Università degli Studi Roma Tre CR410 – Crittografia a chiave pubblica Esercizi Foglio 5

1. In $\mathbb{F}_{16} \simeq \mathbb{Z}_2[x]/(x^4+x+1)$ calcolare

$$[x^2 + x] \cdot [x^3 + \overline{1}], \quad [x^2 + x]^{-1}, \quad [x^3 + x + \overline{1}]^{-1}.$$

Sol.
$$[x^2 + x] \cdot [x^3 + \overline{1}] = [x + \overline{1}], \quad [x^2 + x]^{-1} = [x^2 + x + \overline{1}], \quad [x^3 + x + \overline{1}]^{-1} = [x^2 + \overline{1}]$$

2. In $\mathbb{F}_{27} \simeq \mathbb{Z}_3[x]/(x^3-x-1)$ calcolare

$$[-x^2 + x] \cdot [x^2 + \overline{2}], \quad [x^2 + \overline{2}x]^{-1}, \quad [x^2 + x + \overline{2}]^{-1}.$$

Sol.
$$[-x^2 + x] \cdot [x^2 + \overline{2}] = [\overline{2}x + \overline{1}], \quad [x^2 + \overline{2}x]^{-1} = [x + \overline{1}], \quad [x^2 + x + \overline{2}]^{-1} = [\overline{2}x^2 + x + \overline{2}].$$

3. Calcolare la chiave comune di Alice e Bob nello scambio alla Diffie-Hellman con le scelte $G=\mathbb{Z}_{61}^*, g=2$ e gli esponenti a=12 e b=33.

Sol. 58

- 4. Considerare una versione dello scambio di Diffie-Hellmann in cui Alice, scelto a e ricevuto g^b da Bob, calcola $g^{b+a} \pmod{p}$, e analogamente Bob scelto b e ricevuto g^a , calcola $g^{a+b} \pmod{p}$. Che problemi ci sono con questa versione del protocollo?
 - **Sol.** Eve conosce $g^a \in g^b$, per ottenere la chiave basta che calcoli $g^a \cdot g^b$.
- 5. Sia G un gruppo ciclico moltiplicativo di ordine n, e sia $n = \prod_{i=1}^{s} p_i^{e_i}$. Mostrare che $g \in G$ è un generatore $\iff g^{\frac{n}{p_i}} \neq 1$ per $i = 1, \dots, s$.
 - **Sol.** Se g è un generatore, allora $g^k \neq 1$ per ogni k < n, quindi $g^{\frac{n}{p_i}} \neq 1$ per $i = 1, \ldots, s$.
 - Se g non è generatore, allora esiste k < n con $g^k = 1$. Si ha k|n per il teorema di Lagrange, e siccome k < n, si ha $p_i k|n$ per qualche p_i divisore di n, e cioè $n = p_i kh$ per qualche $h \ge 1$; dunque $g^{\frac{n}{p_i}} = g^{kh} = 1$.
- 6. Una falsificazione per l'utente Alice in uno schema di firma è una coppia (x, y) che supera la verifica senza essere stata prodotta da Alice.

Nello schema RSA con chiave pubblica di Alice $(N_A = 187, e_A = 7)$, produrre una falsificazione (senza ricavare la chiave privata).

Sol. Visto che per esempio $2^{e_A} = 2^7 = 128$, la coppia (128,2) passa la verifica senza essere stata prodotta da Alice.

- 7. Mostrare che in \mathbb{F}_{p^m} si ha che $(a+b)^p=a^p+b^p,$ e che $(a+b)^{p^k}=a^{p^k}+b^{p^k}$
 - **Sol.** Basta osservare che se p è primo allora $p|\binom{p}{i}$ per $1 \le i \le p-1$. La seconda uguaglianza si dimostra per induzione su k.
- 8. Trovare una radice primitiva per \mathbb{F}_{83} e una per \mathbb{F}_{163} .
 - **Sol.** Sia per \mathbb{F}_{83} che per \mathbb{F}_{163} , si ha che 2 è una radice primitiva.
- 9. La chiave Elgamal di Alice è $(p=61,g=2,a=12,\beta=9).$
 - Cifrare e poi decifrare il messaggio x = 21 da inviare ad Alice.
 - Alice deve firmare il messaggio x=15. Qual è la firma? Verificare l'autenticità della firma.
 - **Sol.** Qui il risultato dipende dalla scelta di h. Con h=17 si ha e(21,17)=(44,54). Per la firma, sempre con h=17, si ha l=53, $z_2=(x-az_1)l=51 \pmod{60}$, e la firma è (15,44,51).