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A chi dall’alto scruta i nostri passi,
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Introduction

For centuries, men have been intrigued by the interplay between alge-

bra and geometry. The ancient Greeks established such a link when they

found straightedge-and-compass constructions for the sum, difference, prod-

uct, quotient and square root of lengths. The next step has been the in-

vention of conics, the first curves that they thoroughly studied after straight

lines and circles to solve algebraic problems (intersection of curves for solv-

ing equations). Besides planes and spheres, the Greeks also studied some

surfaces of revolution, such as cones, cylinders, a few types of quadrics and

even tori. Possibly the single greatest step in connecting up algebra and

geometry was Descartes introduction in 1637 of Cartesian geometry (or An-

alytic geometry). It laid the mathematical foundation for the calculus and

the Newtonian physics a half century later.

In the first years of the 18th century a new era begins with the simultane-

ous introduction of points at infinity and of imaginary points: “geometry”

will now, for almost 100 years, for many mathematicians mean geometry in

the complex projective plane P2(C) or the complex projective 3-dimensional

space P3(C).

From the projective geometry of Möbius, Plücker and Cayley to the Rie-

mann’s birational geometry there has been many different approaches to

algebraic geometry. Riemann began a revolution with his introduction of

Riemann’s surfaces, Hilbert’s nonconstructive proof in 1888 of the Nullstel-

lensatz was wildly new. More recently the school including Weil, Chevalley

and Zariski revolutionized algebraic geometry by breaking away from the

constraints of working over C, replacing C by an arbitrary ground-field. The
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1950’s found a new storm brewing, one that ended up absorbing into alge-

braic geometry nearly all of commutative algebra, and topological notions

such as fibre bundles, sheaves and various cohomological theories. Following

a suggestion of Cartier, A. Grothendieck undertook around 1957 a gigantic

program aiming at a vast generalization of algebraic geometry, absorbing

all previous developments and starting from the category of all commuta-

tive rings (with unit) instead of reduced finitely generated algebras over an

algebraically closed field.

Part of the modern studies are concerned around linear series, that have

long stood at the centre of algebraic geometry. Around 1890, the Italian

school of algebraic geometry, under the leadership of a trio of great geometers:

Castelnuovo, Enriques and (slightly later) Severi, embarked upon a program

of study of algebraic surfaces (and later higher dimensional varieties) gen-

eralizing the Brill-Noether approach via linear systems: they chiefly worked

with purely geometric methods, such as projections or intersections of curves

and surfaces in projective space, with as little use as possible of methods

belonging either to analysis and topology, or to “abstract” algebra.

Systems of divisors were employed classically to study and define in-

variants of projective varieties, and it was recognized that varieties share

many properties with their hyperplane sections. The classical picture was

greatly clarified by the revolutionary new ideas that entered the field start-

ing in the 1950s. To begin with, Serre’s great paper (“Faisceaux algébriques

cohérents”), along with the work of Kodaira (e.g. “On a differential-geometric

method in the theory of analytic stacks”), brought into focus the importance

of amplitude for line bundles.

By the mid 1960s a very beautiful theory was in place, showing that

one could recognize positivity geometrically, cohomologically, or numerically.

During the same years, Zariski and others began to investigate the more

complicated behaviour of linear series defined by line bundles that may not

be ample and the theory of Q and R-divisors (e.g. “The theorem of Riemann-
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Roch for high multiples of an effective divisor on an algebraic surface”).

In this work we will concentrate on algebraic varieties.

Definition 0.0.1. An abstract variety is an integral separated scheme of

finite type over an algebraically closed field k. If it is proper over k, we will

also say it is complete.

One of the usual ways for studying properties of algebraic varieties is that

of using divisors,

Definition 0.0.2 (Weil divisors). Let X be a noetherian integral sepa- [Def.1.2.2]

rated scheme such that every local ring OX,x of X of dimension 1 is reg-

ular ([Har77]). A prime divisor on X is a closed integral subscheme Y of

codimension one. A Weil divisor is an element of the free abelian group

WDiv(X) generated by the prime divisors. We write a divisor as a finite

sum D =
∑

niYi where the Yi are prime divisors and the ni are integers. If

all the ni ≥ 0, we say that D is effective.

Similarly to Weil divisors we will consider Cartier divisors and we will

connect those definitions to that of line bundle.

Let us denote Div(X) the group of all Cartier divisors. [Def.1.2.1]

A powerful method to study algebraic varieties is to embed them, if pos-

sible, into some projective space Pn.

As it is well known ([Har77]) morphisms in projective spaces are given by

line bundles and chosen sections.

Definition 0.0.3. We define a line bundle L on X to be very ample if there [Def.2.1.2]

is an immersion i : X → Pn for some n such that L ∼= i∗(O(1)). L is said

to be ample if there exists an integer m > 0 such that L ⊗m is very ample.

Definition 0.0.4. X is a projective variety if it is proper and has an ample

line bundle.
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The central part of this work is the study of the properties of ampleness

for Z, Q and R-divisors.

Following well known facts [Laz04a], we will first give a global proof of equiv-

alence of all the already known characterizations of ampleness.

Before stating it we introduce the following notation:� ∫
V

D1 · . . . · Dk
not
= (D1 · . . . · Dk · V ) is the intersection number. [Sec.1.3]� N1(X) = DivX/NumX is the Néron-Severi group of X, group of nu- [Sec.1.3]

merical equivalence classes of divisors on X, where two divisors D1, D2

are numerically equivalent if (D1.C) = (D2.C) for every irreducible

curve C ⊆ X.� NE(X) = {
∑

ai[Ci]|Ci ⊂ Xan irreducible curve, ai ∈ R, ai ≥ 0}. [Def.2.3.5]

Proposition 0.0.5 (Ampleness for Z-divisors). Let D ∈ Div(X) be an [Pro.2.4.1]

integral Cartier divisor on a normal projective variety X, and let OX(D) be

the associated line bundle (sometimes we will think D as a Weil divisor by the

canonical correspondence (1.2.5)). The following statements are equivalent:

1. There exists a positive integer m such that OX(mD) is very ample;

2. Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX(mD)) = 0 ∀i > 0, m ≥ m1;

3. Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX(mD) is globally generated ∀m ≥ m2;

4. There is a positive integer m3 such that OX(mD) is very ample ∀m ≥

m3;

5. For every subvariety V ⊆ X of positive dimension, there is a positive

integer m = m(V ), together with a non-zero section 0 6= s = sV ∈

H0(V, OV (mD)), such that s vanishes at some point of V ;
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6. For every subvariety V ⊆ X of positive dimension,

χ(V, OV (mD)) → +∞ as m → +∞;

7. (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;

8. (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε

for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

9. Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

10. (Via cones) NE(X) − {0} ⊆ D>0 = {γ ∈ N1(X)R|(D · γ) > 0}.

11. There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

For positivity questions, it is very useful to discuss small perturbation of

given divisors. The natural way to do so is through the formalism of Q and

R-divisors:

Definition 0.0.6. Let X be an algebraic variety. A Cartier R-divisor on X

is an element of the R-vector space

DivR(X)
def
= Div(X) ⊗Z R.

Equivalently D ∈ DivR(X) ⇔ D =
∑

ciDi| ci ∈ R, Di ∈ Div(X).
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The study of those new classes of divisors began in the first part of

the 80’s. They are fundamental in the birational study of algebraic vari-

eties, in particular for some vanishing theorems as the vanishing theorem of

Kawamata and Viehweg ([Laz04b], Theorems 9.1.18 - 9.1.20 - 9.1.21) (also

note that there exist singular varieties in which the canonical divisor is a

Q-divisor).

Our aim will be to give a characterization of ampleness for those two new

classes of divisors similar to that one for Z-divisors, again following well-

known results.

Some properties of Proposition 0.0.5 (6-11) dipend only upon the numerical

class of D and it is well-known that they characterize ampleness [Laz04a].

On the other hand, some properties of integral divisors that characterize

ampleness are connected with the concept of line bundle associated to a

divisor (1-5 of Proposition 0.0.5), that is defined only for integral divisors.

To overcome this problem there are different possible ways. In this work we

have chosen to substitute any real divisor by its integral part any time we

had to consider the associated line bundle.

Given an R-divisor D =
∑

i aiDi ai ∈ R, Di ∈ Div(X) prime divisors, we

define its integral part as

[D] =
∑

i

[ai]Di ∈ Div(X).

Definition 0.0.7 (Amplitude for Q and R-divisors). A Q-divisor [Def.2.1.9]

D ∈ DivQ(X) (resp. R-divisor D ∈ DivR(X)) is said to be ample if it can be

written as a finite sum

D =
∑

ciAi

where ci > 0 is a positive rational (resp. real) number and Ai is an ample

Cartier divisor.

One of the original contributions of this work has been to obtain a charac-

terization of ampleness whenever the Q or R-divisor is replaced by its integral
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part. This is summarized in the following results:

Proposition 0.0.8 (Ampleness for Q-divisors). Let D ∈ DivQ(X) be [Pro.2.5.3]

a Cartier divisor on a normal projective variety X, and let OX([D]) be the

associated line bundle (sometimes we will think [D] as a Weil divisor by the

canonical correspondence). The following statements are equivalent to the

definition of ampleness for Q-divisors:

I) Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX([mD])) = 0 ∀i > 0, m ≥ m1;

II) Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX([mD]) is globally generated ∀m ≥ m2;

III) There is a positive integer m3 such that OX([mD]) is very ample ∀m ≥

m3;

IV) For every subvariety V ⊆ X of positive dimension, there is a positive

integer m4 = m4(V ), such that for every m ≥ m4 there exists a non-

zero section 0 6= s = sV,m ∈ H0(V, OV ([mD])), such that s vanishes at

some point of V ;

V) For every subvariety V ⊆ X of positive dimension,

χ(V, OV ([mD])) → +∞ as m → +∞;

VI) (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;

VII) (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε

7



for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

VIII) Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

IX) (Via cones) NE(X) − {0} ⊆ D>0.

X) There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

Remarks 0.0.9.

1. The equivalences VI-X with the concept of ampleness where already

known, the equivalences I-V with the concept of ampleness are original.

2. It is easy to find examples where (1) and (5) of Proposition 0.0.5 don’t

hold if we use the integral part.

3. To extend property (5) of Proposition 0.0.5 we have chosen to substitute

the existence of “m(V )” by “∀m ≥ m4(V )”.

For Q-divisors it has been quite easy to extend the properties because we

have been helped by the existence, for a Q-divisor D, of an integer k such

that kD ∈ Div(X). Over R there are serious difficulties, however we have

been able to prove the following statements:

Proposition 0.0.10. Let D ∈ DivR(X) be a Cartier divisor on a normal [Pro.2.6.4]

projective variety X, and let OX([D]) be the associated line bundle (some-

times we will think [D] as a Weil divisor by the canonical correspondence).

Consider the following properties:
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i) Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX([mD]) is globally generated ∀m ≥ m2;

ii) (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;

iii) (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε

for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

iv) Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

v) (Via cones) NE(X) − {0} ⊆ D>0.

vi) There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

vii) Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX([mD])) = 0 ∀i > 0, m ≥ m1;

viii) There is a positive integer m3 such that OX([mD]) is very ample ∀m ≥

m3;

ix) For every subvariety V ⊆ X of positive dimension, there is a positive

integer m4 = m4(V ), such that for every m ≥ m4 there exists a non-

zero section 0 6= s = sV,m ∈ H0(V, OV ([mD])), such that s vanishes at

some point of V ;
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x) For every subvariety V ⊆ X of positive dimension,

χ(V, OV ([mD])) → +∞ as m → +∞;

Then:� (i)-(vi) are equivalent to the concept of ampleness for R-divisors.� Ampleness implies either one of (vii)-(x).

Remarks 0.0.11.� It remains an open problem the equivalence of (iii) with ample, however

we have been able to prove the equivalence over a surface (Remark

2.6.3).� The equivalences (ii)-(vi) with the concept of ampleness where already

known, the equivalence (i) is original.� The fact that ampleness implies (vii)-(x) is original.

In the third chapter we introduced the big divisors, that have played

an important role in the last twenty years. Sometimes it is very difficult

to distinguish an ample from a big divisor and for this we have searched a

characterization of bigness similar to that one of ampleness, again replacing

divisors by integral part when needed.

Definition 0.0.12 (Big). A line bundle L on a projective variety X is big [Def.3.3.1]

if κ(X, L ) = dim X. A Cartier divisor D on X is big if OX(D) is so.

Definition 0.0.13 (Big R-divisors). An R-divisor D ∈ DivR(X) is big if [Def.3.3.7]

it can written in the form

D =
∑

ai · Di

where each Di is a big integral divisor and ai is a positive real number.

Proposition 0.0.14 (Bigness for R-divisors). Let D be an R-divisor on [Pro.

3.3.14]a projective variety X. The following are equivalent:
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(i) D is big;

(ii) there exists an integer a ∈ N such that ϕ|[mD]| is birational for all

m ∈ N(X, D)≥a;

(iii) ϕ|[mD]| is generically finite for some m ∈ N(X, D);

(iv) for any coherent sheaf F on X, there exists a positive integer m =

m(F ) such that F ⊗OX([mD]) is generically globally generated, that

is such that the natural map

H0(X, F ⊗ OX([mD])) ⊗C OX → F ⊗ OX([mD])

is generically surjective;

(v) for any ample R-divisor A on X, there exists an effective R-divisor N

such that D ≡num A + N ;

(vi) same as in (v) for some ample R-divisor A;

Section 3.4 is an overview of the theory of cones of big divisors. In

particular these are used in the proof of Nakai-Moishezon criterion for R-

divisors.

The last section is a very rapid introduction to the volume’s theory. It

is the natural development of this work: a new birational invariant for the

study of algebraic varieties.

Definition 0.0.15. Let X be an irreducible projective variety of dimension [Def.3.5.1]

n, and let L be a line bundle on X. The volume of L is defined to be the

non-negative real number

vol(L ) = volX(L ) = lim sup
m→∞

h0(X, L ⊗m)

nn/n!
.

The volume vol(D) = volX(D) of a Cartier divisor D is defined passing to

OX(D).

11



Chapter 1

Divisors and Intersection

Theory

1.1 Notation and Conventions� We work throughout over the complex numbers C.� A scheme is a separated complete algebraic scheme of finite type over

C.� A variety is a reduced and irreducible scheme. We deal exclusively

with closed points of schemes.� Throughout all this work we will consider a complex variety X.

1.2 Integral Divisors

We will denote MX = C(X) the constant sheaf of rational functions on

X. It contains the structure sheaf OX as a subsheaf, and so there is an

inclusion O∗
X ⊆ M∗

X of sheaves of multiplicative abelian groups.
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Definition 1.2.1 (Cartier divisors). A Cartier divisor on X is a global

section of the quotient sheaf M∗
X/O∗

X . We denote by Div(X) the group of all

such, so that

Div(X) = Γ(X, M∗
X/O∗

X).

A Cartier divisor D ∈ Div(X) can be described by giving an open cover

{Ui} of X, and for each i an element fi ∈ Γ(Ui, M
∗
X), such that for each i, j,

fi = gijfj for some gij ∈ Γ(Ui ∩ Uj , O
∗
X).

The function fi is called a local equation for D at any point x ∈ Ui. Two

such collections determine the same Cartier divisor if there is a common

refinement {Vk} of the open coverings on which they are defined so that they

are given by data {(Vk, fk)} and {(Vk, f
′
k)} with

fk = hkf
′
k on Vk for some hk ∈ Γ(Vk, O

∗
X).

If D, D′ ∈ Div(X) are represented respectively by data {(Ui, fi} and

{Ui, f
′
i}, then D + D′ is given by {Ui, fif

′
i}. The support of a divisor D =

{Ui, fi} is the set of points x ∈ X at which a local equation of D at x is not

a unit in OX,x. D is effective if fi ∈ Γ(Ui, OX) is regular on Ui.

Definition 1.2.2 (Weil divisors). Let X be a noetherian integral sepa-

rated scheme such that every local ring OX,x of X of dimension 1 is reg-

ular ([Har77]). A prime divisor on X is a closed integral subscheme Y of

codimension one. A Weil divisor is an element of the free abelian group

WDiv(X) generated by the prime divisors. We write a divisor as a finite

sum D =
∑

niYi where the Yi are prime divisors, the ni are integers. If all

the ni ≥ 0, we say that D is effective.

If D is a prime divisor on X, let η ∈ D be its generic point. Then the

local ring OX,η is a discrete valuation ring with quotient field K, the function

field of X. We call the corresponding valuation vD the valuation of D. Now

let f ∈ K∗ be a non-zero rational function on X. Then vD(f) is an integer.

13



Definition 1.2.3. We define the divisor of f , denoted div(f), by

div(f) =
∑

vD(f) · D,

where the sum is taken over all prime divisors on X. Any divisor which is

equal to the divisor of a function is called a principal divisor.

Definition 1.2.4. Two Weil divisors D and D′ are said to be linearly equiv-

alent, written D ≡lin D′, if D − D′ is a principal divisor.

Proposition 1.2.5 (Weil & Cartier). ([Har77] II.6.11) Let X be an inte-

gral, separated, noetherian scheme, all of whose local rings are unique factor-

ization domains. The group WDiv(X) of Weil divisors on X is isomorphic

to the group of Cartier divisors Div(X), and furthermore, the principal Weil

divisors correspond to the principal Cartier divisors under this isomorphism.

Another important aspect of divisors’ theory is the relation with the con-

cept of line bundles.

A Cartier divisor D ∈ Div(X) determines a line bundle OX(D) on X

leading to a canonical homomorphism

Div(X) → Pic(X) , D 7→ OX(D)

of abelian groups, where Pic(X) denotes the Picard group of isomorphism

classes of line bundles on X.

If D is given by the data {Ui, fi}, then one can build OX(D) by using the gij

of Definition 1.2.1 as transition functions.

One can also view OX(D) as the image of D under the connecting homomor-

phism

Div(X) = Γ(M∗
X/O∗

X) → H1(X, O∗
X) = Pic(X)

determined by the exact sequence 0 → O∗
X → M∗

X → M∗
X/O∗

X → 0 of sheaves

on X, where

OX(D1) ∼= OX(D2) ⇔ D1 ≡lin D2.

14



If D is effective then OX(D) carries a non-zero global section s = sD ∈

Γ(X, OX(D)) with div(s) = D. In general OX(D) has a rational section with

the analogous property.

Note 1.2.6. There are natural hypotheses to guarantee that every line bun-

dle arises from a divisor:� If X is reduced and irreducible, then the homomorphism Div(X) →

Pic(X) is surjective.� If X is projective then the same statement holds even if it is non-

reduced.

Let L be a line bundle on X, and V ⊆ H0(X, L ) a non-zero subspace

of finite dimension. We denote by |V | = Psub(V ) the projective space of

one-dimensional subspaces of V . When X is a complete variety there is a

correspondence between this set and the complete linear system of D (where

L = OX(D)), that is the set of all effective divisors linearly equivalent to

the divisor D and is denoted |D|.

Evaluation of sections in V gives rise to a morphism:

evalV : V ⊗C L
∗ → OX

of vector bundles on X.

Definition 1.2.7. The base ideal of |V |, written

b(|V |) = b(X, |V |) ⊆ OX ,

is the image of the map V ⊗C L ∗ → OX determined by evalV . The base

locus

Bs(|V |) ⊆ X

of |V | is the closed subset of X cut out by the base ideal b(|V |) (set of

points at which all the section in V vanishes). When V = H0(X, L ) or
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V = H0(X, OX(D)) are finite-dimensional, we write respectively b(|L |) and

b(|D|) for the base ideals of the indicated complete linear series.

Definition 1.2.8 (Free linear series). We say that |V | is free, or base-point

free, if its base locus is empty (that is b(|V |) = OX). A divisor D or line

bundle L is free if the corresponding complete linear series is so. In the case

of line bundles we say that L is generated by its global sections or globally

generated (for each point x ∈ X we can find a section s = sx ∈ V such that

s(x) 6= 0).

Assume now that dim V ≥ 2, and set B = Bs(|V |). Then |V | determines

a morphism

ϕ : ϕ|V | : X − B → P(V )

from the complement of the base locus in X to the projective space of one-

dimentional quotients of V . Given x ∈ X − B, ϕ(x) is the hyperplane in V

consisting of those sections vanishing at x. If we choose a basis s0, . . . , sr ∈

V , this amounts to say that ϕ is given in homogeneous coordinates by the

expression

ϕ(x) = [s0(x), . . . , sr(x)] ∈ Pr.

When X is a variety it is useful to view ϕ|V | as a rational mapping ϕ : X 99K

P(V ). If |V | is free then the morphism is globally defined.

When B = ∅ a morphism to projective space gives rise to a linear series.

Suppose given a morphism

ϕ : X → P = P(V ),

then the pullback of sections via ϕ realizes V = H0(P, OP (1)) as a subspace

of H0(X, ϕ∗(OP(1)), and |V | is a free linear series on X. Moreover, ϕ is

identified with the corresponding morphism ϕ|V |.
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1.3 Intersection theory

Given Cartier divisors D1, . . . , Dk ∈ Div(X) together with an irreducible

subvariety V ⊆ X of dimension k, we want to define the intersection number

(D1 · . . . · Dk · V )
not
=

∫

V

D1 · . . . · Dk.

We know that each of the line bundles OX(Di) has a Chern class

c1(OX(Di)) ∈ H2(X, Z), the cohomology group being ordinary singular co-

homology of X with the classical topology. The cup product of these classes

is then an element

c1(OX(D1)) ∧ . . . ∧ c1(OX(Dk)) ∈ H2k(X, Z).

Denoting by [V ] ∈ H2k(X, Z) the fundamental class of V , cap product leads

finally to an integer

(D1 · . . . · Dk · V )
def
= (c1(OX(D1)) ∧ . . . ∧ c1(OX(Dk))) ∩ [V ] ∈ Z.

that is the intersection number.

Note 1.3.1. Let n = dim X, then

(D1 · ... · Dn) =

∫

X

D1 · . . . · Dn

(Dn) =

∫

X

D · . . . · D
︸ ︷︷ ︸

n−times

The most important features of this product are:� the integer (D1 · . . . ·Dn) is symmetric and multilinear as a function of

its arguments;� (D1 · . . . ·Dn) depends only on the linear equivalence classes of the Di;
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� if D1, . . . , Dn are effective divisors that meet transversely at smooth

points of X, then (D1 · . . . · Dn) = #{D1 ∩ . . . ∩ Dn}.

Note 1.3.2. Given an irreducible subvariety V ⊆ X of dimension k, (D1 · ... ·

Dk ·V ) is then defined by replacing each divisor Di with a linearly equivalent

divisor D′
i whose support does not contain V , and intersecting the restrictions

of the D′
i on V .

Furthermore, the intersection product satisfies the projection formula:

if f : Y → X is a generically finite surjective proper map, then
∫

Y

f ∗D1 · ... · f
∗Dn = (degf) ·

∫

X

D1 · ... · Dn.

Definition 1.3.3. Two Cartier divisors D1, D2 are numerically equivalent,

D1 ≡num D2, if (D1.C) = (D2.C) for every irreducible curve C ⊆ X.

Equivalently if (D1.γ) = (D2.γ) for all one-cycles γ in X.

Definition 1.3.4. A divisor or line bundle is numerically trivial if it is nu-

merically equivalent to zero, and Num(X) ⊆ Div(X) is the subgroup con-

sisting of all numerically trivial divisors.

The Néron-Severi group of X is the free abelian group

N1(X) = DivX/NumX

of numerical equivalence classes of divisors on X.

Proposition 1.3.5. The Néron-Severi group N1(X) is a free abelian group

of finite rank.

The rank of N1(X) is called the Picard number of X and denoted ρ(X).

Lemma 1.3.6. Let X be a variety, and let D1, . . . , Dk, D
′
1, . . . , D

′
k ∈ DivX

be Cartier divisors on X. If Di ≡num D′
i for each i, then

(D1 · . . . · Dk · [V ]) = (D′
1 · ... · D

′
k · [V ])

for every subscheme V ⊆ X of pure dimension k.
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The Lemma allows the following:

Definition 1.3.7. Given classes δ1, . . . , δk ∈ N1(X), we denote by (δ1 ·. . .·δk ·

[V ]) the intersection number of any representatives of the classes in question.

Definition 1.3.8. Let X be a variety of dimension n, and let F be a coherent

sheaf on X. Then the rank rank(F ) of F is the length of the stalk of F at

the generic point of X.

Theorem 1.3.9 (Asymptotic Riemann-Roch, I). Let X be a projec-

tive variety of dimension n and let D be a divisor on X. Then the Euler

characteristic χ(X, OX(mD)) is a polynomial of degree ≤ n in m, with

χ(X, OX(mD)) =
(Dn)

n!
mn + O(mn−1).

More generally, for any coherent sheaf F on X,

χ(X, F ⊗ OX(mD)) = rank(F )
(Dn)

n!
mn + O(mn−1).

Proof:(by [Kol96])

Let Y/S be a Noetherian scheme. Let G be a coherent sheaf on Y whose

support is proper over a 0-dimensional subscheme of S. We define the

Grothendieck group of Y , K(Y ), as the abelian group generated by the sym-

bols G where for every short exact sequence

0 → G1 → G2 → G3 → 0

we have

G 2 = G 1 + G 3.

We denote by Kr(Y ) ⊆ K(Y ) the subgroup generated by those G whose

support has dimension at most r.

Let L be an invertible sheaf on X. We define an endomorphism of K(X)

c1(L ) · F = F − L −1 ⊗ F .
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Let us assume that m ≥ r = dim Supp(F ). The intersection number of

OX(D1), . . . , OX(Dm) with F is defined by

(OX(D1) · . . . · OX(Dm) · F ) = χ(X, c1(OX(D1)) · . . . · c1(OX(Dm)) · F ).

Claim 1.3.10. In Kr(Y ) we have the following equivalence:

F (mD) =

r∑

i=0

(
m + i − 1

i

)

c1(OX(D))i.F .

Proof of the Claim:

Setting n = −m we want to calculate F (mD) considering F ∈ Kr(X).

We have the formal identity

(1 + x)n =
∑

i≥0

(
n

i

)

xi.

If we substitute x = y−1 − 1 and use that
(
−m

i

)
= (−1)i

(
m+i−1

i

)
we obtain

that

ym =
∑

i≥0

(
m + i − 1

i

)

(1 − y−1)i.

If we consider y as the operator F 7→ F (D) we obtain that 1 − y−1 =

c1(OX(D)). Also c1(OX(D))i.F = 0 for i > r by the properties of intersection

theory, we have

F (mD) =

r∑

i=0

(
m + i − 1

i

)

c1(OX(D))i.F ,

and the Calim is proved.

Let us now consider the Euler characteristic, then, if n = dim X,

χ(F (mD)) =

n∑

i=0

(
m + i − 1

i

)

χ(c1(OX(D))i.F ),

where the right hand side is a polynomial in m of degree at most n and

the degree n term is
(

m + n − 1

n

)

χ(F .c1(OX(D))n) =
(Dn.F )

n!
mn + O(mn−1).
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�

Corollary 1.3.11. In the setting of the theorem, if H i(X, F ⊗L (mD)) = 0

for i > 0 and m ≫ 0, or more generally, if for i > 0, hi(X, F ⊗ L (mD)) =

O(mn−1), then

h0(X, F ⊗ L (mD)) = rank(F )
(Dn)

n!
mn + O(mn−1).

1.4 Q and R-divisors

Definition 1.4.1. Let X be an algebraic variety. A Cartier Q-divisor on X

is an element of the Q-vector space

DivQ(X)
def
= Div(X) ⊗Z Q.

Equivalently D ∈ DivQ(X) ⇔ D =
∑

ciDi| ci ∈ Q, Di ∈ Div(X).

Definition 1.4.2 (Equivalence and operations on Q-divisors). Assume

henceforth that X is complete.� Given a subscheme V ⊆ X of pure dimension k, a Q-valued intersection

product

DivQ(X) × . . . × DivQ(X) → Q,

(D1, . . . , Dk) 7→

∫

[V ]

D1 · . . . · Dk = (D1 · . . . · Dk · [V ])

is defined via extension of scalars from the analogous product on Div(X).� Two Q-divisors D1, D2 ∈ DivQ(X) are numerically equivalent, written

D1 ≡num D2 if (D1 · C) = (D2 · C) for every curve C ⊆ X. We denote

by N1(X)Q the resulting finite-dimensional Q-vector space of numerical

equivalence classes of Q-divisors.

We will denote [D]num the numerical equivalence class of D.
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� Two Q-divisors D1, D2 ∈ DivQ(X) are linearly equivalent, written

D1 ≡lin D2 if there is an integer r such that rD1 and rD2 are integral

and linearly equivalent in the usual sense.

Definition 1.4.3. Let X be an algebraic variety. A Cartier R-divisor on X

is an element of the R-vector space

DivR(X)
def
= Div(X) ⊗Z R.

Equivalently D ∈ DivR(X) ⇔ D =
∑

ciDi| ci ∈ R, Di ∈ Div(X).

Definition 1.4.4. Let D ∈ DivR(X), we say that D is effective if

D =
∑

ciAi

with ci ∈ R, ci ≥ 0 and Ai is an effective integral divisor.

Definition 1.4.5 (Numerical euivalence for R-divisors). Two R-divisors

D1, D2 ∈ DivR(X) are numerically equivalent, written D1 ≡num D2 if (D1 ·

C) = (D2 · C) for every curve C ⊆ X. We denote by N1(X)R the re-

sulting finite-dimensional R-vector space of numerical equivalence classes of

R-divisors.

We will denote [D]num the numerical equivalence class of D.
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Chapter 2

Ample and Nef divisors

2.1 Ample Divisors

Definition 2.1.1. If X is any scheme over Y , a line bundle L on X is said

to be very ample relative to Y , if there is an immersion i : X → Pr
Y for

some r, such that i∗(O(1)) ∼= L . We say that a morphism i : X → Z is

an immersion if it gives an isomorphism of X with an open subscheme of a

closed subscheme of Z.

Definition 2.1.2. Let X be a finite type scheme over a noetherian ring A,

and let L be a line bundle on X. Then L is said to be ample if L m is very

ample over SpecA for some m > 0.

Proposition 2.1.3. Let f : Y → X a finite mapping of complete schemes,

and L an ample line bundle on X. Then f ∗L is an ample line bundle on

Y .

Note 2.1.4. In particular, if Y ⊆ X is a subscheme of X, then the restriction

L |Y is ample.

Corollary 2.1.5. Let L be a globally generated line bundle on a complete

scheme X, and let ϕ = ϕ|L | : X → P = PH0(X, L ) be the resulting map

to projective space defined by the complete linear system |L |. Then L
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is ample if and only if ϕ is a finite mapping, or equivalently if and only if

(C · c1(L )) > 0 for every irreducible curve C ⊆ X.

Corollary 2.1.6 (Asymptotic Riemann-Roch, II). Let D be an ample

Cartier divisor on a projective variety X of dimension n. Then

h0(X, L (mD)) =
(Dn)

n!
mn + O(mn−1)

Example 2.1.7 (Upper bounds on h0). If E is any divisor on a variety

X of dimension n, there exists a constant C > 0 such that:

h0(X, OX(mE)) ≤ Cmn for all m.

Corollary 2.1.8. Let f : Y → X be a finite and surjective mapping of

projective schemes, and L be a line bundle on X. If f ∗L is ample on Y ,

then L is ample on X.

Definition 2.1.9 (Amplitude for Q and R-divisors). A Q-divisor

D ∈ DivQ(X) (resp. R-divisor D ∈ DivR(X)) is said to be ample if it can be

written as a finite sum

D =
∑

ciAi

where ci > 0 is a positive rational (resp. real) number and Ai is an ample

Cartier divisor.

Note 2.1.10 (A useful way to write divisors). Let D be an R-divisor,

and suppose that D =
∑

aiDi where ai ∈ R and Di ∈ Div(X), not necessar-

ily prime. For every integer m ≥ 1 we can write

mD = m
∑

aiDi =
∑

([mai]Di + {mai}Di)

so that we obtain:

[mD] =
[∑

([mai]Di + {mai}Di)
]

=
∑

[mai]Di +
[∑

{mai}Di

]

.

Now {[
∑

{mai}Di]} = {Tm} is a finite set of integral divisors, {Tm} =

{Tk1
, . . . , Tks

}.
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Remark 2.1.11. If D is an integral divisor, D is ample in the sense of

Z-divisors if and only if it is ample in the sense of R-divisors.

Proof:

If D is ample in the sense of Z-divisors, obviously D can be written as 1 · D

where D is an ample divisor, so that it is an ample real divisor.

If D =
∑

ciAi in an ample R-divisor, by Note 2.1.10 we can write [mD] =
∑

[mai]Ai + Tk for finitely many divisors Tk. As A1 is ample, by Proposition

2.4.1, there exists an integer r > 0 such that rA1 + Tk is globally generated

for every k and there exists an iteger s > 0 such that tAi is very ample for

all i and for all t ≥ s. Then, if m ≥ r+s
ai

∀i, we have

[mD] =
∑

i≥2

[mai]Ai + ([ma1] − r)A1 + (rA1 + Tk)

that is a sum of a very ample and a globally generated integral divisor, that

is very ample. But in this case [mD] = mD and we get the statement.

�

Proposition 2.1.12 (Nakai-Moishezon). D is an ample R-divisor if and

only if

(DdimV · V ) > 0

for every irreducible V ⊆ X of positive dimension.

We will give the proof for this Proposition in 3.4.3; the difficult part is to

prove that if the inequalities hold then the divisor D is ample.

Remark 2.1.13. If D =
∑

ciAi with ci > 0 and Ai integral and ample, then

(DdimV · V ) ≥
(∑

ci

)dimV

.

Corollary 2.1.14. The amplitude of an R-divisor depends only upon its

numerical equivalence class.
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Proof:

We will show that if D and B are R-divisors, with D ample and B ≡num 0,

then D + B is ample.

First we want to prove that B is an R-linear combination of numerically

trivial integral divisors. Now B is given as a finite sum

B =
∑

riBi, ri ∈ R, Bi ∈ Div(X).

The condition of being numerically trivial is given by finitely many linear

equations on the ri, determined by integrating over a set of generators of

the subgroup of H2(X, Z) spanned by algebraic 1-cycles on X. The assertion

then follows from the fact that any real solution of these equations is an

R-linear combination of integral ones.

We are now reduced to showing that if A and B are integral divisors, with

A ample and B ≡num 0, then A + rB is ample for any r ∈ R. If r is rational

we already know this. In general, we can fix rational numbers r1 < r < r2,

together with a real number t ∈ [0, 1], such that r = tr1 + (1 − t)r2. Then

A + rB = t(A + r1B) + (1 − t)(A + r2B),

exhibiting A + rB as a positive R-linear combination of ample Q-divisors.

�

Definition 2.1.15. A numerical equivalence class δ ∈ N1(X) is ample if it

is the class of an ample divisor.

Proposition 2.1.16 (Openness of amplitude for Q and R-divisors).

Let X be a projective variety and let H be an ample Q-divisor (respectively

R-divisor) on X. Given finitely many Q-divisors (resp. R-divisors) E1, ..., Er,

the Q-divisor (resp. R-divisor)

H + ε1E1 + ... + εrEr

is ample for all sufficiently small real numbers 0 ≤ |εi| ≪ 1.
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Proof:

When H and each Ei are rational, clearing denominators we can assume that

H and each Ei are integral. By taking m ≫ 0 we can arrange for any of

the 2r divisors mH ± E1, . . . , mH ± Er to be ample. Now, provided that

|εi| ≪ 1 we can write any divisor of the form H + ε1E1 + ... + εrEr as a

positive Q-linear combination of H and some of the Q-divisors H + 1
m

Ei.

But a positive linear combination of ample Q-divisors is ample.

Since each Ej is a finite R-linear combination of integral divisors, there

is no loss of generality in assuming at the outset that all the Ej are integral.

Now write H =
∑

ciAi with ci > 0 and Ai ample and integral, and fix a

rational number 0 < c ≤ c1. Then

H +
∑

εjEj = (cA1 +
∑

εjEj) + (c1 − cA1) +
∑

i≥2

ciAi.

Here the first term on the right is ample by the above proof and the remaining

summands are ample.

�

2.2 Nef Divisors

Definition 2.2.1 (Nef line bundles and divisors). Let X be a complete

variety. A line bundle L on X is numerically effective, or nef, if
∫

C

c1(L ) ≥ 0

for every irreducible curve C ⊆ X.

A Cartier R-divisor D on X is nef if

(D · C) ≥ 0

for all irreducible curves C ⊂ X.

A Cartier R-divisor D on X is strictly nef if

(D · C) > 0
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for all irreducible curves C ⊂ X.

Theorem 2.2.2 (Kleiman). Let X be a complete variety. If D is a nef

R-divisor on X, then

(Dk · V ) ≥ 0

for every irreducible subvariety V ⊆ X of dimension k > 0.

Theorem 2.2.3 (Higher cohomology of nef divisors). Let X be a pro-

jective variety of dimension n, and D an integral Cartier divisor on X. If D

is nef, then for every coherent sheaf F on X

hi(X, F (mD)) = O(mn−i).

Corollary 2.2.4. Let X be a projective variety, and D a nef R-divisor on

X. If H is an ample R-divisor on X, then

D + εH

is ample for every ε > 0. Conversely, if D and H are any two R-divisors such

that D + εH is ample for all sufficiently small ε > 0, then D is nef.

Proof:

If D + εH is ample for ε > 0, then

(D.C) + ε(H.C) = ((D + εH).C) > 0

for every irreducible curve C. Letting ε → 0 it follows that (D.C) ≥ 0, and

hence D is nef.

Assume conversely that D is nef and H is ample. Replacing εH by H , it

suffices to show that D + H is ample. To this end, as we will see, we only

need to prove that

((D + H)dimV .V ) > 0

for every subvariety V ⊆ X of positive dimension (this is called Nakai’s

criterion of ampleness).
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First suppose that D + H is a rational divisor (then the general case will

follow by an approximation argument).

Fix a variety V ⊆ X of dimension k > 0. Then

(
(D + H)k.V

)
=

k∑

s=0

(
k

s

)

(Hs.Dk−s.V ). (2.1)

Since H is a positive R-linear combination of integral ample divisors, the

intersection (Hs.V ) is represented by an effective (k − s)-cycle. Applying

Kleiman’s theorem to each of the components of this cycle, it follows that

(Hs.Dk−s.V ) ≥ 0. Thus each of the terms in (2.1) is non-negative for s 6=

k, and the last intersection number (Hk.V ) is strictly positive. Therefore

((D + H)k.V ) > 0 for every V , and in particular if D + H is rational then it

is ample (by Proposition 2.1.12).

It remains to prove that D + H is ample even when it is irrational. To

this end, choose ample divisors H1, . . . , Hr whose classes span N1(X)R. By

the open nature of amplitude (2.1.16), the R-divisor H(ε1, . . . , εr) = H −

ε1H1 − · · · − εrHr remains ample for all 0 < εi ≪ 1. Obviously there exist

0 < εi ≪ 1 such that D′ = D + H(ε1, . . . , εr) represents a rational class in

N1(X)R. The case of the corollary already treated shows that D′ is ample.

Consequently so too is

D + H = D′ + ε1H1 + · · · + εrHr.

�

Example 2.2.5 (Strictly nef but not ample). [Har70](Appendix 10)

Now we will give an example by Mumford of a divisor over a surface, that is

strictly nef but not ample, to give sense to the definition of nefness.

Let us consider a non-singular complete curve C of genus g ≥ 2 over C; we

know that there exists a stable bundle E of rank two and degree zero such

that all its symmetric powers Sm(E) are stable. Let X = P(E) be the ruled

surface over C, let π : X → C be the canonical projection and let D be the
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divisor corresponding to OX(1). Then, for every irreducible curve Y ⊆ X,

we have:� If Y is a fibre of π, then (D.Y ) = 1;� If Y is an irreducible curve of degree m over C, then Y corresponds to

a sub-line bundle M ⊆ Sm(E). But Sm(E) is stable of degree zero, so

deg M < 0. Therefore (D.Y ) = − deg M > 0.

Thus (D.Y ) > 0 for every effective curve Y ⊆ X, but D is not ample, because

(D2) = 0.

We will now give an example of Ramanujan of a divisor strictly nef but

not ample on a threefold that is based on the Example 2.2.5 of Mumford.

Example 2.2.6 (Strictly nef and big but not ample). (Definition 3.3.1)

Let X be a non-singular surface, and D a divisor with (D.Y ) > 0 for all

effective curves, and (D2) = 0 as in the Example 2.2.5 by Mumford. Let H

be an effective ample divisor on X, then we define X = P(OX(D−H)⊗OX),

and let π : X → X be the projection.

Let X0 be the zero-section of the associated vector bundle, so that (X2
0 ) =

(D − H)X . We define D = X0 + π∗H that is effective by construction.

D is positive over all effective curves Y :� If Y is a fibre of π, then

(D.Y ) = (X0.Y ) + (π∗H.Y ) = 1 + 0 = 1.� If Y ⊂ X0, then

(D.Y ) = (D|X0
.Y )|X0

= ((D − H + H).Y )X = (D.Y )X > 0.� If Y * X0, and π(Y ) is a curve Y ′ in X, then

(D.Y ) = (X0.Y ) + (π∗H.Y )

where (X0.Y ) ≥ 0 and (π∗H.Y ) = (H.Y ′)X > 0.
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On the other hand, D is not ample. In fact

(D
2
) = (D|2X0

)X0
= (D2)X = 0,

and therefore, by Nakai-Moishezon (Proposition 2.1.12) D is not ample.

On the other hand D is big (as we will see in the next chapter (Theorem

3.3.16)) because (D
3
) > 0, in fact:

(D
3
) = (D

2
.(X0 + π∗H)) =

= ((X0 + π∗H)2.π∗H) =

= ((D − H)X + 2HX + π∗H2).π∗H) =

= ((D + H).H)X + (π∗H3) > 0

because (π∗H3) = 0 and (D + H).H > 0 by Nakai-Moishezon (2.1.12).

Theorem 2.2.7 (Fujita’s vanishing theorem). Let X be a variety and

let H be an ample integral divisor on X. Given any coherent sheaf F on X,

there exists an integer m(F , H) such that

H i(X, F ⊗ OX(mH + D)) = 0 for all i > 0, m ≥ m(F , H),

and any nef divisor D on X.

2.3 Ample and Nef Cones

Definition 2.3.1 (CONES). Let V be a finite-dimensional real vector

space. A cone in V is a set K ⊆ V stable under multiplication by posi-

tive scalars.

Definition 2.3.2 (Ample and nef cones).� The ample cone Amp(X) ⊂ N1(X)R of X is the convex cone of all

ample R-divisor classes on X.
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� The nef cone Nef(X) ⊂ N1(X)R is the convex cone of all nef R-divisor

classes.

Theorem 2.3.3 (Kleiman). Let X be any projective variety or scheme.� The nef cone is the closure of the ample cone: Nef(X) = Amp(X)� The ample cone is the interior of the nef cone: Amp(X) = int(Nef(X))

Definition 2.3.4 (Numerical equivalence classes of curves). Let X be

a variety. We denote by Z1(X)R the R-vector space of real one cycles of X,

consisting of all finite R-linear combinations of irreducible curves on X. An

element γ ∈ Z1(X)R is thus a formal finite sum

γ =
∑

ai · Ci

where ai ∈ R and Ci ⊂ X is an irreducible curve.

Two one-cycles γ1, γ2 ∈ Z1(X)R are numerically equivalent if (D·γ1) = (D·γ2)

for every D ∈ DivR(X)

The corresponding vector space of numerical equivalence classes of one-cycles

is written N1(X)R. Thus one has a perfect pairing

N1(X)R × N1(X)R → R, (δ, γ) 7→ (δ · γ) ∈ R

Definition 2.3.5 (Cone of curves). Let X be a complete variety. The

cone of curves NE(X) ⊆ N1(X)R is the cone spanned by the classes of all

effective one-cycles on X.

NE(X) =
{∑

ai[Ci]|Ci ⊂ Xan irreducible curve, ai ∈ R, ai ≥ 0
}

Proposition 2.3.6. NE(X) is the closed cone dual to Nef(X):

NE(X) = {γ ∈ N1(X)R|(γ · δ) ≥ 0 ∀δ ∈ Nef(X)}

Definition 2.3.7. We denote by

D⊥ = {γ ∈ N1(X)R|(D · γ) = 0};

D>0 = {γ ∈ N1(X)R|(D · γ) > 0}.
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2.4 Ampleness for Z-divisors

Now is the time to give a global characterization of ampleness for Z, Q

and R-divisors. We will try to understand the differences among those three

classes and study the common properties. We start with the Z-divisors.

Proposition 2.4.1 (Ampleness for Z-divisors). Let D ∈ Div(X) be an

integral Cartier divisor on a normal projective variety X, and let OX(D) be

the associated line bundle (sometimes we will think D as a Weil divisor by the

canonical correspondence (1.2.5)). The following statements are equivalent:

1. There exists a positive integer m such that OX(mD) is very ample;

2. Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX(mD)) = 0 ∀i > 0, m ≥ m1;

3. Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX(mD) is globally generated ∀m ≥ m2;

4. There is a positive integer m3 such that OX(mD) is very ample ∀m ≥

m3;

5. For every subvariety V ⊆ X of positive dimension, there is a positive

integer m = m(V ), together with a non-zero section 0 6= s = sV ∈

H0(V, OV (mD)), such that s vanishes at some point of V ;

6. For every subvariety V ⊆ X of positive dimension,

χ(V, OV (mD)) → +∞ as m → +∞;

7. (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;
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8. (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε

for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

9. Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

10. (Via cones) NE(X) − {0} ⊆ D>0.

11. There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

Proof:

1 ⇒ 2) By (1), there exists m0 > 0 such that OX(m0D) is very ample.

Now we want to consider the embedding of X into some projective

space P induced by OX(m0D) and the sheaf induced by F extending

it by zero to a coherent sheaf in P. The image of OX(m0D) is the very

ample invertible sheaf OX(1) and we know ([Har77] III, 5.2 - Serre) that

there exists an integer n0 depending on F such that for each i > 0 and

each m > n0, H i(X, F ⊗ (OX(m0D))⊗m) = H i(X, F ⊗ (OX(1))⊗m) =

H i(X, F (m)) = 0.

Now we only need to replace F with the other coherent sheaves F1 =

F ⊗OX(D), ..., Fm0−1 = F ⊗OX((m0−1)D) and consider the integers

nj = nj(Fj). So we are done with

m1 = (n · m0) where n = max
j

nj .
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2 ⇒ 3) We begin fixing a closed point x ∈ X and denoting mx ⊂ OX,x the

maximal ideal sheaf of x. By the hypothesis there is an integer m2 =

m2(x) depending on F and x such that H1(X,mx ·F ⊗OX(mD)) = 0

for m ≥ m2.

Now consider the exact sequence

0 → mx · F → F → F/(mx · F ) → 0;

twisting by OX(mD) and taking cohomology we get:

0 → H0(X,mx · F ⊗ OX(mD)) → H0(X, F ⊗ OX(mD)) →

→ H0(X, F/(mx · F ) ⊗ OX(mD)) → 0

and H0(X, F ⊗OX(mD)) 6= 0 so that F ⊗OX(mD) is globally gener-

ated in an open neighborhood U of x depending on m. If we consider

F = OX , there will exist an integer n > 0 and a neighborhood V

of x such that OX(nD) is globally generated over V . Also, for each

r = 1, . . . , n − 1, like above there exists a neighborhood Ur of x such

that F ((m2 + r)D) is globally generated over Ur. Now, considering

Ux = V ∩ U1 ∩ · · · ∩ Un−1

we have that F (m) is globally generated for every m ≥ m2, writing

F ((m2 + r)D) ⊗ OX(nD)t

for suitable 0 ≤ r < n and t ≥ 0.

By quasi-compactness, we can cover X by a finite number of the open

sets Ux of x, so that now we can choose a single natural number m3 =

max m2(x) depending only on F . Then F ⊗ (mD) is generated by

global sections over all X, for all m ≥ m3.

3 ⇒ 4) We want to show that for m ≫ 0, OX(mD) induces a morphism in

some projective space that is an embedding.
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By the hypothesis, we know that there exists a positive integer n > 0

such that for every m ≥ n, OX(mD) is globally generated. We can

now consider the map:

ϕm : X → PH0(X, OX(mD))

to the corresponding projective space. We want to find m ≫ 0 such

that ϕm is an embedding (one-to-one and unramified) [Har77](II,7.3).

We now consider the open sets

Um = {y ∈ X|OX(mD) ⊗ my is globally generated}.

Given a point x ∈ X, thanks to the hypothesis, we can find an integer

m2(x) such that x ∈ Um for every m ≥ m2(x). Therefore we can

write X = ∪Um and by quasi-compactness we can find a single integer

m3 ≥ n such that for every m ≥ m3 and every x ∈ X, OX(mD) ⊗ mx

is globally generated. But this implies that ϕm(x) 6= ϕm(x′) for all

x 6= x′ and that ϕm is unramified at x. Thus ϕm is an embedding for

all m ≥ m3 and OX(mD) is very ample.

4 ⇒ 5) By the hypothesis we consider m ≫ 0 such that OX(mD) is very

ample. There is a morphism in some projective space P such that the

image of OX(mD) is the very ample invertible sheaf OX(1). Let V be

an irreducible subvariety V ⊆ X of positive dimension; then for every

point P of X there exists a divisor H ≡lin mD, such that P ∈ H and

H # V . In particular the section associated to H vanishes at P and

does not vanish on V .

5 ⇒ 6) By the hypothesis we know that for every subvariety V of positive

dimension, H0(V, OV (mD)) 6= 0 some m ≫ 0. We first prove that D is

ample by induction on the dimension of X.

Take in a first time V = X and replacing D by a multiple we can

assume that D is effective. Now, by induction OD(D) is ample, and so
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by [Laz04a] (Example 1.2.30) OX(mD) is free for m ≫ 0. Now, by the

hypothesis, OX(D) is not trivial on any curve and by [Laz04a] (Cor.

1.2.15) we have that D is ample.

Then the assertion follows by Asymptotic Riemann-Roch, I (1.3.9).

6 ⇒ 7) We want to do it by induction passing through the definition of

ampleness. If the dimension of V is 1, D is ample for H0(V, OV (mD)) 6=

0, ∃ m ≫ 0. Let us assume inductively that OE(D) is ample for every

effective divisor E on X. We assert first that

H0(X, OX(mD)) 6= 0 for m ≫ 0.

In fact, asymptotic Riemann-Roch (1.3.9) gives that

χ(X, OX(mD)) = mn (Dn)

n!
+ O(mn−1),

and we know by hypothesis that χ(X, OX(mD)) → +∞. Now write

D ≡lin A − B as a difference of very ample effective divisors. We have

the two exact sequences:

0 → OX(mD − B)
.A

→ OX((m + 1)D) → OA((m + 1)D) → 0,

0 → OX(mD − B)
.B

→ OX(mD) → OB(mD) → 0.

By induction, OA(D) and OB(D) are ample so that the higher coho-

mology of each of the two sheaves on the right vanishes when m ≫ 0,

then

H i(X, OX(mD)) = H i(X, OX(mD − B)) = H i(X, OX((m + 1)D))

for i ≥ 2. Therefore we can write χ(X, OX(mD)) = h0(X, OX(mD))−

h1(X, OX(mD)) + C for some constant C and m ≫ 0.

We now want to show that OX(mD) is globally generated, that is no
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point of D is a base point of the linear series |OX(mD)|. Consider to

this end the exact sequence

0 → OX((m − 1)D)
.D

→ OX(mD) → OD(mD) → 0.

As before OD(D) is ample by induction. Consequently OD(mD) is

globally generated and H1(X, OD(mD)) = 0 for m ≫ 0. It then follows

that the natural homomorphism

H1(X, OX((m − 1)D)) → H1(X, OX(mD))

is surjective for every m ≫ 0. The spaces in question being finite-

dimensional, the map must be an isomorphism for sufficiently large m.

Therefore the restriction mappings

H0(X, OX(mD)) → H0(X, OD(mD))

are surjective for m ≫ 0. But since OD(mD) is globally generated, it

follows that no point of Supp(D) is a basepoint of |mD|, as required.

Finally, the amplitude of OX(mD) follows from Corollary 2.1.5, in fact

by the hypothesis OX(D) restricts to an ample bundle on every irre-

ducible curve in X.

Now if D is ample, mD is very ample for some m ≫ 0, and

mdim V

∫

V

Ddim V =

∫

V

(mD)dimV

is the degree of V in the corresponding projective embedding of X;

consequently this integral is strictly positive.

7 ⇒ 8) We first prove that D is ample. If dim X = 1 is clear. By induction,

we assume that the theorem is true for all the varieties of dimension

≤ n − 1. Then we proceed like above ((6) ⇒ (7)) using the fact that

(Dn) > 0 when we use Riemann-Roch.

Now, if D is ample, there exists m ≫ 0 such that mD is very ample.
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So we can embed X in a suitable projective space P in such a way that

mD = X ∩ H for some hyperplane H ∈ P. Now for every irreducible

curve C, we have

(mD.C)X = (H.C)P = deg C ≥ multx(C)

for every x ∈ C. Then

(mD.C) ≥ multx(C) ⇒
(D.C)

multx(C)
≥

1

m
,

so the result follows with ε = 1
m

.

8 ⇒ 9) By (8) we know that (D.C)
multxC

≥ ε; in particular, considering the

divisor (D − ε′H) (for 0 < ε′ ≪ 1),

(D − ε′H).C ≥ 0 ⇒
(D.C)

(H.C)
≥ ε′.

9 ⇒ 10) Let γ ∈ NE(X); we want to prove that (D.γ) ≥ 0 and (D.γ) = 0

if and only if γ ≡num 0:

if γ ∈ NE(X), γ = limn→+∞ γn where γn ∈ NE(X), γn =
∑

ai,nCi,n

where Ci,n is an irreducible curve and ai,n ∈ R, ai,n ≥ 0. Now by (9),

for every C ⊆ X, ((D − εH).C) ≥ 0 ⇒ (D.C) > 0 that is (D.γn) ≥ 0.

Also by (9) (D.γn) =
∑

ai,n(D.Ci,n) ≥
∑

ai,nε. If (D.γ) = 0, then

0 = (D.γ) = lim
n→+∞

∑

ai,n(D.Ci,n) ≥ lim
n→+∞

∑

ai,nε ≥ 0

so that limn→+∞ ai,n = 0 for all i and so γ = limn→+∞ γn = 0.

10 ⇒ 11) Suppose that (11) does not hold. If we consider the discs Dn =

D([D]num, 1
n
) of centre [D]num and radius 1

n
. For every n we know that

there exists an element [Dn]num ∈ Dn − [D]num such that [Dn]num /∈

Amp(X). We even know that Amp(X) is open, so that N1(X)\Amp(X)

is closed. Since

lim
n→+∞

[Dn]num = [D]num
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it follows that D ∈ N1(X)\Amp(X).

Now

Nef(X) = NE(X)∗ = {δ ∈ Nef(X)|(δ.γ) ≥ 0 ∀γ ∈ NE(X)}

by (2.3.6); and so

Amp(X) = int(Nef(X)) = {δ ∈ Nef(X)|(δ.γ) > 0 ∀γ ∈ NE(X) − {0}}

so that if D ∈ N1(X)\Amp(X) there exists a one-cycle γ 6= 0 such

that (D.γ) ≤ 0, that is absurd for the hypothesis.

11 ⇒ 1) By hypothesis, there exists a neighborhood of [D]num that, except

[D]num, is all contained in Amp(X); so that there exists an open punc-

tured disc all contained in that neighborhood and so there exists ε such

that (D − εH) = N is ample for some ample divisor H . Then, as we

have seen 2.2.4, D = N + εH is ample.

�

Proposition 2.4.2. By Definition 2.1.2 every divisor that verifies

at least one of the properties of the Proposition 2.4.1 is an ample

Z-divisor.
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2.5 Ampleness for Q-divisors

We have just given a definition of ampleness for Q and R-divisors (2.1.9,

2.1.9); we want to try to understand when one of those two definitions is

equivalent to some of the properties of Proposition 2.4.1. Some of them are

automatically transferable (and for those we will directly prove that they

are equivalent to the concept of ampleness for Q and R-divisors). Other

properties depend directly on the line bundle and not on the divisor (as 2.4.1

(1) or (2)); in this case a possibility is to substitute the divisor mD by its

integral part [mD] and see if the equivalence still holds. This is what we will

try to do in this thesis.

We will now discuss the case of Q-divisors:

Example 2.5.1. The affirmation (1) in Proposition 2.4.1, when we

replace mD with its integral part, is not equivalent to the concept

of ampleness for Q-divisors.

To prove that it is not possible to extend (1), or rather that the property

of existence of an integer m such that [mD] is very ample is not sufficient to

characterize the amplitude for a Q-divisor, it is enough to find an example.

We consider a ruled rational surface Xe, e ≥ 2 defined as P(E ) = P(O ⊕

O(−e)) over P1. We now consider a divisor in the form

D =
3

2
C0 + (e + 1)f

where C0 is a section and f is a fibre of the canonical morphism over P1.

Now

[D] = C0 + (e + 1)f

is a very ample divisor by [Har77] (Theorem V.2.17) but

D.C0 =

(
3

2
C0 + (e + 1)f

)

.C0 = 1 −
e

2
< 0

so that D is not ample!
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�

Remark 2.5.2. For the same reason the affirmation (5) in Proposition 2.4.1,

when we replace mD with its integral part, is not equivalent to the concept of

ampleness for Q-divisors. In this case we will replace “∃m” by “∀ m ≥ m4”.

�

We can now enunciate the following proposition:

Proposition 2.5.3 (Ampleness for Q-divisors). Let D ∈ DivQ(X) be

a Cartier divisor on a normal projective variety X, and let OX([D]) be the

associated line bundle (sometimes we will think [D] as a Weil divisor by the

canonical correspondence). The following statements are equivalent to the

definition of ampleness for Q-divisors (Definition 2.1.9):

(I) Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX([mD])) = 0 ∀i > 0, m ≥ m1;

(II) Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX([mD]) is globally generated ∀m ≥ m2;

(III) There is a positive integer m3 such that OX([mD]) is very ample ∀m ≥

m3;

(IV) For every subvariety V ⊆ X of positive dimension, there is a positive

integer m4 = m4(V ), such that for every m ≥ m4 there exists a non-

zero section 0 6= s = sV,m ∈ H0(V, OV ([mD])), such that s vanishes at

some point of V ;

(V) For every subvariety V ⊆ X of positive dimension,

χ(V, OV ([mD])) → +∞ as m → +∞;
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(VI) (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;

(VII) (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε

for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

(VIII) Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

(IX) (Via cones) NE(X) − {0} ⊆ D>0.

(X) There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

Proof:

Claim 2.5.4. Either one of (I), (II), (III), (IV) and (V) implies

ampleness for Q-divisors

Proof:

(I) ⇒ Ample: let a ∈ N such that aD ∈ Div(X) and let m0 = ⌈m1

a
⌉ ≥ 1; if

m ≥ m0 ⇒ am ≥ am0 = a⌈m1

a
⌉ ≥ a · m1

a
= m1.

Then by hypothesis

H i(F ([amD]) = 0 ∀i > 0,

but H i(F ([amD]) = H i(F (m(aD)) = 0 so that by Proposition 2.4.2 aD is

an ample integral divisor and so D = 1
a
(aD) is an ample Q-divisor.

43



The implications (∗) ⇒ Ample, where (∗) is one of (II), (III), (IV ), (V ),

can be proved in a same way.

�

Now we want to show that if a property holds for every multiple of mD

than it is also valid for D; we will use this simple fact:

Lemma 2.5.5. Let D ∈ DivQ(X) and let k ∈ N such that kD ∈ Div(X).

Then for every m ∈ N there exist i, t ∈ N such that

[mD] = tkD + [iD], 0 ≤ i ≤ k − 1.

Proof:

D is a finite sum D =
∑

ajDj where Dj ∈ Div(X) are prime divisors and

aj ∈ Q. Now

[mD] =
∑

[maj ]Dj;

and we can always write m = tk+i with 0 ≤ i ≤ k−1 so that maj = tkaj+iaj

where kaj is an integer and therefore [maj ] = tkaj + [iaj ]. Hence:

[mD] =
∑

j

[maj ]Dj =
∑

j

(tkaj + [iaj ])Dj =

= tk
∑

j

ajDj +
∑

j

[iaj ]Dj = tkD + [iD].

�

Claim 2.5.6. Ample implies either (I), (II), (III) and (IV)

Proof:

Let us consider k ∈ N such that kD = H is an ample integral divisor and let

us use the notation of Lemma 2.5.5.

Ample ⇒ (I) Consider Fi = F ([iD]) for 0 ≤ i ≤ k − 1 and ni = ni(Fi) such that

Hj(F ([iD]) ⊗ OX(nkD)) = 0 for every j > 0 and every n ≥ ni.

Then the assertion holds with m1 = k(maxi ni).

44



Ample ⇒ (II) If H is ample, for every coherent sheaf F there exists an integer m0 =

m0(F ) such that F (mH) is globally generated for every m ≥ m0.

Consider Fi = F ([iD]) for 0 ≤ i ≤ k − 1 and mi = mi(Fi) such that

Fi(mkD) is globally generated for every m ≥ mi.

Then the assertion holds with m2 = k(maxi mi).

Ample ⇒ (III) If H is ample, by Proposition 2.4.2, for every i with 0 ≤ i ≤ k − 1,

there exists an integer ti such that tH + [iD] is globally generated for

every t ≥ ti. Also there exists s ∈ N such that tH is very ample for

every t ≥ s.

Let r = max ti and t ≥ s + r. We get

[mD] = tH + [iD] = (t − r)H + (rH + [iD])

that is a very ample divisor because it is a sum of an ample and a

globally generated divisor. To conclude we get the statement for m3 =

k(s + r).

Ample ⇒ (IV) For what we said above Ample ⇒ (III) and obviously (III)⇒ (IV) with

m4 = m3.

Ample ⇒ (V) By Theorem 1.3.9 and by Lemma 2.5.5 as OX([iD]) has rank 1 we have

that:

χ(OX([mD]) = χ(OX([iD])(tH)) =
(Hn)

n!
tn + O(tn−1)

t→+∞

−→ +∞

by Proposition 2.4.2 because of the ampleness of H .

�

Claim 2.5.7. For any D ∈ DivR(X) we have that (VI), (VII), (VIII),

(IX) and (X) are equivalent to the definition of ampleness for R-

divisors.
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(VI) The implication Ample ⇒ (VI) is obvious both for Q and R-divisors.

In fact if D is an ample R-divisor, it is a finite sum in the form
∑

ciAi

where ci > 0 and Ai is an ample and integral divisor so that by Remark

2.1.13, (D(dim V ).V ) ≥ (
∑

ci)
(dim V ) > 0.

The other implication is natural for Q-divisors: in fact if we consider

D ∈ DivQ(X) such that (VI) holds, we also know that there exists an

integer m > 0 such that mD is an integral divisor and (VI) is also valid

for mD, so mD is ample and so is D.

For R-divisors it has been proved by Campana-Peternell as we will see

in the next chapter (3.4.3).

(VII) The implication Ample ⇒ (VII) is obvious. In fact by Definition 2.1.9

if D is an ample divisor, D =
∑

ciAi where Ai is an ample integral

divisor and R ∋ ci ≥ 0. Then by Seshadri’s criterion (Proposition

2.4.1) over Z for all i, there exists εi > 0 such that

(Ai.C)

multxC
≥ εi

then
(D.C)

multxC
≥
∑

i

(ciεi) = ε > 0.

For the other implication we know that there exists ε > 0 such that
(D.C)

multxC
≥ ε for every irreducible curve C ⊆ X passing through x. We

will proceed by induction over n = dim X. In n = 1 there is nothing

to prove. For every subvariety V ⊆ X such that 0 < dim V < dim X,

D|V is ample by induction so that by 2.1.12 we only need to prove that

(Dn) > 0.

To this end, fix any smooth point x ∈ X, and consider the blowing up

in this point with exceptional divisor E:

µ : X ′ → X

∪ ∪

E → x
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we claim that the divisor µ∗D − εE is nef on X ′. Then by Theorem

2.2.2

(Dn)X − εn = ((µ∗D − εE)n)X′ ≥ 0;

therefore (Dn) > 0 as required.

For the nefness of (µ∗D − εE), fix an irreducible curve C ′ ⊂ X ′ not

contained in E and set C = µ(C ′), so that C ′ is the proper transform

of C. Then by Lemma 2.5.8 below

(C ′.E) = multxC.

On the other hand,

(C ′.µ∗D)X′ = (C.D)X

by the projection formula. So the hypothesis of the criterion implies

that ((µ∗D − εE).C ′) ≥ 0. Since O(E) is a negative line bundle on

the projective space E the same inequality certainly holds if C ′ ⊂ E.

Therefore µ∗ − εE is nef and the proof is complete.

Lemma 2.5.8. ([Laz04a] Lemma 5.1.10) Let V be a variety and x ∈ V

a fixed point. Denote by µ : V ′ → V the blowing-up of V at x, with

exceptional divisor E ⊆ V ′. Then

(−1)(1+dim V ) · (EdimV ) = multxV.

(VIII) The inequality is equivalent to the condition that D − εH be nef. If

we consider that the inequality holds, then by Corollary 2.2.4 we have

that D = (D − εH) + εH is ample.

Conversely, by the openness of the ample cone (2.1.16), if D is ample

then D − εH is even ample for 0 ≤ ε ≪ 1.

(IX) & (X) The proof of this equivalence is the same as the one we used in Propo-

sition 2.4.1 (Ample ⇒ (VIII) ⇒ (IX) ⇒ (X) ⇒ Ample).

�
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2.6 Ampleness for R-divisors

In this section we will try to formulate a proposition as complete as

possible for R-divisors, always referring to the properties of Proposition 2.4.1.

We are now beginning a discussion similar to that one made for Q-divisors:

Claim 2.6.1. The affirmations (1) and (4) in Proposition 2.4.1, when

we replace mD with its integral part, are not equivalent to the

concept of ampleness for R-divisors.

Proof:

Obviously, the example in the previous section (2.5.1) is still valid for R-

divisors.

�

Claim 2.6.2. If (III) of Proposition 2.5.3 holds for an R-divisor D,

then D is nef.

Proof:

Suppose that there exists an irreducible curve C such that D.C < 0. Since

in N1(X)R we have that limn→∞

[
[mD]

m

]

num
= [D]num we get

0 > D.C =

(

lim
m→∞

[mD]

m

)

.C = lim
m→∞

[mD].C

m
≥ 0

contradiction.

�

Remark 2.6.3. If (III) of Proposition 2.5.3 holds for an R-divisor D

over a surface, then D is ample.

Proof:

We first prove that D is strictly nef.

By Claim 2.6.2 D is nef. Suppose that there exists an irreducible curve

C ⊂ X such that D.C = 0.
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We even know that for every m > m0, [mD].C ≥ 1.

Also

0 = mD.C = [mD].C + {mD}.C ⇒ {mD}.C = −[mD].C ≤ −1.

If we write D =
∑

aiDi, ai ∈ R, Di prime divisors, then there exists j such

that (Dj.C) < 0 and so Dj = C, (C2) < 0 and (Di.C) ≥ 0 for all i 6= j.

By Weyl’s principle ([KN74]) for every a ∈ R and for every 0 < ε < 1 there

exists an integer k ≫ 0 such that {ka} < ε. Choose ε = −1
C2 and k > m0 to

obtain that {kaj}(Dj.C) = {kaj}(C
2) > −1 and we get an absurd.

For the ampleness, by Theorem 3.3.15, D2 > 0 because, for m ≥ m0,

mD = [mD] + {mD} is a sum of an ample and an effective divisor that is a

big divisor (Proposition 3.3.14).

�

Proposition 2.6.4 (Ampleness for R-divisors). Let D ∈ DivR(X) be

a Cartier divisor on a normal projective variety X, and let OX([D]) be the

associated line bundle (sometimes we will think [D] as a Weil divisor by the

canonical correspondence). The following statements are equivalent to the

definition of ampleness for R-divisors:

i) Given any coherent sheaf F on X, there exists a positive integer m2 =

m2(F ) such that F ⊗ OX([mD]) it is globally generated ∀m ≥ m2;

ii) (Nakai-Moishezon-Kleiman criterion)
∫

V

c1(OX(D))dim(V ) > 0

for every positive-dimensional subvariety V ⊆ X;

iii) (Seshadri’s criterion) There exists a real number ε > 0 such that

(D.C)

multxC
≥ ε
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for every point x ∈ X and every irreducible curve C ⊆ X passing

through x;

iv) Let H be an ample divisor. There exists a positive number ε > 0 such

that
(D.C)

(H.C)
≥ ε

for every irreducible curve C ⊆ X;

v) (Via cones) NE(X) − {0} ⊆ D>0.

vi) There exists a neighborhood U of [D]num ∈ N1(X)R such that

U\{[D]num} ⊆ Amp(X).

Proof:

If D is ample then D =
∑

aiAi where Ai is an ample integral divisor and

ai > 0, ai ∈ R. We can now consider n ≫ 0 such that nAi = Hi is a very

ample integral divisor so that, if ci = ai

n
, D =

∑
ciHi.

Ample ⇒ (i) With the notation of Note 2.1.10, for every j ∈ {1, . . . , s} there exists

nj such that F (Tkj
)(nH1) is globally generated for every n ≥ nj. Let

n′
i ≥

ni

c1
and consider

m1 = max
i

(n′
i);

then for every m ≥ m1,

F ([mD]) = F (Tkj
)([mc1]H1)

(
∑

i≥2

[mci]Hi

)

for some j. But this is a tensor product of a globally generated coherent

sheaf and a very ample divisor, whence globally generated.

(i) ⇒ Ample We first prove that [mD] is very ample for all m ≥ m0. Let H be a

very ample divisor and consider F = OX(−H). Then, by (i), there

exists m0 such that for all m ≥ m0, [mD]−H is globally generated, so

that

[mD] = ([mD] − H) + H
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is a sum of a very ample and a globally generated integral divisor, that

is very ample and we are done. Also by Claim 2.6.2 D is nef.

In particular, if D it is not ample, by Proposition 2.5.3, there exists

0 6= γ ∈ NE(X) such that (D.γ) = 0. If D =
∑

aiDi ai ∈ R, Di prime

divisor, then

|({mD}.γ)| ≤
∑

{mai}|(Di.γ)| < +∞.

For m ≥ m0, ([mD].γ) > 0, so {mD}.γ < 0 so that there exists Di

such that (Di.γ) < 0. We want to show that in this case we obtain

lim
m→∞

|({mD}.γ)| = +∞

that is absurd. In fact, for m ≥ m0,

|({mD}.γ)| = −({mD}.γ) = ([mD].γ).

Also, if we fix any real number M , there exists k ∈ N such that

−k(Di.γ) > M .

By (i) there exists m1 such that kDi + [mD] is globally generated for

all m ≥ m1.

Let us now consider m ≥ m0, m1:

|({mD}.γ)| = ([mD].γ) = (([mD] + kDi − kDi).γ) > M

since [mD] + kDi is nef, and we are done.

To conclude we get the statement by Claim 2.5.7.

�

Remark 2.6.5. The equivalences (ii)-(vi) with the concept of ampleness

where already known, the equivalence of (i) with the concept of ampleness is

original.
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For Q-divisors it has been quite easy to extend the properties because we

have been helped by the existence, for a Q-divisor D, of an integer k such that

kD ∈ Div(X). For R-divisors we found serious difficulties in working with

the integral part so that we haven’t been able to make a complete discussion

on the equivalence of all the properties. However we have been able to prove

the following statement:

Proposition 2.6.6 (Properties of ampleness for R-divisors). Let D ∈

DivR(X) be an ample Cartier divisor on a normal projective variety X, and

let OX([D]) be the associated line bundle (sometimes we will think [D] as a

Weil divisor by the canonical correspondence). Then:

a) Given any coherent sheaf F on X, there exists a positive integer m1 =

m1(F ) having the property that

H i(X, F ⊗ OX([mD])) = 0 ∀i > 0, m ≥ m1;

b) There is a positive integer m2 such that OX([mD]) is very ample ∀m ≥

m2;

c) For every subvariety V ⊆ X of positive dimension, there is a positive

integer m3 = m3(V ), such that for every m ≥ m3 there exists a non-

zero section 0 6= s = sV,m ∈ H0(V, OV ([mD])), such that s vanishes at

some point of V ;

d) For every subvariety V ⊆ X of positive dimension,

χ(V, OV ([mD])) → +∞ as m → +∞;

Proof:

If D is ample then D =
∑

aiAi where Ai is an ample integral divisor and

ai > 0, ai ∈ R. We can now consider n ≫ 0 such that nAi = Hi is a very

ample integral divisor so that, if ci = ai

n
, D =

∑
ciHi.
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Ample ⇒ (a) In analogous way to Ample ⇒ (i) of Proposition 2.6.4 and by Theorem

2.2.7, there exists an integer m2 such that

H i(X, F ([mD])) = H i

(

X, F (Tkj
)([mc1]H1)

(
∑

i≥2

[mci]Hi

))

= 0

for all m ≥ m2 and all i ≥ 1.

Ample ⇒ (b) In analogous way to Ample ⇒ (i) of Proposition 2.6.4 with F = OX .

Ample ⇒ (c) Passing through the property (b) we get the statement. In fact (c)

obviously holds for any very ample divisor.

Ample ⇒ (d) Let us consider two ample integral effective divisors A, B ⊆ V and the

canonical exact sequence of A:

0 → OV (B) → OV (A + B) → OA(A + B) → 0

so that we obtain the cohomological long exact sequence:

0 → H0(OV (B))
f
→ H0(OV (A + B))

h
→ H0(OA(A + B)) → · · ·

By the ampleness of A and B, we get that f cannot be surjective, so

that h is not the zero map, whence

h0(OV (A + B)) − h0(OV (B)) ≥ 1.

By ample ⇒ (b) we know that there exists a positive integer m0, such

that [mD] is very ample for all m ≥ m0. Also, by Note 2.1.10, [mD] =
∑

[mci]Hi + Tk.

Let n > m > m0, such that Tk(m) = Tk(n); then we obtain a new

divisor in the form [nD] =
∑

[nci]Hi+Tk, that is [nD] = [mD]+
∑

eiHi,

ei ∈ N where, if ei = 0 ∀i, we take n′ > n. Let us consider an increasing

sequence of those n.

Since [mD] and
∑

eiHi are very ample, we get that

h0(OV ([nD]|V ))
n→∞
−→ +∞.
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To conclude, since ample ⇒ (a) we get hi(V, OV ([mD]|V )) = 0 for all

i ≥ 1 and for all m ≫ 0, whence:

χ(OV ([nD]))
n→∞
−→ +∞.

�
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Chapter 3

Big and Pseudoeffective

Divisors

3.1 Fields of Rational Functions

We will now introduce a bit of a theory that is not properly pertinent but

it will be useful subsequently for a more complete definition of a new class

of divisors, the big divisors.

Let k be a field, and let R =
⊕

ν Rν be a graded k-domain such that Rν =

0 for all ν < 0. Let Q(R) be the quotient field of R and R∗ the multiplicative

subset of all nonzero homogeneous elements. Then the quotient ring (R∗)−1R

is a graded k-domain, and its degree 0 part ((R∗)−1R)0 is a field which we

denote by Q((R)).

Let N(R) = {ν ∈ N|Rν 6= 0}.

Lemma 3.1.1. Let R be as above with R 6= R0, and S =
⊕

ν Sν a graded

k-subalgebra of R. For ν ≥ 0, let S0[Sν ] denote the graded subdomain of S

generated by S0 and Sν . Then the integral closure of S in R is graded, and

(i) if Q(R) is finitely generated over k, then there exists n ≫ 0 such that

Q((S0[Sν ])) = Q((S)) for all ν ∈ N(S)≥n;
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(ii) if S is integrally closed in R, then Q((S)) is algebraically closed in

(S∗)−1R.

Proof:

(i) If we consider µ, ν ∈ N(S) with µ|ν, since S
ν/µ
µ ⊆ Sν , for every

ξ ∈ Q((S0[Sµ])), ξ = a
b

where a ∈ S0[Sµ], b ∈ S0[Sµ]∗ we have that

aν/µ, b · a(ν/µ)−1 ∈ S0[Sν ] and:

Q((S0[Sν ])) ∋
aν/µ

b · a(ν/µ)−1
=

a

b
⇒ Q((S0[Sµ])) ⊆ Q((S0[Sν ])).

Now Q(R) is finitely generated over k so that even

Q((S)) =
⋃

µ∈N(S) Q((S0[Sµ])) is, and we can choose µ ∈ N(S) such

that Q((S)) = Q((S0[Sµ])). Consider d = gcd(N(S)), let n ≫ 0 such

that N(S)≥n−µ = (dN)≥n−µ, then if ν ∈ N(S)≥n we have that Sν−µ 6= 0

so there exists an element η so that for every ξ = a
b
∈ Q((S0[Sµ])):

Q(S0[Sν ]) ∋
η · a

η · b
=

a

b
⇒ Q((S0[Sµ])) ⊆ Q((S0[Sν ])).

(ii) Since S is integrally closed in R, so is (S∗)−1S in (S∗)−1R, and hence

Q((S)) is algebraically closed in (S∗)−1R.

�

Let X be a variety, and let D be a Cartier divisor on it. Let

R(X, D) =
⊕

ν≥0

H0(X, OX(νD))

be the graded C-domain, which may be viewed as the coordinate ring of

the line bundle L (D), and let N(X, D) = N(R(X, D)) and Q((X, D)) =

Q((R(X, D))).

When X is normal and projective, the D-dimension κ(X, D) is defined as

κ(X, D) =







−∞ if N(X, D) = ∅

tr.degCQ((X, D) if N(X, D) 6= ∅
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If ν ∈ N(X, D), then R(X, D)ν = H0(X, OX(νD)) induces a rational

map

ϕ|νD| : X 99K P(H0(X, OX(νD))).

Corollary 3.1.2. Assume that X is normal and projective. If N(X, D) 6= ∅,

then there exists n ∈ N such that Q(ϕ|νD|(X)) = Q((X, D)) for all ν ∈

N(X, D)≥n.

Proof:

Follows directly from Lemma 3.1.1

�

3.2 Asymptotic theory

Definition 3.2.1 (Semigroup and exponent of a line bundle). Let L

be a line bundle on the projective variety X:� the semigroup of L is the set

N(L ) = N(X, L ) = (m ≥ 0|H0(X, L ⊗m) 6= 0);� assuming N(L ) 6= (0), the exponent e = e(L ) of L is a natural

number such that all sufficiently large elements of N(L ) are multiples

of e and all sufficiently large multiples of e appear in N(L ) and it is

the largest number with those properties.

Given m ∈ N(L ) we consider the rational mapping

ϕm = ϕ|L ⊗m| : X 99K PH0(X, L ⊗m)

and we denote Ym = ϕm(X) ⊆ PH0(X, L ⊗m) the closure of its image.

Definition 3.2.2 (Iitaka dimension).
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� if X is normal the Iitaka dimension of L is defined to be

κ(L ) = κ(X, L ) = max
m∈N(L )

{dim Ym},

if H0(X, L ⊗m) = 0 ∀m > 0, we put κ(L ) = −∞;� if X is not normal, consider the normalization ν : X ′ → X and set

κ(X, L ) = κ(X ′, ν∗L ).

Note 3.2.3. By Corollary 3.1.2 we have that the definitions of D-dimension

and Iitaka dimension are equivalent.

Corollary 3.2.4. Let L be a line bundle on a normal projective variety X,

and set κ = κ(X, L ). Then there are constants a, A > 0 such that

a · mκ ≤ h0(X, L ⊗m) ≤ A · mκ

for all sufficiently large m ∈ N(X, L ).

3.3 Big line bundles and divisors

Definition 3.3.1 (Big). A line bundle L on a projective variety X is big

if κ(X, L ) = dim X. A Cartier divisor D on X is big if OX(D) is so.

Lemma 3.3.2. Assume that X is a projective variety of dimension n. A

divisor D on X is big if and only if there is a constant C > 0 such that

h0(X, OX(mD)) ≥ C · mn

for all sufficiently large m ∈ N(X, D).

Proposition 3.3.3 (Kodaira’s lemma). Let D be a big Cartier divisor

and F an arbitrary effective Cartier divisor on X. Then

H0(X, OX(mD − F )) 6= 0

for all sufficiently large m ∈ N(X, D).
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Proof:

Suppose that dim X = n and consider the exact sequence of F

0 → OX(−F ) → OX → OF → 0

tensored by OX(mD):

0 → OX(mD − F ) → OX(mD) → OF (mD) → 0.

Since D is big, by the Lemma 3.3.2 there is a constant C > 0 such that

h0(X, OX(mD)) ≥ c · mn for sufficiently large m ∈ N(X, D). On the other

hand dim F = n−1 so that h0(F, OF (mD)) grows at most like mn−1 (Example

2.1.7). Therefore

h0(X, OX(mD)) > h0(F, OF (mD)

for large m ∈ N(X, D) and the assertion follows by the exact sequence.

�

Corollary 3.3.4 (Characterization of big integral divisors). Let D be

a Cartier divisor on a normal variety X. Then the following are equivalent:

1. D is big;

2. there exists an integer a ∈ N such that ϕ|mD| is birational for all m ∈

N(X, D)≥a;

3. ϕ|mD| is generically finite for some m ∈ N(X, D);

4. for any coherent sheaf F on X, there exists a positive integer m =

m(F ) such that F ⊗ OX(mD) is generically globally generated, that

is such that the natural map

H0(X, F ⊗ OX(mD)) ⊗C OX → F ⊗ OX(mD)

is generically surjective;
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5. for any ample integral divisor A on X, there exists a positive integer

m > 0, and an effective divisor N such that mD ≡lin A + N ;

6. same as in (5) for some integral ample divisor A;

7. there exists an ample integral divisor A, a positive integer m > 0 and

an effective divisor N such that mD ≡num A + N .

Proof:

(1) ⇒ (2) Follows directly from Corollary 3.1.2.

(2) ⇒ (3) Obvious by the birationality.

(3) ⇒ (4) Let A be a very ample divisor such that F ⊗OX(A) is generated

by the global sections. By the hypothesis dim ϕ|mD|(X) = dim X and

dim ϕ|mD|(A) 6= dim ϕ|mD|(X) so that ϕ|mD|(A) is contained in a hy-

persurface section of ϕ|mD|(X), say of degree c. Thus |mcD − A| 6= ∅,

and let E ∈ |mcD − A|.

Consider the natural application by the exact sequence of E:

H0(F (A)) → H0(F (E + A)),

now let ξ be the generic point of X and tensoring by OX,ξ = k(ξ) we

obtain another natural sequence (of OX,ξ-modules):

H0(F (A)) ⊗ k(ξ) →

→ H0(F (E + A)) ⊗ k(ξ)
ϕ
→ F (E+A) ⊗ k(ξ) ∼= F (A) ⊗ k(ξ)

s ⊗ f 7→ f · s|ξ

Since F (A) is generated by the global sections, we get that

H0(F (A)) → F (A) is surjective, whence ϕ is surjective and the im-

plication is proved for E + A ≡lin mcD.
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(4) ⇒ (5) For every ample integral divisor A, let us consider F = OX(−A).

Then, by (4) there exists m such that OX(−A)⊗OX (mD) is generically

globally generated. This implies that H0(X, OX(mD −A)) 6= 0 that is

what we needed.

(5) ⇒ (6) Trivial.

(6) ⇒ (7) Trivial.

(7) ⇒ (1) If mD ≡num A + N , then mD − N ≡num A that is mD − N is

ample; for an opportune big multiple r, rA = H is very ample and

rN = N ′ is effective, so that (considering mr = n) we have that

nD ≡lin H + N ′.

But now

κ(X, D) ≥ κ(X, H) = dim X

so D is big.

�

Corollary 3.3.5 (Exponent of a big divisor). If D is big then e(D) = 1,

that is every sufficiently large multiple of D is effective.

Definition 3.3.6 (Big Q-divisors). A Q-divisor D is big if there is a pos-

itive integer m > 0 such that mD is integral and big.

Definition 3.3.7 (Big R-divisors). An R-divisor D ∈ DivR(X) is big if it

can written in the form

D =
∑

ai · Di

where each Di is a big integral divisor and ai is a positive real number.

Proposition 3.3.8. Let D and D′ be R-divisors on X. If D ≡num D′, then

D is big if and only if D′ is big.
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Proof: Like in Corollary 2.1.14.

�

Remark 3.3.9. If D is an integral divisor, D is big in the sense of Z-divisors

if and only if it is big in the sense of R-divisors.

Proof: If D is big in the sense of Z-divisors, obviously D can be written

as 1 · D, so that it is a big R-divisor.

If D =
∑

ciBi, where ci ∈ R, ci > 0 and Bi is a big integral divisor, as we

will see in the Claim 3.3.13, there exists m0 such that [m0D] is an integral

big divisor. But in this case we have that [m0D] = m0D and we get the

statement by Corollary 3.3.4.

�

As we have just done for the ampleness, we would extend the various

properties of bigness, when it is possible, to Q and R-divisors referring us to

Corollary 3.3.4;

The first step will be to redefine the notion of semigroup:

Definition 3.3.10. Let D be a R-divisor; the semigroup of D is the set

N(D) = N(X, D) = {m ≥ 0|H0(X, OX([mD])) 6= 0};

Proposition 3.3.11 (Bigness for Q-divisors). Let D be a Q-divisor on

a projective variety X. Then the following are equivalent:

I) D is big;

II) there exists an integer a ∈ N such that ϕ|[mD]| is birational for all

m ∈ N(X, D)≥a;

III) ϕ|[mD]| is generically finite for some m ∈ N(X, D);
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IV) for any coherent sheaf F on X, there exists a positive integer m =

m(F ) such that F ⊗OX([mD]) is generically globally generated, that

is such that the natural map

H0(X, F ⊗ OX([mD])) ⊗C OX → F ⊗ OX([mD])

is generically surjective;

V) for any ample Q-divisor A on X, there exists an effective Q-divisor N

such that D ≡lin A + N ;

VI) same as in (V) for some ample Q-divisor A;

VII) there exists an ample Q-divisor A on X and an effective Q-divisor N

such that D ≡num A + N .

Proof:

(I)⇒ (II): If D is a big Q-divisor, we know that there exists k ≫ 0 such that

kD is a multiple of an integral big divisor, so that, by Corollary 3.3.4,

kD ≡lin A + E, A ample and E effective Z-divisors. By Lemma 2.5.5:

[mD] ≡lin tkD + [iD] ≡lin tA + tE + [iD], 0 ≤ i ≤ k − 1.

Let r ∈ N such that rA is very ample and let s ∈ N such that sA+[iD] is

globally generated for all i = 1, . . . , k−1. Then, for every m ≥ k(r+s),

we obtain:

[mD] ≡lin (t − s)A + (sA + [iD]) + tE = H + tE,

where H is very ample (for very ample + globally generated is very

ample) and tE is effective. To conclude

κ(X, [mD]) ≥ κ(X, H) = dim X,

hence κ(X, [mD]) = dim X by Definition 3.2.2.
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(II)⇒ (I) If (II) holds it is also true that ϕ|m(kD)| is birational for all m ∈

N(X, kD)≥ka. Now, by Corollary 3.3.4, kD is a big integral divisor,

and so D is a big Q-divisor by definition.� (III),...,(VII) are equivalent to (I):

The implication (I) ⇒ (III),...,(VII) is obvious, in fact if D is big we

only need to consider an integer m for which mD = D′ is an integral

big divisor. Now for those properties it is sufficient that there exists an

integer satisfying them. Then we only need to consider the product of

this integer with m and we obtain the statement.

Now we need to prove that if those properties hold, D is a big divisor.

(III) ⇒ (I) By (III) and by Corollary 3.3.4 we know that [mD] is big; now

mD = [mD]+ {mD} where {mD} is an effective Q-divisor. Also,

there exists an integer k > 0 such that kmD is an integral divisor,

where

kmD = k[mD] + k{mD}

that is a sum of a big and an effective integral divisor. Now, by

Corollary 3.3.4, kmD is big and accordingly D = 1
km

(kmD) is.

(IV) ⇒ (V) For every ample Q-divisor A, let us consider an effective integral

divisor E such that E − {A} is effective. Let us consider F =

OX(−[A]−E). Then, by (IV) there exists m such that OX(−[A]−

E)⊗OX([mD]) is generically globally generated. This implies that

H0(X, OX([mD] − [A] − E)) 6= 0 so that, there exists an effective

integral divisor F such that

[mD] ≡lin [A] + E + F ⇒ mD ≡lin [mD] + {mD} ≡lin

≡lin A + (E − {A}) + (F + {mD}),

that is what we needed.

(V) ⇒ (I) if this property holds, there exists an integer k > 0 such that

kmD, kA and kN are integral divisors, where kA is ample and
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kN is effective. Now, by Corollary 3.3.4, kmD is big, and so

D = 1
km

(kmD) is.

(VI) ⇒ (I) like in (V ).

(VII) ⇒ (I) like in (V ).

�

Remark 3.3.12. If B is a big rational divisor and N is an effective rational

divisor, then B + sN is big for all s ∈ R, s > 0.

Proof:

If s ∈ Q it is obvious by Proposition 3.3.11. If s ∈ R − Q we only need to

choose two positive rational numbers s1, s2 with s1 < s < s2 and t ∈ [0, 1]

such that s = ts1 + (1 − ts2). Then

B + sN = t(B + s1N) + (1 − t)(B + s2N)

that is a positive linear combination of big Q-divisors.

�

Claim 3.3.13. Let D be an R-divisor on a projective variety X. Then the

following are equivalent:

1. D is big;

2. There exists an integer m0 > 0 such that [mD] is a big integral divisor

for all m ≥ m0;

3. There exists an integer m1 > 0 such that [m1D] is a big integral divisor.

Proof:
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1 ⇒ 2) If D is a big divisor then D =
∑

aiDi, ai ∈ R, ai > 0 and Di ∈ Div(X)

big divisors. By Note 2.1.10 we can write [mD] =
∑

[mai]Di + Tk for

finitely many integral divisors Tk. We also point out that {mD} ∈

DivR(X) is an effective divisor.

By Corollary 3.3.4

[mD] ≡lin

∑

[mai](Ai + Ei) + Tk

where Ai is an ample integral divisor and Ei is an effective integral

divisor. Now we can choose r ∈ N such that tAi is very ample for every

i and for every t ≥ r. Let s ∈ N such that sA1+Tk is globally generated

for every k. If we take m0 such that [m0ai] ≥ r ∀i and [m0a1] ≥ r + s,

then for all m ≥ m0

[mD] ≡lin

∑

i≥2

[mai](Ai + Ei) + ([ma1] − s)A1 + [ma1]E1 + (sA1 + Tk)

where
∑

i≥2[mai]Ai + ([ma1] − s)A1 + (sA1 + Tk) = H is a very ample

integral divisor and
∑

i[mai]Ei = E is an effective integral divisor so

that

κ(X, [mD]) ≥ κ(X, H) = dim X,

and we get the statement.

2 ⇒ 3) Trivial.

3 ⇒ 1) We have that [m1D] is big. Now by Proposition 3.3.4 there exist an

ample integral divisor A and an effective integral divisor E such that

[m1D] ≡num A + E ⇒ m1D ≡num A + (E + {m1D})

that is the sum of an ample and an effective R-divisor. By Proposition

3.3.8 it is enough to prove that A + E + {mD} is big. So we get the

statement by Remark 3.3.12: if D =
∑

aiDi, ai ∈ R, Di prime divisors,

then

{m1D} =

s∑

i=1

{m1ai}Di
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and we can write

A + (E + {m1D}) =
s∑

i=1

1

s
(A + E + s{m1ai}Di).

�

Now we are discussing the case of R-divisors:

Proposition 3.3.14 (Bigness for R-divisors). Let D be an R-divisor on

a projective variety X. The following are equivalent:

(i) D is big;

(ii) there exists an integer a ∈ N such that ϕ|[mD]| is birational for all

m ∈ N(X, D)≥a;

(iii) ϕ|[mD]| is generically finite for some m ∈ N(X, D);

(iv) for any coherent sheaf F on X, there exists a positive integer m =

m(F ) such that F ⊗OX([mD]) is generically globally generated, that

is such that the natural map

H0(X, F ⊗ OX([mD])) ⊗C OX → F ⊗ OX([mD])

is generically surjective;

(v) for any ample R-divisor A on X, there exists an effective R-divisor N

such that D ≡num A + N ;

(vi) same as in (v) for some ample R-divisor A;

Proof:

(i)⇒ (ii) As in the proof of Claim 3.3.13 there exists a positive integer m0 such

that we can write

[mD] ≡lin H + E
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for all m ≥ m0, where H is a very ample integral divisor and E is an

effective integral divisor. Then, obviously, ϕ|[mD]| is birational for all

m ≥ m0.

(ii)⇒ (iii) Trivial.

The implication (iii)⇒ (i) is obvious, in fact like above we only need to

consider the integer m for which [mD] is big and the statement follows by

Claim 3.3.13.

(i)⇒ (iv) D is a big R-divisor, then D =
∑

aiDi, ai ∈ R, ai > 0 and Di big

integral divisor. Also by Note 2.1.10 we can write [mD] =
∑

[mai]Di +

Tk for finitely many integral divisors Tk. Let A be an ample integral

divisor, then there exists m0 = m(F (Tk)) such that F (Tk)(m0A) is

globally generated for all k. Let us denote m0A = H

Since Di is a big integral divisor, by Corollary 3.3.4 there exists mi ∈ N

such that miDi ≡lin H + Ei where Ei is an effective integral divisor.

Also, since Di is big and integral, there exists ni such that nDi is

effective for all n ≥ ni by Corollay 3.3.5.

Let m ≫ 0 such that [mai] − mi ≥ ni for all i, then

F (Tk)([mD]) = F (Tk)(

s∑

i=1

(([mai] − mi)Di + miDi))

where ([mai] − mi)Di is effective and miDi ≡lin H + Ei.

Then F (Tk)([mD]) = F (Tk)(sH+E) where E is effective and F (Tk)(sH)

is globally generated and we are done.

(iv)⇒ (v) Like in Proposition 3.3.11 (IV)⇒ (V) where we replace ≡lin by ≡num.

(v)⇒ (vi) Trivial.

(vi)⇒ (i) By (vi) we have that D ≡num A + N where A is an ample and N

is an effective R-divisor. By the openness of amplitude 2.1.16, with
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opportune E1, . . . , Er effective R-divisors, the divisor

H = A − ε1E1 − . . . − εrEr

is an ample Q-divisor, for 0 < εi ≪ 1. Also, M = N +ε1E1 + . . .+εrEr

is an effective R-divisor.

Now we can write M =
∑s

i=1 ciDi where ci ∈ R, ci > 0 and Di is a

prime divisor.

Then the results follows by Remark 3.3.12 and Proposition 3.3.8, since

we can write

D ≡num

s∑

i=1

(
1

s
H + ciDi

)

.

�

Theorem 3.3.15. Let X be a projective variety of dimension n, and let D

and E be nef Q-divisors on X. Assume that

(Dn) > n · (Dn−1 · E).

Then D − E is big.

Proof:

By continuity we can replace D and E respectively by D + εH and E + εH

for any ample divisor H and sufficiently small 0 < ε ≪ 1. Therefore we may

suppose that both D and E are ample. We can also replace by a multiple

both D and E without altering the inequality, so that we can assume D and

E to be integral and very ample.

Now choose a sequence E1, E2, E3 · · · ∈ |E| of general divisors linearly equiv-

alent to E and fix an integer m ≥ 1. Then

OX(m(D − E)) ∼= OX

(

mD −
m∑

i=1

Ei

)

,

so H0(X, OX(m(D − E))) ∼= H0(OX (mD −
∑

Ei)) is identified with the

group of sections of OX(mD) vanishing on each of the divisors E1, . . . , Em.
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Now consider the exact sequence of
∑

Ei tensored by OX(mD):

0 → H0
(

X, OX(mD −
∑

Ei)
)

→ H0(X, OX(mD)) →
m⊕

i=1

H0(Ei, OEi
(mD)).

By asymptotic Riemann-Roch on X and each Ei:

h0(X, OX(m(D − E))) ≥ h0(mD) −
m∑

i=1

h0(Ei, OEi
(mD)) =

=
(Dn)

n!
mn −

m∑

i=1

(Dn−1 · Ei)

(n − 1)!
mn−1 + O(mn−1) =

=
(Dn)

n!
mn − n

(Dn−1 · E)

n!
mn + O(mn−1).

In particular, by the hypothesis, h0(X, OX(m(D −E))) grows like a positive

multiple of mn and the assertion follows.

�

Theorem 3.3.16 (Bigness of nef divisors). Let D be a nef divisor on

a projective variety X of dimension n. Then D is big if and only if its top

self-intersection is strictly positive, that is (Dn) > 0.

3.4 Pseudoeffective and big cones

Definition 3.4.1 (Big and pseudoeffective cones). The big cone

Big(X) ⊆ N1(X)R

is the convex cone of all big R-divisors classes on X. The pseudoeffective

cone

Eff(X) ⊆ N1
R(X)

is the closure of the convex cone spanned by the classes of all effective R-

divisors. A divisor D ∈ DivR(X) is pseudoeffective if its class lies in the

pseudoeffective cone.

70



Theorem 3.4.2. The big cone is the interior of the pseudoeffective cone and

the pseudoeffective cone is the closure of the big cone:

Big(X) = int(Eff(X)) , Eff(X) = Big(X).

Theorem 3.4.3 (Nakai criterion for R-divisors). Let X be a projective

variety, and let δ ∈ N1(X)R be a class having positive intersection with every

irreducible subvariety of X. In other words, assume that

(δdim V · V ) > 0

for every V ⊆ X of positive dimension. Then δ is an ample class.

Proof: (by Campana and Peternell ([Laz04a], Theorem 2.3.18))

We want to proceed by induction on the dimension of X: if dim X = 1

it is obvious. Let now n = dim X > 1 and assume that for every proper

subvariety Y ⊂ X the restriction

δ|Y ∈ N1(Y )R

is an ample class on Y .

Let us now choose ample divisors H1, . . . , Hr whose classes h1, . . . , hr span

N1(X)R. Obviously there exists ε1, . . . , εr ∈ R, εi > 0 such that

δ′ = δ + ε1h1 + · · ·+ εrhr

is the class of a Q-divisor. Also there exist η1, . . . , ηr ∈ R, ηi > 0 such that

δ′′ = δ − η1h1 · · · − ηrhr

is the class of a Q-divisor.

Let us denote α′ =
∑

εihi, α =
∑

ηihi, so that

δ + α′ , α′ + α (= δ′ − δ′′) , δ − α
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are rational.

Moreover since (δn) > 0, we can suppose by taking α and α′ sufficiently small

that

((δ + α′)n) > n ·
(
(δ + α′)n−1 · (α + α′)

)
.

Now, by Theorem 3.3.15

δ − α = (δ + α′) − (α + α′)

is represented by an effective Q-divisor E. Denote by Y1, . . . , Yt ⊂ X the

irreducible components of a support of E.

Now δ|Yi
is ample by the induction hypothesis, so by taking sufficiently small

0 < ε ≪ 1 we can arrange that each of the restrictions (δ − εα)|Yi
are nef.

Let now C ⊂ X be any curve. If C ⊂ Yi for some i, then ((δ − εα).C) ≥ 0

for what we have just said. On the other hand, if C * Supp(E), then

E.C = ((δ − α).C) ≥ 0,

and so ((δ − εα).C) ≥ 0. Thus δ − εα is nef and then δ is ample.

�

3.5 Volume of a Big Divisor

Definition 3.5.1 (Volume of a line bundle). Let X be a projective variety

of dimension n, and let L be a line bundle on X. The volume of L is defined

to be the non-negative real number

vol(L ) = lim sup
m→∞

h0(X, L ⊗m)

mn/n!
.

The volume vol(D) = volX(D) of a Cartier divisor D is defined passing to

OX(D).

Note 3.5.2. vol(L ) > 0 if and only if L is big.
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Lemma 3.5.3. Let L be a big line bundle and let A be a very ample divisor

on X. If E, E ′ ∈ |A| are very general divisors, then

volE(L |E) = volE′(L |E′).

Lemma 3.5.4. Let D be a divisor on X, and a ∈ R a fixed positive integer,

then

lim sup
m

h0(X, OX(mD))

mn/n!
= lim sup

k

h0(X, OX(akD))

(ak)n/n!
.

Proposition 3.5.5 (Properties of the volume). Let D be a big divisor

on a variety X of dimension n.

(i) For a fixed natural number a > 0,

vol(aD) = an · vol(D).

(ii) Fix any divisor N on X, and any ε > 0. Then there exists an integer

p0 = p0(N, ε) such that

1

pn
· |vol(pD − N) − vol(pD)| < ε

for every p ≥ p0.

Proof:

(i) By Lemma 3.5.4 we get

vol(aD) = lim sup
k

h0(X, OX(akD))

(k)n/n!
=

= an lim sup
k

h0(X, OX(akD))

(ak)n/n!
= anvol(D)

(ii) We can always write N ≡lin A−B as a difference of effective divisors.

Also, by the bigness of D, there exists r ∈ N such that rD−B ≡lin B1

is an effective divisor, so that

pD − N = (p + r)D − (A + B1).
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Also, by (i)
vol(pD)

pn
= vol(D)

and

lim
p→∞

vol((p + r)D)

pn
= lim

p→∞

(p + r)n

pn
vol(D) = vol(D).

Thus we can assume that N is effective. If we consider another effective

divisor N ′ we can even say that

vol(pD − (N + N ′)) ≤ vol(pD − N) ≤ vol(pD).

So that we can prove the statement for N + N ′ instead of N . By the

arbitrarity of the divisor N ′, we can choose N ′ as a very ample divisor

such that N + N ′ is itself very ample. To conclude we can consider N

as a very ample divisor. Let us now consider an effective very general

divisor E ∈ |N |, then (like in the proof of Theorem 3.3.15 and using

Lemma 3.5.3)

h0(X, OX(m(pD − N))) ≥ h0(X, OX(mpD)) − mh0(E, OE(mpD)).

This implies that

volX(pD − N) = lim sup
m

h0(X, OX(m(pD − N)))

mn/n!
≥

≥ lim sup
m

h0(X, OX(mpD)) − mh0(E, OE(mpD))

mn/n!
=

= volX(pD) − n · volE(pD|E),

where by (i)

volE(pD|E) = pn−1volE(D|E)

and

1

pn
|volX(pD − N) − volX(pD)| ≤

∣
∣
∣
∣

−n · pn−1volE(D|E)

pn

∣
∣
∣
∣
< ε

for p ≫ 0.
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�

By Proposition 3.5.5 we can give the following:

Definition 3.5.6 (Volume of a Q-divisor). Let D be a Q-divisor. Let us

choose a ∈ N such that aD is an integral divisor, then we define the volume

of D as

vol(D) =
1

an
vol(aD).

Proposition 3.5.7 (Numerical nature of volume). If D, D′ are numer-

ically equivalent divisors on X, then

vol(D) = vol(D′).

Theorem 3.5.8 (Continuity of volume). Let X be a variety of dimension

n, and fix a norm ‖ ‖ on N1(X)R inducing the usual topology on that finite-

dimensional vector space. Then there is a constant C > 0 such that

|vol(ξ) − vol(ξ′)| ≤ (max(‖ ξ ‖ , ‖ ξ′ ‖))
n−1

· ‖ ξ − ξ′ ‖

for any two classes ξ, ξ′ ∈ N1(X)Q.

By Theorem 3.5.8 we can give the following:

Corollary 3.5.9 (Volume of real classes). The function ξ → vol(ξ) on

N1(X)Q extends uniquely to a continuous function

vol : N1(X)R → R.

Definition 3.5.10 (Volume of an R-divisor). Let D be an R-divisor. The

volume of D is the volume of its class in N1(X)R

vol(D) = vol([D]num).
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loro se non dimenticherò mai questi bellissimi anni. Grazie ai fabrianesi, per

aver continuato ad esserci nonostante la poco presenza e le tante buche...

Grazie a tutti quelli che mi hanno sostenuto e mi sosterranno nella vita,
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