Corso di laurea in Matematica - Anno Accademico 2016/2017 GE 220 - Geometria 3 - Tutorato VI

DOCENTE: PROF. MARGARIDA MELO TUTORI: DAVIDE CIACCIA, MATTEO BRUNO

Esercizio 1 Sia

$$I_n := [a_n, b_n]$$

una successione di intervalli chiusi e limitati di \mathbb{R} tali che $I_{n+1} \subset I_n$ per ogni $n \in \mathbb{N}$. Dimostrare che, se $\lim_{n \to \infty} (b_n - a_n) = 0$ allora $\bigcap_{n \ge 1} I_n$ è non vuoto e consiste di un solo punto.

ESERCIZIO 2 Sia X uno spazio metrizzabile con distanza d, e siano A, B sottoinsiemi chiusi non vuoti di X. Poniamo:

$$d(A,B) := \inf_{a \in A, b \in B} d(a,b)$$

Dimostrare che se A oppure B è compatto allora

$$d(A,B) = 0 \Leftrightarrow A \cap B \neq \emptyset$$

Dare un esempio in cui $A \cap B = \emptyset$ e d(A, B) = 0.

ESERCIZIO 3 Dimostrare che $\mathbb{P}^n(\mathbb{C})$ è compatto per ogni $n \geq 1$.

Definizione Sia X uno spazio topologico. $x \in X$ si dice un *punto isolato* di X se $\{x\}$ è aperto in X.

ESERCIZIO 4 Sia X uno spazio topologico non vuoto, di Hausdorff, compatto e che non ammette punti isolati.

- (a) Provare che, dati un aperto non vuoto $U \subset X$ e un punto $x \in X$, esiste un aperto $V \subset U$ tale che $x \notin V$.
- (b) Provare che X è più che numerabile.

ESERCIZIO 5 Dimostrare che ogni intervallo chiuso della retta reale è più che numerabile.

ESERCIZIO 6 Verificare, utilizzando la definizione, che \mathbb{R}^n è uno spazio paracompatto.

ESERCIZIO 7 Dimostrare che \mathbb{Q} , con la topologia euclidea, non è localmente compatto.

ESERCIZIO 8 Stabilire se \mathbb{N} , munito della topologia generata dagli insiemi $\{2k, 2k+1\}_{k\geq 0}$, è compatto per successioni.