logaritmo discreto come funzione unidirezionale

- ullet in generale, lavoreremo con il gruppo $U(\mathbb{Z}_p)=\mathbb{Z}_p^*$
- dati g generatore di \mathbb{Z}_p^* e x tale che $1 \le x \le p-1$, calcolare $y = g^x$ è computazionalmente facile
- $(y \equiv g^x \pmod{p} \text{si usa l'algoritmo square-and-multiply})$
- si ritiene che, dati g generatore di \mathbb{Z}_p^* e $y \in \mathbb{Z}_p^*$, determinare $x = \log_g y$ sia difficile (sotto opportune ipotesi su p)
- in particolare, p devessere grande (1024 bit), $p \approx 2^{1023}$
- dati g e y posso trovare x tale che $g^x = y$ per tentativi calcolando g^x per tutti gli x, $1 \le x \le p-1$
- ma il numero di tentativi è enorme

cifratura RSA e logaritmo discreto

nella cifratura RSA, la funzione è del tipo

$$x \longrightarrow x^e \pmod{N}$$

$$f(x_1 \cdot x_2) = f(x_1) \cdot f(x_2)$$

• nel problema del logaritmo discreto, la funzione è del tipo

$$x \longrightarrow g^x \pmod{p}$$

$$f(x_1 + x_2) = f(x_1) \cdot f(x_2)$$

scambio della chiave di Diffie-Hellman

- Alice e Bob scelgono pubblicamente un primo p e un elemento primitivo $g \pmod{p}$
- Alice sceglie casualmente $a \in \{2, ..., p-2\}$; calcola $g^a \mod p$ e invia il risultato a Bob
- Bob sceglie casualmente $b \in \{2, ..., p-2\}$; calcola $g^b \mod p$ e invia il risultato a Alice
- Alice calcola $(g^b)^a$ mod p
- Bob calcola $(g^a)^b$ mod p
- la chiave è $k = g^{ab}$

DH problem

- se Eve sa risolvere il problema del logaritmo discreto, sa ricavare la chiave comune di Bob e Alice
- dall'osservazione di g^a , g^b mod p ricava $a \in b$, quindi calcola $k = g^{ab}$
- DH problem: dato un gruppo ciclico G, g un generatore e dati g^a , g^b trovare g^{ab}
- basta che sappia risolvere il DH problem per trovare la chiave
- equivalenza DH DL?

crittosistema Elgamal (ca 1985)

- sia p un primo, g un elemento primitivo mod p
- $\mathcal{P} = U(\mathbb{Z}_p)$
- $C = U(\mathbb{Z}_p) \times U(\mathbb{Z}_p)$
- Lo spazio delle chiavi è

$$\mathcal{K} = \{ (p, g, a, \beta) \mid \beta \equiv g^a \pmod{p} \}.$$

• p, g e β sono la chiave pubblica – a è la chiave privata

crittosistema Elgamal

- prima di cifrare il messaggio $x \in \mathcal{P}$, Bob sceglie un numero casuale (segreto) $h \in \{2, \dots, p-2\}$
- $e_k(x,h) = (y_1,y_2)$
- con $y_1 = g^h$, $y_2 = x\beta^h \pmod{p}$
- Alice riceve $(y_1, y_2) \in U(\mathbb{Z}_p) \times U(\mathbb{Z}_p)$ non conosce h ma conosce a
- calcola $y_1^a = (g^h)^a = (g^a)^h = \beta^h \pmod{p}$
- calcola $(\beta^h)^{-1}$ (mod p) e ottiene $x = y_2(\beta^h)^{-1}$
- $d_k((y_1, y_2)) = y_2(y_1^a)^{-1} \pmod{p}$
- notare la somiglianza con DH non si inverte la funzione $x \to g^x \pmod{p}$
- Bob sceglie un nuovo h a ogni trasmissione (randomized encryption)

esempio

- Alice sceglie p = 83, g = 2 e la chiave privata a = 30
- $\beta = 2^{30} \equiv 40 \mod 83$
- la chiave pubblica di Alice è (83, 2, 40)
- il messaggio di Bob è x=54 il numero scelto per la cifratura è h=13
- Bob invia $(g^h, x\beta^h) = (2^{13}, 54 \cdot 40^{13}) \equiv (58, 71) \mod 83$
- per decifrare, Alice calcola $(g^a)^h = 58^{30} = 9$
- l'inverso di 9 mod 83 è 37 il messaggio è quindi $37 \cdot 71 = 54$ mod 83

- la "cifratura" è una moltiplicazione: $x \to xg^{ha}$
 - si può invece usare un cifrario a blocchi (AES) e cifrare $x o e_{\mathbf{g}^{ha}}(x)$
- anche per Elgamal, si usa p di almeno 1024 bit, p-1 con un fattore primo grande e a fattorizzazione nota
- anche per violare Elgamal, basta che Eve sappia risolvere il DH problem
- se dati g^h e $\beta = g^a$ sa trovare $g^{ah} = \beta^h$, può leggere il messaggio
- se Eve sa risolvere il logaritmo discreto può ricavare l'esponente h e quindi ricavare direttamente x
- oppure ricavare a e decifrare come Alice (conviene h cambia in ogni trasmissione)

da chi proviene un messaggio?

- in un crittosistema simmetrico solo Alice e Bob conoscono la chiave
- se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente da Alice
- in un crittosistema a chiave pubblica, chiunque può scrivere un messaggio cifrato a Bob affermando di essere Alice
- serve una firma digitale

firma "manuale"

- associa un documento a un utente firmatario
- la firma fa fisicamente parte del documento
- la firma viene verificata confrontandola con una firma campione depositata
- dovrebbe essere difficile da falsificare
- è vincolante dal punto di vista legale (contratti etc.)

firma digitale - differenze

- deve sempre associare un utente a un documento tramite una stringa digitale
- c'è bisogno di un metodo che leghi la firma al documento
- ci vuole un algoritmo pubblico di verifica previene la falsificazione
- una copia di un documento digitale è uguale all'originale –
 bisogna evitare che una firma sia riutilizzabile

signature scheme

- Alice firma un messaggio da mandare a Bob
- ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare
- quello per firmare dev'essere privato (solo Alice può firmare)
- quello per verificare dev'essere pubblico (Bob e chiunque altro - può verificare che viene da Alice)
- per firmare il messaggio x Alice usa l'alg sig_k che dipende da una chiave k, e calcola $\operatorname{sig}_k(x) = y$ (lo stesso messaggio può avere diverse firme)
- data una coppia (x, y) dove x è il messaggio e y la firma, l'algoritmo $\operatorname{ver}_k(x, y)$ dà in output vero se y è una firma valida di x, falso altrimenti
- in questo momento, non si chiede che (x, y) sia cifrato

definizione formale

Uno schema di firma è una 5-pla $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$ dove

- $oldsymbol{0}$ è un insieme finito di possibili messaggi
- 2 A è un insieme finito di possibili firme
- 3 \mathcal{K} , lo spazio delle chiavi, è un insieme finito di possibili chiavi
- **4** $\forall k \in \mathcal{K}$ c'è un algoritmo di firma $\operatorname{sig}_k \in \mathcal{S}$ e un corrispondente algoritmo di verifica $\operatorname{ver}_k \in \mathcal{V}$.
- **5** $\operatorname{sig}_k : \mathcal{P} \to \mathcal{A}$ e $\operatorname{ver}_k : \mathcal{P} \times \mathcal{A} \to \{V, F\}$ sono funzioni tali che $\forall x \in \mathcal{P}$ e $\forall y \in \mathcal{A}$ vale

$$\operatorname{ver}_k(x, y) = \begin{cases} V & \operatorname{se} y = \operatorname{sig}_k(x), \\ F & \operatorname{se} y \neq \operatorname{sig}_k(x) \end{cases}$$

procedura di firma usando un PKCS

- l'algoritmo per firmare sig_k dev'essere privato (solo Alice può firmare)
- l'algoritmo per verificare ver_k dev'essere pubblico (Bob e chiunque altro può verificare che viene da Alice)
- idea: usare un CS a chiave pubblica (deterministico)
- Alice ha la chiave k_A , e_{k_A} è pubblica e d_{k_A} è privata
- Alice firma il messaggio x ponendo $\operatorname{sig}_{k_A}(x) = y = d_{k_A}(x)$ (è l'unica che può decifrare)
- invia la coppia (x, y)
- Bob (e chiunque altro) calcola $e_{k_A}(y)$
- se $x = e_{k_A}(y)$, allora $ver_{k_A}(x, y) = V$

schema di firma RSA

- Sia N=pq, p, q primi. Sia $\mathcal{P}=\mathcal{A}=\mathbb{Z}_N$.
- Lo spazio delle chiavi è

$$\mathcal{K} = \{ (N, p, q, d, e) \mid ed \equiv 1 \pmod{\phi(N)} \}.$$

- N e e sono la chiave pubblica, p, q, d sono la chiave privata
- Se k = (N, p, q, d, e) è una chiave, poniamo
- $\operatorname{sig}_k(x) \equiv x^d \pmod{N}$
- $\operatorname{ver}_k(x,y) = V \iff x \equiv y^e \pmod{N}$

esempio

- la chiave RSA di Alice è $k_A = (N_A, p_A, q_A, d_A, e_A) = (2773, 47, 59, 17, 157), <math>\phi(N_A) = 2668$
- Alice vuole firmare e trasmettere il messaggio x = 920
- usa la chiave privata $d_A=17$ e calcola $\operatorname{sig}_{k_A}(920)=920^{17}\equiv 948 \ (\operatorname{mod}\ 2773)$
- la coppia (messaggio, firma) è quindi (920, 948)
- Bob riceve (x, y) = (920, 948)
- verifica la firma usando la chiave pubblica di Alice $e_A=157$ $948^{157}\equiv 920 \pmod{2773} \Rightarrow \text{ver}_{k_A}(920,948)=V$

combinare firma e cifratura

- Alice ha il messaggio x da inviare a Bob
- firma e ottiene $y = sig_{k_{\Delta}}(x)$
- cifra (x, y) usando e_{k_B} ottiene $z = e_{k_B}(x, y)$
- Alice invia a Bob il testo cifrato z
- Bob decifra usando la d_{k_B} e riottiene (x, y)
- poi usa l'algoritmo di verifica ver_{k_A} per controllare se $\operatorname{ver}_{k_A}(x,y) = V$

esempio con lo schema RSA

- la chiave di Alice è $k_A = (N_A, p_A, q_A, d_A, e_A) = (2773, 47, 59, 17, 157), <math>\phi(N_A) = 2668$
- la chiave di Bob è $k_B = (N_B, p_B, q_B, d_B, e_B) = (1073, 29, 37, 25, 121), \quad \phi(N_B) = 1008$
- Alice vuole firmare e trasmettere il messaggio x = 920
- usa la chiave privata $d_A = 17$ e firma $sig_{k_A}(920) = 948$ la coppia (messaggio, firma) è quindi (920, 948)
- cifra con la chiave pubblica di Bob $e_B = 121$
- il testo cifrato è $z = (920^{121}, 948^{121}) = (246, 23) \pmod{1073}$
- Bob riceve z = (246, 23) decifra usando la sua chiave privata $d_B = 25$
- ritrova $(x, y) = (246^{25}, 23^{25}) = (920, 948)$
- verifica la firma usando la chiave pubblica di Alice $e_A=157$ $948^{157}\equiv 920 \pmod{2773} \Rightarrow \text{ver}_{k_A}(920,948)=V$

prima firmare, poi cifrare

- l'ordine giusto è prima firmare e poi cifrare
- se Alice prima cifra e poi firma, Eve può convincere Bob di essere il mittente
- se x è il messaggio, Alice cifra $z = e_{k_B}(x)$ e firma $y = \operatorname{sig}_{k_A}(z)$
- manda la coppia (z, y) a Bob
- se Eve intercetta la trasmissione, è in grado di firmare il messaggio z, anche se non può decifrarlo
- Eve può calcolare $\tilde{y} = \operatorname{sig}_{k_F}(z)$ e inviare la coppia (z, \tilde{y})
- il messaggio passa la verifica di Bob, che lo accetta come proveniente da Eve

falsificazione

- dato $x \in \mathcal{P}$, dev'essere computazionalmente difficile per chi non è Alice calcolare una firma y tale che $\text{ver}_{k_A}(x,y) = V$
- una coppia (x,y) tale che $\operatorname{ver}_{k_A}(x,y) = V$ che non è stata prodotta da Alice (ma da Eve, per esempio) si dice una falsificazione
- usando lo schema RSA (e anche usando un altro PKCS deterministico)
- è difficile, dato il messaggio x produrre una falsificazione (x, y)
- è però facile data y produrre una falsificazione (x, y)

- Eve può falsificare la firma di Alice
- sceglie y e pone $x = e_{k_A}(y)$
- la coppia (x, y) passa la verifica "per costruzione"
- $\operatorname{ver}_k(x,y) = V \iff x = e_{k_A}(y)$
- una falsificazione di questo tipo si chiama falsificazione esistenziale (existential forgery)
- Eve non può scegliere il messaggio x e produrre una firma valida y (una falsificazione di questo tipo si chiama falsificazione scelta (selective forgery))

- Eve vuole ottenere la firma di Alice su un messaggio x da lei scelto
- Alice non firmerebbe mai x
- Eve trova x_1, x_2 tali che $x \equiv x_1 \cdot x_2 \pmod{N}$
- chiede a Alice di firmare x_1 e x_2 , e ottiene y_1 , y_2
- per le proprietà moltiplicative dell'RSA si ha che

$$\operatorname{ver}_k(x_1x_2 \mod N, y_1y_2 \mod N) = V$$