Tutorato 4 di GE210

Tutori: Elisa De Angelis & Fabio Vaccari

23 ottobre 2025

Esercizio 1

In \mathbb{E}^3 si calcoli la proiezione ortogonale V_W di

$$v = (1, 3, 2)$$

 su

$$w = (0, 1, -1)$$

Si calcoli poi l'angolo tra i due vettori.

Esercizio 2

In \mathbb{E}^3 determinare W^\perp dove W è il sottospazio di \mathbb{E}^3 generato da

$$\{(0,1,0), (1,3,2)\}$$

Determinare poi

$$S = \{(x, y, z) \in W^{\perp} \mid ||(x, y, z)|| = 1\}$$

Esercizio 3

In \mathbb{E}^3 sia data la base

$$B = \{(0, 1, 1), (1, 0, 1), (1, 1, 1)\}$$

Determinare la base ortonormale B' di \mathbb{E}^3 tramite il processo di ortonormalizzazione di Gram-Schmidt.

Esercizio 4

In \mathbb{E}^4 sia

$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y = z\}$$

e si consideri

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + t = z\}$$

- 1. Trovare una base di W e una base di W^{\perp} .
- 2. Calcolare $W \cap U$ e $W^{\perp} \cap U$ e disegnarli sullo spazio tridimensionale.

Esercizio 5

Si consideri \mathbb{R}^3 munito della base canonica e del relativo sistema di coordinate. Si consideri l'applicazione b data dalla seguente matrice:

$$A = \begin{pmatrix} 4 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 7 \end{pmatrix}$$

Siano $v_1 = (1, 0, 2)$ e $v_2 = (0, 1, 1)$.

- 1. Si dimostri che (\mathbb{R}^3, b) è uno spazio euclideo.
- 2. Si consideri il sottospazio vettoriale V generato da v_1 , si consideri $\langle v_1, v_2 \rangle^{\perp_b}$ e la misura dell'angolo convesso $\widehat{v_1, v_2}$.
- 3. Si scriva una base ortonormale $\{u_1, u_2, u_3\}$ di (\mathbb{R}^3, b) tale che u_1 sia proporzionale a v_1 .

Esercizio 6

Determinare l'equazione cartesiana del piano in \mathbb{R}^2 sia data la retta

$$\ell: \ y = x + 1$$

e sia dato il punto

$$P(2, 0)$$
.

Determinare tutte le rette che passano per P e che formano con la retta ℓ un angolo convesso di

 $\frac{\pi}{3}$.

Esercizio 7

Determinare l'equazione cartesiana del piano in \mathbb{R}^3 passante per il punto

la cui direzione normale è il vettore

$$\vec{n} = \begin{pmatrix} 1 \\ 8 \\ 9 \end{pmatrix}$$
.

ora invece determinare l'equazione cartesiana del piano in \mathbb{R}^3 passante per il punto

le cui direzioni sono i vettori

$$\vec{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} \quad \text{e} \quad \vec{v}_2 = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix}.$$

Esercizio 8

Consideriamo il piano p di equazione

$$2X + 3Y + Z - 1 = 0$$

e sia r_k la retta di equazioni parametriche

$$\begin{cases} X = -2k + (k-1)t \\ Y = -1 + k + t \\ Z = k + 2kt \end{cases}$$

Determinare, se esistono, i valori di k tali che l'angolo tra il piano p e la retta r_k sia $\frac{\pi}{3}$.

Esercizio 9

Dati in \mathbb{E}^3

$$p: 2x + 4y - z - 1 = 0$$

e il punto P = (0, 0, 0), determinare:

- (i) Le equazioni di tutti i piani passanti per P che formino con il piano p un angolo di $\frac{\pi}{4}$;
- (ii) L'equazione di tutte le rette passanti per P che formino con il piano p un angolo di $\frac{\pi}{6}.$

Esercizio 10

Determinare tutti i piani in \mathbb{R}^3 perpendicolari alla retta di equazioni cartesiane

$$\begin{cases} x - y - 1 = 0 \\ x - z = 0 \end{cases}$$

e individuare, tra questi, quello passante per il punto

$$P(1,0,1)$$
.

Esercizio 11

Nel piano tridimensionale \mathbb{R}^3 , sia dato il piano

$$\pi : 2x - y + 3z - 6 = 0$$

e il punto

$$P(1, 2, -1).$$

Determinare l'equazione della retta perpendicolare al piano π e passante per il punto P.