

Geometry of Elliptic Normal Curves of Degree 6

Anatoli Shatsila¹

¹Jagiellonian University in Kraków, Poland

Introduction

By the Riemann-Roch Theorem, one can embed any elliptic curve C = $\mathbb{C}/(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2)$ as an elliptic normal curve of degree $n \geq 3$ in \mathbb{P}^{n-1} via the complete linear system $|\mathcal{O}_C(n \cdot O)|$, where O is the origin in C. Assume the embedding is given by

$$\varphi: C \ni z \mapsto \varphi(z) = (X_0(z): X_1(z): \ldots: X_{n-1}(z)) \in \mathbb{P}^{n-1}$$

By C_n we denote the image $\varphi(C)$.

We consider embeddings of C_n invariant under the action of the Heisenberg group so that for any $z \in C$ both $\sigma(\varphi(z)) = (X_{n-1}(z) : X_0(z) : \ldots :$ $X_{n-3}(z): X_{n-2}(z)$ and $\tau(\varphi(z)) = (X_0(z): \varepsilon X_1(z): \ldots : \varepsilon^{n-1}X_{n-1}(z))$ with $\varepsilon := \frac{2\pi i}{n}$, are in C_n . In addition, we will assume the existence of the point $c \in C$ that satisfies $X_i(c) = 0 \Leftrightarrow i = 0$.

The functions $\{x_m\}_{m\in\mathbb{Z}/n\mathbb{Z}}$ considered in [1, Section I.2] and defined using Weierstrass sigma-functions induce an immersion satisfying the above conditions. In this case we can take $c := \frac{\omega_1}{2} + \frac{\omega_2}{2n}$. For convenience, we will assume that C is embedded by x_m - all results and proofs are valid for any immersion with the mentioned properties.

The cases n = 3, 4 are classical. The case n = 5 has been considered in the

Elliptic normal curves and quadric hypersurfaces

Theorem. ([2], Theorem 3.1) Let $C = \mathbb{C}/(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2)$ be an elliptic curve and $C_6 \subset \mathbb{P}^5$ be its embedding as a normal elliptic sextic. Then there exists a 9-dimensional space of quadric hypersurfaces containing C_6 . A basis of this space is given by

$$Q_{0} = x_{0}^{2} + x_{3}^{2} + \alpha(x_{2}x_{4} + x_{5}x_{1}),$$

$$Q_{1} = x_{1}^{2} + x_{4}^{2} + \alpha(x_{3}x_{5} + x_{0}x_{2}),$$

$$Q_{2} = x_{2}^{2} + x_{5}^{2} + \alpha(x_{4}x_{0} + x_{1}x_{3}),$$

$$Q_{0}' = x_{0}^{2} - x_{3}^{2} + \beta(x_{2}x_{4} - x_{5}x_{1}),$$

$$Q_{1}' = x_{1}^{2} - x_{4}^{2} + \beta(x_{3}x_{5} - x_{0}x_{2}),$$

$$Q_{2}' = x_{2}^{2} - x_{5}^{2} + \beta(x_{4}x_{0} - x_{1}x_{3}),$$

$$Q_{0}'' = x_{0}x_{1} + x_{3}x_{4} + \gamma x_{2}x_{5},$$

$$Q_{1}'' = x_{1}x_{2} + x_{4}x_{5} + \gamma x_{3}x_{0},$$

$$Q_{2}'' = x_{2}x_{3} + x_{5}x_{0} + \gamma x_{4}x_{1}$$

with

$$\alpha = -\frac{x_3^2(\omega)}{x_2(\omega)x_4(\omega) + x_5(\omega)x_1(\omega)},$$

$$\beta = \frac{x_3^2(\omega)}{x_2(\omega)x_4(\omega) - x_5(\omega)x_1(\omega)},$$

$$\gamma = -\frac{x_3(\omega)x_4(\omega)}{x_2(\omega)x_5(\omega)}$$

monograph [1], where many beautiful geometric construction were used to study the interrelation between the Horrocks-Mumford vector bundle and the normal bundle of elliptic curves of degree 5. In the work we study the geometry in the case n = 6.

Main result

By C_p and C_{pq} we denote the images of C_6 under the projection from a general point and a general line respectively. Then

- the ideal $I(C_p)$ of the curve C_p is generated by three polynomials of degree 2 and two polynomials of degree 3.
- the ideal $I(C_{pq})$ of the curve C_{pq} is generated by two polynomials of degree 3 and three polynomials of degree 4.

Main steps of the proof

- The curve C_p (resp. C_{pq}) is k-normal for all $k \ge 2$ (resp. $k \ge 3$) and $h^{0}(\mathcal{I}_{C_{n}}(2)) = 3, h^{0}(\mathcal{I}_{C_{n}}(3)) = 17,$ $h^{0}(\mathcal{I}_{C_{pq}}(3)) = 2, h^{0}(\mathcal{I}_{C_{pq}}(4)) = 11.$
- The ideal of the curve C_p (resp. C_{pq}) is generated in degree 3 (resp. 4) - follows from Castelnuovo-Mumford regularity theory.
- For a general point $P \in \mathbb{P}^5$ there are at least two distinct triples of points (denoted by R_1, R_2, R_3 and T_1, T_2, T_3) on C_6 spanning linear subspaces which contain P.
- There exist 4 points $A_1, A_2, A_3, A_4 \in C_6$ different from R_i, T_i such that their span contains P.

where $\omega = \frac{\omega_1}{2} + \frac{\omega_2}{12}$. **Lemma.** ([2], Lemma 3.3) The following relations hold: $\alpha\beta(\alpha+\beta) = -2,$ $\gamma = \alpha \beta.$

Theorem. ([2], Theorem 3.6) The ideal $I(Sec(C_6))$ is generated by two cubic surfaces F_1 and F_2 given by

$$F_{1} = 2(\alpha^{2}\beta^{2} - \alpha - \beta)x_{0}x_{2}x_{4} + \sum_{i=0}^{2} \sigma^{i}(-2x_{0}^{3} + 2(\beta - \alpha)x_{1}x_{2}x_{3} + \alpha\beta(\beta - \alpha)x_{0}x_{3}^{2}),$$

$$F_{2} = 2(\alpha^{2}\beta^{2} - \alpha - \beta)x_{1}x_{3}x_{5} + \sum_{i=0}^{2} \sigma^{i}(-2x_{1}^{3} + 2(\beta - \alpha)x_{2}x_{3}x_{4} + \alpha\beta(\beta - \alpha)x_{1}x_{4}^{2}).$$

References

- [1] K. Hulek. Projective geometry of elliptic curves. Soc. Math. de France, Asterisque, 137, 1986.
- [2] A. Shatsila. Geometry of elliptic normal curves of degree 6. arXiv:2203.11672, 2022.

The results are a part of the author's Bachelor Thesis at Jagiellonian University in Kraków. I am extremely thankful to my supervisor, Michał Farnik, for the insightful discussions and valuable guidance throughout my studies.

anatoli.shatsila@student.uj.edu.pl

- Let $Q_i = V(q_i)$ with $\{q_i\}_{i=1}^3$ being a basis of $H^0(\mathcal{I}_{C_6}(2))$. The intersection $Q_1 \cap Q_2 \cap Q_3$ is a curve. This is the most technical part of the proof which uses certain geometric relations between the points on C_6 defined above.
- There are no linear syzygies between q_i 's hence $17 3 \cdot 5 = 2$ yields the result.
- The second part of the proof for C_{pq} is similar and even easier due to the fact that $h^0(\mathcal{I}_{C_{pq}}(3)) = 2.$

Algebraic Geometry in Roma Tre conference on the occasion of Sandro Verra's 70th birthday

