Tevelev degrees

Alessio Cela
ETH Zurich

Introduction and main definitions

Let X be a smooth projective variety, $g \geq 0$ a genus, $n \geq 0$ and $\beta \in H_{2}(X, \mathbb{Z})$ a curve class. Fix $x_{1}, \ldots, x_{n} \in X$ general points of X. We are interested in counting maps from C to X in class β and passing through x_{1}, \ldots, x_{n}.
Assume $2 g-2+n>0$, so that the moduli stack $\overline{\mathcal{M}}_{g, n}$ of stable curves is well-defined and let $\overline{\mathcal{M}}_{g, n}(X, \beta)$ be the moduli stack of n-pointed genus g stable maps in class β to X.
There is a map

$$
\begin{aligned}
\bar{\tau}: \overline{\mathcal{M}}_{g, n}(X, \beta) \longrightarrow \overline{\mathcal{M}}_{g, n} \times X^{\times n} \\
\quad\left[f:\left(C, p_{1}, \ldots, p_{n}\right) \rightarrow X\right] \mapsto\left(\left(\bar{C}, \bar{p}_{1}, \ldots, \bar{p}_{n}\right),\left(f\left(p_{1}\right), \ldots, f\left(p_{n}\right)\right)\right.
\end{aligned}
$$

recalling the stabilized domain curve and the image of the marked points under the morphism. One way to formulate our problem is by looking at the degree of $\bar{\tau}$.

Note that $\overline{\mathcal{M}}_{g, n}(X, \beta)$ has virtual dimension equal to the dimension of $\overline{\mathcal{M}}_{g, n} \times X^{\times n}$ if and only if
$c_{1}(X) . \beta=r(n+g-1)$.

Definition of the virtual count

Assume condition (1) is satisfied. Then the virtual Tevelev degree $\operatorname{vev}_{g, n, \beta}^{X} \in \mathbb{Q}$ is defined by

$$
\bar{\tau}_{*}\left(\left[\overline{\mathcal{M}}_{g, n}(X, \beta)\right]^{\mathrm{vir}}\right)=\operatorname{vTev}_{g, n, \beta}^{X}\left[\overline{\mathcal{M}}_{g, n} \times X^{n}\right] .
$$

Here []ivir and [] denote the virtual and the usual fundamental classes.

One can also define the geometric count as follows. Let $\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}$ and $\mathcal{M}_{g, n}(X, \beta) \subset \overline{\mathcal{M}}_{g, n}(X, \beta)$ be the loci where the curve C is smooth and let

$$
\tau: \mathcal{M}_{g, n}(X, \beta) \rightarrow \mathcal{M}_{g, n} \times X^{n}
$$

e the restriction of $\bar{\tau}$.
 Definition of the geometric count

Assume condition (1) is satisfied. Assume further that for the general point $\left(\left(C, p_{1}, \ldots, p_{n}\right),\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathcal{M}_{g, n} \times$ X^{n} the fiber under τ consists of finitely many reduced (necessarily non-stacky) points. Then we define the Geometric Tevelev degrees $\operatorname{Tev}_{g, n, \beta}^{X} \in \mathbb{Z}$ by

$$
\operatorname{Tev}_{g, n, \beta}^{X}=\# \text { general fiber of } \tau
$$

Projective line

Using a slightly different point of view, Tevelev [10] computed some Geometric Tevelev degrees of \mathbb{P}^{1}. The full description of Geometric Tevelev of \mathbb{P}^{1} have been obtained in [5] via intersection theory on Hurwitz spaces, the case of P^{n} is instead treated in [6] via limit linear series. Building on these two approaches, these counts are eneralized in [4] for $X=\mathbb{P}^{1}$ to the situation where the covers are constrained to have arbitrary ramification profiles. The following is [5, Theorem 6].

Explicit formulas for \mathbb{P}

Let $g \geq 0, \ell \in \mathbb{Z}$, and call

$$
d[g, \ell]=g+1+\ell, \quad \text { and } n[g, \ell]=g+3+2 \ell .
$$

Assume $n[g, \ell] \geq 3$ and $d[g, \ell] \geq 1$. Then we have:

$$
\operatorname{Tev}_{g, n[g, \ell], d[g, \ell]}^{\mathbb{P}^{1}}=2^{g}-2 \sum_{i=0}^{-\ell-2}\binom{g}{i}+(-\ell-2)\binom{g}{-\ell-1}+\ell\binom{g}{-\ell},
$$

Sketch of Proof Let $\overline{\mathcal{H}}_{g, d[g, \ell], n[g, \ell]}$ be the moduli stack of degree $d[g, \ell]$ and $n[g, \ell]$ marked admissible covers [8] and

$$
\overline{\bar{\tau}}: \overline{\mathcal{H}}_{g, d[g, \ell], n[g, \ell]} \rightarrow \overline{\mathcal{M}}_{g, n} \times \bar{M}_{0, n[g, \ell]}
$$

be the map recalling the marked domain curve (the ramification points are forgotten) and the marked target curve (the branch points are forgotten). The advantage of replacing $\overline{\mathcal{M}}_{g, n}\left(X, d\left[\mathbb{P}^{1}\right]\right)$ with $\overline{\mathcal{H}}_{g, d, n}$ is that the boundary of the Hurwitz stack has a very nice stratification.
Up to a combinatorial factor, we want to find the degree of $\bar{\tau}$ and we do this by computing the degree of the zero cycle

$$
\bar{\tau}^{*}[(C, D)] \in \mathrm{A}_{0}\left(\overline{\mathcal{H}}_{g, d[g, \ell], n[g, \ell]}\right)
$$

where the poin

$$
(C, D) \in \overline{\mathcal{M}}_{g, n[g, \ell]} \times \bar{M}_{0, n[g, \ell]}
$$

is chosen to have the following form: C is obtained by gluing at two points a smooth genus $g-1$ curve containing $[g, \ell]-1$ marked points and a smooth genus 0 curve containing 1 marked point, D is a smooth $n[g, \ell]$-pointed $n[g, \ell]-1$ marked points and a smooth genus 0 curve containing 1 marked point, D is a smooth $n[g, \ell]$-pointed genus 0 curve.
The actual fiber $\bar{\tau}^{-1}[(C, D)]$ will have excess dimension, so some care must be taken in the analysis. Fixed (C, D), the Hurwitz cover can degenerate only in one of the following three ways:

Type 3

From this one deduces the following recursion:

$$
\operatorname{Tev}_{g, n[g, \ell,],[g, \ell]}=\operatorname{Tev}_{g-1, n[g-1, \ell], d[g-1, \ell]}+\operatorname{Tev}_{g-1, n[g-1, \ell+1], d[g-1, \ell+1]}
$$

reducing the problem to the genus 0 case. Finally the genus 0 case is treated by hand:

$$
\operatorname{Tev}_{0, n[0, \ell], d[0, \ell]}=1 \text { for all } \ell \geq 0 .
$$

Application : Castelnuovo's classical count of g_{d}^{1} ' s

Let C be a general smooth genus g curve curve. Fix a degree $d \geq 1$ and consider the Brill-Noether locus $G_{d}^{1}(C)=\left\{g_{d}^{1 \prime}\right.$ s on $\left.C\right\}$
which is smooth of dimension $\rho=g-2(g-d+1)$. Assume $\rho=0$. Then we can write $g=-2 \ell$ and $d=g+\ell+1$ for some $\ell \in \mathbb{Z}$ and

$$
G_{d}^{1}(C)=W_{d}^{1}(C)=\left\{L \in \operatorname{Pic}^{d}(C) \mid h^{0}(C, L) \geq 2\right\} \subseteq \operatorname{Pic}^{d}(C)
$$

In his famous paper [2] Castelnuovo proved that

$$
\operatorname{deg}\left(\left[W_{d}^{1}(C)\right]\right)=\frac{1}{1+|\ell|}\binom{2|\ell|}{|\ell|}
$$

which agrees (after some algebraic manipulations) with $\operatorname{Tev}_{g, 3, d}^{\mathbb{P}^{1}}$

The quantum Euler class

Denote by $\left(Q H^{*}(X, \mathbb{Q}), \star\right)$ the small quantum cohomology ring of X (see [7] for an introduction) and let $H^{*}(X, \mathbb{Q}) \otimes H^{*}(X, \mathbb{Q}) \xrightarrow{\star} Q H^{*}(X, \mathbb{Q})$.
be the multiplication map.

Definition of the Quantum Euler class

The quantum Euler class E of X is the image of the diagonal class $[\Delta]$ under the multiplication map above (note that $[\Delta]$ lives naturally in $H^{*}(X, \mathbb{Q}) \otimes H^{*}(X, \mathbb{Q})$ via the Künneth isomorphism).

This class plays a central role in the computation of Virtual Tevelev degrees. Indeed, we have the following equality (see [1, Theorem 1.3]):

$$
\begin{equation*}
\operatorname{vTev}_{g, n, \beta}^{X}=\operatorname{Coeff}\left(\mathbf{P}^{\star n} \star \mathbf{E}^{\star g}, \boldsymbol{q}^{\beta} \mathbf{P}\right) \tag{2}
\end{equation*}
$$

where P is the point class.

Comparison between the virtual and the geometric count

Enumerativity results of Virtual Tevelev Degrees have been studied in [9]. To state their main result [9, Theorem 24] we require additional notation.
Assume X is a Fano variety of dimension r. Define $s(X)>0$ to be the smallest positive integer for which there exists an effective curve class $\beta \in H_{2}(X, \mathbb{Z})$ such that

$$
s(X)=c_{1}(X) \cdot \beta
$$

and such that the evaluation map ev ${ }_{1}: \overline{\mathcal{M}}_{0,1}(X, \beta) \rightarrow X$ is surjective
Define $t(X)>0$ to be the smallest positive integer for which there exists an effective curve class $\beta \in H_{2}(X, \mathbb{Z})$ such that
$t(X)=c_{1}(X) . \beta$

Enumerativity

Fix a genus $g \geq 0$. Assume that:

- there exists $k>0$ such that for all β satisfying $c_{1}(X) . \beta>k$ we have $c_{1}(X) . \beta>(r-s(X)) h^{1}\left(f^{*} T_{X}\right)$ for all $[f] \in \mathcal{M}_{g}(X, \beta)$;
$s(X)+t(X) \geq r+1$
Then there exist $d[g, X]>0$ such that for all β such that $c_{1}(X) . \beta>d[g, X]$ and $n=n[g, X, \beta] \geq 0$ such that Equation (1) is satisfied, the Geometric Tevelev degree $\operatorname{Tev}_{g, n, \beta}^{X}$ is well-defined and coincides with the Virtual Tevelev degree $v \operatorname{Tev}_{g, n, \beta}^{X}$.

Simple Example For $X=\mathbb{P}^{r}$ we have

$$
\operatorname{vTev}_{g, n, d \mathrm{~L}}^{\mathbb{P}^{r}}=(r+1)^{g}
$$

where L is the class of a line (see [1, Example 2.2]). In particular, for $r=1$ and $\ell \geq 0$ we see that $\mathrm{vTev}_{g, n[g, \ell], d[g, \ell]}^{\mathbb{P}^{1}}=\operatorname{Tev}_{g,[g, \ell], d[g, \ell]}^{\mathbb{P}^{1}}=2^{g}$.

Fano Hypersurfaces

Let $X \subset \mathbb{P}^{r+1}$ be a smooth Fano hypersurface of dimension $r \geq 3$ and degree $m \geq 2$. Note that X is Fano precisely when $m \leq r+1$. Also, by Lefschetz Hyperplane theorem we have

$$
H_{2}(X, \mathbb{Z})=\mathbb{Z} \mathrm{L}
$$

where L is the class of a line in X. In particular

$$
Q H^{*}(X, \mathbb{Q})=H^{*}(X, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}[q]
$$

as $\mathbb{Q}[q]$-module. Although the definition of E involves also the primitive cohomology of X, in [3, Theorem 5$]$, we were able to obtain explicit simple formulas for E .

The Quantum Euler class for Fano Hypersurfaces

The following equalities hold:

- if $m \leq r$ then

$$
\mathbf{E}=m^{-1} \chi(X) \mathbf{H}^{\star r}+(r+2-m-\chi(X)) m^{m-1} q \mathbf{H}^{\star m-2},
$$

- if $m=r+1$ then

$$
\mathrm{E}=m^{-1} \chi(X) \mathbf{H}^{\star r}+\sum_{j=1}^{r} m^{-1}(j-\chi(X))\binom{r}{j-1}(m!)^{j-1}\left[m^{m}-\frac{m!}{j}(r+1)\right] q^{j} \mathbf{H}^{\star r-j}
$$

Using this and Equation (2) it is also possible to obtain formulas for $\mathrm{vTev}_{g, n, d \mathrm{~L}}$ (in terms of P). In particular, for low degree hypersurfaces we have (see [1, Theorem 5.19] and [9, Theorem 11]):

Explicit formulas for low degree Fano Hypersurfaces

If $r>\max (2 m-4,2)$ and X is not a quadric, then

$$
\mathrm{vTev}_{g, n, d \mathrm{~L}}^{X}=((m-1)!)^{n}(r+2-m)^{g} m^{(d-n) m-g+1}
$$

If in addition $r>(m+1)(m-2)$, then $\operatorname{Tev}_{g, n, d L}$ are well-defined for $d \geq d[g, X]$ and coincide with $v \operatorname{Tev}_{g, n, d L}$.

References

[1] A. Buch and R. Pandharipande, Tevelev degrees in Gromov-Witten theory, arXiv:2112.14824.
[2] G. Castelnuovo, Numero delle involuzioni razionali giacenti sopra una curva di dato genere, Rendiconti R. Accad. Lincei 5 (1889), 130-133.
[3] A. Cela, Quantum Euler class and virtual Tevelev degrees of Fano complete intersections, https://arxiv.org/abs/2204.01151
[4] A. Cela, C. Lian, Generalized Tevelev degrees of P^{1}, arXiv:2111.05880.
[5] A. Cela, R. Pandharipande, J. Schmitt Tevelev degrees and Hurwitz moduli spaces, Math. Proc. Cambridge Philos. Soc..
[6] G. Farkas, C. Lian Linear series on general curves with prescribed incidence conditions, arXiv:2105.09340.
[7] W. Fulton, R. Pandharipande Notes on stable maps and quantum cohomology, Algebraic geometry-Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 45-96. Amer. Math. Soc., Providence, RI, 1997.
[8] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves With an appendix by William Fulton, Invent. Math. 67 (1982), 23-88.
9] C. Lian, R. Pandharipande Enumerativity of virtual Tevelev degrees, arXiv:2110.05520.
[10] J. Tevelev, Scattering amplitudes of stable curves, arXiv:2007.03831.

