Esercizi di Geometria

Foglio 2 - Determinanti, inverse e rango

1. Calcolare i determinanti delle seguenti matrici:

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix};$$

(b)
$$B = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & -3 \\ -1 & -1 & 1 \end{pmatrix};$$

(c)
$$C = \begin{pmatrix} 1 & 2 & 5 & -1 \\ 1 & 2 & -3 & 7 \\ 1 & 2 & -3 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix};$$

(d)
$$D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

Calcolare l'elemento a_{21} della matrice A^{-1} , e l'elemento b_{23} di B^{-1} .

2. Calcolare il determinante di

$$A = \left(\begin{array}{ccc} k & -1 & 2 \\ k & -2 & 1 \\ 3 & 1 & 0 \end{array} \right);$$

calcolare per quali valori di k la matrice A è invertibile. Scegliere poi uno di questi valori e calcolare A^{-1} .

3. Stesso esercizio per la matrice

$$B = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & k \end{array}\right).$$

- 4. Verificare che valga det(A)det(B) = det(AB) per due matrici 2×2 .
- 5. Studiare il rango delle seguenti matrici, al variare di $k \in \mathbb{R}$.

(a)
$$A = \left(\begin{array}{cccc} 0 & 1 & k & 0 \\ 1 & 0 & -2 & k \\ k & 3 & 0 & 2 \end{array} \right).$$

$$B = \left(\begin{array}{cccc} k - 1 & 0 & k & 4\\ 1 & 0 & k & -1\\ 2 & 3 & k - 1 & 1 \end{array}\right).$$

- 6. Determinare quali delle seguenti affermazioni sono vere, e quali false. (Fornire una dimostrazione se l'affermazione è vera, e un controesempio se falsa.) Siano $A,\,B$ due matrici quadrate dello stesso ordine.
 - (a) Se A è una matrice tale che $A^2 = I$, allora $det(A) = \pm 1$.
 - (b) Se $A^k = 0$ per qualche $k \in \mathbb{N}$, allora $\det(A) = 1$.
 - (c) Se det(A) = 1, allora A = I.
 - (d) Se det(AB) = 0, allora det(A) = 0 oppure det(B) = 0.
 - (e) det(A+B) = det(A) + det(B).
 - (f) Se A è invertibile, allora $\det(A^{-1}) = \frac{1}{\det(A)}$.
 - (g) Se $det(A) \neq 0$ e AB = AC, allora B = C.
 - (h) $\det(AB) = \det(BA)$
 - (i) Se A^2 è invertibile, allora anche A lo è.
 - (j) Se A è invertibile e AC = I, allora $C = A^{-1}$.
 - (k) Se A e B sono invertibili, allora anche AB lo è.
 - (l) Se A e B sono invertibili, allora anche A+B lo è.