GE110 - Geometria 1: Tutorato 11

Docente: Angelo Felice Lopez Tutori: Gaudenzio Falcone, Lucia Carsetti Università degli Studi Roma Tre - Dipartimento di Matematica

26 Maggio 2017

Esercizio 1 (Secondo esonero a.a. 2003-2004) Siano $U, V \in W$ tre spazi vettoriali reali e siano $G: U \longrightarrow V, F: V \longrightarrow W$ due applicazioni lineari.

- (a) Si dimostri che se $F \circ G$ é suriettiva allora F é suriettiva;
- (b) Si supponga ora che F é suriettiva. Si dimostri che $F \circ G$ é suriettiva se e solo se N(F) + ImG = V;
- (c) Si costruisca un esempio esplicito in cui $F \circ G$ é suriettiva e $N(F) \oplus ImG = V$.

Soluzione: Vedere Es.3 Secondo esonero a.a. 2003-2004 http://www.mat.uniroma3.it/didattica_interattiva/aa_03_04/ge1/GE1sec-esonero-testoesoluz.pdf

Esercizio 2 (Appello A a.a. 2012-2013) Siano V e W due spazi vettoriali reali, $F: V \longrightarrow W$ un'applicazione lineare e $U \subset V$ un sottospazio tale che Im(F) e $N(F) \oplus U$ hanno la stessa dimensione (finita).

- (a) Dimostrare che esiste un sottospazio U' di V tale che $N(F) \subset U'$ e $V/U' \cong N(F) \oplus U$;
- (b) Dimostrare che se V ha dimensione finita allora U' é unico e dimV + dimU é pari.

Soluzione: Vedere Es.6 Appello A a.a. 2012-2013 http://ricerca.mat.uniroma3.it/users/lopez/corsi/GE110-2012-13/13-6-2013-Testo-e-soluzioni.pdf

Esercizio 3 (Secondo esonero a.a. 2011-2012) Siano V e W due spazi vettoriali reali di dimensione finita, $dimV \geq 2$ e $dimW \geq 2$ e $siano F, G : V \longrightarrow W$ due applicazioni lineari tali che $F \neq G$ e N(F) = N(G).

- (a) Dimostrare che se $W = Im(F) \oplus Im(G)$ allora dimW è pari e dim $W \le 2dimV$.
- (b) Sia ora W di dimensione dispari. E' possibile che $dim(Im(F) \oplus Im(G)) = dimW 1$?

Soluzione: Vedere Es.3 Secondo esonero a.a. 2011-2012 http://ricerca.mat.uniroma3.it/users/geometria/esamiGE110/secondo-esonero-soluzioni.pdf

Esercizio 4 (Secondo esonero a.a. 2012-2013) Sia $v_1 = (1, -1, 0, 0), v_2 = (0, -1, 0, 2) \in \mathbb{R}^4$, sia $U = \langle v_1, v_2 \rangle$ e sia F un'applicazione lineare tale che:

$$F_{|U} = id_U, \ F(e_3) \in \langle e_3 \rangle, \ F(e_2) = e_1 - 2e_4,$$

dove $\{e_1, e_2, e_3, e_4\}$ è la base canonica di \mathbb{R}^4 . Scelto un opportuno parametro $k \in \mathbb{R}$:

(a) Determinare il polinomio caratteristico e gli autovalori di F;

- (b) Trovare le dimensioni degli autospazi di F; inoltre, individuato un autovalore $\lambda \neq 0$ di F con molteplicità algebrica $\neq 1$, trovare una base per l'autospazio di F associato a λ .
- (c) Determinare i valori di k per i quali F é diagonalizzabile.

Soluzione: Vedere Es.1 Secondo esonero 2012-2013 http://ricerca.mat.uniroma3.it/users/lopez/corsi/GE110-2012-13/secondo-esonero-soluzioni.pdf

Esercizio 5 (Secondo esonero a.a 2014-2015) Sia $k \in \mathbb{R}$. In uno spazio affine A di dimensione 4 sia O, e_1, e_2, e_3, e_4 un riferimento affine e siano X, Y, Z, W le coordinate. Siano S e T_k i due sottospazi con le seguenti equazioni:

$$S: \begin{cases} X - Y + W = 2 \\ X + Y - Z = 0 \end{cases}$$

$$T_k: \begin{cases} X - Y - Z = 2 \\ Y + W = 0 \\ kX + (2 - k)Y + Z + 2W = -1 \end{cases}$$

- (a) Determinare i valori di k per i quali S e T_k sono sottospazi affini di A e, in tal caso, calcolare la loro dimensione.
- (b) Determinare se esiste un k tale che S e T_k sono paralleli.
- (c) Determinare per quali k esiste una retta r tale che $r \subseteq Se$ $r \subseteq T_k$.

 $\begin{tabular}{ll} \textbf{Soluzione:} Vedere Es. 2 Secondo esonero a.a. 2014-2015 \\ http://ricerca.mat.uniroma3.it/users/lopez/corsi/GE110-2014-15/secondo-esonero-soluzioni.pdf \\ \end{tabular}$

Esercizio 6 (Secondo esonero a.a. 2013-1014) Sia $k \in \mathbb{R}$. In uno spazio affine A di dimensione 4 sia O, e_1, e_2, e_3, e_4 un riferimento affine e siano X, Y, Z, W le coordinate. Siano S e T_k i sottospazi con le seguenti equazioni:

$$S: \begin{cases} X - Y + Z = -1 \\ X + Y = 2 \end{cases} \qquad T_k: \begin{cases} (k+1)X + (k-1)Y + Z + kW = -1 \\ 3X + 3Y = 6 \end{cases}$$

- (a) Calcolare la dimensione di S e di T_k .
- (b) Determinare per quali valori di k si ha che S è parallelo a T_k .
- (c) Determinare le equazioni di tutte le rette r in A tali che r sia parallela a S e T_k .

Soluzione: Vedere Es.2 Secondo esonero a.a. 2013-2014 http://ricerca.mat.uniroma3.it/users/lopez/corsi/GE110-2013-14/secondo-esonero-soluzioni.pdf

Esercizio 7 (Secondo esonero a.a. 2013-2014) Sia V uno spazio vettoriale di dimensione 4 con base $\{e_1, e_2, e_3, e_4\}$. Siano $v = 2e_1 + e_3$ e $w \in V$ tale che $w \notin e_1, e_2, e_3 > 0$. Sia $k \in \mathbb{R}$ e sia F un endomorfismo di V tale che

$$v \in N(F), \ F(e_2) = ke_2 + w, \ F(e_1 + e_3) = e_1 + (2 - 2k)e_2 + e_3 + \frac{7}{4}w, \ F(w) = v + 2e_2 + e_1 + e_3.$$

- (a) Determinare il polinomio caratteristico e gli autovalori di F.
- (b) Determinare i valori di k per i quali F è diagonalizzabile.

Soluzione: Vedere Es.2 Secondo esonero a.a. 2013-2014 http://ricerca.mat.uniroma3.it/users/lopez/corsi/GE110-2013-14/secondo-esonero-soluzioni.pdf