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Introduction

By the Riemann-Roch Theorem, one can embed any elliptic curve C =
C/(Zω1 +Zω2) as an elliptic normal curve of degree n ≥ 3 in Pn−1 via the
complete linear system |OC(n · O)|, where O is the origin in C. Assume
the embedding is given by

ϕ : C 3 z 7→ ϕ(z) = (X0(z) : X1(z) : . . . : Xn−1(z)) ∈ Pn−1.

By Cn we denote the image ϕ(C).
We consider embeddings of Cn invariant under the action of the Heisenberg
group so that for any z ∈ C both σ(ϕ(z)) = (Xn−1(z) : X0(z) : . . . :
Xn−3(z) : Xn−2(z)) and τ (ϕ(z)) = (X0(z) : εX1(z) : . . . : εn−1Xn−1(z))
with ε := 2πi

n , are in Cn. In addition, we will assume the existence of the
point c ∈ C that satisfies Xi(c) = 0 ⇔ i = 0.

The functions {xm}m∈Z/nZ considered in [1, Section I.2] and defined us-
ing Weierstrass sigma-functions induce an immersion satisfying the above
conditions. In this case we can take c := ω1

2 + ω2
2n. For convenience, we will

assume that C is embedded by xm - all results and proofs are valid for any
immersion with the mentioned properties.

The cases n = 3, 4 are classical. The case n = 5 has been considered in the
monograph [1], where many beautiful geometric construction were used to
study the interrelation between the Horrocks-Mumford vector bundle and
the normal bundle of elliptic curves of degree 5. In the work we study the
geometry in the case n = 6.

Main result

By Cp and Cpq we denote the images of C6 under the projection from a
general point and a general line respectively. Then

the ideal I(Cp) of the curve Cp is generated by three polynomials of
degree 2 and two polynomials of degree 3.
the ideal I(Cpq) of the curve Cpq is generated by two polynomials of
degree 3 and three polynomials of degree 4.

Main steps of the proof

The curve Cp (resp. Cpq) is k-normal for all k ≥ 2 (resp. k ≥ 3) and

h0(ICp
(2)) = 3, h0(ICp

(3)) = 17,

h0(ICpq
(3)) = 2, h0(ICpq

(4)) = 11.

The ideal of the curve Cp (resp. Cpq) is generated in degree 3 (resp. 4)
- follows from Castelnuovo-Mumford regularity theory.
For a general point P ∈ P5 there are at least two distinct triples of
points (denoted by R1, R2, R3 and T1, T2, T3) on C6 spanning linear
subspaces which contain P .
There exist 4 points A1, A2, A3, A4 ∈ C6 different from Ri, Ti such
that their span contains P .
Let Qi = V (qi) with {qi}3

i=1 being a basis of H0(IC6(2)). The
intersection Q1 ∩ Q2 ∩ Q3 is a curve. This is the most technical part of
the proof which uses certain geometric relations between the points on
C6 defined above.
There are no linear syzygies between qi’s hence 17 − 3 · 5 = 2 yields the
result.
The second part of the proof for Cpq is similar and even easier due to
the fact that h0(ICpq

(3)) = 2.

Elliptic normal curves and quadric hypersurfaces

Theorem. ([2], Theorem 3.1) Let C = C/(Zω1+Zω2) be an elliptic curve
and C6 ⊂ P5 be its embedding as a normal elliptic sextic. Then there exists
a 9-dimensional space of quadric hypersurfaces containing C6. A basis of
this space is given by

Q0 = x2
0 + x2

3 + α(x2x4 + x5x1),
Q1 = x2

1 + x2
4 + α(x3x5 + x0x2),

Q2 = x2
2 + x2

5 + α(x4x0 + x1x3),
Q′

0 = x2
0 − x2

3 + β(x2x4 − x5x1),
Q′

1 = x2
1 − x2

4 + β(x3x5 − x0x2),
Q′

2 = x2
2 − x2

5 + β(x4x0 − x1x3),
Q′′

0 = x0x1 + x3x4 + γx2x5,
Q′′

1 = x1x2 + x4x5 + γx3x0,
Q′′

2 = x2x3 + x5x0 + γx4x1

with

α = − x2
3(ω)

x2(ω)x4(ω)+x5(ω)x1(ω),

β = x2
3(ω)

x2(ω)x4(ω)−x5(ω)x1(ω),

γ = −x3(ω)x4(ω)
x2(ω)x5(ω)

where ω = ω1
2 + ω2

12 .

Lemma. ([2], Lemma 3.3) The following relations hold:

αβ(α + β) = −2,

γ = αβ.

Theorem. ([2], Theorem 3.6) The ideal I(Sec(C6)) is generated by two
cubic surfaces F1 and F2 given by

F1 = 2(α2β2−α−β)x0x2x4+
2∑

i=0
σi(−2x3

0+2(β−α)x1x2x3+αβ(β−α)x0x
2
3),

F2 = 2(α2β2−α−β)x1x3x5+
2∑

i=0
σi(−2x3

1+2(β−α)x2x3x4+αβ(β−α)x1x
2
4).
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