By the Riemann-Roch Theorem, one can embed any elliptic curve C' =
C/(Zwi+Zws) as an elliptic normal curve of degree n > 3 in P~ ! via the
complete linear system |O¢(n - O)|, where O is the origin in C'. Assume
the embedding is given by

003z o(z)=(Xo(z): X1(2):...: Xp_1(2)) e PP

By C), we denote the image o(C).

We consider embeddings of ), invariant under the action of the Heisenberg
group so that for any z € C both o(p(2)) = (Xn-1(2) : Xo(2) : ... :

Xn—3(2) : Xn—a(z)) and 7(p(z)) = (Xo(z) : €X3(2) - e X (2)
with € ;= =% are in Cy. In addition, we will assume the existence of the

point ¢ € C that satisfies X;(c) =0« i =0.

The functions {@m},,e7 /7 considered in [1, Section 1.2] and defined us-
ing Weierstrass sigma-functions induce an immersion satistying the above
conditions. In this case we can take ¢ := %L 3+ 22 For convenience, we will
assume that C'is embedded by z, - all results and proofs are valid for any
immersion with the mentioned properties.

The cases n = 3,4 are classical. The case n = 5 has been considered in the
monograph |1], where many beautiful geometric construction were used to
study the interrelation between the Horrocks-Mumford vector bundle and
the normal bundle of elliptic curves of degree 5. In the work we study the
geometry in the case n = 6.

By C) and C)q we denote the images of Cg under the projection from a
oeneral point and a general line respectively. Then

= the ideal 1(C}) of the curve Cy is generated by three polynomials of
degree 2 and two polynomials of degree 3.

= the ideal 1(Cypy) of the curve Cyp, is generated by two polynomials of
degree 3 and three polynomials of degree 4.

* The curve Cy (resp. Cpyq) is k-normal for all k& > 2 (resp. £ > 3) and
(e, (2) = 3, (T, (3)) = 17,
0 _ 0 _
h'(Zc,,3)) =2, (I, (4) = 11.

» The ideal of the curve C), (resp. Cypy) is generated in degree 3 (resp. 4)
- follows from Castelnuovo-Mumford regularity theory.

= For a general point P € P° there are at least two distinet triples of
points (denoted by Ry, Rg, Rs and T7,Th,T5) on Cg spanning linear
subspaces which contain P.

= There exist 4 points Ay, Ay, A3, Ay € Cf different from R;, T; such
that their span contains P.

= Let Q; = V(q;) with {g; ?:1 being a basis of HO(IOG(Q)). The
intersection (1 N (2 N @3 is a curve. This is the most technical part of
the proof which uses certain geometric relations between the points on

Cg defined above.

= There are no linear syzygies between ¢;’s hence 17 — 3 - 5 = 2 yields the
result.

* The second part of the proot for Cpq is similar and even easier due to
the fact that hO(ZC [(3) =2

Theorem. (2|, Theorem 3.1) Let C' = C/(Zw1+Zwo2) be an elliptic curve
and Cg C P° be its embedding as a normal elliptic sextic. Then there exists
a 9-dimensional space of quadric hypersurfaces containing Cg. A basis of
this space is given by

0

)
Q1 = 5131 + 33‘4 + Oz(:l:'3£135 + 51305132),
)

ZCO + Ig + 04(5132334 + 51 ),

Qo = 5132 + 5135 + CV(CC4CE() + x173),

Qy = l’o — 333 + B(xoxy — w511),

] = $1 - 334 + B(z375 — 2072),
5172 — C175 + Blxgw) — T123),

Q) = wox + w314 + YTITS,

1 = T1T2 + T4T5 + YL3XQ,

QY = T3+ T5T) + YT4T]

with
2
_ z3(w)
@ To(w)ry(w)+a5(w)r (W)’
B = r3(w)
ro(w)ry(w)—ws(w)ri(w)’
y = _ z3(w)zy(w)
22 (w)s(w)

where w = 5 + 73
Lemma. (|2, Lemma 3.3) The following relations hold:
af(a+f) =~
7= ap.

Theorem. (|2|, Theorem 3.6) The ideal I(Sec(Cfg)) is generated by two
cubic surfaces F7 and F5 given by

2
Fi = 2(”B°—a—p)zoromst Y | o' (—2x5+2(B—a)z1zam3+af(f—a)znr3),
1=0
2 .
F> = 2(&252—a—5)x1x3x5+z o (—=2a42(B—)zoxsrataf(f—a)z 7).
1=0
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