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Abstract. Deformations of classical measures to noncommuta-

tive ones play an important role in semiclassical and microlocal

analysis, and in quantum physics. In this paper, we characterize
limit points of nets of noncommutative measures acting on the

tensor product of a deformed Weyl algebra and an arbitrary C∗-
algebra. The limit points are classical vector cylindrical measures

on the predual of the phase space (i.e. on the space of Lagrangian

description), with values in the dual of the aforementioned C∗-
algebra. From a physical standpoint, they are interpreted as the

partially classical states of composite systems.
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1. Introduction.

The purpose of this work is to study the relation – of widespread use
in both mathematics and physics – between the noncommutative and
commutative theory of integration. We would like to underline some of
the general features that have been, despite their interest, overlooked
so far. The main novelty is the development of a general framework in
which both the usual and the partially classical limit could be taken.
The partially classical limit describes situations in which only a part of
a given theory modifies its behavior from non-commutative to commu-
tative, while the other part remains unchanged. Despite the variety of
possible applications in physics, the partially classical limit of quantum
theories has rarely been studied rigorously, and only limited to some spe-
cific system [Ginibre, Nironi, and Velo, 2006; Frank and Schlein, 2014;
Frank and Gang, 2015]. In this paper we study measures acting on tensor
products of a Weyl algebra and an arbitrary C∗-algebra A. In that way
we are able to treat on the same ground both the standard and the partial
classical limit of quantum states: only the Weyl algebra is deformed while
the other – that physically represents the unmodified degrees of freedom
– remains constant. The most relevant difference from the usual limit is
that the classical measures take values in A∗, instead of being standard
measures. Taking A to be the trivial abelian algebra generated by a sin-
gle element, the standard setting is recovered. In the rest of the section
we introduce deformations of probability theories, and their applications
in physics and analysis.

The main results of the paper can be found in Section 3. In Section 2,
we discuss some aspects of vector measure theory, for measures taking
values in pointed and generating convex cones of real vector spaces. The
results of Section 2 are heavily inspired by [Neeb, 1998; Glöckner, 2003],
and could be interesting in their own right.

1.1. Recovering classical measures from noncommutative ones.
Let (Ph)h>0 be a family of noncommutative probability theories [see e.g.
Voiculescu, Dykema, and Nica, 1992], indexed by a “semiclassical” pa-
rameter h. The parameter h is semiclassical in the sense that it measures
to some extent the non-commutativity of the theory. If we complete the
family with a classical probability theory P0, we obtain a new family
(Ph)h≥0 that we may call a deformation. At h = 0 we have a classical
theory, and as h gets bigger, the theory is deformed becoming more and
more noncommutative. This picture has to be taken with a grain of salt,
for in most applications all the Ph, h > 0, are “equally noncommutative”
and only P0 is distinctively different (being commutative). A question
that has often been asked – even if not formulated in these exact terms
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– is whether it is possible to introduce a topology such that the map
h 7→ Ph is continuous at zero (the continuity in other points is not im-
portant for our purposes, and we may assume that the family (Ph)h>0

is very regular with respect to h). If it is the case, we are able to ob-
tain a classical probability theory from a family of noncommutative ones,
taking the limit h → 0. Alternatively, we have a prescription on how to
deform a given classical probability theory to noncommutative ones in a
continuous way.

In order to prove eventual continuity properties of a deformation of
probability theories, it is necessary to study both deformed probabili-
ties – or more generally measures – and deformed random variables, i.e.
measurable functions. In this paper, we focus on the general study of
deformed measures in the Weyl tensor deformation. It is much more
difficult to study deformed random variables from a general perspective,
even in the aforementioned specific deformation; but we plan to address
the question in future works.

1.2. Bohr’s correspondence principle in physics. Let’s now review
some concrete situations where the ideas above play an important role.
We start with physics, and in particular with the interplay between clas-
sical and quantum theories. The correspondence principle in quantum
mechanics, customarily attributed to N. Bohr [1923], is a necessary con-
dition for any quantum theory. Essentially, it says that a quantum theory
should reproduce the corresponding classical theory, in the regime where
the quantum effects become negligible. Since from a mathematical per-
spective the physical quantum theories are noncommutative probability
theories – where probabilities are called states, and real random variables
are called observables – and the physical classical theories are classical
probability theories, the framework described in Section 1.1 fits perfectly.
In physics, h is customarily taken to be (a quantity proportional to)
Planck’s constant }; and Bohr’s correspondence principle is usually justi-
fied by means of heuristic or partially rigorous arguments that date back
to the beginning of quantum mechanics [e.g. Wentzel, 1926; Kramers,
1926; Brillouin, 1926; Ehrenfest, 1927; Feynman, 1942]. In mathematics,
the correspondence has been extensively studied for quantum mechani-
cal systems (phase spaces with finitely many degrees of freedom) and to
some extent also for bosonic quantum field theories (phase spaces with
infinitely many degrees of freedom); we defer to the next section for a
detailed bibliography.

Physical systems with infinite dimensional phase spaces – the so-called
field theories – present many open mathematical problems, especially
when it comes to quantization. Without entering too much into details,
we would like to emphasize a couple of distinctive features that support
the point of view taken in this paper. The first one is about the classical
description of fields. Finite dimensional classical systems are defined by a
finite dimensional space that is called the phase space. The phase space
admits a beautiful geometric characterization as the cotangent bundle
T ∗M of a smooth (finite dimensional) manifold M, together with its
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canonical symplectic form. The dynamics of the system is generated by
a smooth function on T ∗M, the so-called Hamiltonian function H by
means of Poisson brackets. An alternative description of the system is
given in the tangent bundle TM, and the dynamics is generated by the
so-called Lagrangian function L via the variational least action principle.
The Hamiltonian and Lagrangian functions are related by means of the
so-called Legendre transform, and the two descriptions are equivalent.
For infinite dimensional systems, some care has to be taken and it is
not always possible to define a manifold with smooth structure. If we
restrict to systems set on vector spaces, we may easily consider a similar
picture. Without loss of generality, we assume that the phase space (V, σ)
is a locally convex real vector space with a symplectic form. On (V, σ),
we specify an Hamiltonian functional (maybe only densely defined) that,
under suitable assumptions, generates a globally well-posed dynamics on
(V, σ). If V has a predual V∗, then we may seek a Lagrangian description
of the system on V∗. It is not assured, however, that the two pictures are
equivalent. Therefore in general a choice must be made. Motivated by
properties of relativistic covariance, the Lagrangian description on V∗ is
often preferred, especially for quantization. The Weyl algebra of quantum
observables is, however, customarily built from the phase space (V, σ).
As discussed in Section 3.5, Bohr’s correspondence principle holds for
regular states of the bosonic Weyl algebra, but the limit classical states
are cylinder measures of V∗. In other words, the Lagrangian classical
picture emerges naturally from the quantum-classical correspondence, by
a priori considerations on the deformation of the underlying probability
theories.

The other relevant feature is related to representations of Weyl alge-
bras. For finite dimensional phase spaces, there is a unique irreducible
representation of the Weyl algebra, and regular states are normal with
respect to such representation. Therefore it is sufficient to study the de-
formation explicitly in the representation, as it has been extensively done
for the phase space R2d and the related Schrödinger representation on
L2(Rd) (again, refer to the next section for bibliographic details). When
the Weyl algebra is built on an infinite dimensional phase space, there
are (uncountably) many inequivalent irreducible representations. In ad-
dition, representations corresponding to free and interacting relativistic
theories should be inequivalent (Haag’s theorem). Hence it is desirable
to study the correspondence principle independently of the chosen repre-
sentation of the Weyl algebra. The results obtained in Section 3 are all
representation independent.

1.3. Semiclassical and microlocal measures. In this part of the in-
troduction, we briefly review the existing literature on the deformations
of Weyl algebras in connection with semiclassical and microlocal analy-
sis. The deformation that has been studied the most in analysis is the
deformation of standard (Borel) probability theory in R2d to the cor-
responding Weyl algebra of canonical commutation relations generated
by phase space quantum translations, unitarily represented on L2(Rd).
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In this context, the picture can be considered essentially complete: the
continuous behavior along the deformation of both probabilities and ran-
dom variables have been thoroughly studied, as well as the convergence of
quantum to classical dynamics (one-parameter groups of automorphisms
of probabilities or random variables). The reader interested in semiclas-
sical techniques is invited to refer e.g. to [Hörmander, 1994; Martinez,
2002; Zworski, 2012, and references thereof contained]; here we focus ex-
plicitly on the deformation of measures. It should also be mentioned
that deformations, and especially deformation quantization for Poisson
manifolds, has been studied also from an algebraic and geometrical point
of view [see e.g. Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer,
1978; Fedosov, 1985; Rieffel, 1993, 1994; Kontsevich, 2003; Mazur, 2004,
and references thereof contained].

The Wigner, or semiclassical, or defect measures have a long history.
They are the classical measures on R2d that are a limit point of se-
quences of non-commutative regular measures of the Weyl deformation(
Weylh(R2d, σc)

)
h>0

, where σc is the canonical symplectic form on R2d –
for a definition of the Weyl deformation see Section 3.1. They were intro-
duced as microlocal defect measures in order to study variational prob-
lems with loss of compactness [see Lions, 1985a,b; Tartar, 1990; Gérard,
1991b]. Around the same time, they have been used in semiclassical
analysis to provide a rigorous study of the classical limit of quantum
mechanics [see Colin de Verdière, 1985; Helffer, Martinez, and Robert,
1987; Gérard, 1991a; Lions and Paul, 1993; Burq, 1996-1997]. Later, in
a series of papers, Ammari and Nier [2008, 2009, 2011, 2015] introduced
and studied Wigner measures for systems with infinite dimensional phase
spaces. The framework they developed has then been used to study mean
field and classical limits of both field theories [Ammari and Falconi, 2014,
2016] and many particle systems [Ammari and Breteaux, 2012; Liard and
Pawilowski, 2014]. The present work can be seen as a continuation of the
seminal ideas in [Ammari and Nier, 2008, Sections 6 and 7]. Infinite
dimensional Wigner measures and cylindrical measures have also been
introduced – but from a different point of view – by Lewin, Nam, and
Rougerie [2014, 2015a,b].

1.4. Cylindrical measures and perspectives on quantization. In
this last part of the introduction, we discuss the main results of Sec-
tions 3.5 and 3.7, in connection with the problem of quantization in field
theories. The quantization of classical relativistic theories with infinitely
many degrees of freedom is a very important and largely open problem of
mathematical physics. Despite many attempts, there is not a satisfactory
way to build interacting quantum field theories quantizing functionals on
either the classical phase space or the space of the Lagrangian in 3 + 1
dimensions. The interested reader may e.g. refer to [Segal, 1960; Bal-
aban and Raczka, 1975; Balaban, Jezuita, and Raczka, 1976; Krée and
Raczka, 1978; Helffer and Sjöstrand, 1992; Helffer, 1994; Amour, Kerdel-
hue, and Nourrigat, 2001; Ammari and Nier, 2008; Amour, Lascar, and
Nourrigat, 2015] for various attempts to build a quantization scheme or
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pseudodifferential calculus for infinite dimensional systems. In a recent
paper [Ammari and Falconi, 2016], we were successful in defining the
renormalized quantum dynamics of the Nelson model directly by (Wick)
quantization, exploiting a suitable symplectic transformation of the phase
space classical Hamiltonian functional.

Here in this work only quantum states (measures), and not observ-
ables, are considered; nevertheless, we get some insight on the classical
structure emerging in the limit, that may be important for the purpose
of quantization and subsequent definition of the quantum dynamics. In
particular, the following fact could be relevant: the actual classical space
emerging in the limit might be much larger than the one taken as start-
ing point to build the Weyl algebra. This might affect the choice of both
the quantization procedure and the functionals to be quantized. As an
example, consider a scheme like the one just mentioned above for the Nel-
son model (where the phase space and the space of the Lagrangian are
isomorphic). In order to define the quantum dynamics by quantization,
and directly get rid of all divergences, it is crucial to perform three steps:
make a symplectic change of coordinates in the phase space; evaluate the
classical Hamiltonian functional; Wick quantize. Now let (V, σ) be the
phase space of some Weyl algebra, E : V → R a corresponding classical
Hamiltonian. If the meaningful classical space is some W ⊃ V where
E can be non-trivially extended, we gain additional freedom in two of
the three steps above: choosing the coordinate transformation and defin-
ing the quantization procedure. In particular, it may be possible that
the needed change of coordinates would not preserve V . This idea is
corroborated by the fact that the quantum vacuum state for relativistic
interacting theories is not normal with respect to the free vacuum. Nets
of the latter usually converge to a measure concentrated on V (e.g. to the
point measure concentrated in zero), but nets of the former may converge
to a measure concentrated outside of V . If that is the case, manipulating
E on V would not be a sensible strategy. Since we do not know a priori
where the limit points of nets of the interacting vacuum would be con-
centrated, it seems relevant to study the Hamiltonian functional on the
whole limit space W .

Now let’s discuss in detail why the space defined by the classical limit
procedure may be quite large. For the notation, refer to Sections 2.2,
3.1 and 3.3. In the discussion just above, we implicitly assumed that the
space of the Lagrangian V∗ is continuously and linearly embedded in V ;
however the following discussion is valid in general. In Theorems 3.15
and 3.20, two important facts are proved: the limit points of nets of regu-
lar quantum states are cylindrical measures on the space of the Lagrangian
V∗, and every cylindrical measure is reached by at least one net of quan-
tum states. Therefore, there are quantum states whose classical counter-
part are not measures but “pure” cylindrical measures. Cylindrical mea-
sures are rather inconvenient as classical states, because the observables of
V∗ cannot be evaluated on them, unless roughly speaking they are cylin-
drical as well. It is however possible to identify every cylindrical measure
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with a Radon measure on a bigger space, that contains V∗. This is done ex-
ploiting a slight variant of Prokhorov’s theorem 2.18 [see Schwartz, 1973,
Part I, Chapter I, Theorem 22 for standard measures]. More precisely,
there is an injection c :Mcyl(V∗,A

∗
+)→Mrad

(∏
Φ∗∈F (V∗)

(V∗/Φ∗)
c,A∗+

)
,

where (V∗/Φ∗)
c are either Čech or one-point compactifications of V∗/Φ∗,

and their product is endowed with the product topology (and the sub-
script rad stands for Radon measures). In addition, there is a canonical
injection iV∗ : V∗ →

∏
Φ∗∈F (V∗)

(V∗/Φ∗)
c. An interesting fact is that

there are cylindrical measures µ such that cµ is concentrated outside of
iV∗(V∗), and by Theorem 3.20, such measures are reached by suitable
nets of quantum states. In the light of the above, it seems reasonable
to consider

∏
Φ∗∈F (V∗)

(V∗/Φ∗)
c as the limit classical space. With re-

spect to
∏

Φ∗∈F (V∗)
(V∗/Φ∗)

c, all limit points of nets of quantum states

are Radon probability measures. We remark that
∏

Φ∗∈F (V∗)
(V∗/Φ∗)

c

could be rather big – especially if the Čech compactification is chosen.
There is also a bijection a : Mcyl(V∗,A

∗
+) → Mcyl

(
Ṽad,A

∗
+

)
, where Ṽad

is Vad endowed with the σ(Vad, V ) topology – Vad is the algebraic dual

of V . Alternatively, Ṽad can be seen as the completion of V∗ with re-
spect to the weak topology σ(V∗, V ). If V is second countable, then

Mcyl

(
Ṽad,A

∗
+

)
= Mrad

(
Ṽad,A

∗
+

)
; therefore it might be sufficient to

choose Ṽad as the classical space. If V is not second countable, there
are µ ∈Mcyl(V∗,A

∗
+) such that cµ is concentrated outside of Ṽad as well.

We conclude with a couple of explicit examples that should help to put
the ideas above into context. The first provides a physically reasonable
sequence of quantum states that converges to a classical measure concen-
trated outside of the starting space V∗. Such states already appeared in
Lewin et al. [2015b], and are the so-called free Gibbs states for a second-
quantized system. Let Weylh

(
L2(Rd)

)
be the Weyl algebra deformation

with phase space (V, σ) =
(
L2(Rd)R, Im〈·, ·〉2

)
. In physics, it represents

the algebra of canonical commutation relations for time-zero scalar fields.
A well-known irreducible representation of this deformation is given by
means of Weyl operators in the symmetric Fock space Γs

(
L2(Rd)

)
h

with

h dependent commutation relations [see e.g. Fock, 1932; Cook, 1951]. We
do not want to enter too much into details, let’s just recall that there ex-
ists a positive map dΓh that associates to any self-adjoint A on L2(Rd)
a self-adjoint operator dΓh(A) on Γs

(
L2(Rd)

)
h
. Now let H0 be a self-

adjoint operator on L2(Rd) – the so-called free Hamiltonian – such that
for any h > 0, e−βhH0 is a trace-class operator and βh(H − µh) > 0;
where βh > 0, µh ∈ R are the (possibly deformation-dependent) inverse
temperature and chemical potential respectively. The regular Gibbs state
ΩG
h in the Fock representation is then defined by

ΩG
h (·) =

Tr(e−βhdΓh(H0−µh) · )
Tr(e−βhdΓh(H0−µh))

;

or equivalently by the generating functional (see Definition 3.6)

GΩG
h

(f) = e−
1
2 〈f,

h
2 (1+e−βh(H0−µh))(1−e−βh(H0−µh))−1f〉2 .
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Now suppose that h
2 (1 + e−βh(H0−µh))(1 − e−βh(H0−µh))−1 → K > 0 in

the weak operator topology as h→ 0. Hence by Theorem 3.15 the net of
Gibbs states (ΩG

h )h>0 converge to the Gaussian cylindrical measure µK
on L2(Rd) associated to the non-degenerate quadratic form 〈 · ,K · 〉2. By
[Minlos, 1963], µK is extended to a Radon gaussian measure µ̃K on the
tempered distributions S ′(Rd) supported outside of L2(Rd).

The second example concerns the P (ϕ)2 scalar quantum field theories,
and it is related to the comment above about free and interacting vacua.
The ground state Ω0

h of the free scalar field theory in 1 + 1 dimensions is
the Fock vacuum; following [Segal, 1956; Nelson, 1973], it is convenient
to represent it in the functional space L2(S ′(R), dνh), where νh is the
Gaussian measure associated to the quadratic form h〈·, ·〉2. In this space,
Ω0
h is represented by the projection on the vector 1 ∈ L2(S ′(R), dνh)

and the time-zero free fields ϕh(f) – f ∈ S (R) – are represented as
the multiplication by the coordinate function f . It then follows that the
generating functional for Ω0

h is the Fourier transform of νh as a cylinder
Gaussian measure on L2(R), namely

GΩ0
h
(f) = e−

h
2 ‖f‖

2
2 .

Therefore the limit point h → 0 of (Ω0
h)h>0 is ν0 = δ(0), the Radon

measure concentrated in the point 0 ∈ L2(R). The ground states Ω
P (ϕ)2

h

of interacting P (ϕ)2 theories are vector states in an inequivalent repre-
sentation of the Weyl algebra of time-zero fields. It has been proved by
[Glimm, Jaffe, and Spencer, 1974], using a result by [Newman, 1973],
that – at least for weak couplings – there exists a Radon non-gaussian

measure µh on S ′(R) such that Ω
P (ϕ)2

h is represented by the projection
on the vector 1 ∈ L2(S ′(R), dµh) and the time-zero interacting fields are
represented as the multiplication by the coordinate function. The corre-
sponding generating functional G

Ω
P (ϕ)2
h

for the interacting ground state

has been characterized by [Fröhlich, 1974, 1977], and by its properties

it follows that Ω
P (ϕ)2

h is a regular state. The limit points of Ω
P (ϕ)2

h are
Radon measures on S ′(R) as well. We conjecture that there are interac-
tions such that the ground state has classical limit points concentrated
outside of L2(R) – and if such property is related to Haag’s theorem, it
may even hold true for any relativistic invariant interacting theory.

2. Elements of the theory of cone-valued vector measures.

In this section, we outline some results of vector integration that will
be needed to characterize the classical limit behavior of nets of noncom-
mutative measures in the Weyl algebra. Even if it is possible to recover –
with some adaptation – a part of these results from the literature [Neeb,
1998; Glöckner, 2003], it is important to develop the aspects that are
most important for our purposes explicitly. As it will become clear in
the following, in our framework vector measures behave essentially as
standard measures.
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For the convenience of the reader, at the beginning of each subsec-
tion the needed notation and definitions are listed. The most important
definitions are however singled out in the subsequent text.

2.1. Definition of cone-valued measures.

• Given a topological space E, we denote by B(E) its Borel σ-
algebra.

• We will always denote by X a real vector space, and by C a
pointed and generating convex cone in X containing 0. This
means that

C ∩ −C = {0} ; C − C = X .

• We denote by Xad the algebraic dual of X, and for any X ′ ⊂
Xad we denote by C ′ the dual cone of C defined by C ′ = {κ ∈
X ′, κ(C) ⊆ R+}. If X is locally convex, X ′ its topological dual
and C is closed, then the Hahn-Banach separation theorem yields

(c1) C = C ′′ = {x ∈ X, (∀κ ∈ C∗)κ(x) ≥ 0} .

We will consider only triples (X,X ′, C) satisfying (c1).

• We denote by R+
∞ = [0,∞] the extended real semi-line considered

as an additive semigroup with the additional rule

(∀x ∈ R+
∞)∞+ x = x+∞ =∞ .

We also denote by R ∪ {−∞,+∞} = [−∞,+∞] the (compact)
complete lattice of extended reals, and by C∪{∞} ∼= [−∞,+∞]×
[−∞,+∞] the extended complex numbers (one-point compacti-
fication of the complex numbers).

• We denote by C∞ = Hommon(C ′,R+
∞) the subset of (R+

∞)C
′

con-
sisting of monoid homomorphisms. C∞ is a monoid with respect
to pointwise addition.

• We denote by iC the natural monoid morphism

iC : C → C∞ , (∀c ∈ C)(∀κ ∈ C ′)iC(c)(κ) = κ(c) .

iC(c1) = iC(c2) yields (∀κ ∈ C ′)κ(c1 − c2) = κ(c2 − c1) = 0.
Therefore (c1) implies c1 − c2 ∈ C ∩ −C and by the pointedness
of C we have c1 − c2 = 0. Thus iC is injective and C ∼= iC(C) is
a submonoid of C∞.

• The next condition is important to define cone-valued measures:

(c2) iC(C) = Hommon(C ′,R+) .

We discuss later some explicit example of triples that satisfy (c1)
and (c2).

• Finally, we denote by N∗ the set of strictly positive natural num-
bers, i.e. N∗ = N \ {0}.
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Cone valued measures are vector measures generalizing the concept of
positive measures. As we will see, they can essentially be seen as suit-
able collections of the latter, and therefore they share many interesting
properties of usual positive measures.

Definition 2.1 (C-valued measures). Let (X,X ′, C) be a triple that sat-
isfies (c1)-(c2), and E a topological space. Then µ ∈ (C∞)B(E) is a Borel
C-valued measure on E iff it is countably additive and µ(Ø) = 0.

Remark 2.2. In the definition above, 0 is the trivial monoid morphism
that maps every κ ∈ C ′ to 0 ∈ R+

∞. In addition, countable additivity is
intended in the following sense. Let {Kj}j∈N ⊂ C∞ be a subset of C∞;
then the countable combination

∑
j∈NKj ∈ C∞ is defined by pointwise

convergence in the topology of extended reals of partial sums, i.e. by
convergence of the sequences

R+
∞ ⊃ (wκn)n∈N =

( n∑
j=0

Kj(κ)
)
n∈N

, κ ∈ C ′ .

Therefore a function µ ∈ (C∞)B(E) is countably additive iff for any col-
lection {bj}j∈N ⊂ B(E) of mutually disjoint Borel sets,

µ
(⋃
j∈N

bj

)
=
∑
j∈N

µ(bj) .

If C = R+, Definition 2.1 corresponds to the usual one for positive
Borel measures. As it was stated before, a key feature of C-valued mea-
sures is that they are in fact families of positive measures, indexed by the
dual cone C ′. The precise statement is the following, whose proof follows
almost directly from Definition 2.1 above.

Theorem 2.3 (Neeb [1998]). There is a bijection between C-valued mea-
sures µ on E and families of Borel positive measures (µκ)κ∈C′ on E such
that for any b ∈ B(E),

(
κ 7→ µκ(b)

)
∈ Hommon(C ′,R+

∞), i.e. the map
κ 7→ µκ(b) belongs to C∞.

In the light of Theorem 2.3, we define a C-valued measure µ finite if µκ
is a finite positive Borel measure for any κ ∈ C ′.

We turn now to integration of (scalar) functions with respect to cone-
valued measures. As usual, it is convenient to start with the integration
of non-negative functions. Theorem 2.3 is very convenient in this context,
since we can simply define cone-valued integration by means of usual in-
tegration. Let f : E → R+

∞ be a non-negative Borel measurable function
with values on the extended reals. Let b ∈ B(E); then we define for any
κ ∈ C ′,

R+
∞ 3 Iκ =

∫
b

f(x)dµκ(x) .

The map κ 7→ Iκ is a monoid morphism, and therefore an element of C∞,
that we denote by µb(f). This leads to the following natural definition.



Limit points of nets of noncommutative measures on Weyl deformations. 11

Definition 2.4 (µ-integrable functions). Let (X,X ′, C) be a triple that
satisfies (c1)-(c2); and µ a C-valued measure on a topological space E.
The measure of a non-negative measurable function f ∈ (R+

∞)E is defined
by

C∞ 3 µb(f) =

(
κ 7→

∫
b

f(x)dµκ(x)

)
.

A non-negative measurable function f ∈ (R+
∞)E is µ-integrable on the

Borel set b ∈ B(E) iff µb(f) ∈ iC(C) = Hommon(C ′,R+). In this case,
we denote the integral by

C 3
∫
b

f(x)dµ(x) = i−1
C

(
µb(f)

)
.

A complex function f ∈ CE is µ-integrable on the Borel set b ∈ B(E)
iff |f | is µ-integrable, and

XC 3
∫
b

f(x)dµ(x) =

∫
b

(Ref)+(x)dµ(x)−
∫
b

(Ref)−(x)dµ(x)

+i

(∫
b

(Imf)+(x)dµ(x)−
∫
b

(Imf)−(x)dµ(x)

)
;

where XC is the complexification of X, and f = (Ref)+ − (Ref)− +

i
(

(Imf)+ − (Imf)−

)
with {(Ref)+, (Ref)−, (Imf)+, (Imf)−} ⊂ (R+)E.

Remark 2.5. If µ is finite, then any f ∈
⋂
κ∈C′ L

∞(E, dµκ) is integrable.
In particular, any continuous and bounded function is integrable.

In the next proposition we state the important linearity property of
the integral

∫
b
f(x)dµ(x). The proof is trivial.

Proposition 2.6. The mapping f 7→
∫
b
f(x)dµ(x) is a linear, cone-

homomorphism. In other words, for any complex-valued µ-integrable
functions f1, f2 and z ∈ C:∫

b

(
f1(x) + zf2(x)

)
dµ(x) =

∫
b

f1(x)dµ(x) + z

∫
b

f2(x)dµ(x) .

In addition, the cone of non-negative µ-integrable functions is mapped
into the cone (C + i{0}) ⊂ XC.

2.2. Bochner’s theorem. We are now ready to prove a result that will
be crucial in our framework: Bochner’s theorem for finite C-valued mea-
sures. It will be used to characterize the limit points of nets of noncom-
mutative measures by means of their Fourier transform. To prove the
theorem we follow closely [Neeb, 1998; Glöckner, 2003].

2.2.1. Locally compact abelian groups. In this subsection – if not specified
otherwise – we take as measure space G a locally compact abelian group
with character group Ĝ; and (X,X ′, C) a triple satisfying (c1)-(c2) and
some or all of the following additional conditions. Let K be a pointed
and generating cone in a real vector space A. Then an involution † on
AC agrees with K if: a†a ∈ K + i{0} for any a ∈ AC, and for any k ∈ K
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there exists an ak ∈ AC such that k = a†kak. Then we define the following
conditions:

X and X ′ locally convex ;(c3)

C ′ pointed and generating in X ′ ;(c4)

(X ′)C is an involutive algebra with involution agreeing with C ′ ;(c5)

XC = (X ′)∗C ; i.e. XC is the topological dual of (X ′)C .(c6)

Given a locally convex real vector space T , there are (infinitely) many
ways to endow TC with a topology in a “natural” way (i.e. satisfying
some suitable properties). Therefore one may ask if it is always possible
to endowXC and (X ′)C with suitable topologies such that (c6) is satisfied.
If X ′ is a Banach space and X = (X ′)∗ its dual, the answer is that for any
so-called natural complexification of X ′ there is a so-called reasonable
complexification of X such that (c6) is satisfied [see Muñoz, 2000, for
additional details].

Definition 2.7 (Completely positive functions). Let G be an abelian
group, (X,X ′, C) a triple satisfying (c1) and (c3)-(c6). A function f ∈
(XC)G is completely positive iff for any n ∈ N∗, for any {gi}ni=1 ⊂ G
and {κ̃i}ni=1 ∈ (X ′)C:

n∑
i,j=1

κ̃†j κ̃i

(
f
(
gig
−1
j

))
≥ 0 .

The definition above is the analogous of positive-definiteness for the cone
C. In fact, completely positive functions play the same role for cone-
valued measures as positive-definite functions for positive measures. In
order to study completely positive functions, it is convenient to introduce
the following slight generalization. Let f ∈ (XC)G, where G is an abelian
group. Then there exist an associated kernel Ff (·, ·) : G×G→ XC defined

by Ff (g1, g2) = f(g1g
−1
2 ). Hence it is natural to have the following

definition.

Definition 2.8 (Completely positive kernels). Let A be a set, (X,X ′, C)
a triple satisfying (c1) and (c3)-(c6). A kernel F : A × A → XC is
completely positive iff for any n ∈ N∗, for any {ai}ni=1 ⊂ A and {κ̃i}ni=1 ∈
(X ′)C:

n∑
i,j=1

κ̃†j κ̃i
(
F (ai, aj)

)
≥ 0 .

The equivalence of the two definitions for groups is given by the following
trivial result.

Lemma 2.9. Let G be an abelian group, (X,X ′, C) a triple satisfy-
ing (c1) and (c3)-(c6). A function f ∈ (XC)G is completely positive
iff the associated kernel Ff ∈ (XC)G×G is completely positive.

In order to prove Bochner’s theorem, we prove a couple of preliminary
results related to complete positivity.
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Lemma 2.10. Let (X,X ′, C) be a triple satisfying (c1)-(c6), and µ
a finite C-valued measure on a topological space E. If we denote by
L2(E,µ) ⊂ CE the space of µ-square integrable functions, i.e.

L2(E,µ) =
⋂
κ∈C′

L2(E,µk) ;

then the integral map Iµ : L2(E,µ)× L2(E,µ)→ XC, defined by

Iµ(f, g) =

∫
E

f(x)ḡ(x)dµ(x) ,

is well-defined and a completely positive kernel.

Proof. The fact that the kernel Iµ is well-defined is easy to prove using the
corresponding property of Iµκ , κ ∈ C ′. To prove complete positivity, we
proceed as follows. Let n ∈ N∗, {fi}ni=1 ⊂ L2(E,µ) and {κ̃i}ni=1 ∈ (X ′)C.
Using the decomposition X ′C = C ′−C ′+ i(C ′−C ′), we see that the map

X ′C 3 κ̃ 7→ µκ̃ = µκ+
R
− µκ−R + i(µκ+

I
− µκ−I )

defines a linear morphism from X ′C to the standard signed measures.
Now let µκ̃ be a signed measure, f an everywhere µκ̃-integrable function.
Then there is a signed measure µκ̃(f) defined by dµκ̃(f)(x) = f(x)dµκ̃(x).
If we define in addition

µκ̃(f)† = µκ̃†(f̄) , µκ̃1(f1)+κ̃2(f2) = µκ̃1(f1) + µκ̃2(f2) ,

µκ̃1(f1)κ̃2(f2) = µκ̃1κ̃2(f1f2) ;

then it is easy to see, using property (c5), that for any b ∈ B(E), κ̃ ∈ X ′C
and everywhere µκ̃-integrable f :∫

b

dµκ̃(f)†κ̃(f) ≥ 0 .

Then
n∑

i,j=1

κ̃†j κ̃i
(
Iµ(fi, fj)

)
=

n∑
i,j=1

∫
E

fi(x)f̄j(x)dµκ̃†jκi
=

n∑
i,j=1

∫
E

dµκ̃j(fj)†κ̃i(fi)

=

∫
E

dµ(∑n
i=1 κ̃i(fi)

)†(∑n
i=1 κ̃i(fi)

) ≥ 0 .

a

Corollary 2.11. Let (X,X ′, C) be a triple satisfying (c1)-(c6), and µ
a finite C-valued measure on a topological space E. If we denote by
L∞(E,µ) ⊂ CE the space of µ-bounded functions, i.e.

L∞(E,µ) =
⋂
κ∈C′

L∞(E,µk) ;

then the integral Iµ : L∞(E,µ)→ XC is a completely positive function –
considering L∞(E,µ) as an abelian multiplicative group.

The last ingredient needed to formulate Bochner’s theorem is the
Fourier transform. The Fourier transform extends quite naturally to
cone-valued measures.
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Definition 2.12 (Fourier transform of a C-valued measure). Let G be
a locally compact abelian group, (X,X ′, C) a triple satisfying (c1)-(c2),

and M(Ĝ, C) the set of finite C-valued Borel measures on the character

group Ĝ. The Fourier transform is a map ˆ :M(Ĝ, C)→ (XC)G, defined
by

(∀g ∈ G) µ̂(g) =

∫
Ĝ

γ(g)dµ(γ) .

Using the definitions above, Bochner’s theorem is written in a rather
familiar form.

Theorem 2.13 (Bochner). Let G be a locally compact abelian group,
(X,X ′, C) a triple satisfying (c1)-(c6). The Fourier transform is a bi-

jection between finite C-valued measures on Ĝ and completely positive
ultraweakly continuous functions from G to XC.

Proof. Let µ be a finite C-valued measure on Ĝ. Finiteness of the mea-
sure implies the integrability of γ(g), since (∀γ ∈ Ĝ)(∀g ∈ G)|γ(g)| = 1.
In addition, γ is a representation of the abelian group G on the functions
L∞(G,µ). Hence it follows by Corollary 2.11 that µ̂(·) is completely pos-
itive. To prove ultraweak continuity, let κ ∈ C ′+ i{0}. By Definition 2.4

κ
(
µ̂(·)

)
=

∫
Ĝ

γ(·)dµκ(γ)

is the Fourier transform of the finite measure µκ, hence continuous. Now
by (c4), (X ′)C = C ′ − C ′ + i(C ′ − C ′) and therefore for any κ̃ ∈ (X ′)C,
κ̃
(
µ̂(·)

)
∈ CG is continuous. By (c6), this yields the ultraweak continuity

of µ̂(·).
Now let’s consider a completely positive ultraweakly continuous func-

tion f from G to XC. Then for any κ ∈ C ′ + i{0}, κ
(
f(·)

)
is a positive

definite continuous C-valued function. Continuity trivially follows from
ultraweak continuity (since κ ∈ (X ′)C). To prove positive-definiteness,
we exploit complete positivity. By Definition 2.7, for any n ∈ N∗,
{gi}ni=1 ⊂ G and {κ̃i}ni=1 ⊂ (X ′)C,

n∑
i,j=1

κ̃†j κ̃i

(
f
(
gig
−1
j

))
≥ 0 .

Then by property (c5), there exists κ̃κ ∈ (X ′)C such that κ = κ̃†κκ̃κ. So
we can choose κ̃i = ziκ̃κ for any i ∈ {1, . . . , n}, where zi ∈ C. Therefore
by linearity we obtain

n∑
i,j=1

z̄jziκ
(
f
(
gig
−1
j

))
≥ 0 ;

and hence positive-definiteness of κ
(
f(·)

)
.

The classical Bochner’s theorem for locally compact abelian groups
[see e.g. Loomis, 1953] implies the existence of a unique positive, finite
measure µκ such that κ

(
f(·)

)
= µ̂κ(·). Therefore we have a unique family

of positive and finite measures (µκ)κ∈C′ . In order for it to define a unique
finite C-valued measure, it is necessary that κ 7→ µκ is additive. Let
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κ1, κ2 ∈ C ′. Then κ1+κ2 ∈ C ′, and there is a unique measure µκ1+κ2
such

that µ̂κ1+κ2
(·) = (κ1 + κ2)

(
f(·)

)
= κ1

(
f(·)

)
+ κ2

(
f(·)

)
= µ̂κ1

(·) + µ̂κ2
(·).

However since the Fourier transform is a linear bijection, it follows that
µκ1+κ2 = µκ1 + µκ2 . Hence by Theorem 2.3 we have defined a unique
C-valued measure µ. In addition, by Definition 2.4 for any κ ∈ C ′

κ
(
f(·)

)
=

∫
Ĝ

γ(·)dµκ(γ) = κ

(∫
Ĝ

γ(·)dµ(γ)

)
.

Now by (c4), it follows that for any κ̃ ∈ (X ′)C

κ̃
(
f(·)

)
= κ̃

(∫
Ĝ

γ(·)dµ(γ)

)
,

and therefore by (c6) it follows that

f(·) =

∫
Ĝ

γ(·)dµ(γ) .

a

2.2.2. Locally convex spaces. Bochner’s Theorem 2.13 can be applied to
finite dimensional real vector spaces (seen as abelian groups under addi-
tion). In that context, the Fourier transform takes the following form.
Let V be a finite dimensional vector space, V ∗ its topological dual. Given
a C-valued measure on V , then its Fourier transform is a function from
V ∗ to XC defined by

µ̂(ω) =

∫
V

eiω(v)dµ(v) .

Using a projective argument, we obtain a variant of Bochner’s theorem
for cylindrical measures on locally convex real vector spaces. Some basic
definitions and notations are in order.

• Let L be a locally convex real vector space, L∗ its topological dual.

• We denote by F (L) the set of subspaces of L with finite codi-
mension, ordered by inclusion.

• For any Λ ∈ F (L), we denote by pΛ : L → L/Λ the canonical
projection.

• For any Λ ⊃ Ξ ∈ F (L), we denote by pΛΞ : L/Ξ → L/Λ the
canonical map obtained quotienting the identity map of L.

• The family Q(L) = (L/Λ, pΛΞ)Λ⊃Ξ∈F (L) is a projective system
of spaces indexed by F (L) that we call the projective system of
finite dimensional quotients of L.

Definition 2.14 (C-valued cylindrical measure). Let L be a locally con-
vex real vector space, and (X,X ′, C) a triple satisfying (c1)-(c2). A
family of measures M = (µΛ)Λ∈F (L) is a cylindrical measure iff it is
a projective system of C-valued measures on Q(L).
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In other words, the family (µΛ)Λ∈F (L) satisfies:

•
(
∀Λ ∈ F (L)

)
µΛ is a C-valued measure on L/Λ;

• Define for any b ∈ B(L/Λ); p−1
ΛΞ(b) = {ξ ∈ L/Ξ, pΛΞ(ξ) ∈ b}, and

pΛΞ(µΞ)(b) = µΞ

(
p−1

ΛΞ(b)
)
. Then(

∀Λ ⊃ Ξ ∈ F (L)
)
µΛ = pΛΞ(µΞ)

Remark 2.15. The compatibility condition of Definition 2.14 implies
that for any Λ,Ξ ∈ F (L),

µΛ(L/Λ) = µΞ(L/Ξ) = m ∈ C∞ .

We call m the total mass of the cylindrical measure M . A cylindrical
measure M = (µΛ)Λ∈F (L) is finite if for any Λ ∈ F (L), the measure µΛ

is finite.

Every C-valued measure µ on L induces a cylindrical measure Mµ =
(µΛ)Λ∈F (L) by (

∀Λ ∈ F (L)
)
µΛ = pΛ(µ) ;

where for any b ∈ B(L/Λ), pΛ(µ)(b) = µ
(
p−1

Λ (b)
)
. The compatibility

condition is satisfied, and the total mass of Mµ equals the total mass µ(L)
of µ [see Bourbaki, 1969, I IX.4.2 Théorème 1 for additional details]. On
the other hand, for finite dimensional L any cylindrical measure M =
(µΛ)Λ∈F (L) induces a measure µ(M) = µ{0}.

We are almost ready to define the Fourier transform of cylindrical
measures. In order to do that, we denote by Λ0 ⊂ L∗ the subspace
orthogonal to Λ, i.e. Λ0 = {l∗ ∈ L∗, (∀λ ∈ Λ)l∗(λ) = 0}. It is possible to
identify (L/Λ)∗ and Λ0 by means of (pΛ)∗.

Definition 2.16 (Fourier transform of cylindrical measures). Let L be a
locally convex space, (X,X ′, C) a triple satisfying (c1)-(c2), andMcyl(L,C)
the set of finite C-valued cylindrical measures on L. The Fourier trans-
form is a map ˆ :Mcyl(L,C)→ (XC)L

∗
, defined by

(∀λ0 ∈ Λ0) µ̂(λ0) =

∫
L/Λ

eiλ
0(l)dµΛ(l) .

We remark that L∗ =
⋃

Λ∈F (L) Λ0 and the consistency condition of Defi-

nition 2.14 ensure the above definition is consistent.
With the aid of Theorem 2.13 and a projective argument, it is possible

to prove the following result.

Theorem 2.17 (Bochner for cylindrical measures). Let L be a locally
convex space, (X,X ′, C) a triple satisfying (c1)-(c6). The Fourier trans-
form is a bijection between finite C-valued cylindrical measures on L and
completely positive functions from L∗ to XC that are ultraweakly contin-
uous when restricted to any finite dimensional subspace of L∗.
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2.3. Tightness. It is useful to have criteria to check whether a given
finite cylindrical measure is in fact a (Radon) measure. We follow Bour-
baki [1965, 1967, 1969], and introduce the following definitions.

• Let A be a locally compact space. We denote by F+(A) ⊂
(R+
∞)A the subset of positive functions, and by K +(A) ⊂ RA

the subset of continuous functions of compact support.

• Let A be a locally compact topological space, (X,X ′, C) a triple
satisfying (c1)-(c2). For any positive finite C-valued measure µ
on A, and any function f ∈ F+(A), we define the induced inner
measure by

µ•(f) =

(
κ 7→ sup

K⊂A
K compact

sup
g∈K +,g≤f

∫
K

g(x)dµκ(x)

)
.

Given a set a ⊂ A, we define µ•(a) = µ•(χa), where χa is the
characteristic function of a. If µ•(f) ∈ iC(C), we define∫ •

A

f(x)dµ(x) = i−1
C

(
µ•(f)

)
.

Theorem 2.18 (Prokhorov). Let L be a locally convex real vector space,
and (X,X ′, C) a triple satisfying (c1)-(c2). Given a cylindrical measure
M = (µΛ)Λ∈F (L) there exists a unique Radon C-valued measure µ on L
such that for any Λ ∈ F (L), µΛ = pΛ(µ) iff(

∀ε > 0
)(
∃K ⊂ L,K compact

)(
∀Λ ∈ F (L))(∀κ ∈ C ′

)
µ•Λ,κ

(
L/Λ \ pΛ(K)

)
≤ ε .

(P)

In addition,

µ•(K) = inf
Λ∈F (L)

µ•Λ
(
pΛ(K)

)
.

Proof. By [Bourbaki, 1969, I IX.4.2, Théorème 1], (P) holds iff for any
κ ∈ C ′, there exists a unique positive Radon measure µκ such that for any
Λ ∈ F (L), µΛ,κ = pΛ(µκ). Uniqueness of the measure, and linearity of pΛ

also ensure the additivity of κ 7→ µκ, as in the proof of Theorem 2.13. The
last statement also follows from the analogous statements for µ•κ(K). a

If L is a real separable Hilbert space, Theorem 2.17 takes a simpler
form. We remark that in this context, for any Λ ∈ F (L) we can identify
L/Λ with a finite dimensional Hilbert subspace of L, and pΛ with the or-
thogonal projector from L onto L/Λ. To this extent, we denote by F(H )
the finite dimensional subspaces of a separable real Hilbert space H , and
for any h ∈ F(H ), by Ph the corresponding orthogonal projection.

Theorem 2.19. Let H be a real separable Hilbert space, and (X,X ′, C)
a triple satisfying (c1)-(c2). In addition, let BH (r) be the ball of radius
r in H . Given a finite cylindrical measure M = (µh)h∈F(H ) there exists
a unique finite Radon C-valued measure µ on H such that for any h ∈
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F(H ), µh = Ph(µ) iff(
∀ε > 0

)(
∃r > 0

)(
∀h ∈ F(H )

)(
∀κ ∈ C ′

)
r > s⇒

µh,κ

(
h \ Ph

(
BH (r)

))
≤ ε

(PHs)

Proof. The proof is analogous to the one of Theorem 2.17, using the
corresponding result for positive finite cylindrical measures [see Skorohod,
1974]. a

2.4. Signed and complex vector measures. As in the scalar case, it
is possible to introduce signed and complex vector measures.

• A Riesz space (V,≤) is a partially ordered real vector space such
that:

– x ≤ y ⇒ (∀ z ∈ B)x+ z ≤ y + z;
– 0 ≤ x ⇒ (∀ 0 < λ ∈ R) 0 ≤ λx;
– (∀{x, y} ⊂ B) (∃x ∨ y ∈ B)x ≤ x ∨ y ; y ≤ x ∨ y ; (∀u ∈
B) (x ≤ u ; y ≤ u)⇒ x∨y ≤ u (x∨y is called the supremum
of {x, y}, and analogously it is possible to define the infimum
x ∧ y).

• Given a convex pointed cone C of a real vector space X, we define
the relation ≤C by

x ≤C y iff y − x ∈ C .

If for any {x, y} ⊂ X, there exist the supremum x ∨C y with
respect to the partial order ≤C , then (X,≤C) is a Riesz space.
In this case, we say that C is a lattice cone of X. Every pointed
and generating cone is a lattice cone, for if C is generating there
exist for any x ∈ X the positive and negative part with respect
to ≤C .

• The extended real line R∪{−∞,+∞} is not an additive monoid,
since +∞ − ∞ is not defined. However both (−∞,+∞] and
[−∞,+∞) are additive monoids.

• We define X∞ = Hommon(C ′,R ∪ {−∞,+∞}) as the subset of

functions f ∈ (R ∪ {−∞,+∞})C′ satisfying the following prop-
erties:

– If ±∞ ∈ Ran f , then ∓∞ /∈ Ran f ;

– f : C ′ → Ran f is a monoid homomorphism.

This definition is justified by the fact that since +∞−∞ is not
defined, signed measures may only take either +∞ or −∞ as
a value (in order to be additive). This has also to be the case
for signed vector measures, and therefore they will have X∞ as
target space, see Definition 2.20 below.

• (XC)∞ = Hommon(C ′,C ∪ {∞}).
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Let’s consider the extension to vector measures of the concept of signed
measures. This is easily done by means of X∞ defined above.

Definition 2.20 (Signed vector measures). Let (X,X ′, C) be a triple
that satisfies (c1)-(c2), E a topological space. A function µ ∈ (X∞)B(E)

is a Borel signed vector measure on E iff it is countably additive and
µ(Ø) = 0.

The following useful lemma follows directly from the definition of
signed measures.

Lemma 2.21. Every C-valued measure is also a signed measure. Any
real linear combination of two C-valued measures is a signed measure,
provided at least one of the two measures is finite.

The important Theorem 2.3 can be easily adapted to hold for signed
measures as well.

Theorem 2.22. There is a bijection between signed vector measures µ
on E and families of Borel signed measures (µκ)κ∈C′ on E such that for
any b ∈ B(E),

(
κ 7→ µκ(b)

)
∈ X∞.

A signed measure µ is finite iff for any κ ∈ C ′, µκ is finite. The
idea behind signed vector measures is that, as in the case of standard
measures, they are the sum of two cone-valued measures. Therefore it is
reasonable to define them as a collection indexed only by the dual cone
C ′, in order to prevent possible “sign incongruences” on µκ due to the
action of a κ /∈ C ′. As a matter of fact, with this definition we can indeed
prove the existence of a unique Jordan decomposition for signed vector
measures. The precise statement is contained in the following result.

Theorem 2.23. Let (X,X ′, C) be a triple satisfying (c1)-(c2); and µ a
signed vector measure on a topological space E. Then there exist three
C-valued measures µ+, µ−, |µ| such that:

• µ = µ+ − µ−, and the decomposition is unique;

• |µ| = µ+ + µ−;

• At least one between µ+ and µ− is finite;

• µ is finite iff |µ| is finite.

In addition, µ+ = µ∨C 0, µ− = µ∧C 0 and |µ| = |µ|C . The operations
+, −, ∨C , ∧C and | · |C on measures are defined pointwise on Borel sets,
and 0 is the measure identically zero.

Proof. Let µ be a signed vector measure. Then (µκ)κ∈C′ is the corre-
sponding family of signed measures. By Jordan decomposition of signed
measures, for any κ ∈ C ′, there exist a unique decomposition µκ =
µ+
κ − µ−κ , with µ+

κ and µ−κ positive measures with at least one of the two
finite, and µκ is finite iff |µκ| is finite. Hence if (|µk|)κ∈C′ is the image of a
C-valued measure |µ|, µ is finite iff |µ| is finite. In addition, suppose that
there exists a κ̃ ∈ C ′ such that µ+

κ is not finite. Then +∞ ∈ Ranµ, and
therefore −∞ /∈ Ranµ, i.e. for any κ ∈ C ′, µ−κ is finite. It follows that if
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(µ−κ )κ∈C′ is the image of a C-valued measure, such measure is finite. An
analogous statement holds with plus replaced by minus. By Lemma 2.21,
to prove the first part of the theorem it remains only to check that the
families (µ+

κ )κ∈C′ and (µ−κ )κ∈C′ are C-valued measures, i.e. that for any
b ∈ B(E), the maps κ 7→ µ±κ (b) are monoid morphisms. On one hand, we
have by the fact that µ ∈ X∞ and then Jordan decomposition that

µκ1+κ2(b) = µκ1(b) + µκ2(b) = µ+
κ1

(b) + µ+
κ2

(b)−
(
µ−κ1

(b) + µ−κ2
(b)
)

;

on the other hand, by Jordan decomposition we have also that

µκ1+κ2(b) = µ+
κ1+κ2

(b)− µ−κ1+κ2
(b) .

Now since the decomposition is unique, it follows that

µ±κ1+κ2
(b) = µ±κ1

(b) + µ±κ2
(b) ,

i.e. the map is a monoid morphism.
To prove the last part, let µ = µ+ − µ− be a vector signed measure

with the respective decomposition. Then for any b ∈ B(E), we have that

X 3 µ(b) = µ+(b)− µ−(b) ; µ+(b), µ−(b) ≥C 0 .

Since C is pointed and generating, (X,≤C) is a Riesz space and the
decomposition in positive and negative parts is unique. Then it follows
that µ+ = µ ∨C 0, µ− = µ ∧C 0 and therefore |µ| = |µ|C . a

The complex vector measures are defined in an analogous fashion, and
they are the sum of four C-valued measures. We quickly mention the
basic definitions and results without proof, for they are equivalent to the
ones for signed vector measures.

Definition 2.24 (Complex vector measures). Let (X,X ′, C) be a triple

that satisfies (c1)-(c2), E a topological space. A function µ ∈
(
(XC)∞

)B(E)

is a Borel complex vector measure on E iff it is countably additive and
µ(Ø) = 0.

Lemma 2.25. Under the identifications R 3 α → α + i0, +∞ → ∞,
−∞ → ∞; every signed vector measure is also a complex measure. Any
complex linear combination of two signed measures is a complex measure.

Theorem 2.26. Let (X,X ′, C) be a triple satisfying (c1)-(c2); and µ a
complex vector measure on a topological space E. Then there exist five
C-valued measures µ+

R, µ
−
R , µ

+
I , µ

−
I , |µ| such that:

• µ = µ+
R − µ

−
R + i(µ+

I − µ
−
I ), and the decomposition is unique;

• |µ| = µ+
R + µ−R + µ+

I + µ−I ;

• At least one between µ+
R and µ−R , and one between µ+

I and µ−I are
finite;

• µ is finite iff |µ| is finite, or equivalently if µ+
R, µ

−
R , µ

+
I , µ

−
I are all

finite.
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Corollary 2.27. The integral with respect to a finite complex vector
measure µ is a map

∫
(·) dµ : B(E)→ XC defined by∫

b

dµ =

∫
b

dµ+
R −

∫
b

dµ−R + i
(∫

b

dµ+
I −

∫
b

dµ−I

)
.

2.5. A concrete realization: duals of C∗-algebras. In this subsec-
tion, we discuss a relevant class of triples satisfying the properties (c1)-
(c6). The standard results are recalled without proof.

The triples we consider are related to C∗-algebras. They will be crucial
in the following, for they are related to the commutative limit points of
nets of Weyl noncommutative measures.

• Given a C∗-algebra A, we denote by A+ the set of elements with
positive spectrum, and by A† the set of self-adjoint elements.

• If A∗† is the continuous dual of the set of self-adjoint elements

A† of a C∗-algebra A, we denote by A∗+ the functionals that are
positive when acting on A+.

In order to verify conditions (c1)-(c6), we make use of the following clas-
sical result [see e.g. Takesaki, 1979].

Theorem 2.28. Let A be a C∗-algebra. Then:

• A† is a real Banach subspace of A and A = A† + iA†.

• A+ is a closed, pointed and generating convex cone of A†.

• A∗+ is a pointed and generating convex cone of A∗† ; in particular
for any α ∈ A∗† there is a unique decomposition

α = α+ − α− , with α+, α− ∈ A∗+ .

• (A∗†)C = A∗.

By means of Theorem 2.28, conditions (c1), (c3)-(c6) are immediately
proved. Condition (c2) is proved using a remarkable result of Neeb [1998,
Lemma I.5]. In fact, if we call C ′1 the set of elements of C ′ with A†-norm
one, then C ′1−C ′1 is a 0-neighbourhood of A†. In Section 3, the A∗+-valued
measures play an important role; from the discussion above it follows that
all the results of Section 2 can be freely used there. For later reference,
the result is written explicitly as a theorem.

Theorem 2.29. Let A be a C∗-algebra. Then the triple (A∗† ,A†,A
∗
+)

satisfies (c1)-(c6).

3. Limit points of nets of noncommutative measures.

In this section we study the limit points of suitable equicontinuous nets
of noncommutative measures in deformations of Weyl algebras. As ex-
plained in the introduction, such deformations and nets emerge in many
branches of analysis and mathematical physics such as microlocal anal-
ysis, semiclassical analysis, and the rigorous study of classical and mean
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field effective behavior of bosonic quantum systems. They can also be
seen as families of noncommutative measures that behave as classical
measures in the limit; therefore they provide a link between the theories
of noncommutative and classical integration.

3.1. The noncommutative setting. We begin introducing the Weyl
algebra and some of its properties we will exploit the most. To avoid
confusion with the operation of taking topological duals, we denote by
† the involution of a ∗-algebra. For additional basic definitions and re-
sults concerning C∗-algebras, refer to Section 2.5 and references thereof
contained.

Definition 3.1 (Weyl algebra). Let (V, σ) be a couple consisting of a real
vector space and a non-degenerate antisymmetric bilinear form. Then the
Weyl algebra Weyl(V, σ) is the C∗-algebra generated by the set of elements

{W (v), v ∈ V }
that satisfies the following properties:

• W (v) 6= 0 for any v ∈ V ;

• W (−v) = W (v)† for any v ∈ V ;

• W (v)W (w) = e−iσ(v,w)W (v + w) for any v, w ∈ V .

The definition is well posed because of the following result.

Theorem 3.2 (Slawny [1972]). Given a couple (V, σ) the Weyl algebra
Weyl(V, σ) is uniquely determined up to ∗-isomorphisms.

Any Weyl algebra is a unital noncommutative C∗-algebra generated by
unitary elements. These properties can be easily derived from Defini-
tion 3.1.

Let us introduce a real positive deformation parameter h ≥ 0 measur-
ing the “degree of non-commutativity” of a Weyl algebra.

Definition 3.3 (Weyl deformation). Let (V, σ) be a couple consisting of a
topological real vector space and a non-degenerate antisymmetric bilinear
form (symplectic form). Then the Weyl deformation

(
Weylh(V, σ)

)
h≥0

is a family of C∗-algebras where Weylh(V, σ) is generated by the set of
elements

{Wh(v), v ∈ V }
that has the following properties:

• Wh(v) 6= 0 for any v ∈ V ;

• Wh(−v) = Wh(v)† for any v ∈ V ;

• Wh(v)Wh(w) = e−ihσ(v,w)Wh(v + w) for any v, w ∈ V .

It is clear that for any h > 0, the algebra Weylh(V, σ) is ∗-isomorphic
to Weyl(V, σ) since we can identify the generators in the following way:
Wh(v) = W (h1/2v). For h = 0, the algebra Weyl0(V, σ) is the abelian
unital C∗-algebra of almost periodic functions of V (seen as an additive
abelian group) [see H. Bohr 1947; von Neumann 1934; Bochner and von
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Neumann 1935, for additional details]. Essentially, the Weyl deforma-
tions Weylh(V, σ) contain infinitely many identical copies of the Weyl
algebras Weyl(V, σ), and a single commutative C∗-algebra of almost pe-
riodic functions. It is therefore interesting to study the apparent disconti-
nuity following descending nets hβ → 0 of the deformation parameter, in
a suitable sense. As a starting point, in this work we focus on the study
of nets of noncommutative measures. In fact, if we interpret each element
Weylh(V, σ) of the deformation as an algebra of random variables of a
probability theory, it is natural to define the associated noncommutative
probabilities as the norm one elements of

(
Weylh(V, σ)

)∗
+

, and more gen-

erally the (finite) noncommutative positive measures as the elements of(
Weylh(V, σ)

)∗
+

. Since for a C∗-algebra X, it is possible to decompose

the dual as X∗ = X∗+ − X∗+ + i(X∗+ − X∗+), it is sufficient to characterize
only positive measures.

As discussed in the introduction, we consider the following more gen-
eral setting. Let (V, σ) be a real vector space with a symplectic form,
and

(
Weylh(V, σ)

)
h≥0

the corresponding Weyl deformation; and let A be

a C∗-algebra. We consider the tensor product deformation

(Wh)h≥0 =
(
Weylh(V, σ)⊗γh A

)
h≥0

;

where the index γh stands for a suitable choice of cross-norm for the
tensor product C∗-algebra [see e.g. Takesaki, 1979]. For the sake of sim-
plicity, we consider the same choice γh for any h > 0. We remark that
in applications, it is sometimes important to consider the enveloping von
Neumann algebra Weylh(V, σ)′′ in place of Weylh(V, σ). The majority
of our results extend to the deformation

(
Weylh(V, σ)′′ ⊗γh A

)
h≥0

or to

any deformation (Vh ⊗γh A)h≥0 such that each Weylh(V, σ) is a subal-
gebra of Vh. It will be pointed out explicitly in the text when a result
do not extend to the aforementioned situations. Finally, if one is inter-
ested only in the deformation

(
Weylh(V, σ)

)
h≥0

– in other words in the

complete classical limit – it suffices to take A to be the trivial C∗-algebra
generated by a single element.

3.2. Partial evaluation. On each tensor algebra Wh defined above,
there is a natural map that plays an important role, and we call it partial
evaluation.

Definition 3.4 (Partial evaluation). Let (V, σ) be a real vector space with
a symplectic form; A a C∗-algebra; (Wh)h≥0 =

(
Weylh(V, σ) ⊗γh A

)
h≥0

a corresponding Weyl tensor deformation. For any h ≥ 0, we define the
partial evaluation map

E(·)
h,1 : W∗h → L

(
Weylh(V, σ),A∗

)
,

by its action

EΩh
h,1(wh)(a) = Ωh(wh ⊗ a) ,

for any Ωh ∈ W∗h, wh ∈ Weylh(V, σ), and a ∈ A. We also define the

partial trace of the (complex) measure Ωh ∈W∗h as EΩh
h,1(1).
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In the definition above, we have used the notation L(X,Y ) for the contin-
uous linear operators from X to Y ; and we have stressed the dependence
on the deformation parameter h for it will be important in the following.
The partial evaluation does what it is supposed to: given a measure on
the tensor algebra, it evaluates any random variable of the first algebra
and has as output a (complex) measure on the second algebra. The eval-
uation of any random variable of the second algebra then gives the same
value as evaluating the tensor product of the random variables in the
original measure. Of course, we can also define the partial evaluation
Eh,2 in the same fashion, but since our deformation does not involve A,
we will use Eh,1 the most.

The partial evaluation map has some important properties that are
summarized in the following proposition [see e.g. Takesaki, 1979, for a
proof].

Proposition 3.5. For any h ≥ 0, the evaluation map Eh,1 is an isometry
of W∗h onto L

(
Weylh(V, σ),A∗

)
. In addition, an element Ωh ∈ W∗h is a

positive measure of total mass mh – i.e. Ωh ∈ (Wh)∗+ and ‖Ωh‖W∗h =

mh – iff the resulting evaluation EΩh
h,1 : Weylh(V, σ) → A∗ is completely

positive and the partial trace EΩh
h,1(1) ∈ A∗+ satisfies

‖EΩh
h,1(1)‖A∗ = mh .

3.3. The generating map and regular measures. Given a measure
on the Weyl algebra, it is possible to define its generating functional [see
Segal, 1961]; in our framework it is not a functional, but a map from V
to A∗. Throughout this section, we take h > 0 if not specified otherwise.

Definition 3.6 (Generating map). Let Ωh ∈ (Wh)∗+ be a (positive) mea-
sure, we define the generating map GΩh : V → A∗ by

GΩh(v) = EΩh
h,1

(
Wh(v)

)
, v ∈ V .

The generating map is used to define a very important class of measures
(and hence its name), the so-called regular measures. As it will become
clearer in the following, nets of regular measures are the good choice in
order to be sure to have commutative measures as limit points. They are
defined as follows.

Definition 3.7 (Regular measures). Let Ωh ∈ (Wh)∗+ be a (positive)
measure, GΩh its generating map. Then Ωh is regular iff for any v ∈ V ,
the map GΩh( · v) : R → A∗ is continuous when A∗ is endowed with the
ultraweak topology (ultraweakly continuous).

There are many equivalent definitions of regular measures. We will make
use also of the following, that can be proved e.g. using the properties of
map Eh,2 and the equivalent result for trivial A [see Bratteli and Robin-
son, 1997, Section 5.2.3]. Let R be a finite dimensional real vector space.
We say that a positive measure ωh on Weylh(R, σ)⊗γhA is Fock-normal iff
for any a ∈ A+, Eωhh,2(a) is represented as a (positive) trace class operator

in the unique irreducible representation of Weylh(R, σ) (its uniqueness up
to unitary equivalence is guaranteed by Stone-von Neumann’s theorem).
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Proposition 3.8. Let Ωh ∈ (Wh)∗+ be a (positive) measure. Then Ωh
is regular iff for any finite dimensional R ⊂ V its restriction ωh to
Weylh(R, σ)⊗γh A is a Fock-normal measure.

In particular, it follows that the generating map of a regular measure
is ultraweakly continuous when restricted to finite dimensional subspaces
of V .

The following result is an extension to our setting of the main result
of the aforementioned paper of Segal [1961]. The idea is that regular
measures are uniquely determined by the generating map, and the lat-
ter is “almost” completely positive (up to a complex phase factor) and
ultraweakly continuous on finite dimensional subspaces.

Proposition 3.9. Let (V, σ) be a real vector space with a symplectic form,
A a C∗-algebra and (Wh)h≥0 a corresponding tensor Weyl deformation.
Then for any h > 0, a map Gh : V → A∗ is the generating map of a regular
measure Ωh ∈ (Wh)∗+ of partial trace αh ∈ A∗+ iff all the restrictions
of Gh to finite dimensional subspaces of V are ultraweakly continuous,
Gh(0) = αh and ∑

j,k∈F

Gh(vj − vk)eihσ(vj ,vk)(a†kaj) ≥ 0 ;

where the vj ∈ V are arbitrary as well as the aj ∈ A, and F is any finite
index set. The map Gh uniquely determines Ωh.

Remark 3.10. If in (Wh)h≥0 we replace Weylh(V, σ) by its enveloping
von Neumann algebra or any algebra that contains the Weyl algebra as
a subalgebra, Gh does not determine Ωh uniquely.

Proof. Let’s start with the easy “only if” part. Ultraweak continuity
follows from Proposition 3.9, the other two properties follow from Propo-
sition 3.5: in fact Wh(0) = 1;∑

j,k∈F

EΩh
h,1

(
Wh(vk)†Wh(vj)

)
(a†kaj) ≥ 0

by complete positivity of EΩh
h,1; and Wh(−v)Wh(w) = eihσ(v,w)Wh(w− v)

by definition of the Weyl algebra. To prove the “if” part and uniqueness,
we act with the generating map on an arbitrary a ∈ A+. Since A =
A+−A+ + i(A+−A+), this suffices to characterize the map Gh : V → A∗

by linearity. Let’s denote by Gah(·) = Gh(·)(a) : V → C. By Theorem
1 of [Segal, 1961], to Gah corresponds a unique regular measure ωah ∈(
Weylh(V, σ)

)∗
+

such that Gah(·) = ωah
(
Wh(·)

)
. By the last property of Gh

this defines a unique completely positive map ω
(·)
h : A→ (Weylh(V, σ)

)∗
.

Therefore the analogous of Proposition 3.5 for Eh,2 yields that Ωh =

E−1
h,2(ω

(·)
h ) is a positive regular measure of total mass Gh(0), uniquely

determined by Gh. a
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3.4. Compactness. In this section we discuss compactness properties
of nets of generating maps associated to nets of regular measures. Let
(Wh)h≥0 be a tensor Weyl deformation. We are interested in nets of
measures (Ωhβ )β∈B such that hβ 6= 0 for any β ∈ B, hβ → 0 and Ωhβ ∈
(Whβ )∗+ regular for any β ∈ B. Let’s denote by GΩ ⊂ (A∗uw)V and
GΩ(v) ⊂ A∗uw the following sets:

GΩ = {GΩhβ
, β ∈ B} ; GΩ(v) = {GΩhβ

(v), β ∈ B} , v ∈ V ;

where A∗uw is the space A∗ endowed with the ultraweak topology. The first
result is that the family of images of a given point is pointwise compact,
provided the total masses of (Ωhβ )β∈B are bounded.

Lemma 3.11. Let (Ωhβ )β∈B be a net of measures in the Weyl tensor
deformation. If there exists m > 0 such that

sup
β∈B
‖Ωhβ‖W∗hβ = m ,

then GΩ(v) is precompact for any v ∈ V . It then follows that GΩ is
precompact as a subset of Fs(V,A

∗
uw), the space of functions in (A∗uw)V

endowed with the uniform structure of simple convergence.

Proof. It follows from Definition 3.6 of the generating map – since the
Weyl operators are unitary – that for any v ∈ V , β ∈ B and a ∈ A

|GΩhβ
(v)(a)| ≤ ‖Ωhβ‖W∗hβ ‖a‖A ≤ m‖a‖A .

Therefore GΩ(v) is contained in the ball of radius m of A∗, and therefore
it is precompact in the ultraweak topology by Banach-Alaoglu’s theorem.

a

Let R ⊆ V be a finite dimensional subspace of V . Then we define the
set GΩ

∣∣
R
⊂ (A∗uw)R by

GΩ

∣∣
R

= {GΩhβ

∣∣
R
, β ∈ B} .

For the next result we make use of a classical result of microlocal and
semiclassical analysis for the so-called Wigner measures [see e.g. Lions
and Paul, 1993; Tartar, 1990; Helffer et al., 1987; Gérard, 1991b, for
additional details]. It is a remarkable consequence of those results that
each GΩ

∣∣
R

is equicontinuous.

Lemma 3.12. Let (Ωhβ )β∈B be a net of regular measures in the Weyl
tensor deformation. If there exists m > 0 such that

sup
β∈B
‖Ωhβ‖W∗hβ = m ,

then GΩ

∣∣
R

is equicontinuous for any finite dimensional R ⊆ V .

Proof. Let a ∈ A; then a = a+
R − a

−
R + i(a+

I − a
−
I ), with a+

R , a
−
R , a

+
I , a

−
I ∈

A+. If we define

(C)R ⊃ GaΩ
∣∣
R

= {GΩhβ
(·)(a)

∣∣
R
, β ∈ B} ,
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then by linearity GaΩ
∣∣
R

= G
a+

R

Ω

∣∣
R
−Ga

−
R

Ω

∣∣
R

+ i(G
a+

I

Ω

∣∣
R
−Ga

−
I

Ω

∣∣
R

). Therefore

if GaΩ
∣∣
R

is equicontinuous for any a ∈ A+, it follows that GΩ

∣∣
R
⊂ (A∗uw)R

is equicontinuous. The equicontinuity of GaΩ
∣∣
R

is yielded by [Bourbaki,

1972, TG X.19 Corollaire 3], since it is a precompact set in the space of
continuous functions – endowed with the uniform structure of compact
convergence – from the locally compact space R to the uniform space
C. The fact that GaΩ

∣∣
R

is precompact follows from the fact that for
any net it is always possible to extract a convergent subnet that is the
Fourier transform of a Wigner measure. The last fact is proved using

Proposition 3.8 – that ensures that the restricted measures E
ωhβ
hβ ,2

(a) are

Fock-normal – and then the standard result of microlocal analysis [see
e.g. Lions and Paul, 1993, Théorème III.1]. a

An immediate consequence of Lemma 3.11 and 3.12 is that for any finite
dimensional R ⊆ V , GΩ

∣∣
R

is precompact in the space Cc(R,A∗uw) of
continuous functions from the locally compact R to the uniform space
A∗uw, endowed with the uniform structure of compact convergence – again
it suffices to apply [Bourbaki, 1972, TG X.19 Corollaire 3].

Proposition 3.13. Let (Ωhβ )β∈B be a net of regular measures in the
Weyl tensor deformation. If there exists m > 0 such that

sup
β∈B
‖Ωhβ‖W∗hβ = m ,

then GΩ

∣∣
R

is precompact in Cc(R,A∗uw) for any finite dimensional R ⊆ V .

Combining the results above, we see that the set GΩ is precompact
in Fs(V,A

∗
uw), and each of its restrictions to finite dimensional subspaces

R ⊆ V is equicontinuous and hence precompact in Cc(R,A∗uw). How-
ever, the uniform structures of compact and simple convergence agree on
equicontinuous subsets of C(A,B) [Bourbaki, 1972, TG X.16 Théorème 1]
for any topological space A and uniform space B. Therefore given a net
of regular measures that “descends” in the deformation, with uniformly
bounded masses, there is always at least one limit point of simple con-
vergence for the corresponding generating map, and every limit point is
ultraweakly continuous when restricted to any finite dimensional subset.

Theorem 3.14. Let (V, σ) be a real vector space with a symplectic form,
A a C∗-algebra, and (Wh)h≥0 a corresponding Weyl tensor deformation.
Then there exist a non-empty set of limit points of the generating map
GΩhβ

in Fs(V,A
∗
uw), for any descending net of measures (Ωhβ )β∈B, hβ →

0, provided there exists m > 0 such that

sup
β∈B
‖Ωhβ‖W∗hβ = m .

If Ωhβ is regular for all β ∈ B, every limit point gΩ belongs to Cc(R,A∗uw),
when restricted to any finite dimensional subspace R ⊆ V ; in any case
gΩ satisfies: ∑

j,k∈F

gΩ(vj − vk)(a†kaj) ≥ 0 ;
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where the vj ∈ V are arbitrary as well as the aj ∈ A, and F is any finite
index set.

3.5. Locally convex spaces and identification of limit measures.
By means of Theorem 3.14, we have provided a characterization of limit
points of the generating functional of nets of noncommutative measures
descending in the deformation. Our goal is, however, to characterize
directly limit points of nets of measures. Inspired by semiclassical analysis
in general and [Ammari and Nier, 2008] in particular, this can be done by
means of Bochner’s theorem 2.17 whenever V has a locally convex predual
V∗. There is an important caveat. The limit point of a descending net
of noncommutative regular measures of the Weyl tensor algebra is – as
we will see – identified with a commutative (cylindrical) measure; such
measure however is not on the “phase space” (V, σ), but on its predual
V∗. If V is finite dimensional, there is a bijection between the measures
on V∗ and V . More generally, we can make the following identification for
any (V∗, V ) such that there is a linear continuous map u : V∗ → V . Let
Φ ∈ F (V ) – for the notation refer to Section 2.2.2 – then Φ∗ = u−1(Φ) ∈
F (V∗) and the quotient map uΦ : V∗/Φ∗ → V/Φ is linear. In particular,
if we consider Φ,Ψ ∈ F (V ) with Φ ⊃ Ψ we have Φ∗ ⊃ Ψ∗ ∈ V∗ and the
commutative diagram

V∗
pΨ∗−−−−→ V∗/Ψ∗

pΦ∗Ψ∗−−−−→ V∗/Φ∗

u

y uΨ

y uΦ

y
V

pΨ−−−−→ V/Ψ
pΦΨ−−−−→ V/Φ

.

Therefore given an A∗+-valued cylindrical measure M∗ = (µΦ∗)Φ∗∈F (V∗)

on V∗, the family M = (µΦ)Φ∈F (V ) defined by

µΦ = uΦ(µu−1(Φ))

is an A∗+-valued cylindrical measure on V . From the physics perspective,
the difference is rather important when considering quantum field theo-
ries. In a (classical) field theory, the Lagrangian and Hamiltonian picture
are not necessarily equivalent, for the former is set in the tangent bundle
TM of some (convenient) manifold, the latter in the cotangent bundle
T ∗M with its canonical symplectic form (phase space). Here V∗ plays
the role of the tangent bundle, and (V, σ) of the phase space, so on V∗ we
have Lagrangian description and in (V, σ) Hamiltonian description. The
former is often preferred for quantization of relativistic theories, since the
Lagrangian map is relativistically covariant, while the Hamiltonian map
is not. It is therefore remarkable that even if the Weyl algebra is defined
by the phase space (V, σ), the limit classical measures that emerge act
naturally on the space of the Lagrangian theory rather than on the phase
space itself.

Let’s now expand the above comments. Let V be a topological vector
space with a locally convex predual V∗, and let (Rh)∗+ ⊆ (Wh)∗+ be the
set of regular measures and R∗+ =

⋃
h>0(Rh)∗+. Consider the set of

both noncommutative and commutative (finite) positive measures of the
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deformation

Mh≥0(Wh) = R∗+ ∪Mcyl(V∗,A
∗
+) .

By Proposition 3.9, we can identify each regular measure with a function
(the generating map) from V to A∗, and by Theorems 2.17 and 2.29 we
can identify each A∗+-valued cylindrical measure on V∗ with a function

(the Fourier transform) from V to A∗. Now we denote by C̃f(V,A∗uw)
the topological space of functions from V to A∗ – the latter endowed
with the ultraweak topology – that are continuous when restricted to
any finite dimensional subspace of V , endowed with the uniform struc-
ture of simple convergence. By the aforementioned identification, the
topology of C̃f(V,A∗uw) induces a topology on Mh≥0(Wh). We denote
by Mh≥0(Wh)C the set of measures with the induced topology. Theo-
rem 3.14 then translates in the following result.

Theorem 3.15. Let (V, σ) be a real topological vector space with a sym-
plectic form that has a locally convex predual V∗, A a C∗-algebra, and
(Wh)h≥0 a corresponding Weyl tensor deformation. Consider a descend-
ing net (Ωhβ )β∈B ⊂ R∗+, hβ → 0, such that there exists m > 0 such
that

sup
β∈B
‖Ωhβ‖W∗hβ = m .

Then there exists a subnet (Ωhγ )γ∈C such that

Ωhγ →M∗ ,

where M∗ ∈Mcyl(V∗,A
∗
+) and the convergence holds in Mh≥0(Wh)C.

By means of generating functionals and Fourier transforms, we are able
to treat noncommutative regular measures and classical A∗+-valued cylin-
drical measures on the same grounds; and even if they are quite different
objects, we are able to prove that the latter are limit points of descending
nets of the former. This means that regular noncommutative measures
behave “nicely”, i.e. continuously, at the boundary of the Weyl deforma-
tion. The physical interpretation is that as far as states are concerned,
Bohr’s correspondence principle is satisfied: to a quantum mechanical
state for h > 0, it corresponds a classical cylindrical state (cylindrical
probability distribution) on the space V∗ of the Lagrangian theory; and
subsequently a cylindrical state on the phase space (V, σ), provided there
exists a continuous and linear map u : V∗ → V . From the results of the
preceding sections, it is also clear that nets of non-regular measures will in
general fail to have classical cylinder measures as limit points. Therefore
they are not suitable for considering the limiting behavior h→ 0. Again,
from a physical standpoint this is not unreasonable, since non-regular
states appear in physics mostly in relation to typically quantum behav-
iors, such as infrared divergence [see e.g. Acerbi, Morchio, and Strocchi,
1993a,b].

3.6. An alternative identification. In Definition 2.24, we chose the
algebra at h = 0 to be the commutative unital C∗-algebra of almost
periodic functions from V to C, with the supremum norm. Let’s denote by
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AP(V ) such algebra. We want to show that the limit points of nets of non-
commutative measures could also be seen as positive measures belonging
to
(
AP(V ) ⊗γ0 A

)∗
, provided that V has a locally convex predual V∗

linearly and continuously embedded in V . Even if the interpretation
given in Section 3.5 is more useful for applications, this point of view
may also be of interest.

We define the subalgebra SAP(V ) of smooth almost periodic functions
to be the subalgebra of AP(V ) generated by{

fv∗(w) = eiv
∗(w), v∗ ∈ V ∗

}
.

As proved in Theorem 3.15, any limit point of a descending net of non-
commutative regular measures with bounded masses is identified with a
cylindrical measure M∗ belonging to Mcyl(V∗,A

∗
+), and therefore with

the corresponding cylindrical measure M ∈ Mcyl(V,A
∗
+) – see the con-

struction at the beginning of Section 3.5. Now, it is not difficult to prove
that the cylinder integral with respect to M is a continuous completely
positive linear map from SAP(V ) to A∗.

Lemma 3.16. Let V be a locally convex space, A a C∗-algebra; and let

M ∈ Mcyl(V,A
∗
+). Then

∫ (cyl)

V
dM ∈ L

(
SAP(V ),A∗

)
and it is com-

pletely positive.

Proof. The action of the cylinder integral on the generators of SAP(V )
is given by the Fourier transform:∫ (cyl)

V

fv∗(w)dM(w) =

∫ (cyl)

V

eiv
∗(w)dM(w) = M̂(v∗) .

Therefore the cylinder integral acts linearly on the generators of SAP(V )
and it is completely positive by Bochner’s theorem 2.17. Now let

fn(w) =

n∑
j=1

zjfv∗j (w)

be a linear combination of generators. Therefore there exists a Φn ∈ F (V )
such that, for any j ∈ {1, . . . , n}, v∗j ∈ (Φn)0; and∫ (cyl)

V

fn(w)dM(w) =

∫
V/Φn

( n∑
j=1

zje
iv∗j (w)

)
dµΦn(w) ;

for the notation refer to Section 2.2.2. Using the corresponding result for
the standard measures µΦn,κ, it is not difficult to prove that∥∥∥∫ (cyl)

V

fn(w)dM(w)
∥∥∥
A∗
≤ ‖fn‖∞‖M̂(0)‖A∗ ;

where ‖ · ‖∞ denotes the supremum norm. Now let (fn)n∈N be a Cauchy
sequence with respect to the supremum norm, that converges to f ∈
SAP(V ). By means of the above, it is possible to define the cylinder

integral
∫ (cyl)

V
f(w)dM(w). In addition,∥∥∥∫ (cyl)

V

f(w)dM(w)
∥∥∥
A∗
≤ ‖f‖∞‖M̂(0)‖A∗ .
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Therefore the cylinder integral is a linear and continuous map from
SAP(V ) to A∗, and it is completely positive since it is completely positive
on linear combinations of generators. a

Corollary 3.17. To any cylindrical measure M ∈ Mcyl(V,A
∗
+), it is

possible to associate an ΩM ∈
(
SAP(V )⊗γ0

A
)∗

+
, by means of

ΩM = (Eh,1)−1
(∫ (cyl)

V

dM
)
.

Proof. By Lemma 3.16, we can associate to M its cylinder integral, and
the latter is a completely positive element of L

(
SAP(V ),A∗

)
. Therefore

by Proposition 3.5, ΩM = (Eh,1)−1
(∫ (cyl)

V
dM

)
is a positive measure, i.e.

it belongs to
(
SAP(V )⊗γ0

A
)∗

+
. a

Using Tietze’s extension theorem, ΩM can be continuously extended
to Ω̃M ∈

(
AP(V )⊗γ0

A
)∗

+
.

Theorem 3.18. Let (V, σ) be a real topological vector space with a sym-
plectic form such that V has a locally convex predual V∗ linearly and
continuously embedded in it. In addition, let A be a C∗-algebra, and
(Wh)h≥0 a corresponding Weyl tensor deformation. Consider a descend-
ing net (Ωhβ )β∈B ⊂ R∗+, hβ → 0, such that there exists m > 0 such
that

sup
β∈B
‖Ωhβ‖W∗hβ = m .

Then the set of its limit points with respect to the topology ofMh≥0(Wh)C
is not empty, and each limit point can be identified with a positive measure
Ω̃ ∈

(
AP(V )⊗γ0 A

)∗
+

.

3.7. Every cylindrical measure is a limit point. In this section we
prove that every cylindrical A∗+-valued measure on V∗ can be reached
taking the limit of a suitable net of regular measures. In order to prove
the result, we use the following lemma, that can be proved by standard
arguments of semiclassical analysis. The proof relies on the fact that
squeezed coherent states on L2(Rd) converge to measures concentrated
on a point of R2d; and that linear combinations of point measures are
dense in the space of finite measuresM(R2d,C), endowed with the weak
topology [see e.g. Parthasarathy, 1967]. The extension to the Weyl tensor
deformation does not present difficulties.

Lemma 3.19. Let R be a finite dimensional real vector space with a
symplectic form σ and predual R∗ ∼= R. For any µ ∈ M(R∗,A

∗
+), there

exists a net of measures (ωhβ )β∈B, such that for any β ∈ B, ωhβ ∈(
Weylhβ (R, σ)⊗γhβ A)∗+ is Fock-normal, and

ωhβ → µ

with respect to the topology of Mh≥0

(
Weylh(R, σ)⊗γh A

)
C.



32 Limit points of nets of noncommutative measures on Weyl deformations.

With the aid of this result, and of the projective structure of cylindrical
measures, we can prove the “surjectivity” of the classical limit, in the
sense that every commutative cylindrical measure is reached by some net
of regular non-commutative measures.

Theorem 3.20. Let (V, σ) be a real topological vector space with a sym-
plectic form, such that it has a locally convex predual V∗; and let A be a
C∗-algebra. Then to any M ∈ Mcyl(V∗,A

∗
+) there corresponds a net of

regular measures (Ωhβ )β∈B ⊂ R∗+ such that Ωhβ →M in Mh≥0(Wh)C.

Proof. LetMcyl(V∗,A
∗
+) 3M = (µΦ∗)Φ∗∈F (V∗). Combining Lemma 3.19

with the compatibility condition of cylindrical measures – refer to Sec-
tion 2.2.2 – there exists a family (ωΦ∗

γ )δ∈D,Φ∗∈F (V∗) of nets of non-commutative
measures such that for any δ ∈ D and Φ∗ ∈ V∗,

ωΦ∗
hδ
∈
(
Weylhδ(V∗/Φ∗, σ)⊗hδ A

)∗
+

is Fock-normal ;

ωΦ∗
hδ
→ µΦ∗ with respect to the topology ofMh≥0

(
Weylhδ(V∗/Φ∗, σ)⊗γhδ

A
)
C ; and such that Weylhδ(V∗/Φ∗, σ)⊗γhδ A ⊂Weylhδ(V∗/Ψ∗, σ)⊗γhδ A

yields

ωΦ∗
hδ

= ωΨ∗
hδ

∣∣∣
Weylhδ

(V∗/Φ∗,σ)⊗γhδA
.

Now since the three topologies

Mh≥0

(
Weylh(V∗/Φ∗, σ)⊗γh A

)
C , Mh≥0

(
Weylh(V∗/Ψ∗, σ)⊗γh A

)
C ,

andMh≥0(Wh)C agree on common subspaces for any Φ∗ ⊂ Ψ∗ ∈ F (V∗),
it is possible to extract a subnet (Ωhβ )β∈B ⊂ R∗+ such that each Ωhβδ
extends ωhδ for any δ ∈ D, and Ωhβ →M inMh≥0(Wh)C – here we have

set βδ ∈ f−1(δ) ⊂ B, where f : B → D is the monotone final function
defining the subnet. a
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mechanik innerhalb der quantenmechanik. Zeitschrift für Physik, 45
(7-8):455–457, 1927. ISSN 0044-3328. doi: 10.1007/BF01329203. URL
http://dx.doi.org/10.1007/BF01329203.

B. V. Fedosov. Formal quantization. In Some problems in modern math-
ematics and their applications to problems in mathematical physics
(Russian), pages 129–136, vi. Moskov. Fiz.-Tekhn. Inst., Moscow, 1985.

R. P. Feynman. The Principle of Least Action in Quantum Mechanics.
PhD thesis, Princeton University, 1942.

V. Fock. Konfigurationsraum und zweite quantelung. Zeitschrift für
Physik, 75:622–647, 1932.

R. Frank and B. Schlein. Dynamics of a strongly coupled polaron. Let-
ters in Mathematical Physics, 104(8):911–929, 2014. ISSN 0377-9017.
doi: 10.1007/s11005-014-0700-7. URL http://dx.doi.org/10.1007/

s11005-014-0700-7.
R. L. Frank and Z. Gang. Derivation of an effective evolution equation

for a strongly coupled polaron. ArXiv e-prints, 05 2015. URL http:

//arxiv.org/abs/1505.03059.

http://dx.doi.org/10.1007/978-3-662-03444-6
http://dx.doi.org/10.1007/978-3-662-03444-6
http://eudml.org/doc/110228
http://projecteuclid.org/euclid.cmp/1104114465
http://projecteuclid.org/euclid.cmp/1104114465
http://dx.doi.org/10.1007/BF01329203
http://dx.doi.org/10.1007/s11005-014-0700-7
http://dx.doi.org/10.1007/s11005-014-0700-7
http://arxiv.org/abs/1505.03059
http://arxiv.org/abs/1505.03059


Limit points of nets of noncommutative measures on Weyl deformations. 35
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J. Fröhlich. Schwinger functions and their generating functionals. II.
Markovian and generalized path space measures on S1. Advances in
Math., 23(2):119–180, 1977. ISSN 0001-8708.

P. Gérard. Mesures semi-classiques et ondes de Bloch. In Séminaire sur
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19. École Polytech., Palaiseau, 1991a.

P. Gérard. Microlocal defect measures. Comm. Partial Differen-
tial Equations, 16(11):1761–1794, 1991b. ISSN 0360-5302. doi:
10.1080/03605309108820822. URL http://dx.doi.org/10.1080/

03605309108820822.
J. Ginibre, F. Nironi, and G. Velo. Partially classical limit of the Nel-
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