Università degli Studi Roma Tre Corso di Studi in Matematica CR410 – Crittografia a chiave pubblica Esercizi Foglio 1

- 1. Dimostrare che
 - (a) se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, allora $g \in \mathcal{O}(f)$;
 - (b) se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, allora $f \in \mathcal{O}(g)$;
 - (c) se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = l \neq 0$, allora $f \in \mathcal{O}(g)$ e $g \in \mathcal{O}(f)$.
- 2. Siano $a \ge b > 0$ interi, e sia k la lunghezza di a. Dare una stima della complessità computazionale del calcolo di a b e della divisione euclidea a = bq + r.

SOL: sottrazione in $\mathcal{O}(k)$, divisione euclidea in $\mathcal{O}(k^2)$ Si veda il testo Baldoni et al, Aritmetica crittografia e codici, p. 94.

- 3. (a) Siano: $a = (10101101)_2$, $b = (110110)_2$, $c = (11111)_2$.
 - (b) Svolgere le operazioni indicate senza convertire i numeri in altra base e annotando il numero di operazioni bit utilizzate:

$$a + b$$
, $a - b + c$, a/b , $(a * b)/c$, $(a + b) * c/(a + c)$.

- (c) Convertire a, b, c in base 10 e in base 16.
- (d) Qual è una stima della complessità computazionale del passaggio dalla scrittura binaria a quella decimale (o più in generale in base b) per un intero n di lunghezza k?

SOL: $\mathcal{O}(k^2)$ Si veda il testo Baldoni et al, Aritmetica crittografia e codici, p. 99.

4. (a) Consideriamo la sequenza supercrescente 1, 4, 7, 13, 28, 54. Ci sono soluzioni al problema dello zaino per b = 75? E per b = 76?

SOL: sì per 75, no per 76

(b) In un crittosistema di Merkle e Hellman, sia 1, 4, 7, 13, 28, 54 la sequenza supercrescente, n=111 e u=25. Qual è la chiave pubblica per farci mandare messaggi cifrati? Qual è l'inverso di 25 (mod 111)?

SOL:
$$PK = \{25, 100, 64, 103, 34, 18\}, 25^{-1} = 40$$

(c) Cifrare il messaggio forse usando la tabella di conversione fra lettere e stringhe binarie presentata a lezione.

SOL: (98, 223, 6592, 3332, 100)

5. Dimostare il Piccolo Teorema di Fermat: Se p è un numero primo, allora $a^p \equiv a \pmod{p}$.

SOL: Si può vedere per esempio il testo Baldoni et al, Aritmetica crittografia e codici, esercizio A4.11.

6. Calcolare $2^{258} \pmod{259}$. Cosa si può dedurre da questo conto sul numero 259?

SOL: $2^{258} \equiv 64 \pmod{259}$. 259 non è primo.

7. Dopo avere semplificato il conto, usando il teorema di Eulero-Fermat, calcolare

$$7^{73} \pmod{60}$$
; $4^{312} \pmod{75}$.

8. Utilizzando il Teorema di Eulero-Fermat calcolare senza svolgere la potenza l'ultima cifra decimale di 9^{201} , 7^{222} e le ultime due cifre di 3^{923} .

SOL: 9, 9, 27 rispettivamente.

- 9. Calcolare le seguenti potenze:
 - (a) $21^{149} \pmod{361}$
 - (b) $25^{289} \pmod{1840}$

SOL: 355, 905