Complete intersections subvarietes of Veronese surfaces

Stefano Canino

Advisors: A. Boralevi ${ }^{1}$ and E. Carlini
Dipartimento di Scienze Matematiche, Politecnico di Torino

Complete intersections on Veronese surfaces Joint work with: E. Carlini

Question

Which are the complete intersections lying on Veronese surfaces?

The (singular) embedding of $V_{2,2}$ in \mathbb{P}^{3} : the Steiner surface
We showed that, if $\mathbb{X} \subseteq V_{n, d}$ is a subvariety and we set $\mathbb{Y}=\nu_{n, d}^{-1}(\mathbb{X})$, then it holds that $(\mathcal{I}(\mathbb{X}))_{t}=(\mathcal{I}(\mathbb{Y}))_{d t}$. Hence we have

$$
H_{\mathbb{X}}(t)=H_{\mathbb{Y}}(d t)
$$

and that allows us to prove the following theorem:

Hilbert functions of subvarieties of $V_{n, d}$

Let $h(t): \mathbb{N} \rightarrow \mathbb{N}$ be the Hilbert function of a projective variety in \mathbb{P}^{N}. Then there exists $\mathbb{X} \subseteq V_{n, d} \subseteq \mathbb{P}^{N}$ such that $H_{\mathbb{X}}(t)=h(t)$ if and only there exists $k(t): \mathbb{N} \rightarrow \mathbb{N}$ Hilbert function of a projective variety in \mathbb{P}^{n} such that $h(t)=k(d t)$.

d-seauences

Inspired by the definition of differentiable 0 -sequences, given by A.V. Geramita, P. Maroscia and L.G. Roberts in 1983 to characterize Hilbert functions of reduced varieties, we define differentiable d-sequences as follows:

- A sequence of non-negative integers $\left(c_{t}\right)_{t \in \mathbb{N}}$ is called a 0 -sequence if $c_{0}=1$ and $c_{t+1} \leq c^{(t)}$ for all $t \geq 1$.
- Let $\left(b_{t}\right)_{t \in \mathbb{N}}$ be a 0 -sequence. Then $\left(b_{t}\right)_{t \in \mathbb{N}}$ is differentiable if the difference sequence $\left(c_{t}\right)_{t \in \mathbb{N}}, c_{t}=b_{t}-b_{t-1}$ is again a 0 -sequence (where $b_{-1}=0$).
- A 0 -sequence $\left(b_{t}\right)_{t \in \mathbb{N}}$ is called d-sequence if there exists a 0 -sequence $\left(c_{t}\right)_{t \in \mathbb{N}}$ such that $b_{t}=c_{(d+1) t}$.
- A 0 -sequence $\left(b_{t}\right)_{t \in \mathbb{N}}$ is called differentiable d-sequence if there exists a differentiable 0 -sequence $\left(c_{t}\right)_{t \in \mathbb{N}}$ such that $b_{t}=c_{(d+1) t}$.

With these definitions we have

Hilbert functions of subvarieties of $V_{n, d}$

Let $\left(h_{t}\right)_{t \in \mathbb{N}}$ be a sequence of non-negative integers such that $h_{0}=1$ and $h_{1}=N+1$. There exists a projective variety $\mathbb{X} \subseteq V_{n, d} \subseteq \mathbb{P}^{N}$ such that $H_{\mathbb{X}}(t)=h_{t}$ if and only if $\left(h_{t}\right)_{t \in \mathbb{N}}$ is a differentiable $(d-1)$-sequence

Theorem 1
Given $d, t, s \in \mathbb{N}$ such that $s \geq d^{2} t+\frac{d(d+3)}{2}$ we define the following two functions:

$$
\mu_{1}(d, t, s):=d^{2} t+\frac{d(d+3)}{2}
$$

$$
\mu_{2}(d, t, s):= \begin{cases}\left\{\begin{array}{l}
2 d(t+1)+3-\sqrt{1+8 \mu_{\mu}(d, t, s)}
\end{array}\right], & \text { if } 1 \leq \mu_{1}(d, t, s) \leq\left(\begin{array}{c}
d+1) \\
d t-n,
\end{array}\right. \\
\text { if }\left(\begin{array}{c}
\binom{1+1}{2}+d n<\mu_{1}(d, t, s) \leq
\end{array}\right]\end{cases}
$$

$\binom{d+1}{2}+d(n+1), 0 \leq n \leq d t$

Using the fact that reduced 0 -dimensional varieties are always aCM and some properties of Hilbert functions of artinian ideals we proved the following theorem:

Hilbert functions of points on Veronese surfaces
Let $\left(h_{t}\right)_{t \in \mathbb{N}}$ be the Hilbert function of a finite set of m reduced points in $\mathbb{P}^{\frac{d(d+3)}{2}}$ and set

$$
t_{1}=\max \left\{t \mid h(t)=H_{V_{2, d}}(t)\right\} \quad t_{2}=\min \{t \mid h(t)=m\} .
$$

Then there exists $\mathbb{X} \subseteq V_{2, d} \subseteq \mathbb{P}^{N},|\mathbb{X}|=m$ such that $H_{\mathbb{X}}(t)=h_{t}$ if and only if the following conditions hold

$$
\mu_{2}\left(d, t_{1}, \Delta h_{t_{1}+1}\right) \geq\left|\frac{\Delta h_{t_{1}+2}}{d}\right| ;
$$

- For all $t_{1}+2 \leq t \leq t_{2}-1$
$\left.\left|\frac{\Delta h_{t}}{d}\right| \geq \left\lvert\, \frac{\Delta h_{t+1}}{d}\right.\right]$

An example															
Let us consider the sequence $\left(h_{t}\right)_{t \in \mathbb{N}}$ defined as follows															
	t	01	2	3	3	4	5	6	7		8	9		10	1

$h_{t} 13612025343566694612561531174419562022$
and $h_{t}=2022$ for $t \geq 12$. Using a theorem of A.V. Geramita, P. Maroscia and L.G. Roberts, it is easy to check that this is the Hilbert function of a set of 2022 reduced points in \mathbb{P}^{35}. We ask whether there exists $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$ such that $H_{\mathbb{X}}(t)=h_{t}$ for all $t \geq 0$. To answer we use Theorem 1. First we determine t_{1} and t_{2}. Since the Hilbert function of $V_{2,7}$ is $H_{V_{2,7}}(t)=\binom{2+7 t}{2}$, we have that

t	0	1	2	3	4	5	6	7	8	9	10	11	12

$H_{V_{2,7}} 136120253435666946127516532080255630813655$
so that $t_{1}=6$ and $t_{2}=11$. To determine $\mu_{1}\left(7,6, \Delta h_{t_{1}+1}\right)$ we compute $\Delta h_{t_{1}+1}$. We have that

t	0	1	2	3	4	5	6	7	8	9	10	11	12

$\Delta h_{t} 13584133182231280310275213212660$
and thus $\mu_{1}(7,6,310)=7^{2} \cdot 6+\frac{7(7+3)}{2}-310=19$. Finally, since $19 \leq\binom{ 7+1}{2}=28$, we get

$$
\mu_{2}(7,6,310)=\left|\frac{2 \cdot 7(6+1)+3-\sqrt{1+8 \cdot 19}}{2}\right|=44 .
$$

To check conditions of Theorem 1 we compute $\left[\frac{\Delta h_{t}}{7}\right]$ and $\left[\frac{\Delta h_{t} t}{7}\right]$ obtaining the following table

> | t | 1 | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\left[\frac{\Delta h_{t}}{7}\right] 0512192633404439303090$
Since $\mu_{2}(7,6,310)=44$ and $\left[\frac{\Delta h_{8}}{7}\right\rceil=40$ the first condition is satisfied. However the second condition is not satisfied for $t=9$ and hence such an \mathbb{X} does not exist.

Theorem 2

Using Theorem 1 we can characterize the complete intersections on Veronese surfaces.

Complete intersections on Veronese surfaces

If $\mathbb{X} \subseteq V_{2, d} \subseteq \mathbb{P}^{N}$ is a reduced complete intersection of type $\left(a_{1}, \ldots, a_{r}\right)$, with $a_{1} \leq \cdots \leq a_{r}$ then one of the following holds:

- $\left(d, r,\left(a_{1}, a_{2}, \ldots, a_{r}\right)\right)=(2,4,(1,1,1,2))$, that is \mathbb{X} is a conic lying on $V_{2,2} ;$
- $\left(d, r,\left(a_{1}, a_{2}, \ldots, a_{r}\right)\right)=\left(2,5,\left(1,1,1,2, a_{5}\right)\right)$, any $a_{5} \in \mathbb{N}$, that is \mathbb{X} is a set of $2 a_{5}$ complete intersection points of a conic lying on $V_{2,2}$ and a hypersurface of degree a_{5}
- $\left(d, r,\left(a_{1}, a_{2}, \ldots, a_{r}\right)\right)=(d, N,(1,1, \ldots, 1))$ for any $d \geq 2$, that is \mathbb{X} is a reduced point;
- $\left(d, r,\left(a_{1}, a_{2}, \ldots, a_{r}\right)\right)=(d, N,(1,1, \ldots, 1,2)$ for any $d \geq 2$, that is \mathbb{X} is a set of two reduced points.

[^0]
What about the case $n \neq 2$?

We show that, except for the case $d=2$, the only complete intersections lying on rational normal curves $V_{1, d}$ are the trivial ones, that is one single point or the set of two points. The case $V_{1,2}$, that is of a plane conic, is different. In fact, by cutting with any properly chosen curve, one will produce a complete intersection set of points. Inspired by these evidences we curve, one will produce a complete
formulate the following conjecture

Conjecture

Let $\mathbb{X} \subseteq V_{n, d} \subseteq \mathbb{P}^{N}$ be a reduced subvariety with $d>1$. Then \mathbb{X} is a complete intersection of type (a_{1}, \ldots, a_{r}), with $a_{1} \leq \cdots \leq a_{r}$ if and only if

- $r=N, a_{1}=\ldots=a_{N}=1$, any n, d, that is \mathbb{X} is a reduced point;
- $r=N, a_{1}=\ldots=a_{N-1}=1, a_{N}=2$, any n, d, that is \mathbb{X} is a set of two reduced points;
- $r=N, a_{1}=\ldots=a_{N-2}=1, a_{N-1}=2, a_{N}=b$, any $n, d=2$, any $a \geq 2$, that is
$\mathbb{X}=\mathcal{C} \cap H_{b}$ for $\mathcal{C} \subseteq V_{n, 2}$ a conic and H_{b} a degree b hypersurface;
- $r=N-1, a_{1}=\ldots=a_{N-2}=1, a_{N-1}=2, d=2$, any n, that is \mathbb{X} is a conic.

We verify the conjecture in the case $n=3, d=2$ and prove the following, hopefully usefull, lemma: Lemma

If Conjecture holds for all reduced zero dimensional subvariety of $V_{n, d}$, then it holds for all reduced subvarieties of $V_{n, d}$.

[^0]: Another examole
 If we want to find a conic $\mathcal{C} \subseteq V_{2,2}$ it suffices to consider $\nu_{2,2}(L)$ where $L \subseteq \mathbb{P}^{2}$ is a line. For example if we choose L : $x_{2}=0$ then we get

 $$
 \mathcal{I}(\mathcal{C})=\left(y_{2}, y_{4}, y_{5}, y_{1}^{2}-y_{0} y_{3}\right)
 $$

 that, indeed, is a complete intersection on $V_{2,2}$. Moreover, if we want to get a c.i. set of reduced points $\mathbb{X} \subseteq V_{2,2}$ with $|\mathbb{X}|=2 k$ we can take $\mathbb{X}=\mathcal{C} \cap \mathcal{V}\left(y_{0}^{k}-y_{1}^{k}\right)$.

