Geometry of Elliptic Normal Curves of Degree 6

Anatoli Shatsila ${ }^{1}$

${ }^{1}$ Jagiellonian University in Kraków, Poland

Introduction

By the Riemann-Roch Theorem, one can embed any elliptic curve $C=$ $\mathbb{C} /\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$ as an elliptic normal curve of degree $n \geq 3$ in \mathbb{P}^{n-1} via the complete linear system $\left|\mathcal{O}_{C}(n \cdot O)\right|$, where O is the origin in C. Assume the embedding is given by

$$
\varphi: C \ni z \mapsto \varphi(z)=\left(X_{0}(z): X_{1}(z): \ldots: X_{n-1}(z)\right) \in \mathbb{P}^{n-1} .
$$

By C_{n} we denote the image $\varphi(C)$.
We consider embeddings of C_{n} invariant under the action of the Heisenberg group so that for any $z \in C$ both $\sigma(\varphi(z))=\left(X_{n-1}(z): X_{0}(z): \ldots\right.$: $\left.X_{n-3}(z): X_{n-2}(z)\right)$ and $\tau(\varphi(z))=\left(X_{0}(z): \varepsilon X_{1}(z): \ldots: \varepsilon^{n-1} X_{n-1}(z)\right)$ with $\varepsilon:=\frac{2 \pi i}{n}$, are in C_{n}. In addition, we will assume the existence of the point $c \in C$ that satisfies $X_{i}(c)=0 \Leftrightarrow i=0$.
The functions $\left\{x_{m}\right\}_{m \in \mathbb{Z}} / n \mathbb{Z}$ considered in [1, Section I.2] and defined using Weierstrass sigma-functions induce an immersion satisfying the above conditions. In this case we can take $c:=\frac{\omega_{1}}{2}+\frac{\omega_{2}}{2 n}$. For convenience, we will assume that C is embedded by x_{m} - all results and proofs are valid for any immersion with the mentioned properties.
The cases $n=3,4$ are classical. The case $n=5$ has been considered in the monograph [1], where many beautiful geometric construction were used to study the interrelation between the Horrocks-Mumford vector bundle and the normal bundle of elliptic curves of degree 5. In the work we study the geometry in the case $n=6$.

Main result

By C_{p} and $C_{p q}$ we denote the images of C_{6} under the projection from a general point and a general line respectively. Then

- the ideal $I\left(C_{p}\right)$ of the curve C_{p} is generated by three polynomials of degree 2 and two polynomials of degree 3 .
- the ideal $I\left(C_{p q}\right)$ of the curve $C_{p q}$ is generated by two polynomials of degree 3 and three polynomials of degree 4.

Main steps of the proof

- The curve C_{p} (resp. $C_{p q}$) is k-normal for all $k \geq 2$ (resp. $k \geq 3$) and

$$
\begin{aligned}
h^{0}\left(\mathcal{I}_{C_{p}}(2)\right) & =3, h^{0}\left(\mathcal{I}_{C_{p}}(3)\right)=17 \\
h^{0}\left(\mathcal{I}_{C_{p q}}(3)\right) & =2, h^{0}\left(\mathcal{I}_{C_{p q}}(4)\right)=11
\end{aligned}
$$

- The ideal of the curve C_{p} (resp. $C_{p q}$) is generated in degree 3 (resp. 4) - follows from Castelnuovo-Mumford regularity theory.
- For a general point $P \in \mathbb{P}^{5}$ there are at least two distinct triples of points (denoted by R_{1}, R_{2}, R_{3} and T_{1}, T_{2}, T_{3}) on C_{6} spanning linear subspaces which contain P.
- There exist 4 points $A_{1}, A_{2}, A_{3}, A_{4} \in C_{6}$ different from R_{i}, T_{i} such that their span contains P.
- Let $Q_{i}=V\left(q_{i}\right)$ with $\left\{q_{i}\right\}_{i=1}^{3}$ being a basis of $H^{0}\left(\mathcal{I}_{C_{6}}(2)\right)$. The intersection $Q_{1} \cap Q_{2} \cap Q_{3}$ is a curve. This is the most technical part of the proof which uses certain geometric relations between the points on C_{6} defined above.
- There are no linear syzygies between q_{i} 's hence $17-3 \cdot 5=2$ yields the result.
- The second part of the proof for $C_{p q}$ is similar and even easier due to the fact that $h^{0}\left(\mathcal{I}_{C_{p q}}(3)\right)=2$.

Elliptic normal curves and quadric hypersurfaces

Theorem. ([2], Theorem 3.1) Let $C=\mathbb{C} /\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$ be an elliptic curve and $C_{6} \subset \mathbb{P}^{5}$ be its embedding as a normal elliptic sextic. Then there exists a 9 -dimensional space of quadric hypersurfaces containing C_{6}. A basis of this space is given by

$$
\begin{aligned}
Q_{0} & =x_{0}^{2}+x_{3}^{2}+\alpha\left(x_{2} x_{4}+x_{5} x_{1}\right), \\
Q_{1} & =x_{1}^{2}+x_{4}^{2}+\alpha\left(x_{3} x_{5}+x_{0} x_{2}\right), \\
Q_{2} & =x_{2}^{2}+x_{5}^{2}+\alpha\left(x_{4} x_{0}+x_{1} x_{3}\right), \\
Q_{0}^{\prime} & =x_{0}^{2}-x_{3}^{2}+\beta\left(x_{2} x_{4}-x_{5} x_{1}\right), \\
Q_{1}^{\prime} & =x_{1}^{2}-x_{4}^{2}+\beta\left(x_{3} x_{5}-x_{0} x_{2}\right), \\
Q_{2}^{\prime} & =x_{2}^{2}-x_{5}^{2}+\beta\left(x_{4} x_{0}-x_{1} x_{3}\right), \\
Q_{0}^{\prime \prime} & =x_{0} x_{1}+x_{3} x_{4}+\gamma x_{2} x_{5}, \\
Q_{1}^{\prime \prime} & =x_{1} x_{2}+x_{4} x_{5}+\gamma x_{3} x_{0}, \\
Q_{2}^{\prime \prime} & =x_{2} x_{3}+x_{5} x_{0}+\gamma x_{4} x_{1}
\end{aligned}
$$

with

$$
\begin{aligned}
\alpha & =-\frac{x_{3}^{2}(\omega)}{x_{2}(\omega) x_{4}(\omega)+x_{5}(\omega) x_{1}(\omega)}, \\
\beta & =\frac{x_{3}^{2}(\omega)}{x_{2}(\omega) x_{4}(\omega)-x_{5}(\omega) x_{1}(\omega)}, \\
\gamma & =-\frac{x_{3}(\omega) x_{4}(\omega)}{x_{2}(\omega) x_{5}(\omega)}
\end{aligned}
$$

where $\omega=\frac{\omega_{1}}{2}+\frac{\omega_{2}}{12}$.
Lemma. ([2], Lemma 3.3) The following relations hold:

$$
\begin{gathered}
\alpha \beta(\alpha+\beta)=-2, \\
\gamma=\alpha \beta .
\end{gathered}
$$

Theorem. ([2], Theorem 3.6) The ideal $I\left(\operatorname{Sec}\left(C_{6}\right)\right)$ is generated by two cubic surfaces F_{1} and F_{2} given by
$F_{1}=2\left(\alpha^{2} \beta^{2}-\alpha-\beta\right) x_{0} x_{2} x_{4}+\sum_{i=0}^{2} \sigma^{i}\left(-2 x_{0}^{3}+2(\beta-\alpha) x_{1} x_{2} x_{3}+\alpha \beta(\beta-\alpha) x_{0} x_{3}^{2}\right)$,
$F_{2}=2\left(\alpha^{2} \beta^{2}-\alpha-\beta\right) x_{1} x_{3} x_{5}+\sum_{i=0}^{2} \sigma^{i}\left(-2 x_{1}^{3}+2(\beta-\alpha) x_{2} x_{3} x_{4}+\alpha \beta(\beta-\alpha) x_{1} x_{4}^{2}\right)$.

References

[1] K. Hulek. Projective geometry of elliptic curves. Soc. Math. de France, Asterisque, 137, 1986.
[2] A. Shatsila. Geometry of elliptic normal curves of degree 6. arXiv:2203.11672, 2022.

The results are a part of the author's Bachelor Thesis at Jagiellonian University in Kraków. I am extremely thankful to my supervisor, Michał Farnik, for the insightful discussions and valuable guidance throughout my studies.

