Geometria e algebra lineare 2

Esercizi di riepilogo

Esercizio 1. Nello spazio euclideo \mathbb{R}^3 si considerino la retta r:x-y-1=z=0 e il piano $\pi:x+2y-z-2=0$.

- (i) Determinare la posizione di r rispetto a π .
- (ii) Determinare le equazioni cartesiane della retta r' proiezione ortogonale di r sul piano π .
- (iii) Determinare l'angolo convesso tra r e r'.
- (iv) Determinare le equazioni parametriche della retta s che si ottiene riflettendo r rispetto al piano π .

Esercizio 2. In \mathbb{R}^3 si considerino i vettori $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. In ognuno dei seguenti casi dire, motivando la risposta, se esiste una matrice ortogonale A tale che:

- (i) $Av_1 = v_2$.
- (ii) $Av_1 = v_1 \in Av_2 = v_2$.
- (iii) $Av_1 = v_2 \in Av_2 = -v_2$.
- (iv) $Av_1 = v_1 v_2$.

Esercizio 3. Sia V uno spazio vettoriale reale di dimensione n dotato di prodotto scalare $\langle \, , \, \rangle$. Sia $f:V\to V$ un'applicazione lineare tale che $\langle f(v),f(w)\rangle=0$ per ogni coppia di vettori v,w tali che $\langle v,w\rangle=0$. Dimostrare che esistono $\lambda\in\mathbb{R}$ e un'isometria $g:V\to V$ tali che $f=\lambda g$.

Esercizio 4. Si studi la segnatura della forma bilineare simmetrica su \mathbb{R}^3 la cui matrice associata rispetto alla base canonica è

$$\begin{pmatrix} k & k+1 & k+2 \\ k+1 & k+2 & k+1 \\ k+2 & k+1 & k \end{pmatrix},$$

al variare del paramtero $k \in \mathbb{R}$.

Esercizio 5. Si consideri lo spazio vettoriale $V = \mathbb{R}_{\leq 2}[x]$. Si dica se esiste una forma bilineare φ su V tale che:

1

- $\bullet\,$ il radicale di φ sia il sottospazio generato da x,
- x + 1 e $x^2 + 1$ siano vettori isotropi,
- $\varphi(x^2 + 4x + 2, x^2 + 4x + 2) = 2$.