da chi proviene un messaggio?

- in un crittosistema simmetrico solo Alice e Bob conoscono la chiave
- se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente da Alice
- in un crittosistema a chiave pubblica, chiunque può scrivere un messaggio cifrato a Bob affermando di essere Alice
- serve una firma digitale

firma "manuale"

- associa un documento a un utente firmatario
- la firma fa fisicamente parte del documento
- la firma viene verificata confrontandola con una firma campione depositata
- dovrebbe essere difficile da falsificare
- è vincolante dal punto di vista legale (contratti etc.)

firma digitale - differenze

- deve sempre associare un utente a un documento tramite una stringa digitale
- c'è bisogno di un metodo che leghi la firma al documento
- ci vuole un algoritmo pubblico di verifica previene la falsificazione
- una copia di un documento digitale è uguale all'originale –
 bisogna evitare che una firma sia riutilizzabile

signature scheme

- Alice firma un messaggio da mandare a Bob
- ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare
- quello per firmare dev'essere privato (solo Alice può firmare)
- quello per verificare dev'essere pubblico (Bob e chiunque altro - può verificare che viene da Alice)
- per firmare il messaggio x Alice usa l'alg sig_k che dipende da una chiave k, e calcola $\operatorname{sig}_k(x) = y$ (lo stesso messaggio può avere diverse firme)
- data una coppia (x, y) dove x è il messaggio e y la firma, l'algoritmo $\operatorname{ver}_k(x, y)$ dà in output vero se y è una firma valida di x, falso altrimenti
- in questo momento, non si chiede che (x, y) sia cifrato

definizione formale

Uno schema di firma è una 5-pla $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$ dove

- $oldsymbol{1} \mathcal{P}$ è un insieme finito di possibili messaggi
- 2 A è un insieme finito di possibili firme
- $3 \mathcal{K}$, lo spazio delle chiavi, è un insieme finito di possibili chiavi
- 4 $\forall k \in \mathcal{K}$ c'è un algoritmo di firma $\operatorname{sig}_k \in \mathcal{S}$ e un corrispondente algoritmo di verifica $\operatorname{ver}_k \in \mathcal{V}$.
- **5** $\operatorname{sig}_k : \mathcal{P} \to \mathcal{A}$ e $\operatorname{ver}_k : \mathcal{P} \times \mathcal{A} \to \{V, F\}$ sono funzioni tali che $\forall x \in \mathcal{P}$ e $\forall y \in \mathcal{A}$ vale

$$\operatorname{ver}_k(x, y) = \begin{cases} V & \operatorname{se} y = \operatorname{sig}_k(x), \\ F & \operatorname{se} y \neq \operatorname{sig}_k(x) \end{cases}$$

procedura di firma usando un PKCS

- l'algoritmo per firmare sig_k dev'essere privato (solo Alice può firmare)
- l'algoritmo per verificare ver_k dev'essere pubblico (Bob e chiunque altro può verificare che viene da Alice)
- idea: usare un CS a chiave pubblica (deterministico)
- Alice ha la chiave k_A , e_{k_A} è pubblica e d_{k_A} è privata
- Alice firma il messaggio x ponendo $\operatorname{sig}_{k_A}(x) = y = d_{k_A}(x)$ (è l'unica che può decifrare)
- invia la coppia (x, y)
- Bob (e chiunque altro) calcola $e_{k_A}(y)$
- se $x = e_{k_A}(y)$, allora $ver_{k_A}(x, y) = V$

schema di firma RSA

- Sia N=pq, p, q primi. Sia $\mathcal{P}=\mathcal{A}=\mathbb{Z}_N$.
- Lo spazio delle chiavi è

$$\mathcal{K} = \{ (N, p, q, d, e) \mid ed \equiv 1 \pmod{\phi(N)} \}.$$

- N e e sono la chiave pubblica, p, q, d sono la chiave privata
- Se k = (N, p, q, d, e) è una chiave, poniamo
- $\operatorname{sig}_k(x) \equiv x^d \pmod{N}$
- $\operatorname{ver}_k(x,y) = V \iff x \equiv y^e \pmod{N}$

esempio

- la chiave RSA di Alice è $k_A = (N_A, p_A, q_A, d_A, e_A) = (2773, 47, 59, 17, 157), <math>\phi(N_A) = 2668$
- Alice vuole firmare e trasmettere il messaggio x = 920
- usa la chiave privata $d_A=17$ e calcola $\operatorname{sig}_{k_A}(920)=920^{17}\equiv 948 \ (\operatorname{mod}\ 2773)$
- la coppia (messaggio, firma) è quindi (920, 948)
- Bob riceve (x, y) = (920, 948)
- verifica la firma usando la chiave pubblica di Alice $e_A=157$ $948^{157}\equiv 920 \pmod{2773} \Rightarrow \text{ver}_{k_A}(920,948)=V$