UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

GE210 - Geometria 2

a.a. 2018-2019

Prova scritta del 20-2-2019

TESTO E SOLUZIONI

Svolgere tutti gli esercizi.

1. Sia V uno spazio vettoriale reale di dimensione 4 con base $\{e_1,\ldots,e_4\}$ e siano

$$v_1 = e_1 + e_4, v_2 = e_2 + e_4, v_3 = e_1 + e_3, v_4 = e_2 + e_3 + e_4.$$

Sia $k \in \mathbb{R}$ tale che $k \neq 0$ e sia $b_k : V \times V \to \mathbb{R}$ la forma bilineare simmetrica tale che

$$b_k(v_i, v_i) = 1, 1 \le i \le 4, b_k(v_1, v_2) = b_k(v_3, v_4) = k \ e \ \langle v_3, v_4 \rangle = \langle v_1, v_2 \rangle^{\perp}.$$

- (a) Determinare la forma canonica di Sylvester di b_k .
- (b) Determinare una matrice $M \in SO(4)$ che diagonalizza b_k .
- (c) Determinare i valori di k per i quali b_k ha segnatura (2,2).
- (d) Per i valori di k per i quali b_k definisce un prodotto scalare su V, calcolare $||v_1 \wedge v_2||$.
- 2. Nello spazio euclideo reale \mathbb{E}^3 consideriamo la retta re il piano p di equazioni

$$r: \begin{cases} X = t + 1 \\ Y = t - 1 \\ Z = -t \end{cases}, t \in \mathbb{R}, p: X + Y + Z = 1.$$

- (a) Determinare le equazioni di tutti i piani p' in \mathbb{E}^3 tali che la distanza di p' da r è 2.
- (b) Determinare le equazioni di tutte le rette s in \mathbb{E}^3 tali che l'angolo tra s ed r e l'angolo tra s e p è $\frac{\pi}{6}$.
- (c) Considerato $\mathbb{E}^3 \subset \mathbb{P}^3_{\mathbb{R}}$ siano \overline{r} la chiusura proiettiva di r e \overline{p} la chiusura proiettiva di p. Determinare le equazioni di tutti i piani p'' di $\mathbb{P}^3_{\mathbb{R}}$ tali che \overline{r} e $p'' \cap \overline{p}$ sono incidenti.
- **3.** Siano $k, h \in \mathbb{R}$ e siano \mathcal{C}_k , la conica (affine o euclidea) di equazione

$$(k+1)X^2 + (k+1)Y^2 + 2kXY + 2X = 1$$

e \mathcal{D}_h la conica (affine o euclidea) di equazione

$$hX^2 - Y^2 - 2X = 0.$$

- (a) Determinare per quali k,h si ha che \mathcal{C}_k e \mathcal{D}_h sono iperboli o parabole.
- (b) Determinare un'isometria che trasforma \mathcal{C}_k nella sua equazione canonica euclidea.
- (c) Determinare i valori k e di h per cui \mathcal{C}_k e \mathcal{D}_h sono affinemente equivalenti (nel caso affine) o congruenti (nel caso euclideo).