Università degli Studi di Roma Tre, A.A. 2023/2024

Corso di Laurea Triennale in Fisica e Matematica

GE210 - Geometria e Algebra Lineare 2

Docente: Angelo Felice Lopez Esercitatore: Luca Schaffler Tutori: Ilaria Cruciani, Michele Matteucci

Tutorato 10

Esercizio 1. Sia \mathcal{C} la conica reale (affine o euclidea) di equazione

$$-X^2 + Y^2 + 2\sqrt{3}XY + 2X + 2 = 0$$

Determinare una trasformazione che porta in forma canonica la conica $\mathcal C$ sia nel caso affine che euclideo.

Esercizio 2. Siano $k, h \in \mathbb{R}$ e siano C_k la conica (affine o euclidea) di equazione

$$(k^2 - 4)X^2 - 4Y^2 - 4k^2X + 4k^2 + 4 = 0$$

e \mathcal{D}_h la conica (affine o euclidea) di equazione

$$h^2X^2 + 2hX + 2Y - 1 = 0$$

- (a) Determinare per quali valori di k e h le coniche C_k e \mathcal{D}_h sono non degeneri, semplicemente degeneri, doppiamente degeneri e sono (o no) a centro;
- (b) Determinare l'equazione canonica euclidea di C_k per ogni k;
- (c) Determinare i valori di k e h per cui le coniche C_k e D_h sono affinemente equivalenti (nel caso affine) o congruenti (nel caso euclideo).

Esercizio 3. Siano $k, h \in \mathbb{R}$ e siano C_k la conica (affine o euclidea) di equazione

$$(k^2 - 1)X^2 + kY^2 + 4Y + 1 = 0$$

e \mathcal{D}_h la conica (affine o euclidea) di equazione

$$3hX^2 + (h-1)Y^2 + 2XY + 2h^2Y = 0$$

- (a) Determinare per quali valori di k e h le coniche C_k e \mathcal{D}_h sono ellissi o iperboli;
- (b) Determinare un'isometria che trasforma \mathcal{C}_k nella sua forma canonica euclidea;
- (c) Determinare i valori di k e h per cui le coniche C_k e \mathcal{D}_h sono affinemente equivalenti.

Esercizio 4. Si consideri lo spazio proiettivo $\mathbb{P}^3_{\mathbb{R}}$ con coordinate proiettive $[x_0:\ldots:x_3]$. Si considerino il sottospazio vettoriale V_1 di \mathbb{R}^4 generato dai vettori $v_1=(1,0,3,2)$ e $v_2=(3,0,-1,0)$ e i sottospazi proiettivi di $\mathbb{P}^3_{\mathbb{R}}$ definiti come $S_1=\mathbb{P}(V_1)$ e

$$S_2: x_0 - 2x_1 + x_3 = 2x_0 + 2x_3 + kx_1 = 0, k \in \mathbb{R}$$

Siano infine U_0 e U_2 gli spazi affini $\{x_0 \neq 0\}$ e $\{x_2 \neq 0\}$ con coordinate $y_i = x_i/x_0$ per i = 1, 2, 3 e $w_i = x_i/x_2$ per i = 0, 1, 3.

- (i) Si dica, al variare di $k \in \mathbb{R}$, quali sono le dimensioni di $S_1, S_2, S_1 \cap S_2$ e di $L(S_1, S_2)$;
- (ii) Posto k = 3, si ricavino delle equazioni cartesiane per $L(S_1, S_2)$;
- (iii) Si scrivano delle equazioni parametriche (nelle coordinate y_i di U_0) per $U_0 \cap S_1$.

Esercizio 5. Nello spazio euclideo reale \mathbb{E}^3 consideriamo la retta r e il piano p di equazioni

$$r: \begin{cases} X=t-1\\ Y=t+1\\ Z=0 \end{cases},\ t\in\mathbb{R} \quad p:\ X+Z+1=0$$

- (i) Considerato $\mathbb{E}^3 \subseteq \mathbb{P}^3_{\mathbb{R}}$, determinare la chiusura proiettiva \overline{r} di r e la chiusura proiettiva \overline{p} di p;
- (ii) Determinare le equazioni di tutti i piani p' in $\mathbb{P}^3_{\mathbb{R}}$ tali che \overline{r} e $p' \cap \overline{p}$ sono incidenti.

Esercizio 6. Sia $k \in \mathbb{R}$. Nello spazio euclideo reale \mathbb{E}^3 consideriamo le rette r_k ed s_k di equazioni

$$r_k: \begin{cases} X=t+k \\ Y=k+1 \\ Z=t \end{cases}$$
 $s_k: \begin{cases} X+Y=k \\ X-Z=1 \end{cases}$

- (i) Determinare la chiusura proiettiva $\overline{r_k}$ di r_k e la chiusura proiettiva $\overline{s_k}$ di s_k :
- (ii) Determinare le equazioni di tutti i piani in $\mathbb{P}^3_{\mathbb{R}}$ che contengono sia $\overline{r_k}$ che $\overline{s_k}$.