Esercizi di Geometria

Foglio 3

- 1. Per quali valori di $k \in \mathbb{R}$ i vettori di \mathbb{R}^3
 - (a) $v_1 = (1, 0, 1), \quad v_2 = (2, 1, 0), \quad v_3 = (0, 1, k);$
 - (b) $v_1 = (k, 1/3, 0), \quad v_2 = (-2, k, 0), \quad v_3 = (5k, -2, 1)$

sono linearmente dipendenti?

- 2. Esistono valori di $k \in \mathbb{R}$ per cui i seguenti vettori di \mathbb{R}^4
 - (a) $v_1 = (1, 0, 1, 2), \quad v_2 = (2, 1, 0, 3), \quad v_3 = (0, 1, k, k + 1);$

sono linearmente dipendenti?

3. Determinare i valori di $a \in \mathbb{R}$ per cui i vettori

$$v_1 = (a, 1 - a, 2), \quad v_2 = (1, 3, -2), \quad v_3 = (0, 1, 1),$$

formano una base di \mathbb{R}^3 .

- 4. (a) Sia $W = \{(x, y, z) \in \mathbb{R}^3 | x + y 2z = 0\} \subseteq \mathbb{R}^3$. Verificare che W è un sottospazio e trovare una base e la dimensione di W.
 - (b) Stesso esercizio per $U = \{(x, y, z) \in \mathbb{R}^3 | z + y = 0\}.$
- 5. Sia $W=\{(x,y,z,w)\in\mathbb{R}^4|x+2y-z+w=0\ \text{e}\ z+2y=0\}\subseteq\mathbb{R}^4.$ Verificare che W è un sottospazio e trovare una base e la dimensione di W
- 6. Dire se le seguenti affermazioni sono vere o false.
 - (a) Se $\{\mathbf{u}, \mathbf{v}\}$ è un insieme di vettori indipendenti e $\{\mathbf{w}, \mathbf{z}\}$ è un insieme di vettori indipendenti, allora $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ è un insieme di vettori indipendenti.
 - (b) Se $\{\mathbf{u}, \mathbf{v}\}$ è un insieme di vettori dipendenti o $\{\mathbf{w}, \mathbf{z}\}$ è un insieme di vettori dipendenti, allora $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ è un insieme di vettori dipendenti.
 - (c) Se $\{\mathbf{u}, \mathbf{v}\}$ è un insieme di vettori indipendenti, allora anche $\{\mathbf{u}, \mathbf{u} + v\}$ è un insieme di vettori indipendenti.
 - (d) L'insieme $U=\{(x,y)\in\mathbb{R}^2|x^2+y^2=1\}\subseteq\mathbb{R}^2$ è un sottospazio.
 - (e) L'insieme $W=\{(x,y,z)\in\mathbb{R}^3\,|\,y=0\}\subseteq\mathbb{R}^3$ è un sottospazio.
 - (f) L'insieme $W = \{(x, y, z) \in \mathbb{R}^3 \mid y 1 = 0\} \subseteq \mathbb{R}^3$ è un sottospazio.