3 Teoremi elementari sulle derivate

In questo paragrafo vediamo come la derivata dia informazioni sull'"andamento" di una funzione (ossia aiuti a determinare le regioni in cui la funzione cresce o decresce) e quindi sui sui punti "estremali" ossia dove la funzione assume dei massimi o minimi locali. Cominciamo con alcune definizioni.

Definizione 7.16 (i) Sia $f: A \to \mathbb{R}$ e $x_0 \in A$. Se esiste un intorno U di x_0 per cui

$$f(x) \ge f(x_0) \left[f(x) > f(x_0) \right] \quad \forall x \in (U \cap A) \setminus \{x_0\} , \tag{7.27}$$

diciamo che f ha un minimo locale [stretto] in x_0 ; se la (7.27) vale con il \leq [\leq] parleremo di massimo locale [stretto].

Un punto x_0 che sia di massimo o minimo locale per f si chiama punto estremale per f.

(ii) Se $f: A \to \mathbb{R}$ è derivabile in x_0 e $f'(x_0) = 0$, x_0 si chiama **punto critico**.

Un primo semplice risultato è il seguente:

Proposizione 7.17 Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$.

- (i) $f \ \dot{e}$ [strettamente] crescente su $A \iff R_f(x,y) \ge 0$ [$R_f(x,y) > 0$], $\forall x,y \in A, x \ne y$.
- (ii) Se f è crescente [decrescente] su A ed è derivabile in $x_0 \in A$ allora $f'(x_0) \ge 0$ [$f'(x_0) \le 0$].

Dimostrazione (i) segue immediatamente dalla definizione di rapporto incrementale.

(ii) Se f è crescente, da (i) segue che $R_f(x,y) \ge 0$ e dal teorema del confronto segue che $f' \ge 0$ (a analogamente nel caso decrescente).

Osservazione 7.18 Si noti che una funzione può essere strettamente crescente ma avere derivata nulla in qualche punto: è questo il caso della funzione $x \to x^3$ che è strettamente crescente su $I = \mathbb{R}$ ma ha derivata nulla in x = 0.

Proposizione 7.19 (Teorema di Fermat sui punti critici) $Se \ x_0 \in \mathring{A} \ \grave{e} \ un \ punto \ di \ minimo \ o \ massimo \ locale \ per \ f: A \to \mathbb{R} \ ed \ f \ \grave{e} \ derivabile \ in \ x_0 \ allora \ x_0 \ \grave{e} \ un \ punto \ critico \ di \ f, \ ossia, \ f'(x_0) = 0; \ in \ altre \ parole, \ i \ punti \ estremali \ interni \ sono \ punti \ critici.$

Dimostrazione Supponiamo x_0 sia un punto di minimo locale. Poiché x_0 è anche un punto interno, esiste un intervallo aperto $U\subseteq A$ contenente x_0 tale che $f(x)\geq f(x_0)$ per ogni $x\in U$. Dunque il numeratore di $R_f(x,x_0)=\frac{f(x)-f(x_0)}{x-x_0}$ è non negativo in U mentre il denominatore è positivo per $x>x_0$ e negativo per $x< x_0$. Dunque

$$\lim_{x_0+} R_f(x, x_0) \ge 0 \ge \lim_{x_0-} R_f(x, x_0) ,$$

e, siccome f è derivabile in x_0 , i limiti laterali di $R_f(\cdot, x_0)$ coincidono e quindi $f'(x_0) = 0$. Se x_0 è un punto di massimo locale, allora -f ha un minimo locale e la tesi segue da quanto già dimostrato.

Esempio 7.20 (i) Il teorema di Fermat fornisce uno strumento per individuare i punti estremali ed eventualmente il massimo e minimo di una funzione. Supponiamo, ad, esempio, di avere una funzione f continua su un intervallo compatto [a,b] che sia derivabile in (a,b) tranne, al più, in un numero finito di punti $x_1, ..., x_N$. Per il teorema di Weierstrass, f assume massimo M e minimo m su [a,b] e tali valori verranno trovati valutando la funzione negli

120 Cap. 7 – Derivabilità

estremi a e b, nei punti critici⁵ e nei punti x_i dove f non è derivabile: per il teorema di Fermat, M ed m verranno necessariamente assunti in uno di tali punti.

(ii) Il teorema di Fermat può essere utile anche nel caso di domini illimitati. Ad esempio, se $f:[0,\infty)\to\mathbb{R}$ è continua e derivabile in $(0,+\infty)$ ed esiste il limite finito $L=\lim_{x\to+\infty}f(x)$, allora la funzione definita come F(x):=f(x/(1-x)) per $x\in[0,1)$ e F(1):=L è continua su [0,1] e derivabile in (0,1).

Proposizione 7.21 (Teorema di Rolle) Siano a < b numeri reali e f una continua su [a,b] e derivabile su (a,b). Se f(a) = f(b) allora esiste un punto critico $x_0 \in (a,b)$.

Dimostrazione Se f è costante allora ogni punto $x_0 \in (a, b)$ è un punto critico. Supponiamo ora f non identicamente costante. Per il teorema di Weierstrass, f ammette massimo e minimo sul compatto [a, b] e (essendo f non costante) o il massimo o il minimo (o tutti e due) sono assunti all'interno e la tesi segue dal teorema di Fermat.

Proposizione 7.22 (Teorema del valor medio di Cauchy) Siano a < b numeri reali e f e g funzioni continue su [a,b] e derivabili su (a,b). Allora esiste un punto $x_0 \in (a,b)$ tale che

$$f'(x_0)(g(b) - g(a)) = g'(x_0)(f(b) - f(a)). (7.28)$$

Dimostrazione Sia F(x) := f(x) (g(b) - g(a)) - g(x) (f(b) - f(a)). Dalle ipotesi segue che F è continua su [a,b] e derivabile su (a,b). Inoltre F(a) = f(a)g(b) - g(a)f(b) = F(b) e la tesi segue dal teorema di Rolle.

Proposizione 7.23 (Teorema del valor medio di Lagrange) Siano a < b numeri reali $e \ f \ una \ continua \ su \ [a,b] \ e \ derivabile \ su \ (a,b).$ Allora esiste $x_0 \in (a,b)$ tale che

$$f(b) - f(a) = f'(x_0)(b - a) . (7.29)$$

Dimostrazione Segue dal Teorema del valor medio di Cauchy con g(x) = x.

Il Teorema del valor medio di Lagrange ha molte applicazioni interessanti. Ad esempio

Corollario 7.24 Se f e g sono derivabili su un intervallo I e f'(x) = g'(x) per ogni $x \in I$ allora esiste $c \in \mathbb{R}$ tale che f = g + c.

Dimostrazione Sia F = f - g. Dalle ipotesi segue che F' = 0 su I. Se x < y sono due punti qualunque in I, per il teorema del valor medio di Lagrange (applicato con a = x e b = y e f = F), esiste un punto $x_0 \in (x,y)$ tale che $F(y) - F(x) = F'(x_0) \cdot (y - x) = 0$, ossia, F(x) = F(y) =: c.

In particolare, dunque,

$$f$$
 derivabile su I intervallo e $f' = 0$ su $I \implies f \equiv \cos t$. (7.30)

⁵Naturalmente potrebbero esserci un numero infinito di punti critici come per la funzione $f:[0,1]\to\mathbb{R}$ che vale 0 in x=0 e x sen (1/x) per $x\in(0,1]$: tale funzione è continua su [0,1] derivabile in (0,1] e i suoi punti critici sono dati da $x_k=1/y_k$ con $k\in\mathbb{N}$, dove $y_k\in(k\pi,(k+\frac{1}{2})\pi)$ sono le infinite soluzioni positive dell'equazione tan y=y.

 $^{^6}F'(x)=f'(x/(1-x))/(1-x)^2$ e quindiF'(x)=0 se e solo se f'(x/(1-x))=0.

Esercizio 7.5 Dimostrare che valgono le seguenti identità

$$2 \arctan (x + \sqrt{x^2 - 1}) = \pi - \operatorname{Arcsen} \frac{1}{x}, \quad x \ge 1$$
 (7.31)

$$\operatorname{Arctan} x = \frac{\pi}{2} - \operatorname{Arctan} \frac{1}{x} \tag{7.32}$$

Suggerimento: Derivare e usare il Corollario 7.24.

Un'altra conseguenza immediata del Teorema del valor medio di Lagrange è che se f è derivabile in (a,b) e $f' \geq 0$ [f'>0] su (a,b), allora per ogni a < x < y < b, $f(y) - f(x) = f'(x_0)(y-x) \geq 0$ $[f(y) - f(x) = f'(x_0)(y-x) > 0]$, ossia f è [strettamente] crescente. Applicando lo stesso ragionamento a -f si ottiene che se f è derivabile in (a,b) e $f' \leq 0$ [f' < 0] su (a,b), allora f è [strettamente] decrescente. Mettendo assieme queste osservazioni con la Proposizione 7.17 si ottiene:

Corollario 7.25 Siano a < b numeri reali e f una funzione derivabile su (a,b).

- (i) $f' \ge 0$ $[f' \le 0]$ su (a,b) se e solo se f è crescente [decrescente] su (a,b).
- (ii) Se f' > 0 [f' < 0] su (a,b), allora f è strettamente crescente [strettamente decrescente] su (a,b).

Osservazione 7.26 Il punto (ii) del Corollario 7.25 implica, a sua volta, il seguente "teorema della funzione inversa":

Sia f derivabile con derivata continua in un intorno di un punto x_0 . Se $f'(x_0) \neq 0$, esiste un intorno di x_0 in cui f è invertibile con funzione inversa $g := f^{-1}$ derivabile con derivata continua (e tale che $g'(y) = 1/f' \circ g(y)$).

Dimostrazione Supponiamo che $f(x_0) > 0$ (altrimenti ragioniamo su -f). Dal teorema della permanenza del segno segue che esiste un intorno I di x_0 tale che f'(x) > 0 per ogni $x \in I$ e quindi dal punto (ii) del Corollario 7.25 segue che f è strettamente crescente su I e quindi invertibile. Il resto della tesi segue dalla Proposizione 7.13.

Questo risultato ha importanti generalizzazioni in più dimensioni.

Esercizio 7.6 Sia $f(x) := x^2 \operatorname{sen}(1/x)$ se $x \neq 0$ e f(0) := 0. Dimostrare che f è derivabile su \mathbb{R} ma che non esiste $\lim_{x\to 0} f'(x)$.