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Explicit Noether-Lefschetz for arbitrary threefolds

ANGELO FELICE LOPEZ 1and CATRIONA MACLEAN

Abstract

We study the Noether-Lefschetz locus of a very ample line bundleL on an arbitrary smooth
threefoldY . Building on results of Green, Voisin and Otwinowska, we give explicit bounds,
depending only on the Castelnuovo-Mumford regularity properties ofL, on the codimension of
the components of the Noether-Lefschetz locus of|L| .

1. Introduction.

It is well-known in algebraic geometry that the geometry of a given variety is influenced by
the geometry of its subvarieties. It less common, but not unusual, that a given ambient variety
forces to some extent the geometry of its subvarieties.
A particularly nice case of the latter is given by line bundles, whose properties do very much
influence the geometry.
If Y is a smooth variety andi : X ↪→ Y is a smooth divisor, there is then a natural restriction
map

i∗ : Pic(Y ) → Pic(X)

given by pull-back of line bundles.
Now suppose thatX is very ample. By the Lefschetz theoremi∗ is injective if dimY ≥ 3. On
the other hand, it was already known to the Italian school (Severi [18], Gherardelli [6]), thati∗ is
surjective whendimY ≥ 4. Simple examples show that in the case wheredimY = 3 we cannot
hope for surjectivity unless a stronger restriction is considered.
For the caseY = P3, this is also a classical problem, first posed by Noether and solved in the
case of genericX by Lefschetz who showed that

Theorem (Noether-Lefschetz)For X a generic surface of degreed ≥ 4 in P3 we havePic(X) ∼=
Z.

Here and below by generic we mean outside a countable union of proper subvarieties.
Suppose now that a smooth threefoldY and a line bundleL on Y are given. We will say that a
Noether-Lefschetz theorem holds for the pair(Y, L), if

i∗ : Pic(Y ) → Pic(X)

is a surjection for a generic smooth surfaceX ⊂ Y such thatOY (X) = L.

The following result of Moishezon ([14], see also the argument given in Voisin [21, Thm. 15.33])
establishes the exact conditions under which a Noether-Lefschetz theorem holds for(Y, L).
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Theorem (Moishezon)If (Y, L) are such thatL is very ample and

h0,2
ev (X, C) 6= 0

for a generic smoothX such thatOY (X) = L, then a Noether-Lefschetz theorem holds for the
pair (Y, L).

Here,h0,2
ev denotes the evanescent(2, 0)-cohomology ofX: see below for a precise definition.

More precisely, we denote byU(L) the open subset ofPH0(L) parameterizing smooth surfaces
in the same equivalence class asL. We further denote byNL(L) (the Noether-Lefschetz locus of
L) the subspace parameterizing surfacesX equipped with line bundles which are not produced
by pull-back fromY . The above theorem then admits the following alternative formulation.

Theorem (Moishezon)If (Y,L) are such thatL is very ample and

h0,2
ev (X, C) 6= 0

for a generic smoothX such thatOY (X) = L, then the Noether-Lefschetz locusNL(L) is a
countable union of proper algebraic subvarieties ofU(L).

These proper subvarieties will henceforth be referred to ascomponents of the Noether-Lefschetz
locus.

A Noether-Lefschetz theorem for a pair(Y, L) essentially says that for a generic surfaceX

such thatOY (X) = L, the set of line bundles onX is well-understood and as simple as pos-
sible. A natural follow-up question is: how rare are surfaces with badly behaved Picard groups?
Or alternatively: how large can the components of the Noether-Lefschetz locus be in compari-
son withU(L)? This leads us to attempt to prove what we will callexplicit Noether-Lefschetz
theorems. An explicit Noether-Lefschetz theorem (the terminology is due to Green) says that the
codimension ofNL(L) ⊂ U(L) is bounded below by some numbernL depending non-trivially
on the positivity ofL. The first known example of these was the following theorem, established
independently by Voisin and Green, [8], [20], which gives an explicit Noether-Lefschetz theorem
for P3.

Theorem (Green, Voisin)Let Y = P3 and L = OP3(d). Let ΣL ⊂ U(L) be any compo-
nent of the Noether-Lefschetz locus. Thencodim ΣL ≥ d− 3, with equality being achieved only
for the component of surfaces containing a line.

In this theorem we see also another of the reigning principles of the study of components of
the Noether-Lefschetz locus, namely that components of small codimension should parameter-
ize surfaces containing low-degree curves.

Recently, the subject has been much advanced by the following result of Otwinowska, ([17],
see also [15] and [16]) which implies an explicit Noether-Lefschetz theorem for analogues of
Noether-Lefschetz loci for highly divisible line bundles on varieties of arbitrary odd dimension.
(For ease of presentation, we give a weakened version of the result proved).

Theorem (Otwinowska)LetY be a projective variety of dimension2n+1, letOY (1) be a very
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ample line bundle onY and letΣL ⊂ U(OY (d)) be any component of the Noether-Lefschetz
locus. LetX be a hypersurface contained inΣL. For d large enough, if

codim ΣL ≤ dn

n!
thenX contains an-dimensional linear space.

In fact, Otwinowska also gives a numerical criterion ond and the codimension ofΣL under
whichX necessarily contains a degree-b n-dimensional subvariety.
We recall also the results of Joshi [13] and Ein-Lazarsfeld [5, Prop. 3.4].

The aim in this paper will be to shed light on the fact that it is theCastelnuovo-Mumford reg-
ularity propertiesof a line bundle that insure that an explicit Noether-Lefschetz theorem holds,
independently on the divisibility properties.
To state our first result we suppose thatY is a smooth threefold andH is a very ample line bundle
onY . We define numbersαY andβY as follows.

DEFINITION 1. The integerαY is defined to be the minimal positiveinteger such thatKY +
αY H is very ample. The integerβY is defined to be the minimal integer such that(βY −αY )H−
KY is nef.

We recall that, by the results of adjunction theory [19], if (Y,H) 6= (P3,OP3(1)), we have
thatαY ≤ 4 with equality if and only if eitherY is a P2-bundle over a smooth curve and the
restriction ofH to the fibers isOP2(1) (we will refer later to this case as a linearP2-bundle)
or (Y,H) = (Q,OQ(1)) whereQ ⊂ P4 is a smooth quadric hypersurface. On the other hand
βY ≥ 1 with equality ifY is subcanonical and nonpositive (that is ifKY = eH for some integer
e ≤ 0).
We have

THEOREM 1. LetY be a smooth threefold,Y 6= P3 and letH be a very ample divisor onY .
LetL be a (-d)-regular line bundle with respect toH. We suppose that eitherH1(Ω2

Y ⊗ L) = 0
or d ≥ 3βY − 3αY + 13. LetΣL be any component of the Noether-Lefschetz locusNL(L). The
following bounds hold:

(i) If (Y, H) is not a linearP2-bundle then

codim ΣL ≥

{
d− 5 + αY − 2βY if βY ≥ 2 and d ≥ β2

Y (βY +5)
2

d− 6 + αY if βY = 1
.

(ii) If (Y,H) is a linearP2-bundle then

codim ΣL ≥

{
d− 2− 2βY if βY ≥ 2 and d ≥ β2

Y (βY +5)
2

d− 3 if βY = 1
.

We can do a little bit better in the case of the Noether-Lefschetz locus of adjoint line bundles.

We now define numbersaY andbY as follows.

DEFINITION 2. The integeraY is defined to be the minimal integer such thatKY + aY H is
very ample. The integerbY is defined to be the minimal integer such that(bY − aY )H −KY is
nef.
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As above, if(Y,H) 6= (P3,OP3(1)), we have thataY ≤ 4 with equality if and only if either
(Y, H) is a linearP2-bundle or(Y, H) = (Q,OQ(1)) and againbY ≥ 1 with equality if Y is
subcanonical.

THEOREM 2. LetY be a smooth threefold,Y 6= P3 and letH be a very ample divisor onY .
Let

L = KY + dH + A,

whereA is numerically effective. We suppose that eitherH1(Ω2
Y ⊗L) = 0 or d ≥ 2bY −2aY +13.

LetΣL be any component of the Noether-Lefschetz locusNL(L). The following bounds hold:

(i) If (Y,H) is not a linearP2-bundle then

codim ΣL ≥

{
d− 5− bY if bY ≥ 2 and d ≥ bY (b2Y +7bY −6)

2

d− 5 if bY = 1
.

(ii) If (Y,H) is a linearP2-bundle then

codim ΣL ≥

{
d− 6− bY if bY ≥ 2 and d ≥ bY (bY −1)(bY +8)

2

d− 6 if bY = 1
.

We also note the following application that generalises [2] (see also [3]).

COROLLARY 1. Let Y be a smooth threefold such thatY 6= P3 andPic(Y ) ∼= ZH where
H is a very ample line bundle and letKY = eH. We suppose that eitherH1(Ω2

Y (d)) = 0 or
d ≥ 3e + 13. LetP1, . . . , Pk bek general points inY andπ : Ỹ → Y be the blow-up ofY at
these points with exceptional divisorsE1, . . . , Ek.
If d ≥ 7 + e then

dπ∗(H)− E1 − . . .− Ek is ample on Ỹ ⇔ d3H3 > k.

We outline our approach to the study of the Noether-Lefschetz locus.
In section 2, we will give the standard expression of this problem in terms of variation of Hodge
structure ofX. We will then recall the classical results of Griffiths, Carlson et. al. which allow us
to express variation of Hodge structure ofX in terms of multiplication of sections of line bundles
onX.

We defineσ to be the section ofL definingX. The tangent space of a component of the Noether-
Lefschetz locus is naturally a subspace ofH0(L)/〈σ〉, and we will denote its preimage inH0(L)
by T . If we suppose thatH1(Ω2

Y ⊗L) = 0, thenT has the following property: The natural mul-
tiplication map

T ⊗H0(KY ⊗ L) → H0(KY ⊗ L2) (1·1)

is not surjective.
A full proof of this fact is given in section 3.
In section 3, we also explain Green’s methods for proving the explicit Noether-Lefschetz theorem
for P3 using Koszul cohomology to prove that equation (1·1) cannot be satisfied ifT is too large.
Green’s method does not immediately apply to our case, since it requiresT to be base-point
free— which is only guaranteed if the tangent bundle ofY is globally generated, hence only for
a few threefolds. However, we show in section 4 that there existsW ⊂ H0(KY ⊗ L(3)) such



5

thatW is base-point free and

{T ⊗H0(KY ⊗ L)} ⊕ {W ⊗H0(L(−3))} → H0(KY ⊗ L2)

is not surjective. Results of Ein and Lazarsfeld [5] then imply a lower bound on the codimension
of

{T ⊗H0(KY (3))} ⊕W ⊂ H0(KY ⊗ L(3))

and more particularly on the codimension of

T ⊗H0(KY (3)) ⊂ H0(KY ⊗ L(3)).

In introducingW , we get around the base-point free problems, but introduce others. In partic-
ular, we now need a method for extracting a lower bound oncodim T from a lower bound for
codim (T ⊗ H0(KY (3))). WhenY = P3, this is a simple application of a classical inequality
in commutative algebra due to Macaulay and Gotzmann. In section 5 we extend the Macaulay-
Gotzmann inequality to sections of any Castelnuovo-Mumford regular sheaf. In section 6, we
pull all of the above together to prove the theorem.

2. Preliminaries.

In this section we recall the classical results of Griffiths, Carlson et. al. on which our work
will be based. We will show how a componentΣL of the Noether-Lefschetz locusNL(L) can be
locally expressed as the zeros of a certain section of a vector bundle overU(L). We will then use
this expression— together with the work of Griffiths from the 60s, relating variation of Hodge
structure with deformations ofX to multiplication of sections of line bundles onX— to relate
the codimension ofΣL to cohomological questions onX.

2·1. NL expressed as the zero locus of a vector bundle section.

We note first that by the Lefschetz theorem the mapPic0(Y ) → Pic0(X) is necessarily an
isomorphism. It follows that the mapi∗ : Pic(Y ) → Pic(X) fails to be surjective if and only
if the (1, 1) integral evanescent cohomology is non-trivial:H1,1

ev (X, Z) 6= 0. (We recall that the
subspaceH1,1

ev (X, C) ⊂ H1,1(X, C) is defined byγ ∈ H1,1
ev (X, C) ⇔ 〈i∗β, γ〉 = 0 for all β ∈

H2(Y, C).)

In particular, we can therefore defineNL(L) as follows

X ∈ NL(L) ⇔ H1,1
ev (X, Z) 6= 0.

This is the definition ofNL(L) which we will use henceforth, since it is much more manageable.
In particular, it is this description which will allow us to write any component ofNL(L) as the
zero locus of a special section of a vector bundle.

Henceforth, we will assume thatX is contained inNL(L) andγ will be a non-trivial element
of H1,1

ev (X, Z). The point inU(L) corresponding toX will be denoted by0. We will now de-
fine what we mean by theNoether-Lefschetz locus associated toγ, which we denote byNL(γ).
Since we will be interested in the local geometry ofNL(L), we fix for simplicity a contractible
neighbourhood of0, O. Henceforth, all our calculations will be made overO. We form a vector
bundleH2

ev overO, defined by

H2
ev(u) = H2

ev(Xu, C).
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The vector bundle contains holomorphic sub-bundlesF i(H2
ev) given by

F i(H2
ev)(u) = F i(H2

ev(Xu, C)).

We define bundlesHi,2−i
ev by Hi,2−i

ev = F i(H2
ev)/F i+1(H2

ev).

(The fibre ofHi,2−i
ev at the pointu is isomorphic toHi,2−i

ev (Xu): however,Hi,2−i
ev does not em-

bed naturally intoH2
ev as a holomorphic sub-bundle.) The bundleH2

ev is equipped with a natural
flat connexion, the Gauss-Manin connexion, which we denote by∇. We now defineγ to be the
section ofH2

ev produced by flat transport ofγ.

We defineγ0,2, a section ofH0,2
ev , to be the image ofγ under the projection

π : H2
ev → H0,2

ev .

We are now in a position to defineNL(γ).

DEFINITION 3. The Noether-Lefschetz locus associated toγ, NL(γ), is given by

NL(γ) = zero(γ0,2).

Informally, NL(γ) parameterizes the small deformations ofX on whichγ remains of Hodge
type(1, 1). Any component ofNL(L) is locally equal toNL(γ) for someγ.

The tangent spaceTNL(γ) atX is a subspace ofH0(L)/〈σ〉, whereσ is the section ofL defining
X. We will denote its preimage inH0(L) by T .

2·2. IVHS and residue maps.

We will now explain the classical work of Griffiths which makes the sectionγ0,2 particularly
manageable.

Let H2
ev be as above. For the purposes of this section we will consider the holomorphic sub-

vector bundleF i
ev to be a holomorphic mapF i

ev : O → Grass(fi,H2
ev) where fi is the

dimension ofF iH2
ev(X, C). The Gauss-Manin connexion gives us a canonical isomorphism

H2
ev
∼= H2

ev(X, C)×O, from which we deduce a canonical isomorphism

Grass(fi,H2
ev) ∼= O ×Grass(fi,H

2
ev(X, C)).

In particular,F i
ev is now expressed as a map fromO to the constant spaceGrass(fi,H

2
ev(X, C)),

and as such can be derived. We obtain a derivation map, which we denote byIVHS (for Infinites-
imal Variation of Hodge Structure)

IVHSi : TO → Hom(F i(H2
ev),H

2
ev/F i(H2

ev)).

Griffiths proved the following result in [10].

Theorem (Griffiths’ Transversality) The image ofIVHSi is contained inHom(Hi,2−i
ev ,Hi−1,3−i

ev ).

The importance of this work for our purposes is the following lemma.

LEMMA 1. For anyv ∈ TO, we have thatdv(γ0,2) = −IVHS1(v)(γ).
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Proof. The isomorphismf : TW Grass(n,V) ∼= Hom(W,V/W ) is given by

f(v) : w → ∂

∂v
(w̃)|V/W

wherew ∈ W andw̃ is any local section of the tautological bundle over the Grassmannian such
thatw̃W = w.
In the case in hand, we choose a lifting ofγ0,2 to a section ofH2

ev, which we denote byγ0,2
lift. By

definition ofγ0,2, we then have thatγ − γ0,2
lift ∈ F1(H2

ev) and it follows thatIVHS1(v)(γ) =
∂
∂v (γ − γ0,2

lift)|H0,2
ev

and now, since by definitionγ is constant,IVHS1(v)(γ) = −dv(γ0,2
lift)|H0,2

ev
=

−dv(γ0,2). �

We will also need the work of Carlson and Griffiths relating the residue maps to Hodge structure
of varieties ([1]). Suppose given, fori = 1, 2, a section

s ∈ H0(KY ⊗ Li).

This can be thought of as a holomorphic 3-form onY with a pole of orderi alongX, and as such
defines a cohomology class inH3(Y \X, C). The groupH3(Y \X, C) maps toH2

ev(X, C) via
residue, and hence there is an induced residue map

resi : H0(KY ⊗ Li) → H2
ev(X, C).

The relevance of this map to variation of Hodge structure comes from the following theorem,
which is proved by Griffiths in [11].

TheoremThe image ofresi is contained inF 3−i(H2
ev).

Henceforth, we will denote byπi the induced projection map

πi : H0(KY ⊗ Li) → H3−i,i−1
ev (X, C).

In this representation, the mapIVHS3−i has a particularly nice form ([1], page 70).

Theorem (multiplication) Considerv ∈ TO. Let ṽ be a lifting ofv to H0(L). Then for any
P ∈ H0(KX ⊗ Li), we have that

IVHS3−i(v)(πi(P )) = πi+1(ṽ ⊗ P )

up to multiplication by some nonzero constant.

The only fly in the ointment is that in general we cannot be sure that the mapπi is surjec-
tive ontoH3−i,i−1

ev (X, C). It is precisely for this reason that we will be obliged to suppose that
H1(Ω2

Y ⊗ L) = 0.
The following lemma will be crucial.

LEMMA 2. Considerγ ∈ H1,1
ev (X) andω ∈ H2,0

ev (X). For any vectorv ∈ TO we have

〈IVHS1(v)(γ), ω〉+ 〈γ, IVHS2(v)(ω)〉 = 0.

Proof. We note thatdv(〈γ, ω〉) = 0. We note that we can write

γ = γ1 + γ2
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whereγ1 ∈ F1
ev andγ2(0) = 0. Similarly, we can writeω = ω1 + ω2 whereω1 ∈ F2

ev and
ω2(0) = 0. We note that for Hodge theoretic reasons< ω1, γ1 >= 0 and hence

dv(〈γ, ω〉) = 〈dv(γ2), ω〉+ 〈γ, dv(ω2)〉.

Here, of course, it makes sense to talk aboutdv(ω2) anddv(γ2) only becauseω2(0) = 0 and
γ2(0) = 0. Since〈F1,F2〉 = 0, we have that

〈dv(γ2), ω〉 = 〈dv(γ2)0,2, ω〉 = 〈−IVHS1(v)(γ), ω〉

and similarly

〈γ, dv(ω2)〉 = 〈γ, (dvω2)1,1〉 = 〈γ,−IVHS2(v)(ω)〉.

So it follows immediately fromdv(〈γ, ω〉) = 0 that

〈IVHS1(v)(γ), ω〉+ 〈γ, IVHS2(v)(ω)〉 = 0. �

3. Strategy and overview.

The basic idea of this proof is that used by Green in [8]. We summarise his proof and explain
why it cannot be immediately applied to the situation in hand.

First some notation. Given any pair of coherent sheaves onX, L andM we denote byµL,M

the multiplication map

µL,M : H0(L)⊗H0(M) → H0(L⊗M).

Where there is no risk of confusion, we will writeµ for µL,M .

The starting point of Green’s work is the following lemma.

LEMMA 3. Suppose thatT ⊂ H0(OP3(d)) is the preimage ofTNL(γ). Then the inclusion

µ(T ⊗H0(P3,OP3(d− 4))) ⊂ H0(P3,OP3(2d− 4))

is a strictinclusion.

Proof. In the case ofY = P3, we have thatπi : H0(KY ⊗ Li) → H3−i,i−1
ev (X) is a surjection.

(See, for example, [21, proof of Thm. 18.5, page 420]). By Lemma 2, ifv ∈ TNL(γ) and
P ∈ H0(P3,OP3(d− 4)) then

〈γ, IVHS2(v)(π1(P ))〉 = −〈IVHS1(v)(γ), π1(P )〉 = 0

from which we conclude thatIVHS2(v)(π1(P )) ∈ γ⊥, whereγ⊥ is the orthogonal toγ, and in
particular is a proper subspace. By the multiplication theorem it follows thatπ2(µ(ṽ⊗P )) ∈ γ⊥

or alternatively

µ(ṽ ⊗ P ) ∈ π−1
2 (γ⊥).

Sinceπ2 is surjective,π−1
2 (γ⊥) is a proper subspace. �

Green then proves the following theorem via the vanishing of certain Koszul cohomology groups.

Theorem (Green) Let T ⊂ H0(OPr (d)) be a base-point free linear system of codimension
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c. Then the Koszul complex

p+1∧
T ⊗H0(OPr (k − d)) →

p∧
T ⊗H0(OPr (k)) →

p−1∧
T ⊗H0(OPr (k + d))

is exact in the middle provided thatk ≥ p + d + c.

In the case in hand, on settingr = 3, p = 0 andk = 2d − 4 we see that the multiplication
map

T ⊗H0(P3,OP3(d− 4)) → H0(P3,OP3(2d− 4))

is surjective if2d − 4 ≥ d + c. But we have already observed that this multiplication map is
necessarily non-surjective, from which it follows thatc ≥ d− 3.

In Lemma 4 below we will see that, providedH1(Ω2
Y ⊗L) = 0, it is still true that the multiplica-

tion mapT ⊗H0(KY ⊗L) → H0(KY ⊗L2) is non-surjective. One might therefore reasonably
entertain the hope of adapting Green’s methods to arbitrary varieties. The difficulty is that in or-
der to apply Green’s result,T must be base-point free. This was immediate whenY = P3, since,
if X was given byF ∈ H0(OP3(d)), T then automatically containedH0(OP3(1)) × 〈 ∂F

∂Xi
〉.

However ifTY is not globally generated, there is no reason why this should hold in general. The
rest of this paper will be concerned with finding ways around this difficulty.

LEMMA 4. LetL be very ample and such thatH1(Ω2
Y ⊗ L) = 0.

LetT ⊂ H0(L) be the preimage inH0(L) of the tangent space toNL(γ). Then

µ(T ⊗H0(KY ⊗ L)) ⊂ H0(KY ⊗ L2)

is a strict inclusion.

Proof. We note that by the argument given in the proof of Lemma 3,

π2(µ(T ⊗H0(KY ⊗ L))) 6= H1,1
ev (X, C).

Now it just remains to observe that, by [21, proof of Thm. 18.5, page 420],

π2 : H0(KY ⊗ L2) → H1,1
ev (X, C)

is a surjection, sinceH1(Ω2
Y (X)) = 0. �

So, we would now like to apply Green’s argument; unfortunately,T may have base points. Our
strategy for getting around this problem will be as follows.

(i) First of all, we will constructW ⊂ H0(KY ⊗ L(3)) with the following good properties.
(a) W is base-point free,
(b) π2(µ(W ⊗H0(L(−3)))) = 0.

(ii) The result proved by Ein and Lazarsfeld in [5] then gives us a lower bound on the codi-
mension ofµ(T ⊗H0(KY (3))) in H0(KY ⊗ L(3)).

(iii) We will then extract from the lower bound oncodim µ(T ⊗H0(KY (3))) a lower bound
on the codimension ofT in H0(L).

4. ConstructingW .

We henceforth letY be a smooth threefold,Y 6= P3 andH be a very ample divisor onY .

PROPOSITION1. There is a subspaceW ⊂ H0(KY ⊗ L(3)) such that
(i) The mapπ2 ◦ µ : W ⊗H0(L(−3)) → H1,1

ev (X, C) is identically zero.
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(ii) W is base-point free.

Proof. We denote the image ofµ : W ⊗H0(L(−3)) → H0(KY ⊗ L2) by 〈W 〉. Consider the
map

d : H0(Ω2
Y ⊗ L) → H0(KY ⊗ L2)

which sends a two-form onY with a simple pole alongX to its derivation. We note that for
anyω ∈ H0(Ω2

Y ⊗ L) we have thatdω ∈ Ker(res2), becausedω, being exact, defines a null
cohomology class onY \X.
The spaceW will be chosen in such a way that

〈W 〉|X ⊂ Im(d)|X .

The mapd is difficult to deal with because it is not a map ofOY -modules: the value ofdω at a
point x is not determined by the value ofω at x. In particular, it is not possible to form a tensor
product map

d⊗ (L−1(3)) : H0(Ω2
Y (3)) → H0(KY ⊗ L(3)).

Our first step will be to show that, even ifd does not come from an underlying map ofOY -
modules, the restriction

dX : H0(Ω2
Y ⊗ L) → H0(KX ⊗ L|X )

does.

LEMMA 5. Let the mapr : Ω2
Y ⊗ L → KX ⊗ L be given by tensoring withL the pull-back

i∗ : Ω2
Y → Ω2

X(∼= KX). Then we have thatdX = −H0(r).

Proof. We calculate in analytic complex coordinates near a pointp ∈ X. Let f be a function
definingX in a neighbourhood ofp and letx, y be coordinates chosen in such a way that(f, x, y)
form a system of coordinates forY close top. If ν ∈ H0(Ω2

Y ⊗ L), then in a neighbourhood of
p we can write

ν =
f1dx ∧ dy + f2dx ∧ df + f3dy ∧ df

f

wheref1, f2, f3 are holomorphic functions on a neighbourhood ofp.
Differentiating and restricting toX, we get that

dν|X =
−f1dx ∧ dy ∧ df

f2
.

As an element ofH0((KY ⊗ L)⊗ L), this is represented by

−f1dx ∧ dy ∧ df

f
⊗ 1/f.

Under the canonical isomorphism(KY ⊗ L)|X → KX , we have that

−f1dx ∧ dy ∧ df

f
→ −f1dx ∧ dy.

Hence, under the canonical isomorphism(KY ⊗ L2)|X → KX ⊗ L|X , we have that

(dν)|X → −f1dx ∧ dy

f
= −r(ν).
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This concludes the proof of Lemma 5. �

We now proceed with the proof of Proposition 1.
The mapdX , which isa map ofOY -modules, has the advantage that we can form tensor prod-
ucts. We consider the map induced by tensor product withL−1(3)

d
L−1(3)
X : H0(Ω2

Y (3)) → H0(KX(3)).

We defineW by

W = {w ∈ H0(KY ⊗ L(3)) : w|X ∈ Im(dL−1(3)
X )}.

We will prove first that

LEMMA 6. For anyw ∈ W andP ∈ H0(L(−3)), we have that

π2(µ(P ⊗ w)) = 0.

Proof. Sincew ∈ W there existss ∈ H0(Ω2
Y (3)) such thatw|X = d

L−1(3)
X s and hence

(Pw)|X = dX(Ps) = d(Ps)|X .

From this it follows that there existss′ ∈ H0(KY ⊗ L) such that

Pw = d(Ps) + σs′.

We observed above thatπ2(d(Ps)) = 0. We note thatres2(σs′) = res1(s′) and henceres2(σs′) ∈
F 2H2

ev(X, C), from which it follows thatπ2(σs′) = 0. Whenceπ2(Pw) = 0. This concludes
the proof of Lemma 6. �

To conclude the proof of Proposition 1 it remains only to show thatW is base-point free. Since
Y 6= P3 we have ([4]) thatKY (3) is globally generated. Also

µ(Cσ ⊗H0(KY (3))) ⊂ W

therefore the only possible base points ofW are the points ofX. Consider an arbitrary point
p ∈ X. Now if PN = PH0(Y, H) we have thatΩ2

Y (3) is globally generated sinceΩ2
PN (3) is

such and there is a surjectionΩ2
PN (3) � Ω2

Y (3). Whence there exists a sections ∈ H0(Ω2
Y (3))

such thatdL−1(3)
X (s)(p) 6= 0. From the short exact sequence

0 → KY (3) → KY ⊗ L(3) → KX(3) → 0

and Kodaira vanishing we see that there existsw ∈ H0(KY ⊗L(3)) such thatw|X = d
L−1(3)
X (s).

It follows thatw ∈ W , and

w(p) = d
L−1(3)
X (s)(p) 6= 0.

Hencep is not a base-point ofW . This completes the proof of Proposition 1. �

To get lower bounds on the codimension we will apply the following result of Ein and Lazarsfeld,
[5, Prop. 3.1].

Theorem (Ein, Lazarsfeld) Let H be a very ample line bundle andB,C be nef line bundles
on a smooth complex projectiven-fold Z. We set

Ff = KZ + fH + B andGe = KZ + eH + C.
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LetV ⊂ H0(Z,Ff ) be a base-point free subspace of codimensionc and consider the Koszul-type
complex

p+1∧
V ⊗H0(Ge) →

p∧
V ⊗H0(Ff + Ge) →

p−1∧
V ⊗H0(2Ff + Ge).

If (Z,H,B) 6= (Pn,OPn(1),OPn), f ≥ n + 1 ande ≥ n + p + c, then this complex is exact in
the middle.

In order to apply this to our situation, we setp = 0, and, in caseL = KY + dH + A we
choosef = d, e = d − 3, B = A + KY + 3H (note thatB is nef sinceKY + 3H is globally
generated) andC = A. In the caseL (-d)-regular we haveL = M(d) for a Castelnuovo-
Mumford regular line bundleM and we choosef = d + 3, e = d− 3 + αY − βY , B = M and
C = M + (βY − αY )H −KY , so thatB is nef sinceM is globally generated and alsoC is nef
by definition ofαY andβY (see Definition 1). We then have that

Ff = KY ⊗ L(3) andGe = L(−3)

and the theorem in this particular case says that:

PROPOSITION2. Suppose thatd ≥ 4 andY 6= P3. LetV be a base-point free linear system
in H0(KY ⊗ L(3)) with the property that

µ(V ⊗H0(L(−3))) ⊂ H0(KY ⊗ L2)

is a strict inclusion. Then the codimensionc of V satisfies the inequality

c ≥

{
d− 5 + αY − βY if L is (−d)− regular

d− 5 if L = KY + dH + A
.

In general, pulling together the results of sections 3 and 4, we have the following bound.

PROPOSITION3. Suppose thatY 6= P3 andH1(Ω2
Y ⊗ L) = 0. Then the codimension of the

image of

µ : T ⊗H0(KY (3)) → H0(KY ⊗ L(3))

is at leastd− 5 + αY − βY if L is (-d)-regular or at leastd− 5 if L = KY + dH + A.

Proof. For simplicity, we set

T̃ := W + µ(T ⊗H0(KY (3))) ⊂ H0(KY ⊗ L(3)).

Notice that the multiplication map

µ̃ : T̃ ⊗H0(L(−3)) → H0(KY ⊗ L2)

cannot be surjective, otherwise, as in the proof of Lemma 4, we get that

π2 ◦ µ̃(T̃ ⊗H0(L(−3))) = H1,1
ev (X, C)

and, given the first property ofW , the latter equality implies the contradiction

π2 ◦ µ(T ⊗H0(KY ⊗ L))) = H1,1
ev (X, C).

Now, by Proposition 2, we get that

codim µ(T ⊗H0(KY (3))) ≥

{
d− 5 + αY − βY if L is (−d)− regular

d− 5 if L = KY + dH + A
.
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�
Therefore it will be enough to devise a mechanism for extracting codimension bounds forT from
codimension bounds forµ(T ⊗H0(KY (3))). This is the subject of the next section.
We end the section by studying the vanishing ofH1(Ω2

Y ⊗ L).

REMARK 1. If d ≥ 3βY − 3αY + 13 andL is (-d)-regular or ifd ≥ 2bY − 2aY + 13 and
L = KY + dH + A, thenH1(Ω2

Y ⊗ L) = 0.
Proof. We just apply Griffiths’ vanishing theorem [12] to the globally generated vector bundle
E = Ω2

Y (3). We write

Ω2
Y ⊗ L = E(detE + KY + B)

whence we just need to prove thatB = L− 12H − 3KY is ample. By definition ofaY , bY , αY

andβY we can write−KY = (a − b)H + A′, whereA′ is nef anda = αY , b = βY if L is
(-d)-regular, whilea = aY , b = bY if L = KY +dH+A. HenceB = (d−12−ub+ua)H+A′′,
whereA′′ is nef andu = 2 if L = KY + dH + A, u = 3 if L is (-d)-regular. ThereforeB is
ample. �

REMARK 2. Notice that ifY is a quadric hypersurface inP4, sinceKY = −3H, if L =
(d− 3)H, we have thatH1(Ω2

Y ⊗ L) = 0 for d ≥ 7, whence

codim T ≥ d− 5.

5. Macaulay-Gotzmann for CM regular sheaves.

We start by reviewing the situation forPn, which we will then generalise to arbitrary varieties.

Definition of c<d> and c<d>. Given integersc ≥ 1, d ≥ 1, there exists a unique sequence
of integerskd, kd−1, . . . , kf with d ≥ f ≥ 1 (f is uniquely determined byc andd) such that

(i) kd > kd−1 > . . . > kf ≥ f ,

(ii) c =
f∑

i=d

(
ki

i

)
.

Here and below we use the convention
(
m
p

)
= 0 if m < p. We define

c<d> :=
f∑

i=d

(
ki + 1
i + 1

)
, c<d> :=

f∑
i=d

(
ki − 1

i

)
.

Whenc = 0 we setc<d> = c<d> = 0.
We have the following result of Macaulay and Gotzmann, which can be found in [7], pages 64-65.

Theorem (Macaulay, Gotzmann)LetV ⊂ H0(OPn(d)) be a subspace of codimensionc. Then
the subspace

µ(V ⊗H0(OPn(1))) ⊂ H0(OPn(d + 1))

is of codimension at mostc<d>.

Gotzmann proved the Macaulay-Gotzmann inequality using combinatorial algebraic techniques.
Green gave a geometric proof in [9]. We will now generalise the argument given by Green in or-
der to prove that the Macaulay-Gotzmann inequality is valid for arbitrary Castelnuovo-Mumford
regular sheaves.
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THEOREM 3. LetM be a Castelnuovo-Mumford regular coherent sheaf on a projective space
PN . For d ≥ 1 let V ⊂ H0(M(d)) be a subspace of codimensionc, and defineV d+1 ⊂
H0(M(d + 1)) byV d+1 = µ(V ⊗H0(OPN (1))). Then

codim V d+1 ≤ c<d>.

The Theorem will follow from the following proposition.

PROPOSITION4. Suppose thatV , M and d are as above. LetH be a generic hyperplane
of PN and denote byMH the restriction ofM to H. We further denote the restriction ofV to
H0(MH(d)) byVH . Then

codim VH ≤ c<d>.

Proof. We shall proceed by a double induction on the dimension of the support ofM and the
numberd. We assume now thatd ≥ 2,dimSupp(M) ≥ 1. The proof of the Proposition for
d = 1 or for sheaves with zero-dimensional supports is to be found in subsections 5·0·1 and
5·0·2.

Let H and H ′ be two generic hyperplanes. We define the spacesV H (respectivelyV H′
) in

the following way. LetLH (resp.LH′ ) be a linear polynomial definingH (resp.H ′). We define
V H ⊂ H0(M(d− 1)) by

v ∈ V H ⇔ LH × v ∈ V.

(Similarly, V H′
is defined byv ∈ V H′ ⇔ LH′ × v ∈ V .) We now consider the following exact

sequence

0 → H0(M(d− 1)) ×LH→ H0(M(d)) res→ H0(MH(d)) → 0.

Here, of course, we have right exactness of the sequence only becauseM is a Castelnuovo-
Mumford regular sheaf. There is an induced exact sequence

0 → V H → V → VH → 0

whence we see that

codim V = codim V H + codim VH .

We now consider the following commutative diagram

0

��

0

��
0 // (V H′

)H // V H′ //

×LH′

��

(V H′
)H

//

×LH∩H′

��

0

0 // V H // V //

res

��

VH
//

res

��

0

0 // (VH′)H∩H′ // VH′ //

��

(VH′)H∩H′

��

// 0

0 0
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In the above diagram, all the rows are exact (sinceMH is Castelnuovo-Mumford regular onH),
as is the middle column. It is not immediate that the right-hand column is exact, but we will be
able to show that it is close enough to exact for our purposes.

More precisely,

(VH′)H∩H′ = V|H∩H′ = (VH)H∩H′

and hence the restriction mapVH → (VH′)H∩H′ is a surjection. We have automatically that
(V H′

)H ⊂ (VH)H∩H′
and hence the composition of the maps×LH∩H′ and res is zero. It

follows that

codim VH ≤ codim (VH′)H∩H′ + codim (V H′
)H .

We denote byc′ the codimension ofVH for genericH. Hence, sinceH ′ has been chosen generic,
codim VH′ = c′. We have thatcodim V H′

= c− c′. We note that
(i) V H′ ⊂ H0(M(d− 1)) and hence by the induction hypothesis

codim (V H′
)H ≤ (c− c′)<d−1>.

(ii) The dimension of the support ofMH′ is strictly less than the dimension of the support of
M and hence by the induction hypothesis

codim (VH′)H∩H′ ≤ c′<d>.

It follows that

c′ ≤ c′<d> + (c− c′)<d−1>.

Green shows in [9], pages 77-78, that this inequality implies thatc′ ≤ c<d>.

It remains only to prove the Proposition for zero-dimensional sheaves or ford = 1.

5·0·1. The case d=1.

For anyc 6= 0 we have thatc<1> = c−1. We suppose first thatV 6= H0(M(1)). If for generic
H we havecodim VH > c<1>, then, for genericH, V H = H0(M). In other words, for generic
H

LH ×H0(M) ⊂ V.

It follows that

µ(H0(M)⊗H0(OPN (1))) ⊂ V.

SinceM is Castelnuovo-Mumford regular, it follows thatV = H0(M(1)) which contradicts our
supposition thatV 6= H0(M(1)).

But if c = 0 thenc<1> = 0 and Proposition 4 is immediate. This completes the proof of the
Proposition in the case whered = 1.

5·0·2. The case where the dimension of the support ofM is zero.

In this case, for genericH, H0(MH(d)) = 0, and hencecodim VH = 0. This completes the
proof of the Proposition in the case where the dimension of the support ofM is zero.

This completes the proof of Proposition 4. �
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We now show how Proposition 4 implies Theorem 3. We proceed by induction on the dimen-
sion of the support ofM . We consider the following exact sequence, whereH is once again a
generic hyperplane inPN ,

0 → (V d+1)H → V d+1 → (V d+1)H → 0

from which it follows that

codim V d+1 = codim (V d+1)H + codim (V d+1)H .

We note thatV ⊂ (V d+1)H and(VH)d+1 ⊂ (V d+1)H from which it follows that

codim V d+1 ≤ c + (c<d>)<d> ≤ c<d>.

This completes the proof of Theorem 3. �

6. Proof of the main theorems.

We will now show how all this ties together to give a proof of the main theorems. We hence-
forth set

a =

{
αY if L is (−d)− regular

aY if L = KY + dH + A
, b =

{
βY if L is (−d)− regular

bY if L = KY + dH + A

whereαY , βY , aY andbY are as in Definitions 1 and 2.
It is now that we will use the supposition that(Y, H) is not a linearP2-bundle, henceKY (3) is
very ample, or, alternatively, thata ≤ 3 (the case of the quadric is done by Remark 2). The case
a = 4 will be dealt with at the end of the article.
We start with the following lemma.

LEMMA 7. Supposed ≥ 5 and letT ⊂ H0(L) be of codimensionc ≤ d− 4. Define

T ′ := µ(T ⊗H0(OY (3− a))) ⊂ H0(L(3− a)).

Then

codim T ′ ≤ c

Proof. WhenL is (-d)-regular we can writeL = M(d), whereM is a Castelnuovo-Mumford
regular sheaf. Also whenL = KY + dH + A, sinceM := KY + 4H + A is Castelnuovo-
Mumford regular, we can writeL = M(d − 4), whereM is a Castelnuovo-Mumford regular
sheaf. Applying Theorem 3,(3− a)-times, we obtain the result. �

We denote now byn the integerbd+3−a
b c − 4. We will also denote the very ample line bun-

dleKY (a) by P , and the bundleL(3− a) by L′. We have the following lemma.

LEMMA 8. The line bundleL′ can be written in the form

L′ = MP + nP

whereMP is a sheaf which is Castelnuovo-Mumford regular with respect to the projective em-
bedding defined by P.

Proof. We know by definition ofa and b that there is a nef line bundleN such thatbH =
KY + aH + N , from which it follows that

(d + 3− a)H = (n + 4)P + (n + 4)N + rH
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for somer ≥ 0, hence

(d + 3− a)H = (n + 4)P + A′

whereA′ is a nef line bundle. Now

MP := L′ − nP =

{
4P + A1 if L is (−d)− regular

KY + 4P + A2 if L = KY + dH + A

for some nef line bundlesA1, A2. This clearly implies, by Kodaira vanishing, thatMP is Castelnuovo-
Mumford regular with respect toP in the caseL = KY + dH + A. But also in the other case,
for each1 ≤ i ≤ 3, we can write

MP − iP = KY + aH + (3− i)P + A1

whence again we have Castelnuovo-Mumford regularity by Kodaira vanishing since nowa =
αY > 0 by definition. �

We are now in a position to prove the following proposition.

PROPOSITION5. Supposed ≥ 5 and letT ⊂ H0(L) be of codimensionc ≤ d− 4. Define

T := µ(T ⊗H0(KY (3)) ⊂ H0(KY ⊗ L(3)).

Then

codim T ≤ c<n>.

Proof. With T ′ as in Lemma 7, we note that

µ(T ′ ⊗H0(KY (a)) ⊂ T .

We know by Lemma 7 thatcodim T ′ ≤ c. We know further by Lemma 8 thatL′ = MP + nP

and hence Theorem 3 applied to the map

µ : T ′ ⊗H0(P ) → H0(KY ⊗ L(3))

gives us thatcodim µ(T ′ ⊗H0(KY (a)) ≤ c<n>. From this it follows that

codim T ≤ c<n>. �

By Proposition 3 we know that

codim T ≥

{
d− 5 + αY − βY if L is (−d)− regular

d− 5 if L = KY + dH + A

and hence eitherc ≥ d− 3 or

c<n> >

{
d− 6 + αY − βY if L is (−d)− regular

d− 6 if L = KY + dH + A
.

The following elementary lemma will allow us to control the growth ofc<n>.

LEMMA 9. If there exists an integere ≥ 0 such that

c <
e∑

i=0

(n + 1− i)

thenc<n> ≤ c + e.
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Proof. The Lemma being obvious forc = 0 we supposec ≥ 1 andc =
f∑

i=n

(
ki

i

)
. Observe that

e∑
i=0

(n + 1− i) ≤ (n + 1)(n + 2)
2

.

Now supposeki = i for f ≤ i ≤ f1 for somef − 1 ≤ f1 ≤ n, ki = i + 1 for f1 + 1 ≤ i ≤ f2

for somef2 such thatf1 ≤ f2 ≤ n andki ≥ i + 2 for f2 + 1 ≤ i ≤ n (the casef − 1 = f1

simply means that noki is equal toi, and similarly forf2). Then, iff2 < n, we have

c ≥
(

kn

n

)
≥

(
n + 2

2

)
=

(n + 1)(n + 2)
2

contradicting the hypothesis. Thereforef2 = n andc<n> = c + n − f1 and it remains to show
thatn − f1 ≤ e. Since we can writec =

∑n−f1
i=0 (n + 1 − i) − f if n − f1 ≥ e + 1 we deduce

the contradictionc ≥
∑e

i=0(n + 1− i). �

In particular, it follows that

LEMMA 10. SupposeL = KY + dH +A, bY ≥ 2 andd− 6− bY <
∑bY

i=0(n+1− i). Then

codim T > d− 6− bY .

If bY = 1, then

codim T > d− 6.

Proof. By Lemma 9, ifbY ≥ 2, we haved − 6 − bY <
∑bY

i=0(n + 1 − i) andc = codim T ≤
d− 6− bY whence, by Proposition 5,

codim T ≤ c<n> ≤ d− 6.

But this is impossible by Proposition 3. IfbY = 1 andc ≤ d− 6 we havec ≤ n hence

codim T ≤ c<n> = c ≤ d− 6,

again impossible by Proposition 3. �

Similarly we have

LEMMA 11. SupposeL is (-d)-regular,βY ≥ 2 and

d− 6 + αY − 2βY <

βY∑
i=0

(n + 1− i).

Then

codim T > d− 6 + αY − 2βY .

If βY = 1, then

codim T > d− 7 + αY .

We now require only the following lemma.

LEMMA 12. If bY ≥ 2 andd ≥ bY (b2Y +7bY −6)
2 then

d− 6− bY <

bY∑
i=0

(n + 1− i). (6·1)
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If βY ≥ 2 andd ≥ β2
Y (βY +5)

2 then

d− 6 + αY − 2βY <

βY∑
i=0

(n + 1− i).

Proof. We note first thatn ≥ b d
bY
c− 4 and it follows thatbY (n + 1) > d− 4bY . Hence we have

that
bY∑
i=0

(n + 1− i) > d− 4bY + (n + 1)− bY (bY + 1)
2

.

In particular, if

d− 6− bY ≤ d− 4bY + (n + 1)− bY (bY + 1)
2

then (6·1) is immediately satisfied. This inequality is equivalent to

−7 + 3bY ≤ n− bY (bY + 1)
2

and sincen ≥ b d
bY
c − 4, (6·1) will be satisfied provided that

−7 + 3bY ≤ b d

bY
c − 4− bY (bY + 1)

2

which is equivalent to−3 + 3bY + bY (bY +1)
2 ≤ b d

bY
c, which is equivalent to

bY (b2
Y + 7bY − 6)

2
≤ d.

The second assertion of the Lemma is proved similarly. �

Completion of the proof of Theorems 1 and 2.
The results proved so far (together with Remark 2) give a proof of the Theorems under the
hypothesis that(Y, H) is not a linearP2-bundle. In the latter case sinceKY (4) is very am-
ple, repeating verbatim the whole proof replacing everywhereKY (3) with KY (4) and using
aY = αY = 4 we get the desired bound. �

Proof of Corollary 1.
This is a straightforward generalisation of [2] given the following two facts :

(i) a lower bound on the codimension on the components of the Noether-Lefschetz lo-
cus NL(OY (d)) that insures that they have codimension at least two (our hypothesis
d ≥ 7 + e);

(ii) the fact that, on a general surfaceX not in NL(OY (d)) we have that if a complete in-
tersection ofX with another surface in|OY (d)| is reducible then its irreducible com-
ponents are also complete intersection ofX with another surface in|OY (s)| for somes

(this is needed in the proof of [2, Prop. 2.1] and is insured, in our case, by the hypothesis
Pic(Y ) ∼= Z). �
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