Corso di laurea in Matematica - A. A. 2019/2020 AC310 - Analise Complessa - Foglio di esercizi 3

(Consegnare entro 18/05/2020)
DOCENTE: MARGARIDA MELO

Esercizio 1. Sia f una funzione intera tale che, in ogni espansione $f(z) = \sum_{n>0} c_n(z-w)^n$, almeno uno dei c_n è 0. Dimostrare che f è un polinomio.

Esercizio 2. Dimostrare se può esistere o meno una funzione f, olomorfa in un intorno di 0, che soddisfi $\forall n \in \mathbb{N}$, una delle seguenti:

- (i) $f(\frac{1}{n}) = \exp(-n)$,
- (ii) $2^{-n} < |f(\frac{1}{n})| < 2^{1-n}$.

Esercizio 3. Sia A un aperto semplicemente connesso in \mathbb{C} e sia $f: A \to \mathbb{C}$ una funzione olomorfa mai nulla. Dimostrare che esiste una funzione olomorfa $g: A \to \mathbb{C}$ tale che $f(z) = \exp(g(z))$ per ogni $z \in A$.

Esercizio 4. Dimostrare che, per ogni $a \in \mathbb{R}$, $\int_{|z|=1} \frac{e^{az}}{z} dz = 2\pi i$ e dedurne che

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$

Esercizio 5. Calcolare l'integrale della funzione $f(z) = \frac{1}{(z+1)(z-1)^2}$ lungo la circonferenza di raggio 1 e centro 1.

Esercizio 6. Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa la cui parte reale è limitata superiormente. Dimostrare che f è costante.

Esercizio 7. 1. Dimostrare che la corrispondenza $f \to \frac{f'}{f}$ (dove f è olomorfa), manda prodotti in somme.

- 2. Se $P(z) = (z a_1) \dots (z a_n)$, dove a_1, \dots, a_n sono le radici, a che è uguale $\frac{P'}{P}$?
- 3. Sia γ un cammino chiuso che non contiene nessuna delle radici di P.

 Mostrare che

$$\frac{1}{2\pi i} \int_{\gamma} \frac{P'(z)}{P(z)} dz = W(\gamma, a_1) + \dots + W(\gamma, a_n).$$

Esercizio 8. Sia $f(z) = (z - z_0)^m h(z)$, dove h è analitica in un insieme aperto U, e $h(z) \neq 0$ per ogni $z \in U$. Sia γ un cammino chiuso omologo a zero in U e che non contiene z_0 . Mostrare che

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = W(\gamma, z_0) m.$$

Esercizio 9. Mostrare che, per a > 0, la serie $\sum_{n \geq 1} \frac{1}{(a+n)^z}$ rappresenta una funzione olomorfa in $U = \{z \in \mathbb{C} : Re(z) > 1\}$.

Esercizio 10. Sia f una funzione analitica in $\overline{D_b(z_0)}$, con b > 0. Mostrare che

$$\iint_D f(x+iy)dxdy = f(z_0)A(D_b(z_0)),$$

dove $A(D_b(z_0)) = Area(D_b(z_0)) = \pi b^2$.

(Sug: Usare coordinate polari e la Formula di Cauchy. Cominciare per supporre che $z_0=0$.)

Esercizio 11. Consideriamo la funzione meromorfa $f(z) = \frac{1}{(z-1)(z-2)}$. Trovare lo sviluppo in serie di Laurent di f nelle seguenti regioni:

- (i) $R_1 := \{z \in \mathbb{C} : |z| < 1\};$
- (ii) $R_2 := \{ z \in \mathbb{C} : 1 < |z| < 2 \};$
- (iii) $R_3 := \{ z \in \mathbb{C} : 2 < |z| \}.$