let D ∈ Div(X). Then
l(D)− l(K −D) = deg(D) + 1− g.
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Proof.

• We will show �rst that χ(OX(D)) = l(D)− l(K −D).
By Serre duality (see section 1.10(2)) we have that
H0(X,OX(K −D)) = H0(X,ωX ⊗ OX(D)∨) = H1(X,OX(D))∨.
Hence l(D)−l(K−D) = dimkH

0(X,OX(D))−dimkH
0(X,OX(K−D)) =

= dimkH
0(X,OX(D))− dimkH

1(X,OX(D)) = χ(OX(D)).

• We will show now that χ(OX(D)) = deg(D) + 1− g.
If D = 0, i.e. OX(D) = OX , then H

0(X,OX) ∼= k (because X is projective)
and dimkH

1(X,OX) = g (by de�nition), hence we have
χ(OX) = dimkH

0(X,OX)− dimkH
1(X,OX) = 1− g.

Now we want to show that the formula is true for D if and only if it is
true for D + P (for every divisor D and every point P ∈ X). In this way,
starting from the case D = 0, we can get any case.
Let D′ = D + P , then it has degree deg(D′) = deg(D) + 1.
We know that IP/X = OX(−P ) (by Remark 3.8.3).
We can de�ne k(P ) := OX/IP/X the sheaf of residue �elds of P , in detail
this is constantly k on each open neighborhood of P , and 0 everywhere else.
Therefore we have the exact sequence

0→ OX(−P )→ OX → k(P )→ 0

Note that k(P ) ⊗ OX(D′) ∼= k(P ) (analogously to the proof of Theorem
4.2.3), hence tensoring with OX(D′) = OX(D + P ), we get

0→ OX(D)→ OX(D′)→ k(P )→ 0

The Euler characteristic is additive on short exact sequences (by [9, Ex
III.5.1]) and χ(k(P )) = 1, hence we have
χ(OX(D′)) = χ(OX(D)) + χ(k(P )) = χ(OX(D)) + 1.

5.7 Applications of Riemann-Roch Theorem

Let X be a curve of genus g. An immediate application is computing deg(K).

Lemma 5.7.1. l(K) = g and deg(K) = 2g − 2.

Proof. By de�nition, l(K) = dimH0(X,ωX) = pg = g.
Now note that l(K −K) = l(0) = 1.
By Riemann-Roch, g − 1 = deg(K) + 1− g, hence deg(K) = 2g − 2.

Before seeing other applications, it is advisable to see the following lemma.

Lemma 5.7.2.

1. If l(D) 6= 0, then deg(D) ≥ 0.
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2. If l(D) 6= 0 and deg(D) = 0, then D ∼ 0 (i.e. OX(D) ∼= OX).

Proof.

1. If l(D) 6= 0, then |D| 6= ∅, that is there exists a divisor E ≥ 0 such that
D ∼ E, hence deg(D) = deg(E) ≥ 0.

2. Let E be as above. In this case deg(E) = deg(D) = 0.
Since E is e�ective, we have E = 0, hence D ∼ 0.

A very useful application of Riemann-Roch is the following:

Proposition 5.7.3. If deg(D) > 2g − 2, then dim |D| = deg(D)− g.

Proof. Since deg(K − D) = deg(K) − deg(D) < (2g − 2) − (2g − 2) = 0, then
l(K −D) = 0 by Lemma 5.7.2. By Riemann-Roch, dim |D| = deg(D)− g.

Using Riemann-Roch, we can �nally see that there exists only one curve of
genus 0 (up to isomorphism).

Proposition 5.7.4. g = 0 ⇐⇒ X ∼= P1 (i.e. X is rational).

Proof. Note that X is rational ⇐⇒ X ∼= P1 (by [9, Example II.6.10.1]).
Now we want to show the proposition.
[⇐] We can see P1 as hyperplane of P2. By Remark 5.5.3 we have g = 0.
[⇒] We assume g = 0. Let P,Q be two distinct points of X. Since
deg(K−P+Q) = deg(K)−deg(P−Q) = 2g−2−0 = −2, we have l(K−P+Q) = 0
(by Lemma 5.7.2). Applying Riemann-Roch, we have
l(P − Q) = deg(P − Q) + 1 − g = 1, hence l(P − Q) 6= 0 and deg(P − Q) = 0,
then P −Q ∼ 0 (by Lemma 5.7.2), that is P ∼ Q.
In conclusion X is rational (by [9, Example II.6.10.1]), i.e. X ∼= .P1.

5.8 Linear systems on curves

In this section we will introduce the notion of very ample divisors. They are
particularly important in the study of linear systems as they correspond to closed
embeddings in projective spaces.
Let L be a line bundle on a curve X corresponding to a divisor D.

De�nition 5.8.1.

1. L (resp.D) is very ample if there exists a closed embedding j : X → Pn such
that L ∼= j∗O(1) ∼= OX(1).

2. L (resp.D) is ample if there is n > 0 such that Ln (resp.nD) is very ample.

Clearly, very ample implies ample.
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Remark 5.8.2.

• D is very ample⇒ L is generated by global sections (because O(1) is such)
⇒ |D| is basepoint-free (by Lemma 4.7.1(2)).

• Let f : X → Pn be the morphism corresponding to |D|, then:
D is very ample ⇐⇒ f is a closed embedding (by de�nition).

Lemma 5.8.3. Let P ∈ X be a point.

1. dim |D − P | ∈ {dim |D|, dim |D| − 1}.

2. P is a basepoint of |D| ⇐⇒ dim |D − P | = dim |D|.

Proof.

1. As in the proof of Riemann-Roch, we have an exact sequence

0→ IP = OX(−P )→ OX → k(P )→ 0

Tensoring by OX(D), we get

0→ OX(D − P )→ OX(D)→ k(P )→ 0

Taken the global sections, we get the left-exact sequence

0→ Γ(X,OX(D − P ))→ Γ(X,OX(D))→ Γ(X, k(P )) = k

Hence
dimk Γ(X,OX(D−P )) ≤ dimk Γ(X,OX(D)) ≤ dimk Γ(X,OX(D−P )) + 1,
that is l(D) ∈ {l(D−P ), l(D−P ) + 1}, hence l(D−P ) ∈ {l(D), l(D)−1}.

2. By Remark 4.5.3, Γ(X,OX(D)) = {0} ∪ {s ∈ R(X)∗|D + div(s) ≥ 0}.
In particular Γ(X,OX(D − P )) ⊆ Γ(X,OX(D)). Now we have that:
P is a basepoint of |D|
⇐⇒ ∀s ∈ Γ(X,OX(D)) r {0}, P ∈ Supp(D + div(s))
⇐⇒ ∀s ∈ R(X)∗, we have D + div(s) ≥ 0 i� D − P + div(s) ≥ 0
⇐⇒ Γ(X,OX(D)) = Γ(X,OX(D − P ))
⇐⇒ l(D) = l(D − P ).

Remark 5.8.4. Let D be e�ective.

1. dim |D| ≤ deg(D).

2. dim |D| = deg(D) ⇐⇒ D = 0 or X ∼= P1.

Proof.

1. By Lemma 5.8.3, dim |D + P | ≤ dim |D|+ 1 ∀P ∈ X.
Now we can iterate, starting by dim |P | ≤ dim |0|+ 1 = 1 = deg(P ).
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2. [⇒] Assume D 6= 0. If dim |D| = deg(D), then by the iteration in the proof
of 1, we have dim |P | = 1 for any P ∈ Supp(D), in particular |P | corre-
sponds to a morphism f : X → P1 of degree 1, hence f is an isomorphism
and X ∼= P1.
[⇐] If D = 0, then dim |0| = l(0)− 1 = 0 = deg(0).
If X ∼= P1, then D ∼ nP , and we have
dim |nP | = l(nP )− 1 = dimk Γ(P1,O(n))− 1 =

(
n+1
1

)
− 1 = n = deg(nP ).

Proposition 5.8.5.

1. |D| is basepoint-free ⇐⇒ ∀P ∈ X, dim |D − P | = dim |D| − 1.

2. D is very ample ⇐⇒ ∀P,Q ∈ X, dim |D − P −Q| = dim |D| − 2.
(Note that we include the case P = Q).

Proof.

1. By Lemma 5.8.3(2).

2. We can consider |D| to be basepoint-free, indeed:
If D is very ample, then D is basepoint-free (by Remark 5.8.2(1)).
If D satis�es the condition on the right, then we have that for any P ∈ X,
dim |D − 2P | = dim |D| − 2, hence P is not a basepoint of |D| (otherwise
dim |D − 2P | ≥ dim |D − P | − 1 = dim |D| − 1, by Lemma 5.8.3)

Now, by 1, ∀P ∈ X, dim |D − P | = dim |D| − 1.

By Theorem 4.7.6(1), |D| corresponds to a unique morphism
f : X → Pn (with n = dim |D|) such that L ∼= f ∗O(1).
By Theorem 4.7.6(2), D is very ample ⇐⇒ f is a closed embedding

⇐⇒

{
|D| separates points, and
|D| separates tangent vectors.

We will study the two conditions:

• |D| separates points ⇐⇒ ∀P 6= Q inX, ∃E ∈ |D| :

{
P ∈ Supp(E)

Q /∈ Supp(E)

⇐⇒ ∀P 6= Q inX, ∃E ∈ |D| :

{
E − P ≥ 0 (i.e. E − P ∈ |D − P |)
Q /∈ Supp(E − P )

⇐⇒ ∀P 6= Q in X, Q is not a basepoint of |D − P |
⇐⇒ (by Lemma 5.8.3(2)) ∀P 6= Q in X,
dim |D−P −Q| = dim |D−P | − 1 = (dim |D| − 1)− 1 = dim |D| − 2.

• |D| separates tangent vectors

⇐⇒ ∀P ∈ X, ∀t ∈ TPX, ∃E ∈ |D| :

{
P ∈ Supp(E)

t /∈ TPE
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⇐⇒ ∀P ∈ X, ∃E ∈ |D| :

{
E − P ≥ 0

TPE = 0

(dimTPX = dimX = 1, because X is smooth, and TPE ( TPX)

⇐⇒ ∀P ∈ X, ∃E ∈ |D| :

{
mE(P ) ≥ 1

mE(P ) ≤ 1

⇐⇒ ∀P ∈ X, ∃E ∈ |D| : mE(P ) = 1

⇐⇒ ∀P ∈ X, ∃E ∈ |D| :

{
E − P ≥ 0 (i.e. E − P ∈ |D − P |)
P /∈ Supp(E − P )

⇐⇒ ∀P ∈ X,P is not basepoint of |D − P |
⇐⇒ (by Lemma 5.8.3(2)) ∀P ∈ X,
dim |D − P − P | = dim |D − P | − 1 = dim |D| − 2.

Corollary 5.8.6.

1. If deg(D) ≥ 2g, then |D| is basepoint-free.

2. If deg(D) ≥ 2g + 1, then D is very ample.

3. deg(D) > 0 ⇐⇒ D is ample.

Proof.

1. By Proposition 5.7.3 if deg(D) ≥ 2g > 2g − 2, then dim |D| = deg(D)− g.
For any P ∈ X, deg(D−P ) ≥ 2g−1 > 2g−2, then by the same proposition
dim |D − P | = deg(D − P ) − g = deg(D) − 1 − g; hence we have that
dim |D − P | = dim |D| − 1. By Proposition 5.8.5(1) |D| is basepoint-free.

2. As in the previous point, dim |D| = deg(D)− g .
In analogous way, since for any P,Q ∈ X, deg |D−P−Q| ≥ 2g−1 > 2g−2,
we have dim |D−P−Q| = deg(D−P−Q)−g = deg(D)−2−g = dim |D|−2.
By Proposition 5.8.5(2), D is very ample.

3. [⇐] If D is ample, i.e. ∃n > 0 : nD is very ample, then there is a closed
embedding j : X ↪→ Pm s.t. nD ∼ j∗H (where H is a hyperplane of Pm).
Since the pullback sends e�ective divisors to e�ective divisors, we have
deg(nD) = deg(j∗H) > 0, hence deg(D) > 0.
[⇒] If deg(D) > 0, then ∃n > 0 : deg(nD) = n · deg(D) ≥ 2g+ 1, and then
nD is very ample (by 2); hence D is ample.

5.9 Curves of low genus

Now we exhibit some �rst results about curves of low genus.
Applying Corollary 5.8.6 we can give an alternative proof that the only curve of
genus 0 is P1. We can also show that the curves of genus 1 (called elliptic curves)
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can be seen as plane cubic curves. In the same way we can show that every curve
of genus 2 can be embedded in P3; in fact we will see in the next section that
every curve can be embedded in P3.
Let X be a curve of genus g.

Examples 5.9.1.

1. If g = 0, then for any divisor D we have
D is very ample ⇐⇒ D is ample (i.e. deg(D) > 0).
Moreover, X ∼= P1.

2. g = 1 ⇐⇒ X can be embedded in P2 as cubic curve.

3. If g = 2, then X can be embedded in P3 (as curve of degree 5).

Proof.

1. We know by de�nition that very ample implies ample.
Let D ∈ Div(X). Applying Corollary 5.8.6, we have that if D is ample,
then deg(D) ≥ 1 = 2g + 1, and then D is very ample.
Moreover, taken P ∈ X, since deg(P ) > 0 we have that P is very ample,
hence X is embedded in P1, or better X ∼= P1.

2. [⇒] Let D be a divisor of degree 3. Since deg(D) ≥ 2g+ 1, we have that D
is very ample (by Corollary 5.8.6) and dim |D| = 2 (by Proposition 5.7.3).
Hence |D| corresponds to a closed embedding j : X → P2 and
deg(X) = deg(D) = 3.
[⇐] By Remark 5.5.3, g = 1

2
(3− 1)(3− 2) = 1.

3. Analogous to 2.

5.10 Embedding in P3

Now our goal is to prove that every curve can be embedded in P3.
Let X ⊂ Pn be a curve.

De�nition 5.10.1. Let O ∈ Pn rX be a point.
The projection from O in Pn−1 is ψ : Pn r {O} → Pn−1, P 7→ OP ∩ Pn−1
where Pn−1 is a hyperplane of Pn not containing O, and OP is the line in Pn
passing through P and O.

We consider the restriction φ := ψ|X : X → Pn−1.
By [9, Ex. I.3.14], φ is a morphism.
We will investigate when it is a closed embedding.

De�nition 5.10.2. Let P,Q ∈ X be two distinct points.

1. A secant line of X is a line in Pn joining two distinct points of X.
We call Sec(X) the union of secant lines of X.
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2. A tangent line of X at a point P is the line LP passing through P such
that TPLP = TPX as subspaces of TPPn.
We call Tan(X) the union of tangents lines of X.

Lemma 5.10.3. Let O ∈ Pn rX be a point.
Let φ : X → Pn−1 be the projection from O.
φ is a closed embedding ⇐⇒ O /∈ Sec(X) ∪ Tan(X).

Proof. By Theorem 4.7.6(1), φ corresponds to a basepoint-free linear system
Λ = (V,L) on X. By Lemma 4.7.5(3), for any section s ∈ V , Supp(s)0 = X ∩H
(for some hyperplane H in Pn passing through O).
By Theorem 4.7.6(2), we have

φ is a closed embedding ⇐⇒

{
Λ separates points, and

Λ separates tangent vectors.

We will study the two conditions:

• Λ separates points ⇐⇒ ∀P 6= Q in X, ∃s ∈ V :

{
P ∈ Supp(s)0

Q /∈ Supp(s)0

⇐⇒ ∀P 6= Q in X, ∃H hyperplane in Pn passing through O :

{
P ∈ H
Q /∈ H

⇐⇒ ∀P 6= Q in X, O /∈ PQ ⇐⇒ O /∈ Sec(X).

• Λ separates tangent vectors ⇐⇒ ∀P ∈ X, t ∈ TPX, ∃s ∈ V :

{
P ∈ Supp(s)0

t /∈ TP (s)0

⇐⇒ ∀P ∈ X, ∃H hyperplane in Pn passing throughO :

{
P ∈ H
mP (X ∩H) = 1

(dimTPX = dimX = 1, because X is smooth, and TP (X ∩ H) ( TPX,
then TP (X ∩H) = 0, hence mP (X ∩H) ≤ 1)
⇐⇒ ∀P ∈ X, O /∈ LP ⇐⇒ O /∈ Tan(X).

Proposition 5.10.4. Let n ≥ 4.
There exists O ∈ Pn rX s.t. the projection φ from O is a closed embedding.

Proof.

Sec(X) is a locally closed subvariety of Pn of dimension at most 3, indeed:
we consider the morphism f : (X ×X r ∆) × P1 → Pn, who carries (P,Q, t) to
the point t of the secant line PQ (suitably parameterized).
Then Sec(X) = Im(f) and it has dimension at most dim(X ×X × P1) = 3.

Tan(X) is a locally closed subvariety of Pn of dimension at most 2, indeed:
we consider the morphism g : X × P1 → Pn, who carries (P, t) to the point t of
the tangent line LP (suitably parameterized).
Then Tan(X) = Im(g) and it has dimension at most dim(X × P1) = 2.
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Now dim(Sec(X) ∪ Tan(X)) ≤ 3. Since n ≥ 4, Sec(X) ∪ Tan(X) ( Pn, hence
∃O /∈ Sec(X) ∪Tan(X). Finally, by Lemma 5.10.3, φ is a closed embedding.

Corollary 5.10.5. Any curve can be embedded in P3.

Proof. Let X be a curve, and let j : X ↪→ Pn be a closed embedding.
If n ≤ 3, we can consider Pn a subspace of P3, and X is embedded in P3.
If n ≥ 4, there exists a closed embedding X ↪→ Pn−1 (by Proposition 5.10.4), and
repeating we get a closed embedding X ↪→ P3.

5.11 Canonical embedding and non-hyperelliptic

curves

We make a further distinction between two types of curves: hyperelliptic and
non. The latter correspond to the notion of canonical embedded curves.
Let X be a curve of genus g.
We will denote with grd a linear system on X of degree d and dimension r.
Note that when it is basepoint-free it corresponds to a morphism f : X −→ Pr.

De�nition 5.11.1. Let g ≥ 2.
X is hyperelliptic if there exists a �nite morphism f : X → P1 of degree 2.
In other words if there exists a g12. (Otherwise X is non-hyperelliptic).

Note that in this case a g12 is a basepoint-free linear system.
Indeed, as we will see in the proof of the following proposition, g12 = |P + Q|.
Now since g > 0, i.e. X 6∼= P1, we have that dim |P +Q−R| ≤ 1− 1 = 0 for any
R ∈ X (by Remark 5.8.4). Finally by Proposition 5.8.5, g12 is basepoint-free.

Proposition 5.11.2. Let g ≥ 2.
X is hyperelliptic ⇐⇒ dim |P +Q| = 1 ∃P,Q ∈ X.
(Equivalently, X is non-hyperelliptic ⇐⇒ dim |P +Q| = 0 ∀P,Q ∈ X).

Proof. Since g 6= 0, we have that X 6∼= P1.
By Remark 5.8.4, dim |P +Q| ≤ deg(P +Q)− 1 = 1; hence dim |P +Q| ∈ {0, 1}.
[⇐] We can take g12 = |P +Q|.
[⇒] Since X is hyperelliptic, there exists a g12. Let P + Q ∈ g12, we have that
g12 ⊆ |P +Q|, hence dim |P +Q| ≥ 1, or better dim |P +Q| = 1.

Now we want to study the morphism corresponding to the canonical divisor.
To do this we �rst study the properties of |K|.

Proposition 5.11.3.

1. If g = 0 then |K| = ∅.

2. If g = 1, then |K| = 0, or better K ∼ 0.

3. If g ≥ 2, then |K| is basepoint-free.
(Hence |K| corresponds to a morphism φ : X → Pg−1).
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4. Let g ≥ 2.
X is non-hyperelliptic ⇐⇒ K is very ample (i.e. φ is a closed embedding).

Proof.

1. We know that deg(K) = 2g − 2 = −2.
Now any divisor D ∼ K has degree deg(D) = deg(K) < 0, hence |K| = ∅.

2. Since l(K) = g = 1, we have dim |K| = 0.
Since deg(K) = 2g − 2 = 0, we have K ∼ 0 (by Lemma 5.7.2(2)).

3. Let P ∈ X be a point. Since g 6= 0 we have that X 6∼= P1. It follows that
dim |P | = 0 (by Remark 5.8.4). Applying Riemann-Roch we have that
dim |K − P | = dim |P | − deg(P )− 1 + g = g − 2 = dim |K| − 1.
In conclusion, by Proposition 5.8.5(1), |K| is basepoint-free.

4. |K| is very ample
⇐⇒ (by Proposition 5.8.5(2))
dim |K − P −Q| = dim |K| − 2 = g − 3 ∀P,Q ∈ X
⇐⇒ (by Riemann-Roch)
dim |P +Q| = dim |K − P −Q|+ deg(P +Q) + 1− g = 0 ∀P,Q ∈ X
⇐⇒ (by Proposition 5.11.2) X is non-hyperelliptic.

De�nition 5.11.4. Let g ≥ 2.

• |K| corresponds to φ : X → Pg−1 called canonical morphism.

• φ(X) is called a canonical curve.

• X is canonically embedded in Pg−1 if φ is a closed embedding.
In this case, deg(X) = deg(φ∗H) = deg(K) = 2g − 2.

Note that, by Proposition 5.11.3(4), we have
X is canonically embedded in Pg−1 ⇐⇒ X is non-hyperelliptic.

Remark 5.11.5. Every curve of genus 2 is hyperelliptic.

Proof.
Since dim |K| = g − 1 = 1 and deg(K) = 2g − 2 = 2, we have that the canonical
morphism is φ : X → P1 of degree 2; hence X is (canonically) hyperelliptic.

5.12 Non-hyperelliptic curves of low genus

Now we focus on non-hyperelliptic curves. We saw that every curve of genus
2 is hyperelliptic, so we want to study the case g ≥ 3, in particular we want to
show that there exist non-hyperelliptic curves (and what they are) for g = 3, 4, 5.
Let X be a curve of genus g.

De�nition 5.12.1. Let X ⊂ Pn.
X is a complete intersection if X = F1 ∩ ... ∩ Fn−1 such that
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• Fi are hypersurfaces of Pn.

• IX/Pn = IF1/Pn + ...+ IFn−1/Pn

(i.e. F1 ∩ ... ∩ Fn−1 is an intersection scheme).

Note that, by [9, Theorem I.7.7.], deg(X) =
∏

i deg(Fi).

Proposition 5.12.2. Working up to isomorphism, we have that

1. g = 3 and X is non-hyperelliptic ⇐⇒ X ⊂ P2 is a plane curve of degree 4

2. g = 4 and X is non-hyperelliptic ⇐⇒ X = Q ∩ F ⊂ P3 (complete
intersection) where Q,F are irreducible hypersurfaces of degree (resp.) 2, 3.

3. If g = 5 and X is non-hyperelliptic, then X ⊆ Q1 ∩ Q2 ∩ Q3 ⊂ P4 where
Q1, Q2, Q3 are irreducible hypersurfaces of degree 2.
On the other hand, if X is a complete intersection of three quadrics in P4,
then X is a non-hyperelliptic curve of genus 5.

Proof.

1. [⇒] The canonical embedding is X ↪→ P2 and X has degree 2g − 2 = 4.
[⇐] By [9, Ex.II.8.4(e)], ωX ∼= OX(4 − 2 − 1) = OX(1). Let i : X ↪→ P2

be the inclusion, then i∗OP2(1) = OX(1) = ωX , hence i is the morphism
associated to |K|, that is the canonical embedding and g = 2 + 1 = 3.

2. [⇒] The canonical embedding is φ : X ↪→ P3 and X has degree 6.
Let I := IX/P3 . We consider the short exact sequence (*):

0→ I→ OP3 → OX = OP3/I→ 0

• (*) induces a left-exact sequence

0→ Γ(P3, I(2))→ Γ(P3,O(2))→ Γ(X,OX(2))

Now we know that:
1) dimk Γ(P3,O(2)) =

(
3+2
2

)
= 10.

2) dimk Γ(X,OX(2)) = 9.
(Because ωX = OX(K) = φ∗O(1) = OX(1), hence OX(2K) = ω2

X =
= OX(1)2 = OX(2), and by Riemann-Roch we have l(2K) =
= l(2K)− l(K − 2K) = deg(2K) + 1− g = 2(2g − 2) + 1− g = 9).
By left-exactness, dimk Γ(P3, I(2)) ≥ 10− 9 = 1.
Hence there exists s ∈ Γ(P3, I(2)) = {σ ∈ Γ(P3,O(2))|σ|X = 0}.
Set Q := V (s), it is a surface of degree 2 containing X.
Moreover Q is irreducible (because X is not contained in any plane,
and if we assume s = l · l′ with l, l′ homogeneous polynomials of degree
1, then since X is irreducible we have that X is contained in V (l) or
V (l′), that are planes, and this is a contradiction).
Note that Q is unique (because if X is contained in a surface Q′ 6= Q of
degree 2, then Q′ is irreducible, in particular it does not have common
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components with Q, hence Q ∩Q′ is a complete intersection and it is
a curve of degree 2 · 2 = 4 containing X, but X has degree 6 and this
is a contradiction)

• (*) induces a left-exact sequence

0→ Γ(P3, I(3))→ Γ(P3,O(3))→ Γ(X,OX(3))

Now we know that
1) dimk Γ(P3,O(3)) =

(
3+3
3

)
= 20.

2) dimk Γ(X,OX(3)) = 15.
(Indeed, in analogous way of above, we have that OX(3) = OX(3K)
and l(3K) = deg(3K) + 1− g = 3(2g − 2) + 1− g = 15).
By left-exactness, dimk Γ(P3, I(3)) ≥ 20− 15 = 5.
Hence there exists t ∈ Γ(P3, I(3)) = {σ ∈ Γ(P3,O(3))|σ|X = 0}.
Set F := V (t), it is a surface of degree 3 containing X.
Note that {t ∈ Γ(P3, I(3))|t = l ·s, with l ∈ Γ(P3,O(1))} has dimension
equal to dimk Γ(P3,O(1)) = 4, hence we can choose t such that it
has not s as factor, hence F has no common components with Q, in
particular Q ∩ F is a complete intersection.
Moreover F is irreducible (because if we assume t = l · s′ with l, s′

homogeneous polynomials of degree respectively 1 and 2, then we have
that X 6⊆ V (s′) by the uniqueness of Q, hence X is contained in the
plane V (l), butX is not contained in any plane; this is a contradiction).

In conclusion X ⊆ Q ∩ F is a curve of degree 2 · 3 = 6 = deg(X), hence
X = Q ∩ F .
[⇐] By [9, Ex.II.8.4.(e)] ωX ∼= OX(2 + 3− 3− 1) = OX(1). Let i : X ↪→ P3

be the inclusion, then i∗OP3(1) = OX(1) = ωX , hence i is the morphism
associated to |K|, that is the canonical embedding and g = 3 + 1 = 4.

3. [⇒] The canonical embedding is φ : X ↪→ P4 and X has degree 8.
Analogously to the previous point we have a left-exact sequence

0→ Γ(P4, I(2))→ Γ(P4,O(2))→ Γ(X,OX(2))

and we know that
1) dimk Γ(P4,O(2)) =

(
4+2
2

)
= 15.

2) dimk Γ(X,OX(3)) = 12.
(Indeed, in analogous way of the previous point, we have OX(2) = OX(2K)
and l(2K) = deg(2K) + 1− g = 2(2g − 2) + 1− g = 12).
By left-exactness, dimk Γ(P4, I(2)) ≥ 15− 12 = 3.
Hence there exist linearly independent sections s1, s2, s3 ∈ Γ(P4, I(2)).
Set Qi := V (si) (i = 1, 2, 3), then Qi are hypersurfaces containing X and
(as in the previous point) they are irreducible.
[⇐] By [9, Ex.II.8.4.(e)] ωX ∼= OX(2+2+2−4−1) = OX(1). Let i : X ↪→ P4

be the inclusion, then i∗OP4(1) = OX(1) = ωX , hence i is the morphism
associated to |K|, that is the canonical embedding and g = 4 + 1 = 5.
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Note that in the case g = 5 if the intersection Q1 ∩Q2 ∩Q3 is a curve, it has
degree 2 ·2 ·2 = 8 = deg(X) and it contains X, hence X is a complete intersection
of three quadrics. We will better study curves of genus 5 in the next sections.
Finally, note that if g ≥ 6 we are not so lucky, as we can see in this last remark.

Remark 5.12.3.

If g ≥ 6 and X is non-hyperelliptic, then X is not a complete intersection in Pg−1.

Proof. Assume that X is a complete intersection in Pg−1, then
X = F1 ∩ ... ∩ Fg−2 where Fi are hypersurfaces of degree di.
Let i : X ↪→ Pg−1 be the canonical embedding, then OX(1) = i∗O(1) = ωX .
By [9, Ex.II.8.4.(e)] ωX ∼= OX(d1 + ...+ dg−2 − (g − 1)− 1), hence we have
1 = d1 + ...+ dg−2 − g.
Note that di ≥ 2 ∀i, because X is not contained in any hyperplane.
Now 1 = d1 + ...+ dg−2 − g ≥ 2(g − 2)− g = g − 4, hence g ≤ 5.

5.13 Trigonal curves

We will show that not all curves of genus 5 are canonically complete intersec-
tions. In order to show it we will introduce the notion of trigonal curves.

De�nition 5.13.1. A curve is trigonal if it is non-hyperelliptic and it has a g13.

Remark 5.13.2. Let X ⊂ P4 be a canonical curve of genus 5.
X is trigonal ⇐⇒ X has a trisecant line.

Proof. Let P,Q,R be points of X.
By Riemannn-Roch, dim |P +Q+R| − dim |K −P −Q−R| = −1 (note that X
has degree 2g − 2 = 8). Now we have that:
X is trigonal ⇐⇒ ∃g13 = |P +Q+R|
⇐⇒ ∃P,Q,R ∈ X, dim |P +Q+R| = 1
⇐⇒ ∃P,Q,R ∈ X, dim |K − P −Q−R| = 2
⇐⇒ ∃P,Q,R ∈ X s.t. the linear system of hyperplanes in P4 containing P,Q,R
has dimension 2
⇐⇒ ∃P,Q,R ∈ X collinear points (otherwise they span a plane, and the linear
system of hyperplanes containing this plane has dimension 1)
⇐⇒ X has a trisecant line.

Now we want to show that trigonal curves X of genus 5, in their canonical
embedding, are not complete intersection, or even better they are not intersection
of quadrics:
if X be an intersection of quadrics Qi (for example, as in Proposition 5.12.2(3)),
then X has no trisecant lines L (otherwise L meets each Qi in three points, hence
L is contained in every Qi, or better L ⊆ X. Contradiction!). In conclusion X is
not trigonal.
Basically if X is trigonal, in the proof of Remark 5.13.2 we can see that the
canonical embedding carries every divisor of the g13 to a triad of collinear points,
hence X has in�nitely many trisecant lines. It follows that the intersection of
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quadrics Y :=
⋂
X⊆QQ contains a surface, that is the union of the trisecant

lines to X, in particular Y contains X properly (in this case, in the Proposition
5.12.2(3) Q1 ∩Q2 ∩Q3 is a surface, not a curve).

5.14 Canonical curves of genus 5

We saw that non-hyperelliptic curves of genus 3 or 4 are canonically complete
intersections. We will see that this holds for curves of genus 5 if and only if they
are not trigonal. This is a particular case of the Enriques-Petri's Theorem.
In order to show it, we will introduce the Steiner Construction and the Casteln-
uovo Lemma. First, we give some de�nitions:

De�nition 5.14.1.

1. A Veronese map is the morphism associated to a linear system |dH| on Pn,
that is vnd : Pn → P(n+d

d )−1, (x0 : ... : xn) 7→ (xd0 : xd−10 x1 : ... : xdn) given by
all monomials of degree d.
The image of a Veronese map is said a Veronese variety.

2. A rational normal curve is a Veronese variety corresponding to
v1d : P1 → Pd, (x : y) 7→ (xd : xd−1y : ... : xyd−1 : yd).

3. A Veronese surface is a Veronese variety corresponding to v22 : P2 → P5.

Now, we see two useful remarks:

Remark 5.14.2.

• We recall that a curve in Pn is non-degenerate if it is not contained in a
hyperplane. A such curve has degree at least n.

• Clearly a rational normal curve in Pn is non-degenerate of degree n.
Conversely, a non-degenerate curve of degree n in Pn is a rational normal
curve.

Proof.

1. Any n points of a non-degenerate curve X ⊂ Pn are contained in a hyper-
plane H, hence X ∩ H consists of at least n points; since X 6⊆ H then
deg(X) ≥ n.

2. Let X be a non-degenerate curve of degree n in Pn.
First, we want to show that X ∼= P1.
We take n − 1 points P1, ..., Pn−1 ∈ X which span a (n − 2)-plane V . Let
{Hλ} be the family of hyperplanes containing V , parameterized by λ ∈ P1.
Each hyperplane Hλ meets X in P1, .., Pn−1 and in another point which
we call q(λ) (If Hλ is tangent to X at Pi, we set q(λ) = Pi). We get an
isomorphism P1 → X,λ 7→ q(λ).
In conclusion, let X ∼= P1 ↪→ Pn be a closed embedding, then it is associated
to the unique divisor of P1 of degree n, that is nH; hence it is a Veronese
map.
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5.14.1 Steiner Construction

We will say that a collection of at least n+ 1 points in Pn is in general linear
position if no n+ 1 of these points are on the same hyperplane.

1. Let P1, ..., P5 ∈ P2 be points in general linear position (i.e. no 3 points are
collinear). We can �nd a smooth conic passing through them.
First of all we consider P1 and P2 and we de�ne the families {L1(λ)}, {L2(λ)}
of lines through P1 and P2 respectively, parameterized by λ ∈ P1 so that
the unique common line P1P2 corresponds to di�erent values of λ, that is
so that L1(λ) 6= L2(λ) for all λ.
Now we can de�ne C :=

⋃
λ(L1(λ) ∩ L2(λ)). This is a non-degenerate and

irreducible curve, containing P1 and P2. Moreover C has degree 2:
indeed its intersection with a line L ⊂ P2 consists of the �xed points of the
automorphism L→ L,L ∩ L1(λ) 7→ L ∩ L2(λ), and they can be at most 2.
We can choose our parameterizations of the two families so that

• P3 ∈ L1(0) ∩ L2(0),

• P4 ∈ L1(1) ∩ L2(1),

• P5 ∈ L1(∞) ∩ L2(∞).

Note that in this way P1P2 still corresponds to di�erent values of λ:
indeed if P1P2 = L1(λ0) = L2(λ0), then taken L := P3P4 the automorphism
L→ L,L∩L1(λ) 7→ L∩L2(λ) would �x the three points P3, P4 and L∩P1P2,
hence it would be the identity, that is L∩L1(λ) = L∩L2(λ) = L1(λ)∩L2(λ)
for any λ, in particular P5 = L1(∞) ∩ L2(∞) = L1(∞) ∩ L ∈ L, hence
P3, P4, P5 would be collinear. Contradiction!.
We can de�ne C as above, and it contains P1, ..., P5.

2. Let P1, ..., Pn+3 ∈ Pn be points in general linear position. We can generalize
the construction in 1 and �nd a rational normal curve passing through
them.
First of all we consider P1, ..., Pn. Let V be the hyperplane spanned by
P1, ..., Pn and let Vi be the (n − 2)-plane spanned by P1, .., P̂i, ..., Pn. We
de�ne the families {Hi(λ)} of hyperplanes through Vi, parameterized by
λ ∈ P1 so that the unique common hyperplane V corresponds to di�erent
values of λ. Note that for any λ, H1(λ) ∩ ... ∩Hn(λ) is a point:
indeed if none of Hi(λ) is V , then their intersection cannot meet V , hence
it is a point; while if Hi(λ) = V , then Hi(λ) ∩ Hj(λ) = Vj for any j 6= i,
hence H1(λ) ∩ ... ∩Hn(λ) =

⋂
j 6=i Vj = Pi.

We can de�ne C :=
⋃
λ(H1(λ)∩ ...∩Hn(λ)) and it is a non-degenerate and

irreducible curve containing Pi for i = 1, .., n. Moreover C has degree n:
its intersection with a hyperplane H ⊂ Pn consists of the �xed points of the
automorphism H → H,H∩H1(λ)∩ ...∩Hn−1(λ) 7→ H∩H2(λ)∩ ...∩Hn(λ),
and they can be at most n, hence deg(C) ≤ n. Since C is non-degenerate,
deg(C) ≥ n; hence deg(C) = n.
In conclusion C is a rational normal curve.
We can choose our parameterizations of the families so that
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• Pn+1 ∈ Hi(0), for all i,

• Pn+2 ∈ Hi(1), for all i,

• Pn+3 ∈ Hi(∞), for all i.

Note that in this way V still corresponds to di�erent values of λ:
indeed if V = Hi(λ0) = Hj(λ0), then taken L := Pn+1Pn+2 the automor-
phism L→ L,L∩Hi(λ) 7→ L∩Hj(λ) would �x the three points Pn+1, Pn+2

and L ∩ V , hence it would be the identity, in particular L would meet
Hi(∞) ∩ Hj(∞), hence the n + 1 points Pn+1, Pn+2, P1, ..., P̂i, ..., P̂j, ..., Pn
and Pn+3 would be on the same hyperplane. Contradiction!.
We can de�ne C as above, and it contains P1, ..., Pn+3.

Remark 5.14.3.

1. Through any n + 3 points in general linear position in Pn there passes a
unique rational normal curve.

2. A rational normal curve is intersection of quadric hypersurfaces.

Proof.

1. Taken P1, ..., Pn+3 ∈ Pn be points in general linear position. We can de�ne
a rational normal curve C passing through them as in section 5.14.1(2).
If D is another rational normal curve passing through them, then each hy-
perplane Hi(λ) meets D in P1, .., P̂i, ..., Pn and another point which we may
denote qi(λ).
Now the automorphism D → D, qi(λ) 7→ qj(λ) �xes the three points
Pn+1, Pn+2, Pn+3; hence it is the identity, that is qi(λ) = H1(λ)∩ ...∩Hn(λ).
It follows that D = C.

2. Let V1, V2 be (n− 2)-planes of Pn.
We de�ne the two families {H1(λ)}, {H2(λ)} of hyperplanes through V1 and
V2 respectively, parameterized by λ ∈ P1 so that H1(λ) 6= H2(λ) for all λ.
Analogously to section 5.14.1(1) we have a non-degenerate and irreducible
quadric hypersurface Q :=

⋃
λ(H1(λ) ∩H2(λ)).

Now, let C be a rational normal curve. We can see it to be constructed
as in section 5.14.1(2). If we set Qij :=

⋃
λ(Hi(λ) ∩ Hj(λ)), then C is the

intersection of the quadrics Qij.

5.14.2 Castelnuovo Lemma

Lemma 5.14.4 (Castelnuovo Lemma). A collection P1, ..., Pd ∈ Pn of d ≥ 2n+3
points in general linear position which impose only 2n+ 1 conditions on quadrics
lies on a rational normal curve.

Proof. Let {Hi(λ)} (for i = 1, ..., n) and {H(λ)} be the families of hyperplanes
passing through P1, ..., P̂i, ..., Pn (for i = 1, ..., n) and Pn+1, ..., P2n−1 respectively,
parameterized by λ ∈ P1 so that
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• P2n ∈ H(0), Hi(0), for all i,

• P2n+1 ∈ H(1), Hi(1), for all i,

• P2n+2 ∈ H(∞), Hi(∞), for all i.

Let Qi :=
⋃
λ(Hi(λ) ∩H(λ)), we know that this is a quadric. Since Qi contains

P1, ..., P̂i, ..., P2n+2, then it contains all the points P1, ..., Pd (because 2n+1 points
in general linear position impose independent conditions on quadrics), in partic-
ular we have P2n+3, ..., Pd ∈ H1(λ) ∩ ... ∩Hn(λ) for the same λ.
Now let C :=

⋃
λ(H1(λ)∩ ...∩Hn(λ)), then it is a rational normal curve (as seen

in section 5.14.1(2)) and it contains P1, ..., Pn, P2n, ..., Pd.
Analogously any d − n + 1(> n + 3) of the points P1, ..., Pd lie on a rational
normal curve. Since a rational normal curve is determined by any n + 3 points
(see Remark 5.14.3(1)), then all the points P1, ..., Pd lie on a rational normal
curve.

5.14.3 Rational normal scroll

Before seeing the Enriques-Petri's Theorem, we want to introduce some no-
tions about surfaces.

De�nition 5.14.5.

1. As a surface we mean a projective variety of dimension 2 over an alge-
braically closed �eld k.
As a curve on a surface we mean an e�ective divisor (not necessarily smooth
or irreducible).

2. Let C,D be two curves on a smooth surface S. We say that they meet
transversally at a point P ∈ C ∩D if the local equation f, g of C,D at P
generate the maximal ideal mS,P .
Moreover there is a unique pairing · : Div(X)×Div(X)→ Z such that

• if C,D are smooth curves meeting transversally, then C ·D = ](C∩D).
Note that if C is smooth and irreducible, then C ·D = deg(OX(D)|C).

• C ·D = D · C.
• (C + C ′) ·D = C ·D + C ′ ·D.

• if C ∼ C ′, then C ·D = C ′ ·D.

(see [9, Theorem V.1.1])
In particular let D be a very ample divisor on S, which gives a closed
embedding in Pn, then for any curve C on S, C ·D = deg(C).
(see [9, Ex.V.1.2]).

3. The degree of a surface S ⊂ Pn is deg(S) = ](S ∩H ∩H ′) where H,H ′ are
general hyperplanes.
If S is smooth, deg(S) = D2 where D ∈ |OS(1)| (see [9, Ex.V.1.2]).
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At the beginning of this section, we de�ned a Veronese surface, which is a
special case of surface of minimal degree. Now we want to de�ne a rational
normal scroll.

De�nition 5.14.6.

1. Let C be a curve and let E be a locally free sheaf on C.
According to [9, Chapter II.7], we can de�ne P (E) and OP (E)(1).
Let S = S(E) = ⊕d≥0Sd(E) be the symmetric algebra of E (as de�ned
in [9, Ex.II.5.16]). Explicitly (de�ned as presheaf): for any open subset U
of C, we �rst de�ne T0(E)(U) = OC(U) and Td(E)(U) = E(U)⊗ ...⊗ E(U)
(d times) for d ≥ 1, then we de�ne T(E)(U) = ⊕d≥0Td(E)(U) and �nally we
de�ne S(E)(U) = T(E)(U)/〈x⊗ y − y ⊗ x|x, y ∈ E(U)〉.
Note that S is a sheaf of graded OC-algebras such that S0 = OC and S is
generated by S1 as OC-algebra.
For any open a�ne subset U = SpecA of C we have an A-algebra S(U) and
a scheme ProjS(U) with a projection πU : ProjS(U)→ U . Gluing together
these schemes we get the scheme P (E) with the projection π : P (E) → C.
Moreover gluing together the 1-twist sheaves we get a sheaf called OP (E)(1).

2. Let C be a curve and let E be a locally free sheaf on C of rank 2.
A ruled surface is a smooth surface S = P (E).
In particular there is a projection π : P (E)→ C such that
1) every �ber is isomorphic to P1

2) there exists a section σ : C → P (E), that is a morphism s.t. π ◦ σ = idC .
By [9, Proposition V.2.8] there is a section σ : C → P (E) with image C0

such that OS(C0) ∼= OP (E)(1).

3. A scroll is a ruled surface embedded in Pr in such a way that all the �bers
f have degree 1.

4. Let e ≥ 0.
Xe = P (E) is the rational ruled surface over P1 with E = OP1 ⊕ OP1(−e).
In this case, by [9, Proposition V.2.3 and V.2.9] we have

• C2
0 = −e

• f 2 = 0

• C0.f = 1

Moreover since Pic(P1) = Z, we have Pic(Xe) = ZC0 ⊕ Zf (see [9, Propo-
sition V.2.3]), hence we can consider every divisor of the form aC0 + bf .
We can also consider the canonical divisor KXe = −2C0 +(−2−e)f (see [9,
Corollary V.2.11]).

5. Let e ≥ 0 and let n ≥ e.
By [9, Theorem V.2.17] the linear system |C0 +nf | on Xe is basepoint-free,
hence it corresponds to a morphism φ : Xe → Pr.
A rational normal scroll is a surface which is image of a such morphism.
(Note that this is a scroll, by Remark 5.14.7(2a)).
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Remark 5.14.7.

1. Let S be a smooth surface and let C be a curve on S.
Let L be a line bundle on S generated by global sections.
Let r : Γ(S,L)→ Γ(C,L|C), σ 7→ σ|C and let V = Im(r).
We have a morphism φL associated to Γ(S,L) and a morphism φV associated
to V . Then φL|C = φV .

2. Let S = Xe and let L = OS(C0 + nf), with n ≥ e. We have that

(a) φL(f) is a line.
In particular a rational normal scroll is a scroll.

(b) Let D := φ−1L (X) be the preimage of a smooth irreducible curve X.
Then deg(X) = (C0 + nf) ·D.

Proof.

1. First, note that V is basepoint-free: indeed for any x ∈ C, then x ∈ S.
Since L is generated by global sections, there is σ ∈ Γ(S,L) such that
σ(x) 6= 0; hence we have σ|C ∈ V and σ|C(x) = σ(x) 6= 0. By Remark
4.7.1(2), V is basepoint-free.
Now, we recall that OS(−C) is the ideal sheaf of C. We have a short exact
sequence

0→ OS(−C)→ OS → OC → 0

Tensoring with L we get

0→ L(−C)→ L→ L|C → 0

It induces a left-exact sequence

0→ Γ(S,L(−C))→ Γ(S,L)
r→ Γ(C,L|C)

Hence there is a basis {σ0, ..., σr} of Γ(S,L) such that {σ0, ..., σs} is basis
of Γ(S,L(−C)) and {σs+1|C , ..., σr |C} is basis of V .
Consider the map φL : S → Pr, x 7→ (σ0(x) : ... : σr(x)).
If x ∈ C, then σ0(x) = ... = σs(x) = 0; hence we get a commutative diagram

C P(V )

S Pr

φV

j

φL

where j : (xs+1 : ... : xr) 7→ (0 : ... : 0 : xs+1 : ... : xr).

2. (a) We have that deg(L|f ) = L · f = (C0 +nf) · f = 1. Since f ∼= P1, then
L|f ∼= OP1(1).
Let V be de�ned as in 1 (with C = f). We have that:
i) dimV ≥ 1 (because V is basepoint-free, as seen in 1).
ii) dimV ≤ dim Γ(f,L|f ) = dim Γ(P1,OP1(1)) = 2.
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We can conclude that dimV = 2: otherwise if dimV = 1, then V = kσ
where σ has no zeros; but σ ∈ Γ(P1,OP1(1)), hence it has a zero.
Now we have V = Γ(P1,OP1(1)). By 1, φL(f) = φ|OP1 (1)|(P

1) is a line.

(b) If n > e, C0 + nf is very ample (see Remark 5.14.8(1)). By [9,
Ex.V.1.2], we have deg(X) = (C0 + nf) ·D.
If n = e, φL(Xe) is a cone of vertex P (see again Remark 5.14.8(1)).
By [9, Example V.2.11.4], φL is the blowing-up of the cone in P (see [9,
Chapter II.7] for the de�nition of blowing-up) and φ−1L (P ) = C0; hence
φL|XerC0

is an isomorphism (by [9, Proposition II.7.13]).
Since φL(D) = X is smooth, D meets C0 in either 0 or 1 point.
Hence φL|D is a closed embedding. Note that φL|D = φV as in 1.
We have deg(X) = deg(φ∗VO(1)) = deg(L|D) = (C0 + ef) ·D.

Remark 5.14.8.

1. A rational normal scroll S is either a cone (if n = e) or smooth (if n > e):

• [n = e] Since (C0 + ef) · C0 = 0, C0 is contracted to a point P (the
vertex of the cone). Moreover any �ber f is mapped to a line passing
through P : indeed f · C0 = 1, hence f meets C0 in a point and the
image of f passes through P .

• [n > e] By [9, Theorem V.2.17] C0 + nf is very ample, hence the
corresponding map φ is a closed embedding, in particular S is smooth.
Moreover in this case we can see:
a) deg(S) = (C0 + nf)2 = 2n− e,
b) S is embedded (via φ) in P2n−e+1 (by [9, Corollary V.2.19]).

2. del Pezzo's Theorem (see [7, Ch. 4, sec. 3, p. 525]).
A non-degenerate surface in Pn of degree n− 1 is either a Veronese surface
or a rational normal scroll.

5.14.4 Enriques-Petri's Theorem

Lemma 5.14.9.

Let X ⊂ Pn (n ≥ 2) be a canonical curve (note that it has genus g = n+ 1).
Let S :=

⋂
X⊆QQ be the intersection of quadrics in Pn containing X.

1. The points of a general hyperplane section X ∩ Pn−1 impose only 2n − 1
conditions on quadrics.

2. Let P ∈ Pn be a point not lying on in�nitely many secant lines of X.
Taken a general hyperplane H passing through P we consider the points
{P} ∪ (X ∩H). We have that

(a) they are in general linear position (in H = Pn−1),
(b) if P ∈ S, then they impose only 2n− 1 conditions on quadrics.
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3. Let g ≥ 4.
If X ( S then there is a point P ∈ S r X not lying on in�nitely many
secant lines of X.

Proof.

1. In analogous way as in the proof of Proposition 5.12.2, we can see that:
a) dimk Γ(Pn,O(2)) =

(
n+2
2

)
= (n+2)(n+1)

2
,

b) dimk Γ(X,O(2)) = 2(2g − 2) + 1− g = 3n,

c) dimk Γ(Pn, I(2)) ≥ (n+2)(n+1)
2

− 3n = (n−2)(n−1)
2

.
Now, let W be the linear system of quadrics of Pn containing X. It has
dimension at least (n−2)(n−1)

2
− 1 (by c).

Since no quadric containing C can contain a hyperplane, the restriction
W|Pn−1 of W to a hyperplane Pn−1 ⊂ Pn is injective. Hence the linear
system of quadrics of Pn−1 containing X∩Pn−1 (which containsW|Pn−1) has

dimension at least (n−2)(n−1)
2

− 1.

The linear system of quadrics of Pn−1 has dimension n(n+1)
2
− 1 (by a).

It follows that the points ofX∩Pn−1 impose only n(n+1)
2
− (n−2)(n−1)

2
= 2n−1

conditions on quadrics.

2. (a) Note that

- Since H 3 P is general, then H contains no secant lines of X
passing through P (which are �nitely many).

- The projection φ : X → M from P to a hyperplane M = Pn−1
gives a bijection φ|X∩H : X ∩H → φ(X)∩H ′, where H ′ = H ∩M :
indeed for any Q ∈ X ∩ H, the secant line PQ is contained in
H, hence φ(Q) ∈ PQ ⊆ H, and hence φ(Q) ∈ φ(X) ∩ H ′. On
the other hand for any R ∈ φ(X) ∩ H ′, there is Q ∈ X such
that φ(Q) = R, in particular Q ∈ RP ⊆ H. RP cannot contain
another point of X (otherwise it would be a secant line of X
passing through P contained in H), hence Q is unique.

- φ(X) is non-degenerate: indeed assume φ(X) ⊆ H ′′ where H ′′ is a
hyperplane of M . Let 〈P,H ′′〉 be the hyperplane of Pn containing
P and H ′′. For any Q ∈ X, we have Q ∈ Pφ(Q) ⊆ 〈P,H ′′〉;
hence X ⊆ 〈P,H ′′〉. This is a contradiction, because X is non-
degenerate.

- H ′ is a general hyperplane of M : indeed there is a surjective
map {hyperplanes of Pn containing P} → {hyperplanes of M},
H 7→ H ′ = H ∩M , which is surjective because for any hyperplane
H ′ of M , 〈P,H ′〉 ∩M = H ′.

First, we want to show that P and any n − 1 points of X ∩H are in
general linear position. In other words we want to show that, taken
P1, ..., Pn−1 ∈ X ∩H, then P /∈ 〈P1, ..., Pn−1〉
(where 〈P1, ..., Pn−1〉 is the linear variety spanned by P1, ..., Pn−1):
set Pn = P(V ) with P = [v], Pi = [vi], and set M = Pn−1 = P(W )
such that V = 〈v〉 ⊕ W . We have vi = aiv + wi (ai ∈ k) and
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φ(Pi) = [wi] ∈ M . By [7, Ch.2, s.3, p.249, Lemma] w1, ..., wn−1 are
independent (because φ(X) is non-degenerate and H ′ is general). If
we assume P ∈ 〈P1, ..., Pn−1〉, that is v ∈ 〈v1, ..., vn−1〉, then for some
bi ∈ k (1 ≤ i ≤ n−1) we have v =

∑n−1
i=1 bivi =

∑n−1
i=1 biaiv+

∑n−1
i=1 biwi,

hence
∑n−1

i=1 biwi = 0, and hence bi = 0 for all i, that is v = 0. Con-
tradiction.
Now, we want to show that for a general hyperplane H containing P ,
the points X ∩ H are in general linear position. In other words we
want to show that, taken P1, ..., Pn ∈ X ∩H, then H = 〈P1, ..., Pn〉:
note that if v1, ..., vn−1 (de�ned above) are dependent, then there is
(b1, ..., bn) 6= (0, ..., 0) s.t. 0 =

∑n−1
i=1 bivi =

∑n−1
i=1 biaiv +

∑n−1
i=1 biwi,

and then
∑n−1

i=1 biwi = 0, but this is not possible because the wi are
independent. We can conclude that dim〈P1, ..., Pn−1〉 = n− 2.
We assume that there exist n points P1, ..., Pn s.t. 〈P1, ..., Pn〉 6= H for
a general hyperplane H containing P , that is dim〈P1, ..., Pn〉 ≤ n− 2.
Therefore 〈P1, ..., Pn〉 = 〈P1, ..., Pn−1〉. Since P /∈ 〈P1, ..., Pn−1〉, we
have dim〈P, P1, ..., Pn〉 = n− 1, that is 〈P, P1, ..., Pn〉 = H.
Let Hyp(Pn) be the variety of hyperplanes in Pn.
We de�ne J = {(P1, ..., Pn, H)|H ∈ Hyp(Pn), P1, ..., Pn ∈ X ∩H, and
dim〈P1, ..., Pn〉 ≤ n− 2} ⊆ Xn × Hyp(Pn).
We consider the projection π1 : J → Xn.
There is a rational map π1(J) 99K {hyperplanes of Pn containing P},
(P1, ..., Pn) 7→ 〈P, P1, ..., Pn〉 that is de�ned on a dense open subset of
π1(J) and whose image contains an open subset of {hyperplanes con-
taining P}, by what we have seen above.
It follows that dimπ1(J) ≥ dim{hyperplanes containing P} = n− 1.
Let (P1, ..., Pn) ∈ π1(J) be general, then dim〈P1, ..., Pn〉 ≤ n − 2, and
then dim{hyperplanes of Pn containing 〈P1, ..., Pn〉} ≥ 1, in particular
we have dim π−11 ((P1, ..., Pn)) ≥ 1.
By [3, Teorema 4.7.1], dim J = dimπ1(J) + dim π−11 ((P1, ..., Pn)) ≥ n.
Consider now the projection π2 : J → Hyp(Pn). Since for any hyper-
plane H, ](X ∩H) is �nite, then π2 has �nite �bers; hence by [3, Teo-
rema 4.7.1] dim π2(J) = dim J + 0 ≥ n. Hence π2(J) = Hyp(Pn); that
is for any hyperplane H, the points X ∩ H are not in general linear
position in H. By [7, Ch.2, s.3, p.249, Lemma], this is a contradiction.

(b) Consider the linear systems W|H = {Q ∩H|Q is a quadric in Pn con-
taining X} and U = {quadrics in H containing P ∪ (X ∩H)}.
We have W|H ⊆ U : indeed let Q be a quadric in Pn containing X,
then X ∩ H ⊆ Q ∩ H. Moreover P ∈ S ⊆ Q and P ∈ H, hence
P ∪ (X ∩H) ⊆ Q ∩H.
As in 1, the points {P} ∪ (X ∩H) impose only 2n − 1 conditions on
quadrics.

3. We de�ne Cor(X) the variety of secant lines of X.
Let P ′ ∈ SrX. We can assume that P ′ lies on in�nitely many secant lines
of X (otherwise we can take P = P ′).
Let S ′ be the surface given by the union of secant lines of X containing P ′.
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Let J := {(Q,L)|Q ∈ S ′, L ∈ Cor(X), L 3 Q} ⊆ S ′ × Cor(X).
We consider the projection π1 : J → S ′. This is surjective: indeed for any
Q ∈ S ′ there is a secant line L of X containing Q, hence Q = π1(Q,L).
Let Q ∈ S ′ be a general point. We want to show that dimπ−11 (Q) = 0, so
that we can take P = Q.
We assume that dimπ−11 (Q) ≥ 1. By [3, Teorema 4.7.1], we have that
dim J = dimS ′ + dim π−11 (Q) ≥ 2 + 1 = 3; hence there is an irreducible
component Z of J such that dimZ ≥ 3.
Now we consider the projection π2 : J → Cor(X).
Let L ∈ π2(Z) be a general element. By [3, Teorema 4.7.1], we have that
dimπ2

−1
|Z (L) = dimZ − dimπ2|Z(Z) ≥ 3− dimCor(X) = 3− 2 = 1. On the

other hand π2
−1
|Z (L) ⊆ π−12 (L) ∼= L ∩ S ′ ⊆ L, hence dimπ2

−1
|Z (L) = 1.

Hence L ∩ S ′ = L, that is L ⊆ S ′.
Moreover dim π2(Z) = dimZ − dimπ2

−1
|Z (L) ≥ 3 − 1 = 2. On the other

hand π2(Z) ⊆ Cor(X), hence π2(Z) = Cor(X).
It follows that L ⊆ S ′, ∀L ∈ Cor(X). Hence S ′ =

⋃
L∈Cor(X) L = Sec(X).

This is a contradiction, because dim Sec(X) = 3 (sinceX is non-degenerate).

Theorem 5.14.10 (Enriques-Petri's Theorem for genus 5). Let X ⊂ P4 be a
canonical curve (of genus 5), then either

• X is an intersection of quadrics, or

• X is trigonal (in which case, the intersection of quadrics containing X is a
rational normal scroll).

More generally, this theorem holds for every genus, with the exception that
for g = 6 there is a third possibility, that is X is a plane quintic (in which case,
the intersection of quadrics containing X is a Veronese surface). See [7, Chapter
4, section 3, p. 535].
In our case (g = 5), the rational normal scroll is X1 embedded in P4 via |C0 +2f |.
(Moreover X ∼ 3C0 + 5f).

Proof. Let S :=
⋂
X⊆QQ be the intersection of quadrics containing X.

We saw in section 5.13 that if X is an intersection of quadrics, then it is not
trigonal. Now assume that X is not an intersection of quadrics, that is X ( S.
By Lemma 5.14.9(3) we may choose a point P ∈ S r X not lying on in�nitely
many secant lines of X.
We recall that our curve in P4 has genus g = 5 and degree d = 8.
Let M = P3 be a general hyperplane containing P . By Lemma 5.14.9(2), the 9
points {P}∪ (X ∩M) are in general linear position and they impose 7 conditions
on quadrics. Applying Lemma 5.14.4 in M , we get that these points lie on a
rational normal curve C (note that C has degree 3).
Since any quadric Q containing X meets C in the 8(> 6) points X ∩M , then any
such Q contains C, hence C ⊆ S.
On the other hand, by Proposition 5.14.3(2), C = ∩C⊆Q′Q′ is an intersection of
quadrics Q′ of M . We consider the two linear systems W|M := {Q ∩M |Q is a
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quadric of P4 containing X} and W ′ := {Q′|Q′ is a quadric of M containing C}.
Since for any quadric Q containing X, Q ∩M is a quadric of M containing C,
thenW|M ⊆ W ′. As seen in the proof of Lemma 5.14.9(1), dimW|M ≥ 2·3

2
−1 = 2.

Since C is a rational normal curve in M = P3, dimW ′ = 2 (by [3, Osservazione
4.1.2]). Hence W|M = W ′, and S ∩M = C.
It follows that S is a surface of degree 3 in P4. By Remark 5.14.8(2), S is a
rational normal scroll. (Note that S cannot be a Veronese surface, otherwise it
would be a non-degenerate surface in P5).
Now since n ≥ e ≥ 0 and 4 = 2n− e+ 1 we have two cases, that is either:
(a) n = e = 3 (S is a cone), or
(b) n = 2, e = 1 (S is smooth).
We consider the map φ : Xe → S ⊂ P4 given by |C0+nf | and we take the smooth
curve D = φ−1(X) ∼= X. We have{
D · (C0 + nf) = deg(X) = 8 (by Remark 5.14.7(2b))

D · (D +KXe) = 2g − 2 = 8 (by the Adjunction Formula, see [9, Prop.V.1.5])

We can set D = aC0 + bf and KXe = −2C0 + (−2− e)f , hence we have{
−ea+ b+ na = 8

−ea(a− 2) + b(a− 2) + a(b− 2− e) = 8

We study the two possible cases:
(a) if n = e = 3, then the system above has one integer solution: a = 3, b = 8.
(b) if n = 2, e = 1, then the system above has one integer solution: a = 3, b = 5.
By [9, Corollary V.2.18(b)] the only possible case is n = 2, e = 1, a = 3, b = 5.
In particular S is smooth and D = 3C0 + 5f (in detail S is X1 embedded in P4

via |C0 + 2f |). Since f · D = 3, a �ber is mapped to a trisecant line of X. By
Remark 5.13.2, X is trigonal.

5.14.5 Trigonal canonical curves of genus 5

We saw that non-hyperelliptic curves of genus 5 are either trigonal or complete
intersection of three quadrics. Now, we want to give a better description of the
trigonal case.
Let X be a canonical curve of genus 5 which is trigonal, then the g13 gives in�nitely
many secant lines of X (as seen in section 5.13). By Theorem 5.14.10, the union
of such lines is a rational normal scroll S, or better it is X1 embedded in P4 via
|C0 + 2f |. Since X ∼ 3C0 + 5f , we have that X + f ∼ 3C0 + 6f ∈ |3(C0 + 2f)|.
Since |3(C0 +2f)| is the linear system cut out by cubics in P4, then there is a line
L ⊂ P4 and a cubic hypersurface F ⊂ P4 containing X such that X ∪L = S ∩F .
We say that X is residue of a line in the intersection S ∩ F .
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5.15 Exhibition about canonical curves of higher

genus

We conclude with a brief exhibition about canonical curves of higher genus.
First, we give the de�nition of extendable variety.

De�nition 5.15.1. Let Y ⊂ Pr be a variety.
Y is extendable if there exists a variety Z ⊂ Pr+1 such that Z ∩ Pr = Y and Z is
not a cone over Y .

Remark 5.15.2. Let X ⊂ Pg−1 be a canonical curve of genus g.
If X is extendable to a smooth surface S ⊂ Pg, then S is a K3-surface (i.e.
a smooth proper geometrically connected surface with trivial canonical bundle
KS ∼ 0 and dimkH

1(S,OS) = 0).

Proof. Let X = S ∩H, where H is a hyperplane of Pg.
First, by the Adjunction Formula (see [7, Ch.1, s.1, p.147]) we have that
OX(H) ∼= OX(KX) ∼= OX(H +KS); hence OX(KS) ∼= OX .
Since the map Pic(S) → Pic(X), L 7→ L|X is injective (see [8, Exposé XII, Cor.
3.6]), we have OS(KS) ∼= OS.
Now, consider the short exact sequence

0→ OS → OS(1)→ OX(1)→ 0

By Kodaira Vanishing Theorem (see [9, Remark III.7.15]), we have that
H1(OS(1)) = H1(KS +H) = 0; hence by the long exact sequence of cohomology
we get

0→ H0(OS)→ H0(OS(1))→ H0(OX(1))→ H1(OS)→ 0

We know that h0(OS) = 1 and h0(OX(1)) = g, hence h0(OS(1)) ≤ g + 1.
But S is embedded in Pg, hence h0(OS(1)) ≥ g + 1, or better h0(OS(1)) = g + 1.
By exactness, we have H1(OS) = 0.

Let X ⊂ Pg−1 be a canonical curve of genus g ≥ 3.
The question is: when is X extendable? If extendable, when is it a hyperplane
section of a smooth surface, i.e. of a K3-surface (in this case we say K3-extendable)?
For example if g = 3, then X is a plane curve, hence extendable.
If g = 4, we showed that X = Q∩F is a complete intersection in P3 of a quadric
Q and a cubic F . We can see that there are a quadric Q′ and a cubic F ′ in P4

such that Q′ ∩ P3 = Q, F ′ ∩ P3 = F and Q′ ∩ F ′ is not a cone. It follows that X
is K3-extendable. If g = 5 and X is not trigonal, it is analogous.
Mukai showed that this still happens for g ≤ 9 (see [16, �6]). He showed more:

• If g = 6, then X is a linear section of a quadric section of the Grassmannian
G(2, 5) embedded in P9 via Plücker if and only if X has at most �nitely
many g26. See [15, �6] and [1, Proposition 1.2].

• If g = 7, then X is a linear section of the Orthogonal Grassmannian
OG(5, 10) embedded in P15 and 9 hyperplanes if and only if X has no
g14. See [14, Theorem 2].
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• If g = 8, then X is a linear section of the Grassmannian G(2, 6) embedded
in P14 via Plücker if and only if X has no g27. See [14, Theorem 1].

• If g = 9, then X is a linear section of the Symplectic Grassmannian
SpG(3, 6) embedded in P13 if and only if X has no g15. See [14, Theorem 2].

Moreover a general curve of degree 11 is K3-extendable (see [13]), but a general
curve of degree 10 is not K3-extendable (see [16, Theorem 0.7]). Finally, as we
can see in [16, �0], the space Mg of curves of genus g has dimension 3g − 3; on
the other hand the space Fg of pairs (S,X) of a K3-surface S and a curve X ⊂ S
of genus g has dimension 19 + g. Since there is a map Fg → Mg, (S,X) 7→ X
which cannot be surjective if 19 + g < 3g − 3 (i.e. g > 11), we can conclude that
a general curve of degree at least 12 is not K3-extendable.
Finally, about extendability, we can see:

Theorem 5.15.3 (Zak, see [20] and [11]).
Let X ⊂ P r be a smooth variety of codimension at least 2.
Let NX be the normal bundle of X.
If dimk Γ(X,NX(−1)) ≤ r + 1, then X is not extendable.

Theorem 5.15.4 (Wahl, see [19]).
Let X ⊂ P g−1 be a canonical curve.
Let ΦωX

:
∧2 Γ(X,ωX)→ Γ(X,ω⊗3X ) be the Wahl map.

Then dimk Γ(X,NX(−1)) = g + corank(ΦωX
).

Theorem 5.15.5 (Ciliberto-Harris-Miranda, see [4]).
Let X ⊂ P g−1 be a general canonical curve.
If either g = 10 or g ≥ 12, then ΦωX

is surjective.

Corollary 5.15.6.

Let X ⊂ P g−1 be a general canonical curve.
If either g = 10 or g ≥ 12, then X is not extendable.

We can conclude that a general canonical curve of genus g is extendable if
and only if g ≤ 9 or g = 11 (and in this case it is K3-extendable).
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5.16 Conclusion

Finally, we can summarize what has been shown so far about curves.
After having de�ned in the previous chapters three important tools (divisors, line
bundles and linear systems), we adapted what we have seen about them to the
case of curves, and we used it to achieve our goals, including that:
Every curve can be embedded in P3 .
First of all we de�ned the main notions associated to a curve, such as the degree,
the canonical divisor and the genus. The latter is an important invariant that
allowed us to make a �rst distinction; in particular we focused on the cases of low
genus and we showed that (up to isomorphism):
Genus Curves
g = 0 The only curve is P1

g = 1 Plane cubic curve

For g ≥ 2 we distinguished two types of curves: hyperelliptic and non.
First we saw that: Every curve of genus 2 is hyperelliptic .
After that we studied the non-hyperelliptic case of low genus, and we saw that in
this case we have:
Genus Canonical curves
g = 3 Plane curve of degree 4
g = 4 Complete intersection in P3 of a quadric and a cubic
g = 5 Either trigonal or complete intersection in P4 of three quadrics
g ≥ 6 Not complete intersection in Pg−1

In order to better describe a trigonal canonical curve X of genus 5, we showed
that X is contained in a rational normal scroll S in P4 (where S is the intersection
of quadrics containing X). Such curve X is residue of a line in the intersection
of S with a cubic.

Finally, we brie�y saw an exhibition of results about the extendability of curves of
higher genus. We have that: A canonical curve of genus at most 9 is K3-extendable .
Moreover, for general curves we have:
Genus General curves
g ≤ 9 K3-extendable
g = 10 Not extendable
g = 11 K3-extendable
g ≥ 12 Not extendable
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