UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica

GE210 - Geometria 2

a.a. 2019-2020

Prova scritta del 18-2-2020

TESTO E SOLUZIONI

Svolgere tutti gli esercizi.

1. Sia $k \in \mathbb{R}, k \neq 0, \pm 1$ e sia $b : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la forma bilineare simmetrica tale che

$$b(E_1, E_1) = 2, b(E_2, E_2) = b(E_3, E_3) = k + k^2, E_1 \in \langle E_2, E_3 \rangle^{\perp}$$

e il coefficiente di Fourier di $E_2 + E_3$ rispetto a E_2 è $\frac{2}{1+k}$, dove $\{E_1, E_2, E_3\}$ è la base canonica di \mathbb{R}^3 .

- (a) Determinare la matrice e la forma canonica di Sylvester di b.
- (b) Determinare una matrice $M \in O(3)$ che diagonalizza b.
- (c) Determinare i valori di k per i quali b definisce un prodotto scalare su \mathbb{R}^3 .
- (d) Per valori di k trovati in (c) calcolare l'angolo tra E_1 ed $E_1 + E_3$ e il prodotto vettoriale $v_1 \wedge (v_2 + v_3)$ dove v_1, v_2 e v_3 sono tre autovettori distinti della matrice di b.

SOLUZIONE:

(a) Per ipotesi sappiamo che

$$b(E_1, E_2) = b(E_1, E_3) = 0$$

e che

$$\frac{2}{1+k} = a_{E_2}(E_2 + E_3) = \frac{b(E_2 + E_3, E_2)}{b(E_2, E_2)} = \frac{b(E_2, E_2) + b(E_3, E_2)}{b(E_2, E_2)} = \frac{k + k^2 + b(E_3, E_2)}{k + k^2}$$

e quindi

$$b(E_3, E_2) = k - k^2.$$

Pertanto se $e = \{E_1, E_2, E_3\}$, si ha

$$M_e(b) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & k+k^2 & k-k^2 \\ 0 & k-k^2 & k+k^2 \end{pmatrix}.$$

Il polinomio caratteristico è

$$\begin{vmatrix} 2-T & 0 & 0 \\ 0 & k+k^2-T & k-k^2 \\ 0 & k-k^2 & k+k^2-T \end{vmatrix} = (2-T)(T^2-2(k+k^2)T+4k^3)$$

e quindi gli autovalori sono

$$\lambda_1 = 2, \lambda_2 = 2k^2, \lambda_3 = 2k.$$

Come sappiamo $M_e(b)$ è diagonalizzabile e sulla diagonale ci andranno gli autovalori. Osservando che $\lambda_1 > 0, \lambda_2 > 0, \lambda_3 \neq 0$ per ogni k e $\lambda_3 > 0$ se e solo se k > 0, la forma canonica di Sylvester di b sarà

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ se } k > 0; \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ se } k < 0.$$

- (c) Ne segue che b definisce un prodotto scalare su \mathbb{R}^3 se e solo se k > 0.
- (b) Sia λ uno degli autovalori e consideriamo il sistema

$$\begin{pmatrix} 2-\lambda & 0 & 0\\ 0 & k+k^2-\lambda & k-k^2\\ 0 & k-k^2 & k+k^2-\lambda \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = 0$$

ovvero

$$\begin{cases} (2 - \lambda)x = 0\\ (k + k^2 - \lambda)y + (k - k^2)z = 0\\ (k - k^2)y + (k + k^2 - \lambda)z = 0 \end{cases}$$

che ha le seguenti soluzioni (usando il fatto che $k \neq 0, \pm 1$):

(•) $\lambda = 2$ y = z = 0 che da luogo a

$$v_1' = (1, 0, 0);$$

 $(\bullet) \quad \lambda = 2k^2$ x = 0, z = -y che da luogo a

$$v_2' = \frac{1}{\sqrt{2}}(0, 1, -1);$$

 $(\bullet)\quad \lambda=2k$ x=0, y=z che da luogo a $v_3'=\frac{1}{\sqrt{2}}(0,1,1).$

Pertanto una base ortonormale (rispetto al prodotto scalare standard di \mathbb{R}^3) di autovettori sarà $\{v_1', v_2', v_3'\}$ e quindi

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

(d) Consideriamo ora \mathbb{R}^3 con il prodotto scalare definito da b per k > 0. L'angolo tra E_1 ed $E_1 + E_3$ è, in tale prodotto scalare,

$$\arccos\left(\frac{b(E_1, E_1 + E_3)}{\sqrt{b(E_1, E_1)}\sqrt{b(E_1 + E_3, E_1 + E_3)}}\right) = \arccos\left(\frac{2}{\sqrt{4 + 2k + 2k^2}}\right).$$

Inoltre, posto

$$v_i = \frac{1}{\sqrt{\lambda_i}} v_i', \quad i = 1, 2, 3$$

si ha che $\{v_1, v_2, v_3\}$ è una base ortonormale (rispetto al prodotto scalare definito da b) di autovettori distinti. Quindi possiamo calcolare il prodotto vettoriale in tale base. Le coordinate in tale base di v_1, v_2, v_3 sono ovviamente (1,0,0), (0,1,0), (0,0,1) (rispettivamente) e quindi

$$v_1 \wedge (v_2 + v_3) = v_1 \wedge v_2 + v_1 \wedge v_3 = v_3 - v_2 = \frac{1}{\sqrt{2k}} \frac{1}{\sqrt{2}} (0, 1, 1) - \frac{1}{\sqrt{2k^2}} \frac{1}{\sqrt{2}} (0, 1, -1) = (0, \frac{\sqrt{k} - 1}{2k}, \frac{\sqrt{k} + 1}{2k}). \blacksquare$$

2. Sia E uno spazio euclideo di dimensione 3 e sia $\{O, i, j, k\}$ un suo sistema di coordinate cartesiane. Sia p il piano di E di equazione X + Y - Z = 0 e siano r ed s le rette di E di equazioni

$$r: \left\{ \begin{matrix} X - Z = 0 \\ X + Y = 0 \end{matrix} \right., \ s \left\{ \begin{matrix} X + Z = 0 \\ X - Y = 0 \end{matrix} \right..$$

- (a) Determinare (se esistono) tutti i punti $P \in r$ tali che P ha distanza 1 da s ed ha distanza 2 da p.
- (b) Determinare (se esistono) tutte le rette r' che soddisfano tutte e due le seguenti condizioni: r' è perpendicolare a p e l'angolo tra r' ed r è $\frac{\pi}{4}$.
- (c) Siano F_0, F_1, F_2, U i punti fondamentali e il punto unità di $\mathbb{P}^2_{\mathbb{R}}$. Determinare (se esistono) tutti i punti $P \in \mathbb{P}^2_{\mathbb{R}}$ tali che $\{[0,1,1],[1,0,1],[1,1,0],P\}$ sono proiettivamente equivalenti a $\{F_0,F_1,F_2,U\}$.

SOLUZIONE:

(a) Osserviamo che un vettore di direzione di s è (1, 1, -1) e un punto di s è Q = Q(0, 0, 0). Per ipotesi $P \in r$, quindi P = P(t, -t, t) per qualche $t \in \mathbb{R}$. Ora

$$1 = d(P, s) = \frac{\sqrt{8t^2}}{\sqrt{3}} = \frac{2\sqrt{2}|t|}{\sqrt{3}}$$

e

$$2 = d(P, p) = \frac{|-t|}{\sqrt{3}}$$

da cui deduciamo che $2\sqrt{3}=|t|=\frac{\sqrt{3}}{2\sqrt{2}}$ che è assurdo. Quindi un tale P non esiste.

(b) Dato che r' è perpendicolare a p si ha che un vettore di direzione di r' è (1, 1, -1), mentre un vettore di direzione di r è (1, -1, 1). Allora

$$\frac{1}{\sqrt{2}} = \cos\frac{\pi}{4} = \frac{(1, 1, -1) \cdot (1, -1, 1)}{\sqrt{3}\sqrt{3}} = -\frac{1}{3}$$

assurdo. Quindi una tale retta r' non esiste.

(c) Sappiamo che F_0, F_1, F_2, U sono n+2=4 punti in posizione generale e quindi si ha che $\{[0,1,1],[1,0,1],[1,1,0],P\}$ sono proiettivamente equivalenti a $\{F_0,F_1,F_2,U\}$ se e solo se $\{[0,1,1],[1,0,1],[1,1,0],P\}$ sono in posizione generale. Se P=P[a,b,c] le condizioni da imporre sono che ogni minore 3×3 della matrice

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ a & b & c \end{pmatrix}$$

sia non nullo, ovvero che

$$b + a - c \neq 0, b - a + c \neq 0, b - a - c \neq 0.$$

3. Siano $k,h\in\mathbb{R}$ tali che $h\neq 0, k\neq 0,2$ e siano \mathcal{C}_k la conica proiettiva reale di equazione

$$X_0^2 + kX_1^2 + 2X_1X_2 + kX_2^2 = 0$$

e \mathcal{D}_h la conica proiettiva reale di equazione

$$X_0^2 + hX_1^2 + X_0X_2 = 0.$$

(a) Determinare per quali k, h si ha che C_k e \mathcal{D}_h sono non degeneri (distinguere se a punti reali o no), semplicemente degeneri o doppiamente degeneri.

- (b) Determinare una proiettività che trasforma \mathcal{C}_k nella sua equazione canonica.
- (c) Considerate le coniche euclidee \mathcal{C}'_k e \mathcal{D}'_h associate rispettivamente a \mathcal{C}_k e \mathcal{D}_h (passando dal piano proiettivo a quello euclideo), determinare, se esistono, i valori di k e di h per cui \mathcal{C}'_k e \mathcal{D}'_h sono congruenti.

SOLUZIONE:

(a) La matrice di C_k è

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 1 \\ 0 & 1 & k \end{pmatrix}$$

e si vede subito che ha sempre rango almeno 2 ed ha rango 3 se e solo se $\det(A) = k^2 - 1 = 0$, cioè se e solo se $k = \pm 1$. Pertanto

 C_k è non degenere se $k \neq \pm 1$, semplicemente degenere se $k = \pm 1$.

La matrice di \mathcal{D}_h è

$$B = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & h & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

e si vede subito che $det(B) = -\frac{h}{4} \neq 0$. Pertanto

 \mathcal{D}_h è non degenere per ogni h.

Osserviamo che il punto P = P[0,0,1] sta nel supporto di \mathcal{D}_h per ogni h, quindi \mathcal{D}_h è a punti reali per ogni h. Per i punti reali di \mathcal{C}_k vediamo in (b).

(b) Il polinomio caratteristico di A è

$$\begin{vmatrix} 1 - T & 0 & 0 \\ 0 & k - T & 1 \\ 0 & 1 & k - T \end{vmatrix} = (1 - T)(T^2 - 2kT + k^2 - 1)$$

e pertanto gli autovalori sono $\lambda_1 = 1, \lambda_2 = k + 1$ e $\lambda_3 = k - 1$.

Sia λ uno degli autovalori e consideriamo il sistema

$$\begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & k - \lambda & 1 \\ 0 & 1 & k - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

ovvero

$$\begin{cases} (1-\lambda)x = 0\\ (k-\lambda)y + z = 0\\ y + (k-\lambda)z = 0 \end{cases}.$$

Si vede subito che le soluzioni sono: y=z=0 se $\lambda=1; x=0, z=(\lambda-k)y$ se $\lambda=k\pm1.$ Quindi una base ortonormale di autovettori è data da

$$\{(1,0,0), \frac{1}{\sqrt{2}}(0,1,1), \frac{1}{\sqrt{2}}(0,1,-1)\}$$

e la prima proiettività è data dalla matrice

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Come è noto, applicando tale proiettività si ottiene l'equazione

$$\lambda_1 X_0^2 + \lambda_2 X_1^2 + \lambda_3 X_2^2 = 0$$

ovvero

$$X_0^2 + (k+1)X_1^2 + (k-1)X_2^2 = 0.$$

Per arrivare all'equazione canonica proiettiva di \mathcal{C}_k occorre distinguere i seguenti casi:

Caso 1: k > 1

Applicando la proiettività

$$\begin{cases} X_0 = X_0' \\ X_1 = \frac{1}{\sqrt{k+1}} X_1' \\ X_2 = \frac{1}{\sqrt{k-1}} X_2' \end{cases}$$

si ottiene l'equazione canonica

$$X_0^2 + X_1^2 + X_2^2 = 0.$$

In tal caso C_k non ha punti reali.

Caso 2: k = 1

Applicando la proiettività

$$\begin{cases} X_0 = X_0' \\ X_1 = \frac{1}{\sqrt{2}} X_1' \\ X_2 = X_2' \end{cases}$$

si ottiene l'equazione canonica

$$X_0^2 + X_1^2 = 0.$$

In tal caso C_k ha punti reali.

Caso 3: -1 < k < 1

Applicando la proiettività

$$\begin{cases} X_0 = X_0' \\ X_1 = \frac{1}{\sqrt{k+1}} X_1' \\ X_2 = \frac{1}{\sqrt{1-k}} X_2' \end{cases}$$

si ottiene l'equazione canonica

$$X_0^2 + X_1^2 - X_2^2 = 0.$$

In tal caso C_k ha punti reali.

Caso 4: k = -1

Applicando la proiettività

$$\begin{cases} X_0 = X_0' \\ X_1 = X_2' \\ X_2 = \frac{1}{\sqrt{2}} X_1' \end{cases}$$

si ottiene l'equazione canonica

$$X_0^2 - X_1^2 = 0.$$

In tal caso C_k ha punti reali.

Caso 5: k < -1

Applicando la proiettività

$$\begin{cases} X_0 = X_0' \\ X_1 = \frac{1}{\sqrt{-k-1}} X_1' \\ X_2 = \frac{1}{\sqrt{1-k}} X_2' \end{cases}$$

si ottiene

$$X_0^2 - X_1^2 - X_2^2 = 0$$

da cui applicando la proiettività

$$\begin{cases} X_0 = X_2' \\ X_1 = X_0' \\ X_2 = X_1' \end{cases}$$

si ottiene l'equazione canonica

$$X_0^2 + X_1^2 - X_2^2 = 0$$

In tal caso C_k ha punti reali.

(c) Posto $X_0=1, X_1=X, X_2=Y$ si ottiene

$$\mathcal{C}_k' : kX^2 + 2XY + kY^2 + 1 = 0$$

 \mathbf{e}

$$\mathcal{D}'_h: hX^2 + Y + 1 = 0.$$

Le loro matrici dei termini di secondo grado sono:

$$A_0 = \begin{pmatrix} k & 1 \\ 1 & k \end{pmatrix}, B_0 = \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix}$$

e quindi $\det(B_0) = 0$. Affinchè \mathcal{C}'_k e \mathcal{D}'_h siano congruenti dovrà quindi essere anche $\det(A_0) = 0$, ovvero $k^2 - 1 = 0$, cioè $k = \pm 1$. Ma in tal caso sappiamo che \mathcal{C}'_k (che ha la stessa matrice di \mathcal{C}_k) è degenere, mentre \mathcal{D}'_h non lo è.

Se ne deduce che \mathcal{C}_k' e \mathcal{D}_h' non sono mai congruenti. \blacksquare