

Complete intersections subvarietes of Veronese surfaces

Stefano Canino¹ Advisors: A. Boralevi¹ and E. Carlini¹

¹Dipartimento di Scienze Matematiche, Politecnico di Torino

Complete intersections on Veronese surfaces Joint work with: E. Carlini¹

Question

Which are the complete intersections lying on Veronese surfaces?

General setting

Let $\nu_{n,d}$ be the Veronese map:

An example

Let us consider the sequence $(h_t)_{t \in \mathbb{N}}$ defined as follows

h_t 1 36 120 253 435 666 946 1256 1531 1744 1956 2022

and $h_t = 2022$ for $t \ge 12$. Using a theorem of A.V. Geramita, P. Maroscia and L.G. Roberts, it is easy to check that this is the Hilbert function of a set of 2022 reduced points in \mathbb{P}^{35} . We ask whether there exists $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$ such that $H_{\mathbb{X}}(t) = h_t$ for all $t \ge 0$. To answer we use Theorem 1. First we determine t_1 and t_2 . Since the Hilbert function of $V_{2,7}$ is $H_{V_{2,7}}(t) = \binom{2+7t}{2}$, we have that

t 0 1 2 3 4 5 6 7 8 9 10 11 12

Inspired by the definition of differentiable 0-sequences, given by A.V. Geramita, P. Maroscia and L.G. Roberts in 1983 to characterize Hilbert functions of reduced varieties, we define differentiable d-sequences as follows:

Theorem 2

Using Theorem 1 we can characterize the complete intersections on Veronese surfaces.

Complete intersections on Veronese surfaces

If $\mathbb{X} \subseteq V_{2,d} \subseteq \mathbb{P}^N$ is a reduced complete intersection of type (a_1, \ldots, a_r) , with $a_1 \leq \cdots \leq a_r$ then one of the following holds:

• $(d, r, (a_1, a_2, \dots, a_r)) = (2, 4, (1, 1, 1, 2))$, that is X is a conic lying on $V_{2,2}$;

- A sequence of non-negative integers $(c_t)_{t \in \mathbb{N}}$ is called a 0-sequence if $c_0 = 1$ and $c_{t+1} \leq c^{\langle t \rangle}$ for all $t \geq 1$.
- Let $(b_t)_{t \in \mathbb{N}}$ be a 0-sequence. Then $(b_t)_{t \in \mathbb{N}}$ is *differentiable* if the difference sequence $(c_t)_{t \in \mathbb{N}}, c_t = b_t b_{t-1}$ is again a 0-sequence (where $b_{-1} = 0$).
- A 0-sequence $(b_t)_{t \in \mathbb{N}}$ is called *d*-sequence if there exists a 0-sequence $(c_t)_{t \in \mathbb{N}}$ such that $b_t = c_{(d+1)t}$.
- A 0-sequence $(b_t)_{t\in\mathbb{N}}$ is called *differentiable d-sequence* if there exists a differentiable 0-sequence $(c_t)_{t\in\mathbb{N}}$ such that $b_t = c_{(d+1)t}$.

With these definitions we have:

Hilbert functions of subvarieties of $V_{n,d}$

Let $(h_t)_{t \in \mathbb{N}}$ be a sequence of non-negative integers such that $h_0 = 1$ and $h_1 = N + 1$. There exists a projective variety $\mathbb{X} \subseteq V_{n,d} \subseteq \mathbb{P}^N$ such that $H_{\mathbb{X}}(t) = h_t$ if and only if $(h_t)_{t \in \mathbb{N}}$ is a differentiable (d-1)-sequence.

- $(d, r, (a_1, a_2, \ldots, a_r)) = (2, 5, (1, 1, 1, 2, a_5))$, any $a_5 \in \mathbb{N}$, that is X is a set of $2a_5$ complete intersection points of a conic lying on $V_{2,2}$ and a hypersurface of degree a_5 ;
- $(d, r, (a_1, a_2, ..., a_r)) = (d, N, (1, 1, ..., 1))$ for any $d \ge 2$, that is X is a reduced point;
- $(d, r, (a_1, a_2, \ldots, a_r)) = (d, N, (1, 1, \ldots, 1, 2)$ for any $d \ge 2$, that is X is a set of two reduced points.

Another example

If we want to find a conic $C \subseteq V_{2,2}$ it suffices to consider $\nu_{2,2}(L)$ where $L \subseteq \mathbb{P}^2$ is a line. For example if we choose $L: x_2 = 0$ then we get

$$\mathcal{I}(\mathcal{C}) = (y_2, y_4, y_5, y_1^2 - y_0 y_3)$$

that, indeed, is a complete intersection on $V_{2,2}$. Moreover, if we want to get a c.i. set of reduced points $\mathbb{X} \subseteq V_{2,2}$ with $|\mathbb{X}| = 2k$ we can take $\mathbb{X} = \mathcal{C} \cap \mathcal{V}(y_0^k - y_1^k)$.

What about the case $n \neq 2$?

We show that, except for the case d = 2, the only complete intersections lying on rational normal curves $V_{1,d}$ are the trivial ones, that is one single point or the set of two points. The case $V_{1,2}$, that is of a plane conic, is different. In fact, by cutting with any properly chosen curve, one will produce a complete intersection set of points. Inspired by these evidences we formulate the following conjecture:

Conjecture

Using the fact that reduced 0-dimensional varieties are always aCM and some properties of Hilbert functions of artinian ideals we proved the following theorem:

Hilbert functions of points on Veronese surfaces

Let $(h_t)_{t \in \mathbb{N}}$ be the Hilbert function of a finite set of m reduced points in $\mathbb{P}^{\frac{d(d+3)}{2}}$ and set $t_1 = \max\left\{t \mid h(t) = H_{V_{2,d}}(t)\right\}$ $t_2 = \min\left\{t \mid h(t) = m\right\}$. Then there exists $\mathbb{X} \subseteq V_{2,d} \subseteq \mathbb{P}^N$, $|\mathbb{X}| = m$ such that $H_{\mathbb{X}}(t) = h_t$ if and only if the following conditions hold

• For all $t_1 + 2 \le t \le t_2 - 1$

Let $\mathbb{X} \subseteq V_{n,d} \subseteq \mathbb{P}^N$ be a reduced subvariety with d > 1. Then \mathbb{X} is a complete intersection of type (a_1, \ldots, a_r) , with $a_1 \leq \cdots \leq a_r$ if and only if

r = N,a₁ = ... = a_N = 1, any n, d, that is X is a reduced point;
r = N,a₁ = ... = a_{N-1} = 1,a_N = 2, any n, d, that is X is a set of two reduced points;
r = N,a₁ = ... = a_{N-2} = 1,a_{N-1} = 2,a_N = b, any n, d = 2, any a ≥ 2, that is X = C ∩ H_b for C ⊆ V_{n,2} a conic and H_b a degree b hypersurface;
r = N - 1,a₁ = ... = a_{N-2} = 1, a_{N-1} = 2, d = 2, any n, that is X is a conic.

We verify the conjecture in the case n = 3, d = 2 and prove the following, hopefully usefull, lemma:

Lemma

If Conjecture holds for all reduced zero dimensional subvariety of $V_{n,d}$, then it holds for all reduced subvarieties of $V_{n,d}$.