TUTORATO 7 - GE210

Docente: Angelo Felice Lopez

Tutore: Simone Pesatori

26 novembre 2021

Anno accademico 21/22

Esercizio 1. Stabilire quali delle seguenti sono forme hermitiane su \mathbb{C}^2 :

(a)
$$\langle x, y \rangle = x_1 \overline{y}_1 + i x_1 \overline{y}_2 + i x_2 \overline{y}_1$$

(b)
$$\langle x, y \rangle = i|x_1||y_1|$$

(c)
$$\langle x, y \rangle = x_1 \overline{y}_1 + 2ix_1 \overline{y}_2 - 2ix_2 \overline{y}_1$$

(d)
$$\langle x, y \rangle = 1 + x_1 \overline{y_1} + x_2 \overline{y_2}$$

(e)
$$\langle x, y \rangle = x_1 \overline{y_1} + 4x_2 \overline{y_2}$$

Esercizio 2. Stabilire quali delle seguenti matrici sono hermitiane:

$$\begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} i & -i \\ i & 1 \end{pmatrix}$$

Esercizio 3. Utilizzando il procedimento di Gram-Schmidt, ortonormalizzare la seguente base di \mathbb{C}^3 rispetto al prodotto hermitiano standard

$$\{(i, -i, 0), (0, i, 0), (0, i, i)\}.$$

Esercizio 4. Per ciascuna delle seguenti matrici hermitiane, determinare una matrice unitaria M tale che *MAM sia diagonale:

(a)
$$\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} \sqrt{3}/2 & -i/2 \\ i/2 & \sqrt{3}/2 \end{pmatrix}$$

Esercizio 5. Sia $\mathbb{C}[x]_2$ lo spazio vettoriale dei polinomi nella incognita x di grado minore o uguale a 2 a coefficienti complessi.

Si consideri l'applicazione $<,>: \mathbb{C}[x]_2 \times \mathbb{C}[x]_2 \to \mathbb{C}$ definita da

$$\langle p(x), q(x) \rangle = p(0)\overline{q(0)} + p(1)\overline{q(1)} + p(i)\overline{q(i)}.$$

- (a) Dimostrare che è un prodotto hermitiano.
- (b) Calcolarne la matrice associata rispetto alla base canonica di $\mathbb{C}[x]_2$.
- (c) Verificare che è una forma definita positiva
- (d) Calcolare la norma del polinomio $p(x) = 1 + ix ix^2$

<u>Esercizio 6</u>. Trovare un esempio di matrice ortogonale diagonalizzabile solo se vista come matrice a coefficienti complessi, dunque non per mezzo di matrici a coefficienti reali.

Esercizio 7. Sia $k \in \mathbb{C}$. Sia V uno spazio vettoriale hermitiano e sia $e = \{e_1.e_2.e_3\}$ una sua base tale che $e' = \{e_1, e_1 + e_2, e_2 + e_3\}$ sia una base ortonormale. Sia $T: V \to V$ un operatore lineare tale che $T(e_1) = (1+k)e_1 + ke_2$, $T(e_2) = -ke_1 + (1-2k)e_2$, $T(e_3) = (1+2k)e_1 + 3ke_2 + (1+k)e_3$.

- (a) Determinare, se esistono, tutti i valori di k per cui T è un operatore hermitiano e i valori di k, se esistono, per cui T è un operatore unitario.
- (b) Determinare una base ortonormale che diagonalizza T.