UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica GE210 - Geometria 2 a.a. 2018-2019

Prova scritta del 20-6-2019

TESTO E SOLUZIONI

Svolgere tutti gli esercizi.

1. Sia $k \in \mathbb{R}, k \neq 0$ e sia $b_k : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la forma bilineare simmetrica tale che

$$b_k(E_1, E_1) = b_k(E_3, E_3) = 1, b_k(E_2, E_2) = 2, E_1 \perp E_3, E_1 \perp kE_1 - E_2, E_3 \perp kE_3 - E_2$$

dove $\{E_1, E_2, E_3\}$ è la base canonica di \mathbb{R}^3 .

- (a) Determinare la forma canonica di Sylvester di b_k .
- (b) Determinare una matrice $M \in SO(3)$ che diagonalizza b_k .
- (c) Determinare i valori di k per i quali b_k definisce un prodotto scalare su \mathbb{R}^3 .
- (d) Peri valori di k trovati in (c) calcolare l'angolo tra E_1 ed $E_1 + E_3$ e il prodotto vettoriale $e_1 \wedge e_2$ dove $\{e_1, e_2, e_3\}$ è la base ortonormale che diagonalizza b_k .
- **2.** Sia E uno spazio euclideo di dimensione 3 e sia $\{O, i, j, k\}$ un suo sistema di coordinate cartesiane. Siano $P_0 = P_0(1, 0, 0) \in E$, r ed r' le rette di E di equazioni

$$r: \begin{cases} x = 2 - t \\ y = -1 + t , t \in \mathbb{R}, & r': \begin{cases} X - Y + Z = 0 \\ 2X - Y - Z = 0 \end{cases}.$$

- (a) Determinare tutte le rette s che soddisfano tutte e tre le seguenti condizioni: s ha distanza $\frac{2}{\sqrt{3}}$ da r, s passa per il punto P = P(0, 1, 0) ed s forma un angolo di $\frac{\pi}{2}$ con r'.
- (b) Determinare tutte le rette s' che soddisfano tutte e tre le seguenti condizioni: s' è perpendicolare ad r, $d(P_0, s') = 2$, s' interseca r nel punto P' = P'(2, -1, 0).
- (c) Considerato $E \subset \mathbb{P}^3_{\mathbb{R}}$ siano \overline{r} e \overline{r}' le chiusure proiettive di r e r'. Determinare (se esistono) le equazioni di tutti i piani p di $\mathbb{P}^3_{\mathbb{R}}$ tali che $\overline{r} \subset p$ e $p \cap \overline{r}' = [1,0,0,0]$.
- 3. Siano $k, h \in \mathbb{R}$ e siano \mathcal{C}_k la conica proiettiva reale di equazione

$$X_0^2 + 4X_1X_2 + kX_2^2 = 0$$

e \mathcal{D}_h la conica proiettiva reale di equazione

$$X_0^2 + hX_1^2 + X_2^2 = 0.$$

- (a) Determinare per quali k, h si ha che C_k e D_h sono non degeneri (distinguere se a punti reali o no), semplicemente degeneri o doppiamente degeneri.
- (b) Determinare una proiettività che trasforma C_k nella sua equazione canonica.
- (c) Sia H_0 la retta di equazione $X_0 = 0$ e consideriamo l'inclusione $j_0 : \mathbb{A}^2_{\mathbb{R}} \to \mathbb{P}^2_{\mathbb{R}} H_0$ data da $j_0(x,y) = [1,x,y]$. Considerate le coniche affini $\mathcal{C}_k \cap (\mathbb{P}^2_{\mathbb{R}} H_0)$ e $\mathcal{D}_h \cap (\mathbb{P}^2_{\mathbb{R}} H_0)$, determinare, se esistono, i valori di k e di k per cui esse sono affinemente equivalenti.