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Explicit Noether-Lefschetz for arbitrary threefolds
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Abstract

We study the Noether-Lefschetz locus of a very ample line buhdée an arbitrary smooth
threefoldY". Building on results of Green, Voisin and Otwinowska, we give explicit bounds,
depending only on the Castelnuovo-Mumford regularity properties, @n the codimension of
the components of the Noether-Lefschetz locud.of

1. Introduction.

It is well-known in algebraic geometry that the geometry of a given variety is influenced by
the geometry of its subvarieties. It less common, but not unusual, that a given ambient variety
forces to some extent the geometry of its subvarieties.

A particularly nice case of the latter is given by line bundles, whose properties do very much
influence the geometry.

If Y is a smooth variety andl: X — Y is a smooth divisor, there is then a natural restriction
map

i* : Pic(Y) — Pic(X)

given by pull-back of line bundles.

Now suppose thak is very ample. By the Lefschetz theoremis injective if dimY > 3. On

the other hand, it was already known to the Italian school (Sel8fi Gherardelli B]), thati* is
surjective whenlimY” > 4. Simple examples show that in the case whireY = 3 we cannot
hope for surjectivity unless a stronger restriction is considered.

For the cas& = P32, this is also a classical problem, first posed by Noether and solved in the
case of generiX by Lefschetz who showed that

Theorem (Noether-LefschetzJor X a generic surface of degree> 4 in P we havePic(X) =
7.

Here and below by generic we mean outside a countable union of proper subvarieties.
Suppose now that a smooth threeféidcand a line bundld. on Y are given. We will say that a
Noether-Lefschetz theorem holds for the g&ir L), if

i* : Pic(Y) — Pic(X)

is a surjection for a generic smooth surfaceZ Y such tha0y (X) = L.

The following result of Moishezon 1], see also the argument given in Voisg1] Thm. 15.33])
establishes the exact conditions under which a Noether-Lefschetz theorem hgldsipr

1 Research partially supported by the MIUR national project “Geometria delle &aalgebriche”
COFIN 2002-2004 and by the INdAM project “Geometria birazionale delle vagkgebriche”.
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Theorem (Moishezon)if (Y, L) are such thatl is very ample and
hei2(X,C) # 0

for a generic smoottX such thatOy (X) = L, then a Noether-Lefschetz theorem holds for the
pair (Y, L).

Here,h%;2 denotes the evanescegt 0)-cohomology ofX: see below for a precise definition.

More precisely, we denote iy (L) the open subset &H(L) parameterizing smooth surfaces

in the same equivalence classlasNe further denote b)XL(L) (the Noether-Lefschetz locus of

L) the subspace parameterizing surfagesquipped with line bundles which are not produced
by pull-back fromY". The above theorem then admits the following alternative formulation.

Theorem (Moishezon)if (Y, L) are such that_ is very ample and

hO2(X,C) £0

ev

for a generic smootlX such thatOy (X) = L, then the Noether-Lefschetz lodN&(L) is a
countable union of proper algebraic subvarietiedafL).

These proper subvarieties will henceforth be referred woagponents of the Noether-Lefschetz
locus

A Noether-Lefschetz theorem for a pdlY, L) essentially says that for a generic surfate

such thatDy (X) = L, the set of line bundles oX is well-understood and as simple as pos-
sible. A natural follow-up question is: how rare are surfaces with badly behaved Picard groups?
Or alternatively: how large can the components of the Noether-Lefschetz locus be in compari-
son withU(L)? This leads us to attempt to prove what we will @tplicit Noether-Lefschetz
theoremsAn explicit Noether-Lefschetz theorem (the terminology is due to Green) says that the
codimension oNL(L) c U(L) is bounded below by some number depending non-trivially

on the positivity ofL. The first known example of these was the following theorem, established
independently by Voisin and Gree][[20], which gives an explicit Noether-Lefschetz theorem

for P3.

Theorem (Green, Voisin)Let Y = P3 and L = Ops(d). LetX; C U(L) be any compo-
nent of the Noether-Lefschetz locus. Thedim >, > d — 3, with equality being achieved only
for the component of surfaces containing a line.

In this theorem we see also another of the reigning principles of the study of components of
the Noether-Lefschetz locus, namely that components of small codimension should parameter-
ize surfaces containing low-degree curves.

Recently, the subject has been much advanced by the following result of OtwinowkHKa, ([
see also I5] and [16]) which implies an explicit Noether-Lefschetz theorem for analogues of
Noether-Lefschetz loci for highly divisible line bundles on varieties of arbitrary odd dimension.
(For ease of presentation, we give a weakened version of the result proved).

Theorem (Otwinowska)LetY be a projective variety of dimensi@m + 1, let Oy (1) be a very
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ample line bundle oY” and letX;, c U(Oy(d)) be any component of the Noether-Lefschetz
locus. LetX be a hypersurface contained ¥y, . For d large enough, if

mn

codim ¥ < —
n!

then X contains an-dimensional linear space.

In fact, Otwinowska also gives a numerical criterion é@nd the codimension of.;, under
which X necessarily contains a degrea-dimensional subvariety.
We recall also the results of Joshd and Ein-Lazarsfeldq, Prop. 3.4].

The aim in this paper will be to shed light on the fact that it is @Gestelnuovo-Mumford reg-
ularity propertiesof a line bundle that insure that an explicit Noether-Lefschetz theorem holds,
independently on the divisibility properties.

To state our first result we suppose thais a smooth threefold an is a very ample line bundle
onY. We define numbersy andgy as follows.

DEFINITION 1. The integefxy is defined to be the minimal positiigeger such thaf(y +
ay H is very ample. The integgk, is defined to be the minimal integer such thay —ay ) H —
Ky is nef.

We recall that, by the results of adjunction theot®][ if (Y, H) # (P3,Ops(1)), we have
thatay < 4 with equality if and only if eithey” is alP2-bundle over a smooth curve and the
restriction of H to the fibers isOp- (1) (we will refer later to this case as a lined?-bundle

or (Y,H) = (Q,0q(1)) where@Q C P* is a smooth quadric hypersurface. On the other hand
By > 1 with equality if Y is subcanonical and nonpositive (that igif- = eH for some integer

e <0).

We have

THEOREM 1. LetY be a smooth threefold; £ P3 and letH be a very ample divisor of.
Let L be a (-d)-regular line bundle with respect 6. We suppose that eithéf!(Q @ L) = 0
ord > 30y — 3ay + 13. LetX, be any component of the Noether-Lefschetz I08UE.). The
following bounds hold:

(i) If (Y, H) is not a linearP?-bundle then

- d—5+ay — 28y if By >2andd > ZBr+d)
codim Xy, > .
d—6+ay if By =1

(i) If (Y, H) is a linearP2-bundle then

2
—-2-2 if By > 2 > By (By+5)
codim X, > d By if By >2andd > 2 .
d—3 if By =1
We can do a little bit better in the case of the Noether-Lefschetz locus of adjoint line bundles.

We now define numbers, andby as follows.

DEFINITION 2. The integery is defined to be the minimal integer such thé&t + ay H is
very ample. The integé- is defined to be the minimal integer such tiiat — ay )H — Ky is
nef.
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As above, if(Y, H) # (P3, Ops(1)), we have thatiy < 4 with equality if and only if either
(Y, H) is a linearP2-bundle or(Y, H) = (Q,Og(1)) and againy > 1 with equality if Y is
subcanonical.

THEOREM 2. LetY be a smooth threefold; # P3 and letH be a very ample divisor of.
Let

L =Ky +dH + A,

whereA is numerically effective. We suppose that eithé(Q% ® L) = 0 ord > 2by —2ay +13.
Let>; be any component of the Noether-Lefschetz Id8ud.). The following bounds hold:

(i) If (Y, H) is not a linearP?-bundle then

d—5—by ifby >2andd> 2triTy=0)

codim X, >
d—5 ifby =1

(i) If (Y, H) is alinearP?-bundle then

. by (by —1)(by +8)
d—6— by 1fby22andd2%.

codim X7, >
d—©6 ifoy =1

We also note the following application that generalisggee also3J)).

COROLLARY 1. LetY be a smooth threefold such thgt # P2 and Pic(Y) = ZH where
H is a very ample line bundle and léfy = eH. We suppose that eithéf! (02 (d)) = 0 or
d > 3e+13. Let Py, ..., P, bek general points inY” andr : Y — Y bethe blow-up ot” at
these points with exceptional divisafs, . . ., Ey.

If d > 7+ ethen

dr*(H)—Ey —...— By isampleonY & d*H® > k.

We outline our approach to the study of the Noether-Lefschetz locus.

In section 2, we will give the standard expression of this problem in terms of variation of Hodge
structure ofX. We will then recall the classical results of Griffiths, Carlson et. al. which allow us
to express variation of Hodge structureXofin terms of multiplication of sections of line bundles
onX.

We definer to be the section aof. defining X'. The tangent space of a component of the Noether-
Lefschetz locus is naturally a subspaced®f(L)/ (o), and we will denote its preimage #° (L)

by T'. If we suppose thati* (2 @ L) = 0, thenT has the following property: The natural mul-
tiplication map

T®H(Ky ® L) — H'(Ky ® L?) (11)

is not surjective.

A full proof of this fact is given in section 3.

In section 3, we also explain Green’s methods for proving the explicit Noether-Lefschetz theorem
for P? using Koszul cohomology to prove that equatiorijkannot be satisfied T is too large.
Green’s method does not immediately apply to our case, since it rediiitesbe base-point
free— which is only guaranteed if the tangent bundl&’dt globally generated, hence only for

a few threefolds. However, we show in section 4 that there elists H°(Ky ® L(3)) such



thatW is base-point free and
(T H'(Ky ® L)} ® {W @ H°(L(-3))} — H(Ky ® L?)

is not surjective. Results of Ein and Lazarsfeédfithen imply a lower bound on the codimension
of

{Te H'(Ky(3))} & W C H°(Ky ® L(3))
and more particularly on the codimension of
T ® H°(Ky(3)) ¢ H'(Ky ® L(3)).

In introducingW, we get around the base-point free problems, but introduce others. In partic-
ular, we now need a method for extracting a lower bound@tim 7" from a lower bound for
codim (T ® H°(Ky (3))). WhenY = P?3, this is a simple application of a classical inequality

in commutative algebra due to Macaulay and Gotzmann. In section 5 we extend the Macaulay-
Gotzmann inequality to sections of any Castelnuovo-Mumford regular sheaf. In section 6, we
pull all of the above together to prove the theorem.

2. Preliminaries.

In this section we recall the classical results of Griffiths, Carlson et. al. on which our work
will be based. We will show how a componeit, of the Noether-Lefschetz locRéL (L) can be
locally expressed as the zeros of a certain section of a vector bundI& olierWe will then use
this expression— together with the work of Griffiths from the 60s, relating variation of Hodge
structure with deformations oX to multiplication of sections of line bundles ot— to relate
the codimension of;, to cohomological questions oX.

2.1. NL expressed as the zero locus of a vector bundle section.

We note first that by the Lefschetz theorem the mRag (Y) — Pico(X) is necessarily an
isomorphism. It follows that the magi : Pic(Y) — Pic(X) fails to be surjective if and only
if the (1, 1) integral evanescent cohomology is non-trivilll;;! (X, Z) # 0. (We recall that the
subspacéi ;' (X,C) c HY1(X,C) is defined byy € HLH(X,C) « (i*3,v) = 0forall 8 €
H?(Y,C).)

In particular, we can therefore defibd.(L) as follows
X e NL(L) & HLN(X,Z) # 0.

This is the definition oNL(L) which we will use henceforth, since it is much more manageable.
In particular, it is this description which will allow us to write any componenN&f(L) as the
zero locus of a special section of a vector bundle.

Henceforth, we will assume thdf is contained inNL(L) and-y will be a non-trivial element
of H,}(X,Z). The point inU(L) corresponding toX will be denoted by). We will now de-
fine what we mean by thidoether-Lefschetz locus associated tavhich we denote byV L(~).
Since we will be interested in the local geometry™Ndi(L), we fix for simplicity a contractible
neighbourhood of), O. Henceforth, all our calculations will be made ovgrWe form a vector
bundleHZ, overO, defined by

Hgv(u) = He2v(XU7 C)
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The vector bundle contains holomorphic sub-bundfégH2, ) given by
fi(Hgv)(u) = Fz(Hgv(X’UM(C))
We define bundle®(?~ by HL2~¢ = F{(H2,)/F T (HE).
(The fibre of H:2~* at the pointu is isomorphic toH %2~ (X, ): however,H:2~* does not em-
bed naturally intd+Z, as a holomorphic sub-bundle.) The bun#g, is equipped with a natural

flat connexion, the Gauss-Manin connexion, which we denot& byWe now definegy to be the
section ofH2, produced by flat transport of

We definey®2, a section of%;2, to be the image of under the projection
™ Hey — Hol
We are now in a position to defif€L(vy).
DEFINITION 3. The Noether-Lefschetz locus associated,tNL(~), is given by
NL(y) = zero(7"2).

Informally, NL(~) parameterizes the small deformationsXfon which~ remains of Hodge
type(1,1). Any component oNL(L) is locally equal taNL(~y) for somey.

The tangent spacENL(v) at X is a subspace di®(L)/(c), whereo is the section of. defining
X. We will denote its preimage il (L) by T

2-2. IVHS and residue maps.

We will now explain the classical work of Griffiths which makes the sectidf particularly
manageable.

Let H2, be as above. For the purposes of this section we will consider the holomorphic sub-
vector bundleF., to be a holomorphic magr, : O — Grass(fi, HZ,) where f; is the
dimension of F*HZ2 (X, C). The Gauss-Manin connexion gives us a canonical isomorphism
H2, = H2,(X,C) x O, from which we deduce a canonical isomorphism

Grass(fiaHgv) =0 x Grass(fiv He2v(X’ C))

In particular, 7, is now expressed as a map frénrto the constant spacgrass(f;, H2, (X, C)),
and as such can be derived. We obtain a derivation map, which we dernidtéIBy(for Infinites-
imal Variation of Hodge Structure)

IVHS' : TO — Hom(F'(H2), H2, /F'(H2)).
Griffiths proved the following result in1[0].
Theorem (Griffiths’ Transversality) The image of VHS' is contained irflom( H:2~%, Hi; 1377).
The importance of this work for our purposes is the following lemma.

LEMMA 1. For anyv € TO, we have thatl, (7*2) = —TVHS' (v)(7).



Proof. The isomorphisny : Ty Grass(n, V) = Hom (W, V/W) is given by
0

F)iw = (@),

wherew € W andw is any local section of the tautological bundle over the Grassmannian such
thatﬁ)w = w.

In the case in hand, we choose a liftingydf? to a section of{2,, which we denote bwﬁﬁ. By

definition of 7°-2, we then have that — 7y € F'(H2,) and it follows thattVHS (v)(v) =
27 =71, 0.- and now, since by definitioiis constant] VHS' (v)(7) = ~du (7)) .5

—d,(7*?). O
We will also need the work of Carlson and Griffiths relating the residue maps to Hodge structure
of varieties ([L]). Suppose given, for = 1,2, a section

s€ H'(Ky ® L.

This can be thought of as a holomorphic 3-formiémvith a pole of ordet along X, and as such
defines a cohomology class #* (Y \ X, C). The groupH?3(Y \ X, C) maps toH?2 (X, C) via
residue, and hence there is an induced residue map

res; : HY(Ky ® L') — H2,(X,C).
The relevance of this map to variation of Hodge structure comes from the following theorem,
which is proved by Giriffiths in11].

Theorem The image ofes; is contained inf3~¢(H2,).

Henceforth, we will denote by, the induced projection map
7 HO(Ky @ LY) — H3 %71 X, C).

In this representation, the magHS>~* has a particularly nice form 1], page 70).

Theorem (multiplication) Considerv € TO. Let© be a lifting ofv to H°(L). Then for any
P e H°(Kx ® L*), we have that

IVHS* *(v)(mi(P)) = m41(0 @ P)

up to multiplication by some nonzero constant.

The only fly in the ointment is that in general we cannot be sure that thean#p surjec-
tive onto H2,%*~1(X, C). It is precisely for this reason that we will be obliged to suppose that
H' (0} @ L) =0.

The following lemma will be crucial.

LEMMA 2. Considery € HL!'(X) andw € HZ?(X). For any vecton € TO we have
(IVHS'(0)(7), w) + (7, IVHS?(v) (w)) = 0.
Proof. We note thatl, ((7,@)) = 0. We note that we can write

¥=7"+7
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wherey! € FL and#¥?(0) = 0. Similarly, we can writes = @' + ©? wherew!' € F2, and
©?(0) = 0. We note that for Hodge theoretic reasens’, ' >= 0 and hence

do((7,@)) = (do(7°), w) + (7, do (@7)).

Here, of course, it makes sense to talk abdyts?) andd, (52) only because?(0) = 0 and
7%(0) = 0. Since(F!, F2) = 0, we have that

(do(7%),w) = (do(7%)*%,w) = (~IVHS' (v)(7), w)
and similarly
(7, do (@) = (7, (d@*)") = (v, ~IVHS? () (w)).
So it follows immediately fromi, ((7,w)) = 0 that
(IVHS! (v)(7),w) + (7, IVHS?(v)(w)) = 0. O

3. Strategy and overview.

The basic idea of this proof is that used by Greer8in\lVe summarise his proof and explain
why it cannot be immediately applied to the situation in hand.

First some notation. Given any pair of coherent sheaveX pi and A/ we denote by, ar
the multiplication map

proar: HY(L) @ H'(M) — HY(L @ M).

Where there is no risk of confusion, we will writefor i, ar.

The starting point of Green’s work is the following lemma.

LEMMA 3. Suppose thdf’ ¢ H(Ops(d)) is the preimage df’N L(). Then the inclusion
w(T @ HP(P3, Ops (d — 4))) € H(P?, Ops(2d — 4))
is a strictinclusion.

Proof. In the case ot = P?, we have that; : H°(Ky ® L) — H2%"~1(X) is a surjection.
(See, for example, 21, proof of Thm. 18.5, page 420]). By Lemma 2,.if ¢ TNL(vy) and
P € H°(P3,Ops(d — 4)) then

(v, IVHS?(v)(m1(P))) = —(IVHS' (v)(7), m(P)) = 0

from which we conclude thd®VHS?(v)(m; (P)) € v, wherey' is the orthogonal te, and in
particular is a proper subspace. By the multiplication theorem it followsthat(v @ P)) € v+
or alternatively

u(®® P) € myt(vh).

Sincer, is surjectivesr, ' (y1) is a proper subspace. |
Green then proves the following theorem via the vanishing of certain Koszul cohomology groups.

Theorem (Green)Let T C H°(Op-(d)) be a base-point free linear system of codimension



c¢. Then the Koszul complex

p+1 p—1

p
N\ T®H(Opr(k—d)) = \T®H(Opr (k) = \ T ®H(Opr(k + d))
is exact in the middle provided that> p + d + c.

In the case in hand, on setting= 3,p = 0 andk = 2d — 4 we see that the multiplication
map

T @ HO(P3, Ops(d — 4)) — H°(P?, Ops (2d — 4))

is surjective if2d — 4 > d + c¢. But we have already observed that this multiplication map is
necessarily non-surjective, from which it follows that d — 3.

In Lemma 4 below we will see that, providéf' (Q3- @ L) = 0, it is still true that the multiplica-

tion mapT ® H(Ky ® L) — H°(Ky ® L?) is non-surjective. One might therefore reasonably
entertain the hope of adapting Green’s methods to arbitrary varieties. The difficulty is that in or-
der to apply Green’s resulf; must be base-point free. This was immediate whes P3, since,

if X was given byF' € H°(Ops(d)), T then automatically containeH®(Ops (1)) x <§—)§>.
However if Ty is not globally generated, there is no reason why this should hold in general. The
rest of this paper will be concerned with finding ways around this difficulty.

LEMMA 4. Let L be very ample and such that! (02 @ L) = 0.
LetT c HY(L) be the preimage i°(L) of the tangent space t8L(v). Then

T @ H°(Ky @ L)) C H*(Ky ® L?)
is a strict inclusion.
Proof. We note that by the argument given in the proof of Lemma 3,
mo(u(T ® H(Ky ® L))) # HLN (X, C).
Now it just remains to observe that, bl¥1] proof of Thm. 18.5, page 420],
Ty H'(Ky ® L?) — HLY(X,C)

is a surjection, sincél* (Q2.(X)) = 0. O
So, we would now like to apply Green’s argument; unfortunatElypay have base points. Our
strategy for getting around this problem will be as follows.
(i) First of all, we will constructV ¢ H°(Ky ® L(3)) with the following good properties.
(&) W is base-point free,
(b) mo(u(W ® H°(L(-3)))) = 0.
(i) The result proved by Ein and Lazarsfeld i5] then gives us a lower bound on the codi-
mension ofu(T' ® H°(Ky (3))) in HO(Ky ® L(3)).
(iiiy We will then extract from the lower bound amdim u(7 ® H°(Ky (3))) a lower bound
on the codimension df in H(L).

4. Constructingi¥.
We henceforth le¥” be a smooth threefold; # P? and H be a very ample divisor ol

PROPOSITIONL. There is a subspadd’ C H°(Ky ® L(3)) such that
(i) Themaprgopu: W ® HO(L(-3)) — HL(X,C) is identically zero.
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(iiy W is base-point free.

Proof. We denote the image of : W @ H°(L(-3)) — H°(Ky ® L?) by (W). Consider the
map

d:H°(Q2 @ L) — H(Ky ® L?)

which sends a two-form ol” with a simple pole alongX to its derivation. We note that for
anyw € HY(Q2 ® L) we have thatiw € Ker(res;), becauselw, being exact, defines a null
cohomology class ol \ X.

The spacéV will be chosen in such a way that

[ x

The mapd is difficult to deal with because it is not a map@f--modules: the value ofw at a
pointz is not determined by the value afatx. In particular, it is not possible to form a tensor
product map

d® (L71(3)) : HO(93(3)) — H'(Ky ® L(3)).

Our first step will be to show that, even dfdoes not come from an underlying map ©f--
modules, the restriction

dx : H(Q} ® L) » H(Kx ® L)
does.

LEMMA 5. Letthe map : Q2. ® L — Kx ® L be given by tensoring with the pull-back
i* 1 O3 — 0% (= Kx). Then we have thaty = —H(r).

Proof. We calculate in analytic complex coordinates near a ppiat X. Let f be a function
defining X in a neighbourhood af and letz, y be coordinates chosen in such a way tifat:, y)
form a system of coordinates faf close top. If v € H°(Q3- ® L), then in a neighbourhood of
p We can write

V_ﬁMA@+ﬁMAW+ﬁ@A#
B f

wheref, f2, f3 are holomorphic functions on a neighbourhooghof
Differentiating and restricting t&, we get that

— fidx N\ dy N df
f? '
As an element o’ ((Ky ® L) ® L), this is represented by
—fidz ANdy N df
f
Under the canonical isomorphisfiy ® L), — Kx, we have that
—fridx N dy N df
f
Hence, under the canonical isomorphi§iy ® L2)|X — Kx ® L, we have that
—fidz Ndy
f

dI/‘X =

®1/f.

— —fidx A dy.

(dl/)‘x — —r(v).
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This concludes the proof of Lemma 5. |

We now proceed with the proof of Proposition 1.
The mapdx, which isa map ofOy-modules, has the advantage that we can form tensor prod-
ucts. We consider the map induced by tensor product iith(3)

di ' HOQ3(3) — HO(Kx(3)).
We definel by
W= {we H'(Ky ® L(3)) : w;, €m(ds @)},
We will prove first that
LEMMA 6. Foranyw € W and P € H°(L(-3)), we have that
ma(u(P ® w)) = 0.

Proof. Sincew € W there exists € H°(Q3(3)) such thatw, = dﬁ}_l(?’)s and hence

(Pw)|, =dx(Ps)=d(Ps)
From this it follows that there exist$ € H°(Ky @ L) such that

| x Ix -

Pw = d(Ps) +o0s.

We observed above thag (d(Ps)) = 0. We note thatesy(os’) = res; (s’) and henceesz(os’) €
F?H? (X, C), from which it follows thatry(os’) = 0. Whencerz(Pw) = 0. This concludes
the proof of Lemma 6. |

To conclude the proof of Proposition 1 it remains only to show haits base-point free. Since
Y # P2 we have (f]) that Ky (3) is globally generated. Also

wCo @ HY(Ky(3))) W

therefore the only possible base pointsi@fare the points ofX. Consider an arbitrary point
p € X. Now if PN = PHO(Y, H) we have thaf)3 (3) is globally generated sinc@2 (3) is
such and there is a surjecti®l}, (3) — Q3 (3). Whence there exists a sectiore H%(3-(3))

such thati?(_l(:s)(s)(p) # 0. From the short exact sequence
0— Ky(3) - Ky ® L(3) = Kx(3) = 0

and Kodaira vanishing we see that there exists H°(Ky ® L(3)) such thatw|, = df(_l(s) ().
It follows thatw € W, and

w(p) =dy “(s)(p) #0.
Hencep is not a base-point df’. This completes the proof of Proposition 1. |

To get lower bounds on the codimension we will apply the following result of Ein and Lazarsfeld,
[5, Prop. 3.1].

Theorem (Ein, Lazarsfeld) Let H be a very ample line bundle and, C' be nef line bundles
on a smooth complex projectivefold Z. We set

Fy=Ky;+ fH+BandG, = Kz + ¢H + C.
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LetV c H°(Z, F) be abase-point free subspace of codimensiand consider the Koszul-type
complex

p+1 p—1

p
N\VeHG.) - \VeH(Ff+G.) —» \ V& H (2F + G.).
If (Z,H,B) # (P",0pn(1),0pn), f > n+1ande > n + p + ¢, then this complex is exact in
the middle.

In order to apply this to our situation, we set= 0, and, in casd., = Ky + dH + A we
choosef = d,e = d — 3, B = A+ Ky + 3H (note thatB is nef sinceKy + 3H is globally
generated) and’ = A. In the caseL (-d)-regular we havd, = M (d) for a Castelnuovo-
Mumford regular line bundlé/ and we choos¢ =d+3,e=d -3+ ay — 0y, B= M and
C =M+ (By — ay)H — Ky, so thatB is nef sinceM is globally generated and algbis nef
by definition ofay: and By (see Definition 1). We then have that

Fr=Ky® L(3) andG, = L(—3)
and the theorem in this particular case says that:

PROPOSITION2. Suppose thai > 4 andY # P3. LetV be a base-point free linear system
in H°(Ky ® L(3)) with the property that

u(V @ H(L(-3))) € H(Ky ® L?)
is a strict inclusion. Then the codimensionf IV satisfies the inequality
. {d—5+ay — By ifLis(—d) —regular.
T ld-5 ifL=Ky+dH+ A
In general, pulling together the results of sections 3 and 4, we have the following bound.

PROPOSITION3. Suppose that” # P? and H' (3. ® L) = 0. Then the codimension of the
image of

p:T @ HY(Ky(3)) — H(Ky ® L(3))
is at leastd — 5 + ay — Qy if Lis (-d)-regular or atleastl — 5 if L = Ky + dH + A.
Proof. For simplicity, we set

T:=W +u(T® H(Ky(3)) € H'(Ky @ L(3)).

Notice that the multiplication map

fi:T® H(L(-3)) — H(Ky ® L?)
cannot be surjective, otherwise, as in the proof of Lemma 4, we get that

mo 0 (T @ H(L(~3))) = HL (X, C)
and, given the first property 61, the latter equality implies the contradiction

mou(T ® H'(Ky ® L)) = H: (X, C).

Now, by Proposition 2, we get that

d—5+ay — By if Lis(—d)—regular

codim (T ® H?(Ky (3))) > '
olm'u( (Y( )))_{d—5 jfL:Ky+dH+A
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O
Therefore it will be enough to devise a mechanism for extracting codimension bouridf éon
codimension bounds for(T' ® H°(Ky (3))). This is the subject of the next section.
We end the section by studying the vanishingdf(Q2- @ L).

REMARK 1. If d > 38y — 3ay + 13 and L is (-d)-regular or ifd > 2by — 2ay + 13 and
L=Ky+dH + A, thenH! (0} ® L) = 0.
Proof. We just apply Griffiths’ vanishing theorenl 2] to the globally generated vector bundle
E = Q3% (3). We write
Q3 ® L = E(detE + Ky + B)

whence we just need to prove that= L — 12H — 3Ky is ample. By definition ofiy-, by, ay
and 3y we can write—Ky = (a — b)H + A’, where A’ is nef anda = ay,b = By if Lis
(-d)-regular, whilex = ay,b = by if L = Ky +dH+ A. HenceB = (d—12—ub+ua)H+ A",
whereA” isnefandu = 2if L = Ky +dH + A, uw = 3 if L is (-d)-regular. Thereforé is
ample. |

REMARK 2. Notice that ifY is a quadric hypersurface i#*, sinceKy = —3H, if L =
(d — 3)H, we have that/' (2% ® L) = 0 for d > 7, whence

codimT > d — b.

5. Macaulay-Gotzmann for CM regular sheaves.
We start by reviewing the situation f&*, which we will then generalise to arbitrary varieties.

Definition of ¢<%> and c.4~. Given integers: > 1,d > 1, there exists a unique sequence
of integerskq, kq—1,..., ks withd > f > 1 (f is uniquely determined by andd) such that

(i) kg > ka1 >...> k¢ > f,

, F

(i) c= Zd(";)

Here and below we use the conventi(d[’i)‘l) = 0if m < p. We define

f f
ki+1 ki —1
<d>._§: g . ._§ v
C = (i+1>,6<d>. < i >

i=d i=d

Whenc = 0 we setc<?> = ¢4 = 0.
We have the following result of Macaulay and Gotzmann, which can be foufdi jpgges 64-65.

Theorem (Macaulay, Gotzmann)LetV c H®(Op-(d)) be a subspace of codimensiarThen
the subspace

u(V @ H%(Opn(1))) € H*(Opn (d + 1))

is of codimension at most4>.

Gotzmann proved the Macaulay-Gotzmann inequality using combinatorial algebraic techniques.
Green gave a geometric proof i9]] We will now generalise the argument given by Green in or-
der to prove that the Macaulay-Gotzmann inequality is valid for arbitrary Castelnuovo-Mumford
regular sheaves.
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THEOREM 3. Let M be a Castelnuovo-Mumford regular coherent sheaf on a projective space
PN. Ford > 1letV c H°(M(d)) be a subspace of codimensionand definel’4+! c
HO(M(d+ 1)) by Vit = (V@ H°(Op~ (1))). Then

codim V4t < ¢<d>,
The Theorem will follow from the following proposition.

PROPOSITION4. Suppose that’, M and d are as above. LeH be a generic hyperplane
of PV and denote byl the restriction ofM to H. We further denote the restriction &f to
H°(Mpg(d)) by Vg. Then

COdiIn VH S Ced>-

Proof. We shall proceed by a double induction on the dimension of the suppadit ahd the
numberd. We assume now that > 2, dimSupp(M) > 1. The proof of the Proposition for
d = 1 or for sheaves with zero-dimensional supports is to be found in subsecti®@tsahd
5.0-2.

Let H and H' be two generic hyperplanes. We define the spac&s(respectivelyV ') in
the following way. LetL y (resp.L ) be a linear polynomial definingl (resp.H’). We define
VH c HO(M(d—1)) by

veVl o Ly xveV.

(Similarly, VH' is defined byy € VE' < Ly, x v € V.) We now consider the following exact
sequence

0— HO(M(d—1)) & HO(M(d)) 5 HO(Mp(d)) — 0.

Here, of course, we have right exactness of the sequence only betaisa Castelnuovo-
Mumford regular sheaf. There is an induced exact sequence

0—-VH -V Vg —0

whence we see that

codim V = codim V7 + codim V.

We now consider the following commutative diagram

0 0
0 - (VH’)H VH’ (VH’)H >
XLy XLy
0 VH Vv Vu 0
OH (VH/)HQH/ VH, (VH/)HOH/ HO
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In the above diagram, all the rows are exact (siftg is Castelnuovo-Mumford regular i),
as is the middle column. It is not immediate that the right-hand column is exact, but we will be
able to show that it is close enough to exact for our purposes.

More precisely,
Vua)unm =V, ... = Va)anm

and hence the restriction magy — (Vy')mngs is a surjection. We have automatically that
(VEYy c (Vi)™ " and hence the composition of the map& ;x- andres is zero. It
follows that

codim Vg < codim (Vi) prp + codim (VH,)H.

We denote by’ the codimension o’y for genericH . Hence, sincél’ has been chosen generic,
codim Vi = ¢’. We have thatodim V' = ¢ — ¢/. We note that
(i) V' ¢ H°(M(d — 1)) and hence by the induction hypothesis

codim (V) g < (¢ — ) ca1>.

(i) The dimension of the support dff - is strictly less than the dimension of the support of
M and hence by the induction hypothesis

codim (VH/)HQH/ S C/<d>.
It follows that
d < Cl<d> + (e — )cd—1>-

Green shows ind], pages 77-78, that this inequality implies thakK c 4.

It remains only to prove the Proposition for zero-dimensional sheaves dror.

5.0-1. The case d=1.

For anyc # 0 we have that.;~. = c—1. We suppose first that # H°(M (1)). If for generic
H we havecodim Vg > ¢+, then, for generid?, V¥ = H°(M). In other words, for generic
H

Ly x H(M) C V.
It follows that
(H°(M) @ H'(Opx (1)) C V.
SinceM is Castelnuovo-Mumford regular, it follows thit= H"(M (1)) which contradicts our
supposition that’ # H°(M(1)).
But if ¢ = 0 thenc.;> = 0 and Proposition 4 is immediate. This completes the proof of the

Proposition in the case whedle= 1.

5.0-2. The case where the dimension of the suppoft/as zero.

In this case, for generié/, H(My(d)) = 0, and henceodim Vi = 0. This completes the
proof of the Proposition in the case where the dimension of the suppdftisfzero.

This completes the proof of Proposition 4. O
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We now show how Proposition 4 implies Theorem 3. We proceed by induction on the dimen-
sion of the support of\/. We consider the following exact sequence, whHrés once again a
generic hyperplane iB",

0 (VHYH  yd+l | (pd+ly, g
from which it follows that
codim VI*! = codim (V) + codim (V4T g
We note that” C (VA1) and(Vy)?+! c (V4+L) 4 from which it follows that
codim V! < ¢+ (c<d>)<d> < <>,

This completes the proof of Theorem 3. O

6. Proof of the main theorems.

We will now show how all this ties together to give a proof of the main theorems. We hence-
forth set

ay if Lis (—d) — regular b By if Lis (—d) — regular
a= , b=
ay HfL=Ky+dH+A by L=Ky+dH+ A

whereay, By, ay andby are as in Definitions 1 and 2.

It is now that we will use the supposition th@t, /) is not a lineafP2-bundle, hencey (3) is

very ample, or, alternatively, that< 3 (the case of the quadric is done by Remark 2). The case
a = 4 will be dealt with at the end of the article.

We start with the following lemma.

LEMMA 7. Supposel > 5 and letT ¢ HY(L) be of codimension < d — 4. Define
T = (T ® H(Oy (3 —a))) € H°(L(3 — a)).
Then
codim T’ < ¢

Proof. When L is (-d)-regular we can writd, = M (d), whereM is a Castelnuovo-Mumford
regular sheaf. Also wheh = Ky + dH + A, sinceM := Ky + 4H + A is Castelnuovo-

Mumford regular, we can writd, = M (d — 4), whereM is a Castelnuovo-Mumford regular
sheaf. Applying Theorem 33 — a)-times, we obtain the result. |

We denote now by: the integer[“”?’T*“J — 4. We will also denote the very ample line bun-
dle Ky (a) by P, and the bundl&.(3 — a) by L'. We have the following lemma.
LEMMA 8. The line bundld.’ can be written in the form
L' =Mp+nP

where Mp is a sheaf which is Castelnuovo-Mumford regular with respect to the projective em-
bedding defined by P.

Proof. We know by definition ofa andb that there is a nef line bundl& such thathH =
Ky +aH + N, from which it follows that

(d+3—a)H = (n+4)P + (n+4)N +rH
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for somer > 0, hence
(d+3—a)H = (n+4)P+ A’
whereA’ is a nef line bundle. Now
Mp =L —nP = {4P + A1 if L is (—d) — regular
Ky +4P+ Ay HL=Ky+dH+ A

for some nefline bundled,, A,. This clearly implies, by Kodaira vanishing, thetp is Castelnuovo-
Mumford regular with respect t& in the casel = Ky + dH + A. But also in the other case,
for eachl < i < 3, we can write

Mp—iP=Ky +aH+ (3—i)P+ A
whence again we have Castelnuovo-Mumford regularity by Kodaira vanishing since row
ay > 0 by definition. O
We are now in a position to prove the following proposition.
PROPOSITION5. Supposel > 5 and letT’ ¢ H°(L) be of codimension < d — 4. Define
T :=uT®H(Ky(3)) c H(Ky ® L(3)).
Then
codim T < ¢<"~.
Proof. With 77 as in Lemma 7, we note that
w(T' @ H°(Ky (a)) C T.

We know by Lemma 7 thatodim 7" < ¢. We know further by Lemma 8 thdt’ = Mp + nP
and hence Theorem 3 applied to the map

p:T ® H'(P) — H(Ky ® L(3))
gives us thatodim u (7' @ H°(Ky (a)) < ¢<">. From this it follows that

codim T < ¢<">, O

By Proposition 3 we know that

d—5+ay — Py if Lis(—d) —regular

codim T >
d—>5 fL=Ky+dH+ A
and hence either> d — 3 or

<> s d—6+ay —fy ifLis (—d)—regular.
d—=6 ifL=Ky+dH+ A

The following elementary lemma will allow us to control the growth-6f>.

LEMMA 9. If there exists an integer > 0 such that
c< Z(n +1—4)
i=0

thenc<"> < c+e.
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f
Proof. The Lemma being obvious fer= 0 we suppose > 1 andc = 3 (’j) Observe that

i(n +1-14) < lew

=0
Now supposé:; = ifor f <i < fyforsomef —1< fy <n,k; =i+ 1forfi +1<i< f
for somef, such thatf; < fo < nandk; >i+2for fo+1<i<n(hecasef—1=f;
simply means that nb; is equal ta;, and similarly forfs). Then, if fo < n, we have

o (5] (1) -

contradicting the hypothesis. Therefgie= n andc¢<"> = ¢ + n — f1 and it remains to show
thatn — f < e. Since we can write = 37~ /* (n + 1 — i) — fif n — fi > e + 1 we deduce

(3

the contradiction: > >¢_ (n+1 —1i). O

In particular, it follows that
LEMMA 10. Supposd. = Ky +dH + A, by >2andd —6 — by < Z?;O(nJr 1—14). Then
codimT > d— 6 — by.

If by = 1, then
codimT > d — 6.

Proof. By Lemma 9, ifby > 2, we haved — 6 — by < >°2¥ (n + 1 — i) andc = codim T <
d — 6 — by whence, by Proposition 5,

codimT < ¢<™> < d — 6.
But this is impossible by Proposition 3.4f = 1 andc < d — 6 we havec < n hence
codimT < ¢<™” =¢ < d — 6,

again impossible by Proposition 3. |

Similarly we have

LEMMA 11. Supposd. is (-d)-regular,3y > 2 and
By

d—6+ay =28y <Y (n+1—1i).
1=0
Then
codimT >d— 6+ ay — 20y.
If By =1, then

codimT >d—7+ ay.
We now require only the following lemma.

LEMMA 12. If by > 2 andd > Z’Y(I’Q‘/J;M then

by

d—6-—by <Y (n+1—1i). (61)
=0
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If By > 2andd > 20 then

By
d—6+ay =28y <Y (n+1—1i).
=0
Proof. We note first that, > L%J — 4 and it follows thaty (n + 1) > d — 4by. Hence we have
that

by

by (by + 1
Z(n+1—i)>d—4by+(n+1)—%.
=0

In particular, if

d—6—by gd—4by+(n+1)—w
then (61) is immediately satisfied. This inequality is equivalent to
—74+3by <n-— M
and sincen > L%j — 4, (6-1) will be satisfied provided that
T4 3by < L%J 4-@

which is equivalent te-3 + 3by + LQY“) < L%J, which is equivalent to

by (b3 + Tby —6)
2
The second assertion of the Lemma is proved similarly. O

<d.

Completion of the proof of Theorems 1 and 2.

The results proved so far (together with Remark 2) give a proof of the Theorems under the
hypothesis thatY, H) is not a linearP2-bundle. In the latter case sindéy (4) is very am-

ple, repeating verbatim the whole proof replacing everywhgg3) with Ky (4) and using

ay = ay = 4 we get the desired bound. |

Proof of Corollary 1.
This is a straightforward generalisation @f piven the following two facts :
(i) a lower bound on the codimension on the components of the Noether-Lefschetz lo-
cus NL(Oy (d)) that insures that they have codimension at least two (our hypothesis
d>T7+e);

(i) the fact that, on a general surfaéé not in NL(Oy (d)) we have that if a complete in-
tersection ofX with another surface ifOy (d)| is reducible then its irreducible com-
ponents are also complete intersectionXofith another surface ifOy (s)| for somes
(this is needed in the proof o2 Prop. 2.1] and is insured, in our case, by the hypothesis
Pic(Y) = 7). O
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