UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

GE110 - Geometria 1

a.a. 2024-2025

Prova scritta del 18-9-2025

TESTO E SOLUZIONI

1. Per $k \in \mathbb{R}$ considerare il sistema lineare

$$\begin{cases} X_1 - kX_2 + X_3 - X_4 = 1\\ 2X_1 + X_2 + kX_3 = 1\\ 3X_1 + 2X_3 - X_4 = 2\\ 4X_1 + (k+1)X_2 + (k+1)X_3 = 2 \end{cases}.$$

- (a) Determinare i valori di k per i quali il sistema è (o no) compatibile.
- (b) Per i valori di k per i quali il sistema è compatibile, calcolare esplicitamente le soluzioni.

SOLUZIONE:

Applichiamo operazioni elementari alla matrice orlata

$$\begin{pmatrix} 1 & -k & 1 & -1 & 1 \\ 2 & 1 & k & 0 & 1 \\ 3 & 0 & 2 & -1 & 2 \\ 4 & k+1 & k+1 & 0 & 2 \end{pmatrix}.$$

Scambiando R_1 con R_3 si trova

$$\begin{pmatrix} 3 & 0 & 2 & -1 & 2 \\ 2 & 1 & k & 0 & 1 \\ 1 & -k & 1 & -1 & 1 \\ 4 & k+1 & k+1 & 0 & 2 \end{pmatrix}$$

da cui con le operazioni $R_2 \to \frac23 R_1 - R_1, R_3 \to R_3 - \frac13 R_1, R_4 \to R_4 - \frac43 R_1$ si ottiene

$$\begin{pmatrix} 3 & 0 & 2 & -1 & 2 \\ 0 & 1 & k - \frac{4}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & -k & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ 0 & k+1 & k - \frac{5}{3} & \frac{4}{3} & -\frac{2}{3} \end{pmatrix}$$

e con le operazioni $R_3 \to R_3 + kR_2, R_4 \to R_4 - (k+1)R_2$ si ha

$$\begin{pmatrix} 3 & 0 & 2 & -1 & 2 \\ 0 & 1 & k - \frac{4}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & k^2 - \frac{4k}{3} + \frac{1}{3} & \frac{2k}{3} - \frac{2}{3} & -\frac{k}{3} + \frac{1}{3} \\ 0 & 0 & -k^2 + \frac{4k}{3} - \frac{1}{3} & -\frac{2k}{3} + \frac{2}{3} & \frac{k}{3} - \frac{1}{3} \end{pmatrix}$$

da cui, con l'operazione $R_4 \to R_4 + R_3$ si trova

$$\begin{pmatrix} 3 & 0 & 2 & -1 & 2 \\ 0 & 1 & k - \frac{4}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & k^2 - \frac{4k}{3} + \frac{1}{3} & \frac{2k}{3} - \frac{2}{3} & -\frac{k}{3} + \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

e con le operazioni $R_2 \to 3R_2, R_3 \to 3R_3$ si ottiene la matrice

$$A = \begin{pmatrix} 3 & 0 & 2 & -1 & 2 \\ 0 & 3 & 3k - 4 & 2 & -1 \\ 0 & 0 & 3k^2 - 4k + 1 & 2k - 2 & -k + 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Osserviamo che $3k^2 - 4k + 1 = 0$ se e solo se $k \in \{\frac{1}{3}, 1\}$.

Se $k = \frac{1}{3}$ la matrice A è

$$\begin{pmatrix}
3 & 0 & 2 & -1 & 2 \\
0 & 3 & -3 & 2 & -1 \\
0 & 0 & 0 & -\frac{4}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

ed il sistema è compatibile, con soluzioni

$$X_4 = -\frac{1}{2}, \ X_3 = t, \ X_2 = t, \ X_1 = -\frac{2t}{3} + \frac{1}{2}, t \in \mathbb{R}.$$

Se k = 1 la matrice A è

$$\begin{pmatrix}
3 & 0 & 2 & -1 & 2 \\
0 & 3 & -3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

ed il sistema è compatibile, con soluzioni

$$X_4 = t, \ X_3 = s, \ X_2 = \frac{1}{3}(s - 2t - 1), \ X_1 = \frac{1}{3}(-2s + t + 2), s, t \in \mathbb{R}.$$

Se $k \notin \{1, \frac{1}{3}\}$, il sistema (o la matrice) è a gradini, pertanto compatibile, con soluzioni

$$X_4 = t$$
, $X_3 = \frac{2t+1}{1-3k}$, $X_2 = \frac{2t+1}{1-3k}$, $X_1 = \frac{t+kt+2k}{3k-1}$.

Concludiamo che il sistema iniziale è compatibile per ogni $k \in \mathbb{R}$.

 $\mathbf{2}$. Siano k un numero reale e siano

$$v_1 = (1, 1, 1, 0), v_2 = (1, 1, 1, k - 1), v_3 = (0, 1, 0, 1) \in \mathbb{R}^4.$$

Sia $U_k = \langle v_1, v_2, v_3 \rangle$ e sia $W_k \subseteq \mathbb{R}^4$ il sottospazio vettoriale delle soluzioni del sistema lineare omogeneo

$$\begin{cases} X+Y+Z=0\\ X+Y+W=0\\ -X-Y+Z+kW=0 \end{cases}$$

dove X, Y, Z, W sono coordinate in \mathbb{R}^4 .

- (a) Determinare le dimensioni di U_k e di W_k e scrivere esplicitamente una base di U_k ed una di W_k .
- (b) Determinare le dimensioni di $U_k + W_k$ e di $U_k \cap W_k$.
- (c) Sia $V \subseteq \mathbb{R}^4$ un sottospazio di dimensione a. Per quali a,k abbiamo che $U_k \cup W_k \subseteq V$? **SOLUZIONE:**

(a) Per calcolare la dimensione ed una base di U_k , consideriamo la matrice dei suoi gener-

 $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & k-1 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$

Si ha

atori

$$\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1, \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = 0, \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & k - 1 \\ 0 & 1 & 1 \end{vmatrix} = 1 - k.$$

Pertanto, per il principio dei monori orlati, dim $U_k = r(A) = \begin{cases} 2 & \text{se } k = 1 \\ 3 & \text{se } k \neq 1 \end{cases}$. Inoltre, sempre da A, deduciamo che una base di U è: $\{v_1, v_2, v_3\}$ se $k \neq 1$ e $\{v_2, v_3\}$ se k = 1. Per calcolare la dimensione di W_k e trovarne una base, risolviamo il sistema. Facciamo quindi operazioni elementari sulla matrice

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & -1 & 1 & k \end{pmatrix}.$$

Con le operazioni $R_2 \to R_2 - R_1, R_3 \to R_3 + R_1$ otteniamo

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 2 & k
\end{pmatrix}$$

da cui, con l'operazione $R_3 \rightarrow R_3 + 2R_2$ si trova

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & k+2 \end{pmatrix}.$$

Ne deduciamo che le soluzioni del sistema sono:

$$(-s-t, s, t, t) = s(-1, 1, 0, 0) + t(-1, 0, 1, 1), s, t \in \mathbb{R} \text{ se } k = -2$$

e

$$(-t, t, 0, 0) = t(-1, 1, 0, 0), t \in \mathbb{R} \text{ se } k \neq -2.$$

Pertanto, dim $W_k = \begin{cases} 2 & \text{se } k = -2 \\ 1 & \text{se } k \neq -2 \end{cases}$ e una sua base è $\{(-1, 1, 0, 0), (-1, 0, 1, 1)\}$ se k = -2 e $\{(-1, 1, 0, 0)\}$ se $k \neq -2$.

(b) Osserviamo che

$$\begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & k-1 \\ 0 & 1 & 0 & 1 \\ -1 & 1 & 0 & 0 \end{vmatrix} = k-1$$

da cui deduciamo che dim $(U_k + W_k) = 4$ se $k \neq 1$. La formula di Grassmann ci dice che

$$\dim(U_k \cap W_k) = \begin{cases} 1 & \text{se } k = -2 \\ 0 & \text{se } k \notin \{1, -2\} \end{cases}.$$

Se k = 1, osserviamo che la matrice

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0
\end{array}\right)$$

ha rango 3 dato che $\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = 1 \neq 0$, da cui deduciamo che dim $(U_1 + W_1) = 3$ e la formula di Grassmann ci dice che

$$\dim(U_1 \cap W_1) = 0.$$

(c) Essendo $U_k \cup W_k \subseteq V \subseteq \mathbb{R}^4$ deduciamo che

$$\dim(U_k \cap W_k) \le \dim V = a \le 4 = \dim \mathbb{R}^4.$$

Ne deduciamo dalla (b) che, se $k \neq 1$, allora a = 4, mentre se k = 1 allora $3 \leq a \leq 4$.

3. Sia $k \in \mathbb{R}$ e sia V uno spazio vettoriale di dimensione 4 con base $\{e_1, e_2, e_3, e_4\}$. Siano $U = \langle e_1 + e_2 \rangle$ e sia F un endomorfismo di V tale che

$$e_3 \in N(F), F_{|U} = 2\operatorname{Id}_U, F(e_2 + e_4) = 2e_1 + (k+3)e_2 + ke_3 + e_4, F(e_2) = e_1 + (k+1)e_2 + e_4.$$

- (a) Determinare una matrice di F, il polinomio caratteristico e gli autovalori di F;
- (b) Trovare le dimensioni degli autospazi di F; inoltre, scelto un valore di k e individuato un autovalore $\lambda \neq 0$ di F con molteplicità algebrica $\neq 1$, trovare una base per l'autospazio di F associato a λ ;
- (c) Determinare i valori di k per i quali F è diagonalizzabile.

SOLUZIONE:

(a) Sappiamo che

$$F(e_3) = 0$$

dato che $e_3 \in N(F)$ e

$$F(e_1 + e_2) = 2(e_1 + e_2)$$

dato che $e_1 + e_2 \in U$ e $F_{|U} = 2 \mathrm{Id}_U$. Osserviamo che

$$e = \{e_1 + e_2, e_3, e_2, e_4\}$$

è una base dato che

$$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = -1 \neq 0$$

e scriviamo la matrice di F nella base e. Si vede subito che

$$F(e_2) = (e_1 + e_2) + ke_2 + e_4$$

mentre

$$F(e_4) = F(e_2 + e_4) - F(e_2) = (e_1 + e_2) + ke_3 + e_2.$$

Pertanto la matrice di F nella base e è

$$M_e(F) = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & k \\ 0 & 0 & k & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

ed il polinomio caratteristico di F è

$$P_F(T) = \begin{vmatrix} 2 - T & 0 & 1 & 1 \\ 0 & -T & 0 & k \\ 0 & 0 & k - T & 1 \\ 0 & 0 & 1 & -T \end{vmatrix} = T(T - 2)(T^2 - kT - 1)$$

e gli autovalori di F sono $\lambda_1=0, \lambda_2=1$ e $\frac{k\pm\sqrt{k^2+4}}{2}$. Osserviamo che

$$\frac{k \pm \sqrt{k^2 + 4}}{2} = 0$$

implica che 4 = 0, ovvero non è possibile, mentre

$$\frac{k \pm \sqrt{k^2 + 4}}{2} = 1$$

se e solo se $k = \frac{3}{2}$. Dunque

Autovalori di F e loro molteplicità algebrica (m.a.)

$k = \frac{3}{2}$	$\lambda_1 = 0 \text{ (m.a. 1)}, \ \lambda_2 = 2 \text{ (m.a. 2)}, \ \lambda_3 = -\frac{1}{2} \text{ (m.a. 1)}$
$k \neq \frac{3}{2}$	$\lambda_1 = 0 \text{ (m.a. 1)}, \ \lambda_2 = 2 \text{ (m.a. 1)}, \ \lambda_3 = \frac{k - \sqrt{k^2 + 4}}{2} \text{ (m.a. 1)},$
	$\lambda_4 = \frac{k + \sqrt{k^2 + 4}}{2}$ (m.a. 1)

(b) Le dimensioni degli autospazi di F saranno sempre 1 nei casi in cui la molteplicità algebrica è 1. Se $k=\frac{3}{2}$ consideriamo $\lambda_2=2$ e calcoliamo la base dell'autospazio $V_2(F)$. Si ha

$$(M_e(F) - 2I_2) \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & -2 & 0 & \frac{3}{2} \\ 0 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = 0$$

se e solo se

$$\begin{cases} z + w = 0 \\ -2y + \frac{3}{2}w = 0 \\ -\frac{1}{2}z + w = 0 \\ z - 2w = 0 \end{cases}$$

le cui soluzioni sono y=z=w=0, da cui gli autovettori di F associati all'autovalore 2 sono tutti del tipo $x(e_1+e_2)$. Ne segue che una base di $V_2(F)$ è $\{e_1+e_2\}$ e dim $V_2(F)=1$. (c) Osserviamo da (a) e (b) che la somma delle molteplicità geometriche è 4 se e solo se $k\neq \frac{3}{2}$. Se ne conclude che F è diagonalizzabile se e solo se $k\neq \frac{3}{2}$.

4. Sia $k \in \mathbb{R}$. In uno spazio affine A di dimensione 4 sia O, e_1, e_2, e_3, e_4 un riferimento affine e siano X, Y, Z, W le coordinate. Sia S_k il sottospazio passante per il punto Q = Q(1, 1, 1, 0) e di giacitura $W_k = \langle e_1, e_3 + e_4, e_1 - ke_3 + ke_4 \rangle$. Sia T_k il sottospazio con le seguenti equazioni:

$$T_k: \begin{cases} X - Y + Z = 1 \\ Y - W = k \\ (k-1)Z + (k-1)W = k \end{cases}.$$

(a) Calcolare la dimensione di S_k e di T_k .

- (b) Determinare per quali valori di k esiste una retta $r \subset A$, passante per Q, che sia parallela ad S_k ed a T_k . Se esistono tali valori di k, scrivere le equazioni di tutte le possibili r.
- (c) Determinare i valori di k, se esistono, per i quali c'è un piano $p \subset A$ tale che $Q \in p$, p è incidente a S_k e p è parallelo a T_k . Se esistono tali valori di k, scrivere le equazioni di tutti i possibili p.

SOLUZIONE:

(a) Consideriamo la matrice dei generatori della giacitura di S_k :

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & -k & k \end{pmatrix}.$$

Si ha

$$\dim(S) = r(A) = \begin{cases} 3 & \text{se } k \neq 0 \\ 2 & \text{se } k = 0 \end{cases}.$$

Ora consideriamo il sistema che definisce T_k , che ha matrice

$$\begin{pmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & k \\ 0 & 0 & k-1 & k-1 & k \end{pmatrix}.$$

Si vede subito che, se $k \neq 1$, il sistema è a gradini, quindi compatibile con matrice dei coefficienti di rango 3, quindi

$$\dim T_k = 4 - 3 = 1 \text{ se } k \neq 1.$$

Invece, se k=1, il sistema è incompatibile e T_1 non è un sottospazio.

Quindi, da ora in poi, assumiamo che $k \neq 1$.

(b) La giacitura di T_k è data dalle soluzioni del sistema omogeneo

$$\begin{cases} X - Y + Z = 0 \\ Y - W = 0 \\ (k-1)Z + (k-1)W = 0 \end{cases}$$

che, posto W = t per $t \in \mathbb{R}$, sono

$$(X, Y, Z, W) = (2t, t, -t, t) = t(2, 1, -1, 1).$$

Pertanto

$$\operatorname{giac}(T_k) = \langle 2e_1 + e_2 - e_3 + e_4 \rangle.$$

Osserviamo che, per ogni k si ha

(*)
$$\operatorname{giac}(T_k) \not\subset \operatorname{giac}(S_k)$$
.

Infatti, se $k \neq 0$, la matrice

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & -k & k \\ 2 & 1 & -1 & 1 \end{pmatrix}$$

ha determinante $2k \neq 0$, quindi ha rango 4; mentre, se k = 0, la matrice

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
2 & 1 & -1 & 1
\end{pmatrix}$$

ha il minore $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -1 \end{vmatrix} = -1 \neq 0,$ quindi ha rango 3.

Se esistesse una retta r parallela ad S_k ed a T_k allora si avrebbe che

$$\operatorname{giac}(T_k) = \operatorname{giac}(r) \subset \operatorname{giac}(S_k)$$

contraddicendo (*). Dunque non esiste una retta $r \subset A$, passante per Q, che sia parallela ad S_k ed a T_k

(c) Sia $p \subset A$ un piano tale che $Q \in p$. Abbiamo che p è parallelo a T_k se e solo se

$$giac(T_k) \subset giac(p)$$

dunque se e solo se

$$giac(p) = \langle 2e_1 + e_2 - e_3 + e_4, ae_1 + be_2 + ce_3 + de_4 \rangle$$

per qualche $a, b, c, d \in \mathbb{R}$ tali che

(**)
$$\begin{pmatrix} 2 & 1 & -1 & 1 \\ a & b & c & d \end{pmatrix}$$
 ha rango 2.

Del resto, abbiamo già visto in (*) che giac $(T_k) \not\subset \text{giac}(S_k)$, ovvero che $2e_1 + e_2 - e_3 + e_4 \not\in \text{giac}(S_k)$. Pertanto un piano p come sopra non è parallelo a S_k . Essendo $Q \in p \cap S_k$, si ha che p è incidente a S_k per ogni $a, b, c, d \in \mathbb{R}$ che soddisfano (**). Concludiamo che tali piani p esistono per ogni k ed hanno equazioni parametriche

$$\begin{cases} X = 1 + 2u + av \\ Y = 1 + u + bv \\ Z = 1 - u + cv \end{cases}, u, v \in \mathbb{R}$$

$$W = u + dv$$

con $a, b, c, d \in \mathbb{R}$ che soddisfano (**).