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1. Introduction 

The theory of normal forms, invented by Poincar6, gives simple forms to 
which a differential equation can be reduced in the neighbourhood of an equilib- 
rium point by a change of variables (see [1], Chap. 5 for a nice introduction to 
normal form theory and see [2] for a more detailed treatment). Now, while the 
problem is easily solved in the class of formal vector-valued power series [1], in 
the class of analytic vector fields convergence problems arise and the power 
series giving the normalizing transformation are generally divergent [2]. Never- 
theless in order to obtain significant information on the behaviour of solutions 
up to finite times it is often sufficient to normalize only to a finite order. In view 
of this, in the present paper, we give, mak ing  use of the algorithm of Lie 
transform, a normal form theorem for vector fields around an equilibrium point, 
providing estimates for convergence radii and remainders, when the normaliza- 
tion is brought up to a finite order r, generalizing a similar theorem recently 
given for the Hamiltonian case [5]. The method can be extended to r = oe in the 
case considered by Poincar6 and Dulac, and their classical theorems are recov- 
ered. The estimates given here do not instead allow to recover the stronger 
results of Siegel and Brjuno. 

However, looking for stability results over a large, although finite, time 
interval, and taking into account the classical theorem of Carath6odory-Cartan, 
the only interesting case is that of a system of weakly coupled harmonic oscilla- 
tors. By considering the particular case of a reversible system with highly non- 
resonant frequencies, we are able to show how, by optimizing the order r of 
normalization, one obtains exponential estimates for the time of stability of the 
solutions of the type recently obtained by Nekhoroshev [9] for the Hamiltonian 
case. 

We will give the basic definitions of the algorithm of Lie transform and a 
corresponding existence theorem with the necessary estimates in section 2. Sec- 
tion 3 is devoted to the algebraic part of the main theorem on normal forms, 
which will be given in section 4. In section 5, as a corollary of the main theorem, 
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we will give a theorem of Poincar6 and Dulac referring to the case r = oe. In 
section 6 we will give the application to the exponential estimate for the case of 
weakly coupled harmonic oscillators�9 

We thank Prof. L�9 Galgani for inspiring this work. 

2. The Lie transform 

Let V~ and X~ be two vector fields on C d, depending on a parameter e varying 
in a neighbourhood of zero in C, and let F~ be the flow generated by V~ according 

d 
to dee ~ (z) = V~ (F, (z)). The Lie transform of X~ by V~ at "time" ~ is the vector field 

F~, X,, where the linear operator F , ,  is defined by 

F~, X~(z) :=  D F,(F[ 1 (z)) . X~(F[  l (z)) . 

If V(e, z) and X(e,  z) are analytic in a neighbourhood of 0 in C x C d, then, for 
every (e,z) in a neighbourhood of 0 in C x C a we will have F ~ , X , ( z ) =  

1 ~k I 
�9 F~,X~(z). Usually the Lie transform is 2 x(k) (Z) e k, with X (k) (z). = ~. ~iek ~ = 0 

k>O 
" F - 1  F~, X, should be called the inverse defined as F* X~ with F* = ( ~ ), ,  and so 

Lie transform. The advantage of the inverse transform is a simpler expression of 
the recursive formulas for X (k) (see below and [6]; for an extensive bibliography 
on Lie series see [12]). The key identity is 

O~e F~, Y =  -- Lv.  F,,  Y,  (2.1) 

where Yis an autonomous vector field, and Lv~ denotes the the Lie derivative of 
Ywith respect to the vector field V~. We recall that, given two vector fields Wand 
Z, the Lie derivative of Z with respect to Wis L w Z  :=  D Z  �9 W -  D W .  Z. Notice 

F~ Lvo Y 4 = LvoF ~ Y since V~ is non- that one has ~ F* Y =  F*~ Lv~ Y, with * * 

autonomous. This produces more complicated recursive formulas. 
The aim of Lie series theory is to express X tk) in terms of the coefficients of 

the expansion in e of V~ and X~. This is given by the following 

Theorem 1. Let  V~ = ~ Vke k, X~ = ~, Xk~ k be two vector f ields on C a 
k~O k>O 

depending on a parameter e, with V(e, z), X (e, z) analytic in a neighbourhood of  
0 ~ C x C a. Denote by F~ the f l ow  generated by V~, and let 

F~,X~= Z x~k) ek, F . , X j =  Y', X} k) e k. 
k~O k=>O 

Then one has 

X O') = ~ X}"- J), (2.2) 
j=O 



Vol. 39, 1988 Normal forms of differential equations near an equilibrium point 715 

w h e r e  X} ") is reeurs ive ly  d e f i n e d  by  

1 
X} ~ "= X j ,  X} ") : = - -  ~ Lv~_ , X~ n-k) . (2.3) 

n k = l  

Proof. Taking into account the power expansions of X~ and V~ in ~, using 
(2.1), the bilinearity of Lie derivative, and Newton's rule for derivatives, we have 

X(k, ) 1 �9 1 a ' -~  l - F~*Xk  - n!  a~ " - 1  Lv~F~*X~ 
n!  ~ n  ~=0 ~=0 

1 
_ ,~1  L j ! v j ( j e  ~ ~ ~ F ~ , X  k 

n! j=o j ~ o 

_ 1 ~ Lv~-, 1 ~'-J 
n~=l (n - j ) !  ~e "-j ~=o/~, X~, 

and this gives (2.2). Moreover one has 

X( , )  - 1 & ~:oF~*X~= I & [ oekF~,X~ 
n! ~e" M ~ o  0e - ~  

n'k~ol ~ ( ~ )  ~@ ~=o , ,~ ~-j 

1 ~"-J F~, Xj 

i.e. (2.3), so that the statement is proven. 

Now we give some definitions and notations: 
We consider the space H k of the Cd-valued homogeneous polynomials of 
degree k on C d. In the space Hk we consider the basis {h~.~}l~j~d,t~l=k, 

d 

with eezd+  and [a[ :=  Z at, defined by h j ,~ ( z ) "=  z~ ~ . . . .  z j~e j ,  {ej}l<j< d be- 
j = l  

ing a basis of C d. Via this basis a generic element V r  H k will be written as 
V= ~ W' ~ hi, ~, with V j' ~ ~ C. Moreover, use will be made of the norm 

l <j<d, ia I =k 
on H k defined by 

II v i i :=  Z IvJ.~I. 
j,a 

We shall consider domains 2~ of C d defined by 

~e := z = (z~ . . . .  , Zd) e C~: II z II = < j = 1 Zj Z j ;  

~e: = z=(z~,...,za) eCa'llzl]= z~zj <0 
= I  

and II �9 I[o will denote the supremum norm on No. 
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We are now interested in giving an estimate on the norm of L v  X when X 
and V are two homogeneous polynomials. This is given by the following 

Lemma 1. I f  X e H .  and V ~ Hm, then 

II L v X  I1 < (m + n)II vi i  II x II. (2.4) 

Proof. From the definition of Lie derivative we have 

Lv  X = Y', VJ'~ X k'~ Lhj,~ hk, p 
l<-j.k<=d, I~l=m, I/~l = n  

= Y, V j'~ xk'P(~jhk,a "h~,~ -- ~kh;,~ "hk, a) 

= ~ V j'~ Xk'P(fljhk,~+o_oj -- cckhj,~+~_ak ) 

= Z (fir W'~Xk'~ - "J V~'~XJ'a) h~,~+~_~ 

(dj = (0 , . . . ,  0, 1, 0 , . . . ,  0) where "1" is at place j). From this, and ej < m, flj < n, 
one gets 

I lgvXll  <=(re+n) ~, [VJ'~IIX k'~] = ( m +  n)~2JVJ'~[ Z Ixk '~ l ,  
j,k,~t, fl j ,  ct k, fl 

and (2.4) follows. 

Consider now a nonautonomous vector field V~ = ~ Vk e k, with V k homoge- 
k>__O 

neous polynomials; this induces a flow F~ on C d, and we are interested in 
considering the time-one map defined by (p(z):--F 1 (z) on a neighbourhood 
of the origin of C a. Given an autonomous vector field X = Y, X k, with Xk 

k>_O 
homogeneous polynomials, the transformation (0 above transforms it into 
(,o, X : -  ~ X (k), with X (k) given by the formulas (2.2) and (2.3) in Theorem i, 

k_->O 
with e = 1. The analyticity properties of such transformation are given in the 
following 

Theorem 2. Let  X = ~, Xk,  V~ = ~ Vk ek be two vector fields with 
k>=O k>=O 

X k E Hk+ 1 and Vk ~ Hk+2; assume [1Xk IL < M1/9  k and I[ Vk It <---- M2/O k withposi- 
tire real constants M1,  ME, 01, 02. Consider the time-one Lie transform ~p, = F1, 
defined by Theorem 1. Then, denoting 

~o. X = ~. X tk) , 
k ~ O  

one has X (") e H ,+ l ,  and ~o.X is an analytic vector f ield in the domain ~ o . ,  
with 

ol (2.5) 
O. = 1 + 01(3M2:+ 1/02)" 
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Moreover, one has, in the closed domain ~e,,for any positive ~' < ~., the bounds 

" ~ ~ 1 6 2  1-~ '~-14, / '  (2.6) 

Z Xtk) Q, < ~ 'MI (~ ' /~ . ) " (  1 -- r  (2.7) 
k_>. Q , /  

Proofi We first consider X~ = Z Xk tk, with Xk given above, and we note that 
k > O  

~0, X is nothing but F~, X~ at e = 1. It is easy to verify, by (2.2) and (2.3), that if 
X k E Hk+l ,  and V k e H k + 2 ,  then X} ") ~ Hn+j+l, and therefore X t") e H,+ 1. In 
order to prove the theorem we look for a sequence of positive constants C~ such 
that I[ X~ ") 1[ < C~. Since, by Lemma 1, 

[I x}")I1 < -1 ~ [J Lv~-, Xj(,_k)11 < n + j  + 2 ~ tt Vk-1 [I ]t X~ "-k) [I 
1'1 k =  1 n / = 1  

and since II Vk I[ "<M2/~k2, we can recursively define 

, n + j + 2 M 2 9 2  ~ CT_ k 1 C ~  IIXjII, C j . -  n ~=1 Q~ 

We prove now that 

C7 < - 3 M 2 -t- C j  . 
n 

Indeed, this is trivially true for n = 1; for n > 1 we isolate the first term in the 
sum, and write 

, n + j + 2  , -1  n + j + 2  
Cj = - M 2 Cj + 

n n 

=< 3M 2 + Cj , 
n 

where the definition of C~-1 and the trivial inequality 

n + j + 2  n + j  
< 3 - -  

n n 

n-1 1 
mz Z C~ - k - l -  

k = l  ~ k  

have been used. So the stated inequality is proven. Then we have 

II X} ") II < (n + j ) , (  1 ~" 
= n!j-~.- 3 M 2 + - -  IlXifl' 

02/ 
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and therefore 

UX(")U< ~" ( ~ ) ( 3 M 2 +  1~ "-kMa 
= k=o ez /  O] 

+ 3M 2 + 

This proves (2.5). Then (2.6) and (2.7) follow by observing that 

2 x(k) <e 'M1  2 (o'/e,)k=e'Ma(e'/o,)" 1 -  , 
k>=. k>=. ~,] 

and that (2.6) is nothing but (2.7) for n -- 0. This ends the proof. 

Z A M P  

3. The Normal Form Theorem 

Starting now with a vector field X = ~ Xk, with X k ~ H k + 1, we try to use 
k>=0 

the Lie transform ~0, of Theorem 2, in order to determine a suitable vector field 
V~ = ~ Vke k, with V k ~ Hk+2, such that ~0, X has the simplest possible form. So 

k > 0  
we deduce an equation for both V~ and the transformed vector field ~o, X. To this 
end we use the equation 

F ~ , X ~ = Z ~ =  Z zk ek, 0_<_lel < 1 ,  (3.1) 
k>O 

where F~, is the Lie transform generated by the unknown vector field V~. The 
vector field Z = ~0, X is said to be a normal form for X if Ls Z = 0, where S 
is the diagonalizable part of the linear vector field Xo. We need to put the 
eq. (3.1) in a more explicit form. Since Xo = Zo, we have that (p, X - Z is 
equivalent to 

8 ~--~F~,X~=~Z~, 0 < l e [ < l .  

We now use the identity 

e r~, X~ Lv~ r~, X~ + F~, ~ X~, 
~e 

which, by (2.2) and (2.3), and the relation 

_ _  ,?k 
~ X e - - -  ~ (k  + l ) X k +  1 , 

k>O 

can be explicitly written as 

( . + l ) X  ("+1) ~ Lv~X("-~)+ ~: (k+ 1)Y ("-~) = - -  XXk+ 1 �9 
k=O k=O 
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By isolating in the first sum the term for k = n, since X (j) = Z j, one has 

n - 1  

L x o V , - - ( n +  I ) Z , +  1 = Y, L v ~ Z , _  k -  ~ ( k +  1)X~+? ), (3.2) 
k=O k=O 

and this is a recursive equat ion for V, and Z ,  + 1, since the r. h. s. is known once 
V0, . . .  , V,_I and Z o , . . . , Z ,  are known.  

To solve (3.2) we need to discuss equations of the form Lx  V = W. To this end 
we make use of the following 

L e m m a  2. Let  A be an element of Ha, and let a ( A ) =  { 2 1 , . o .  , • d }  be the 
spectrum of  A. Denoting by LA, k the restriction of L A to Hk, LA, k is in lower 
triangular form, and 

a(L .k) = {(A/a) -- ,tj, / __< j __< d, tc /= k} (3.3) 

is the spectrum of LA, k where A ~ C a is the vector (21,. , . ,  2d), and ([) is the usual 
scalar product. Moreover if V~ H k has the form V =  ~, V j'~ hj,~, then it is 

l <<-j<d,[aI=k 

d 

(L  A V )  j'~ = ((AJc~) - 2s) V s'" + Z rlo,=~_, ak(C~k + 1) V j ' '+ak-ok-I -- a s V J - l ' "  , 
k=2 (3.4) 

where hj,~(z) = z ~ ej, {e j} 1 <=j<d is the basis of  C d in which A is in canonical Jordan 
form, a~ = 0 if 2k :f 2~_ x, else a k = 1 or 0 as the case may be, and tljk = 0 if j = k, 
tlj k = 1 otherwise. 

d 

Proof. First we prove (3.4). Write A(z) = Z A*(z)ek, with Aa(z) = 2kZk + 
k = l  

ak Zk-1, since A is in canonical Jordan form. Then, by the definition of Lie 
derivative, one has 

L a hi, ~ (z) = D h j, ~ (z).  A (z) - A (hi, ~ (z)) 

d 
---- k=l y" AR (Z) ~ hi, ~ (z) -- A k (z ~ ej) ek 

d 

__ Z Ct = Z C~k Z~ - a~ (2 k Zk + ak Zk_ 1 ) e~ ).j z ~ e~ - aj + 1 ej + 1 
k = l  

d 

-~ (AIcQ hj,~(z) + Z ak O:k hj,,+ak_l_a~ (z) -- 2jhi , , (z ) - aj+ 1 h j + l , ~ ( z  ) 
k = 2  

d 

--- ((Ale) -- 2j)hj.~(z) + ~, ak c~k hj,~+a~_~-~ (z) - %+1 hj+t,~(z). 
k = 2  

From this, equali ty (3.4) is easily deduced. We now prove (3.3). To this end we 
order the multi-indices (j, ~) by lexicographic order as follows: (j, ~) precedes 
(k, fl) if and only if the first non-zero difference k - j ,  fil - ~1, . . . ,  fld - ee is 
positive. Since (j, e) < (j, c~ - Jk + Jk-1) and (j, e) < (j + 1, a), it turns ont  that  
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L a is a lower triangular matrix with respect to the basis {hz, } and (3.3) follows. 
So the lemma is proven. 

We come now to the solution of eq. (3.2). First note that from (3.4) it follows 
that H k = N k @ Rk where 

and 

N k = { V ~  H k I L  s V =  O, S t h e  diagonalizable part of A} 
=- { V e H k l V =  E VJ'~hj,~} 

(.41 ~) = ~j 

Rk = { V ~  H k t L A  W =  V, W E  Hk}  

- { V ~ H  k l V =  ~ V z ~hj,*}. 

Now, denote by W,+~ ~ Hn+ 2 the r.h.s, of (3.2). Then, we solve (3.2) by 
simply equating (n + 1) Zn+l to the part of IV,+ 1 belonging to N,+2, and using 
the remaining terms to determine 11,. Precisely we use the lower triangular form 
of the operator Lxo stated in Lemma 2 to recursively define the coefficients of V, 
and Z,  + 1 as follows" 

if (A[~) • 2~, then 

V{'~: = ((Aim) - &j)-~ 

j, ot v j -  1, ~ (3.5) �9 W . +  1 + aj  - n  -- ~-, r]O,ak-1 ~7k(O~k + 1) --nVJ'a+~k-'~k-1 
k = 2  

�9 

i ~ 0 ,  

if (A]~) = 2j, then 

o 
j , a  

j, cz Wn+ 1 (3.6) 
Zn+l :--- n + l  ' 

with 
W~ : = - X l  

n--1 
W . + l : =  X L v k Z . - k - -  ~ (k + l) X~+ k) (3.7) 

k = 0  k=0  

n n + l  
=--- E Lvk_, Z.+ l -k  -- E kX~ "+t-k)" 

k = l  k = l  

Now we choose a fixed integer r _>__ 2 and define V, for n _< r - 2 by (3.5), 
while keeping V n = 0 for n > r - 2. So we obtain the following 

Theorem 3 (The Normal Form Theorem). Let X = Y, X k, with Xk ~ Hk  + a, 
k>__0 

be an analytic vector field, and let S be the diagonalizable part of X o. For every 
integer r >= 2 there exists a nonautonomous polynomial vector field V~ of degree r 
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without constant and linear terms such that the transformed vector field ~o . X is in 
normal form up to terms of degree r in its expansion, i.e. 

r - - 1  

~0, X = X 0 -~ Z Zk 4- R~, (3.8) 
k = l  

with Z k ~ Hk + ~ such that L s Zk = O, and the remainder R r is an analytical vector 
field with no terms of degree smaller than r + 1 in its expansion. 

4. The main theorem 

Now we will use Theorem 2 to give estimates on the radius of convergence 
and on the norm of the remainder  terms Rr in the Normal  Fo rm Theorem. 

Theorem 4. Let X,  V~ and r > 2 be defined as in Theorem 3. Assume that 
[1Xk It <= M/~k f or k >= 1, with positive real constants M, Q, and that Xo is in Jordan 
canonical form. Then the remainder Rr in (3.8) is an analytical vector field in the 
domain ~Q,, with 

Or = 1 + Mr(3 + Kr ) '  (4.1) 

and in the closed domain go', for any positive Q' < ~r, one has the bound 

][RrH~, < ,M,(o,/~r)r(1 ~ '~- i  = - (4.2) 

where 

max { 1, 2 M A r  }/2 if X o is diagonal  
M r = 

max{ / ,  4p, d-1 MAr}/Z~(d-1)/2 otherwise 

24 if X o is diagonal  
Kr = 24//~d- 1 otherwise 

/z r = max{1,6(d - s)Ar} 

A~= max ~ - [ ~ _ ! - - 1  } 
z-<k_<r {1 (Alc~) -- 2 j l '  [c~l = k, 2j r ~(Xo) , (Ale) # 2s 

s = number  of distinct eigenvalues of X o 

M'  = max { 11 Xo [I, M} 

Proof. In order to be able to use Theorem 2 we must  estimate II r .  11 from 
the recursive formulas (3.5). Let us first consider the special case in which X o is 
diagonal;  then, by (3.5), one has 

XI W.+~ JI 
II V.rl < A t  

n + l  
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We now come to the estimate of  1t V. II. First we note that, by (3.6), one has 

II w~ II 
II z .  It =< , 

n 

and we look for a sequence of suitable positive constants  C n, with n > 1, such 
that I[ V. II _-< C.+ 1. Since 

and 

II w1 II = II xx II ~ M/O, 

( "-1H ~ I' "W"---kll IIW. II < A ~  ( n + 2 )  2 
k = l  k - -  

II X} ~ II = tl g j  [f < M/e ~, J >= 1, 

iis}.)l I <Ar nq-j -t-2 ~ II Wkll iig}._k) l I 
/'/ k = l  k 

we can recursively define C, by 

+ k:l ~ kllX~"-k) ll) n > 2 ,  

n > l  

C1 "= ArM~o, 
. - 1  1 ~  

C. "= 2 ~ Ck C.-k + - k D k ,  n - k  
k = l  Hk=l 

Dj, o :=ArM/o  j ,  Dj,.'=2 n+j ~ CkDj, n-k. 
n k = l  

Since, by the definition above,  it is 

jDLn-k j D j , . _ 2  ~ C k ( n _ k  +j) 
n + j  nk=l n - k + j  

then one has 

Ck < fiR~2 ' (4.3) 

with the sequence {ft.}.>__ 1 recursively defined by 

fll "= Nr /o  , ft. ".= E ~k ~ . - k  -~- ~k,n-k ( 4 . 4 )  
k = l  k = l  

09,0 :=  N./e j ej, .  : =  flk C~j,.-k -- -- kflkC~j,.-k (4.5) 
' /'/ k = l  /'/ k =  1 

with N~ = max {1, 2 A r M}. So, we look for an est imate of the sequences (4.4) and 

(4.5). 
We first prove that 

O~k,n- k ~ nel , . -1 .  (4.6) 
k = l  



Vol. 39, 1988 Normal forms of differential equations near an equilibrium point 723 

To this end, defining the formal power series 

~;(z):= E % .  z" 
n_->0 

j>  l j>  l ,n>O 

n > l  k = l  

B(Z):= 2 / ~ ? ,  
k > l  

one has, by (4.4), 

Nz) =/~(z) ~ + ~ (z), 

and, by (4.5), 

z ~ c~;(z) = z ~ %(z) Nz)) + jc~j(z//~(z) - z ~/~(z) ~1(~) 

d 
= z~(z) ~ ~;(z) + j~(z) ~;(z). 

(4.7) 

This gives the equation 

d ~ ; (z )= j  Nz)/z cg(z ) 
d~ 1 - 9 7 z )  ' 

which can be solved as 

~;(0)= ~,0 = Nr/Q J , (4.8) 

 ,(exp"z 7 
= , ~(z) := - - d s ,  

o I - p(s) 

and from this, using the definition above for ~(z), there follows 

Nr(z/Q ) exp ~(z) z~ 1 (z) 
d(z) = Nr ;>=~Z ((z/o) exp ~(z)) J = 1 -- (z/Q) exp,(z)  = 1 --  zcq (z)/Nr" (4.9) 

Since, by (4.9) and (4.7), za  1 (z) -< r -< fl(z) ( ~, denotes Cauchy majorization), 
one has, by (4.8) with j : 1, 

~(z )<l -~( z ) -Z~ l ( z )  1 +1 z) z~(z )+z  2 d = ~ ~, (z) 

Z ?~ = Z cq,,-1 + Z ( n - - l )  c q , , _ l z n =  Z n ~ l , , - l z  ~ 
n > l  n > l  n=>l 

So the stated inequality (4.6) is proven. 
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F r o m  (4.5) one has 

/'1 n - i  

- Z f lk(n - -  k) 0 : 1 , . _ k _ 1 ,  r / ~ l ' n - 1  n - -  1 k = 1  

and using the inequali ty (4.6) and the latter formula we are led to introduce two 
new sequences {7,}.=> 1, and {6,},=> 1 recursively defined by 

n - 1  

71 :---- Nr/Q , )~n : =  ~-~ 7k ~n-k -]- 6n 
k = l  

6 x : = N r / Q ,  6 , : = 2  ~ 7k6 , -k ,  
k = l  

and one can immediately  see that  the inequalities 

hold. So, only the sequence {7,},==_1 is relevant, and we have 

where the sequence {e,}.>=l is recursively defined by 

n - 1  

e l : = N r / r  e , : = 3  Z eke , - k .  
k=l  

The latter definition implies 

e. = 3"- 1 (Nr/o)" 

with 

O" n 

n - 1  

t71 : ~  1 , (~n: "~- ~ O'k(Tn-k, 
k = l  

and we only need to estimate the sequence {a,}.~ 1. 

An estimate for a .  is found as follows. 

Let o-(z) = ~ ak Z k. Then  we have o-(z) = z + o-(0 2 or, alternatively, 
k>=l 

a(z) = (1 - (1 , 4z)1/2)/2. 

If we set f ( z )  = (1 - 4z)/4, then we have 

1 d" 

SO 

or. = ~. a(0)_<_ 0 ) - "+1 /2 -  n 

(4.10) 

(4.11) 

(4.12) 
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This gives the required estimate. Finally we use the inequalities (4.10) and (4.3) 

to get 
1 II V. II < c . + ,  < ~ e . + ~ ,  

and in conclusion we have, by (4.11) and (4.12), 

1 2  n (gr~ n+l g r ( 1 2 N ) n  Mr ( K ~ f ) n  
II V, tl = < 2(n + i) \ ,6 - J  <= __2e r _ ~ -  . 

This gives the estimate if Xo is diagonal. 

The case when Xo is in Jordan canonical form can be reduced to the 
previous one as follows. 
Define the isomorphism Vw-~ Vof  H,  by 

a 

which corresponds to transforming vector fields by the dilatation z k ~-~/z~ zk. 
a 

[Zk~k-j) 
Since [[ fell = Z [ VJ'~[ r ~=~ ,, one has 

j,  c~ 

,u~ "-a  J[ vii < II f~ll < # .d -~  II VII. (4.13) 

F rom (3.5), and the above definition of VJ'~, there follows 

((AI0~) ~Lj) ~/"J'~ = " j,~t O'j - -  _ _  - -  W n + l  . . ~ -  ~7j-- 1,or 
/zr 

1 d 
Z rlo,~. ~ a~(.~ + 1) ~ U  k+~ . 

]Jr k = 2  

Taking the modules, and summing over j and ~, one has 

II f/nil < 3(d-s)Ar__ [i ~.ll + Ar II W.+I II<= _1 [P W.+x II 
= /lr . + 1  2 Lt f~" II + Ar . + 1  

or equivalently, 

II r il II ~ II ~_ eAr 
n + l  

Since the isomorphism V~--, Dis induced by an isomorphism of C d, from the 
properties of the Lie derivative one has 

L v W =  Lr I2V, 

for every pair of vector fields Vand IV.. Therefore one has, by (3.7) and Theorem 1, 

n--1  

~=  2 L~k_,2.-k- r kX~ "-~', 
k=l k=l 
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where )((k"- k~ denotes the Lie transform of Jfk by ~ = ~ ~ e k at order n - k, i. e. 
k > 0  

1 ~ L ~  ~j(n-k) 
n k = l  - 1  

In conclusion, one has, by (4.13), 

and one can apply to II fz II the same estimates obtained for II v. II, with A~, M, 
r substituted by 2A~, /~-1 M, ~/#~ respectively. Therefore one has 

~ 2 N , "  
II r?.ll </z , /V~=max{1 ,4Ar /z , e - lM},  

and, by (4.13), 

II V. II < - - I I  9. II < ~ ,~ td- l~  12r 1 N~_ _ 
= ~/r n + 2 - d  ~--- 2r 

So we have obtained for It V, I1 an estimate of the form required to apply 
Theorem 2 with 01 = Q, Q2 = o/KrMr, M1 = M', M 2 = Mr/Q. The statement 
follows by straightforward application of that theorem. This ends the proof. 

5. The Poinear6-Dulac Theorem 

In the previous section we have given general estimates for normal forms of 
vector fields up to a finite order r. In this section we will make some consider- 
ations about  the case r = oo. A look at the constants entering in Theorem 4 
shows that it is essential to know the behaviour of A r as r goes to infinity. To this 
end we assume that the d-uple A = (21 , . . . ,  2d) of eigenvalues of X o ~ H1 is in 
the Poincar6 domain, i.e. that the convex hull K (A) of the d points 21 . . . .  ,2  d in 
the complex plane does not contain the origin. In such case one has the following 

Lemma 3. I f  A is in the Poincar~ domain then there exists a number K > 0 
such that 

I ( A I ~ ) - 2 j I > K ( I ~ I - I ) ,  l < _ j < = d  

for all I o~1 ~ 2 such that (A [a) # ).j. Moreover 

max {I a [ > 2 : (A [ a) = 2j,  1 < j < d} < Go, 

and there exists an integer p, 1 <_ p < d, and a numbering of the 2j, such that 

(A [a) =~ 2j for all j < p ,  

(A I cO = 2j implies j > p and ak = 0 for all k > j .  
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Proof. For  the first statement see [10], for the remaining ones see [3]. 

The lemma above implies that there exists a number K > 0 such that 
Ar < K for all r > 2. So Theorem 4 has the following 

Corollary (The Poinear6-Dulae theorem). Let  X = F. Xk be an analytic 
k > O  

vector f ield in a neighbourhood of  zero in C d with X k ~ Hk+ I and X o in Jordan 
canonical form. Le t  A = (21, . . .  2d) be the d-uple of eigenvalues of X o. I f  A is in 
the Poincard domain then X is bianalytically equivalent to a polynomial vector 
f ield of degree 

s = max {l ~ l > 2 : (A [ ~) = 2 j ,  l <= j < d} 

of the form 

X o + Z ,  L s Z  = O, 

where S is the diagonal part of  X o. Moreover there exists an integer p, i < p < d, 
such that 

and 

Z u = O  for all k ~ p ,  

- -  Z k = 0 for all j > k > p .  

The theorem above was first proven by Poincar6 [10] when Xo is diagonal 
and non resonant, i.e. when (A I c~) + 2j for all c~ e Z~+ such that [ ~ [ > 2, and was 
then generalized to the resonant case by Dulac [3]. After these early results 
several attempts were made to obtain convergence with less stringent conditions 
on the spectrum of the linear part X o of the vector field. The first success in this 
direction was obtained by Siegel [11], who proved convergence by assuming, 
besides non-resonance, the additional condition 

[(A ] c Q -  ,~.j[ ~ CI~I -~ , 

with c, v positive constants. This condition on A holds for almost all vectors in 
the sense of Lebesgue measure, so that, in the non-resonant case, convergence 
is a generic fact. On the contrary, when Xo is resonant, and A in not in the 
Poincar6 domain, severe a priory conditions on the normal form are needed to 
assure convergence. More precisely Brjuno [2] has shown that every analytic 
vector field with a linear part X o such that the interior of K (A) contains zero (in 
C), and such that a(Xo)  satisfies the condition that the infinite sum 

1 log/--- 
k>O 
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is convergent, where 

Ogk:=min{[(Al~)--2j[ , 0 < I~1 < 2 k + 1 ,  1 <__j<=d, ( A I ~ ) # 2 j } ,  

is analytically normalizable provided the normal  form is tangent to the foliations 
z p = const corresponding to the relations (Alfl) = 0, with fl ~ R~,  fl ~= 0. This 
geometric interpretation of Brjuno's results is due to Martinet  [7]. We remark 
that the above statement generalizes Siegel's results when Xo is not resonant. 

In spite of their mathematical  beauty, the above theorems are general- 
ly useless if one is concerned with stability problems. Indeed one has the follow- 
ing 

Theorem 5 (Carath6odory-Cartan). (see [8] and references therein) Let 
X = ~ Xk with X k ~ Hk+ 1, be an analytical vector field. Necessary and sufficient 

k > O  

conditions for the stability of the critical point z = 0 for all real times are that 

1. X o is diagonalizable with purely imaginary eigenvalues, and 

2. X is analytically linearizable 

Since for real, i.e. X = X, vector fields the resonant case is unavoidable (the 
complex eigenvalues appear in complex conjugate pairs), the above theorem 
makes Siegel's linearization theorem useless for the stability problem of the 
solutions of real differential equations. Nevertheless, from the viewpoint of 
physical applications, it is sufficient to obtain informations on the stability of the 
solutions for large but finite times, for example times of the order of the age of 
the universe. To this end the estimates given in Theorem 4 may be very useful, 
as we will show by an example in the following section. 

6. The exponential estimates for reversible systems of coupled harmonic 
oscillators 

Consider now a vector field which satisfies the hypothesis 1. of 
Carath6odory-Cartan theorem, i.e. that the linear part is a system of harmonic 
oscillators. Among these systems one can consider two particular classes of 
interest in physical applications, namely the Hamiltonian systems and the re- 
versible systems [8]. The Hamiltonian case was already discussed in ref. [4], so 
let's consider here the reversible case. 

Precisely, let Y = Z Yk, with Yk e Hk + 1, be an analytical vector field defined 
k>O 

in a neighbourhood of zero in C 2~ such that Y= Y, with linear part 

Yko(Z ) = { Zk+d 2 
- -  ( .Ok_ d Z k -  d 

l G k ~ d  
d + l K k K 2 d  
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Assume moreover  the reversibility condi t ion 

Y = - R Y R ,  

Rk ( z  ) . =  { ~  1 <- k <- d 
z k d + l < _ k < _ 2 d  

This characterizes Yas the complexification of  a real differential equat ion  on R 2d 

describing a reversible system of coupled harmonic  oscillators with frequencies 
col . . . .  , co d. If  we define, as usual, the complex linear t ransformation B by 

f Zk -- (i/cok) Zk + d 1 <_ k < d B k ( z )  . 
(Zk_d+( i / cok_d)  Z k d + 1 < k < 2d  

then the vector  field X : = B Y B -  1 has the form X = i Z X k ,  with X k e H k + 1. 
Moreover ,  one has k->-O 

X k  (z ) = { (-O k Z k 1 <-- k <- d (6.1) 
--CO~_dZ~ d +  l < k < _ 2 d  

and, denot ing 

X { ( z )  = E z '~ 
M+l~l=k+l  

where z' : =  ( z l , . . .  , z~), and z" :=  (za+ 1 . . . .  , z2d), one has 

X k  = X k ,  (6.2) 
X~ '~'p = -- X~ +d'a'~ �9 (6.3) 

Indeed, using the fact that  Y is a real vector field, the relation 
X~,~,p = _ j~+a,p.~ easily follows, while the stronger condit ions (6.2) and (6.3) 
can be shown to be equivalent  to the reality and reversibility of Y. 

Now,  by Theorem 3, we can put  the vector  field X in normal  form up to 
terms of degree r, where r is an integer greater than one. Using 

(Lixo V~) j'~'p = i ( ( n t a  - r )  -- 2j) V~ ,~,p , 

with f2 = (col, �9 �9  cod), 2j = coj if 1 < j  < d, 2j = - coj_ d otherwise, it is easy to 
prove, by induction, that  the definitions (2.2), (3.6), and (3.7) imply 

r  = i ( X  o + Z + R , )  with L x o Z  = 0 ,  (6.4) 

and that the vector  fields Z and R, have the same properties,  i.e. (6.2) and (6.3), 
as X. Moreover ,  if V~ is the generator  of the flow ~0, then V~ is a real vector  field 
such that V~ '~'a Vj+d,P,~ F r o m  this there follows that the t ransformat ion 
B-1  q~B, namely the t ime-one flow of B -1  V~ B, is a real change of variables, and 
that the vector  field B -  1 (r X) B = (B-  1 (0B). Yis a real and reversible normal  
form for Y 

Let us now suppose  that  the frequencies co~, . . . ,  cod are nonresonant ,  i.e. 

(f2[c 0 4~ 0 for all ~ ~ Z a \ {0}. (6.5) 
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Since, by (3.6), 

zJ . ( z )  = Z zJ.'~'~ z '~ z "~ , 
I~1+1~1=.+ 1 
(Ol(a- #)) = ~j 

one has, by (6.5), 

Z{(z) = zj E z~,~(~' z"y .  
21~1 =, 

Along the lines of the Nekhoroshev's like results, we determine now the normal- 
ization order r by the condition that the size of the remainder Rr, as estimated 
by theorem 4, is close to a minimum. Thus, we prove the following 

Theorem 6. Let X --- i ~ X k be a vector field satisfying the conditions (6.2) 
k>=O 

and (6.3), and with linear part as in (6.1). Assume moreover 

I ( ~ l ~ ) l  =~-c- 1 [ o~] - ( v -  1) 

with c > O, v >= 1, for all ~ ~ Z ~ \ {0}, and II XR [I <= M/O k for k >= 1, with M and 
positive real constants. For every positive 0'<= K/(2e)~x/~ let ep, X = 

i(Xo + Z + Rrop, ) be the transformed field of  X according to theorem 3, where Z 
is the normal form up to the optimal order 

/.opt ~ _ _  v 
~o' 

with 

Q 
K =  

15 + 27c2~-1M" 

Finally, consider a solution z (t) of  the differential equation given by the field ~o , X,  
d 

with real initial datum z(O)= Zo, i.e. Zoj = zj+a, and define t[ z' I[ 2 "= ~, z)5j. 
j = l  

Then, for all initial data satisfying II z~ [] 2 < dE _ ~2 with 0 < ~ < ~', one has 

III z'(t)[I 2 _ I[ z ;  II 21 --< 62 

for all times (:(A)-1) It[ ~ Toexp - -  
0' 

with 
62 

To - 4 Q  '2 M '  

M' = max{l[ S o I[, M}.  

(Here [-] denotes integer part). 
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d 

Proof.  First  we show that the func t ionf (z)  "= Z z~ z~+d is a prime integral 
for the fieldX o + Z. Indeed one has j= 1 

L x o f ( Z  ) = ~. XJo(Z) f ( z )  
j = l  

d 
= ~_, O ) j Z j Z j + d  - -  (Dj Z j+d  Zj  = O ,  

j = l  

and, by the symmetry  propert ies  (6.3) for the coefficients of Z, 

Lz.f(z) : X ZJ.(z) f(z) 
j=1 

= Z + : o .  

21~1 : n  

The time derivative o f f ( z ( t ) )  is then 

L R J ( z )  = E . uJ,. ,~ z '~ z"~ i+d ~ ~ ,~ ,,tJ ~ " j + d ' ' r  -J7 Z j R  r ' " z z 
l <j<_d 

N+lfll->_r+a 

n j  fl o~ ta .fl  
- -  ~_, Z j 1~  r '  ' Z Z 

l <=j~2d 

I~l+lfll=>r+l 
and one has 

IJ L R r f  (z) I]e < e 11Rr JJe " (6.6) 

Now,  given c~ < e', we look for a constant  t~ such that [If z'(t)H 2 - ]t Z'o II 2 ] < 62 

for all times It[ < t~ and for all initial da ta  z o such that 2oj = Z0j+d and 
II z ;  II 2 < e '2  - ~< Since 2 j ( t ) =  Zj+d(t) for all times, a n d f ( z ( t ) ) =  tl z(t)112/2 = 
]1 z'(t)[[2 for z(t)  real, one has, by (6.6), 

Ill z'  (t) I12 - It z'o [[21 < It] I[ L R r f  (z) I[ ~e ,  

< I t I (v/SO ') It R, 11,/~r �9 

So we can take 

6 2 
t~ 

x / ~ 0  ' 1[ Rr ll,/2a, " 

N o w  we use the estimates for the remainder  given 
] (s [ c~)[ > c -1 ]c~[ -(~-i)  there follows 

A~ < c ( r -  1)(r + 1) *-1 < c2 ~-1 r ~, 

and therefore, 

- - 1 5 +  

(6.7) 

in Theorem 3. F rom 

by (4.1) and max {1, 2 M A r } / 2  < 1/2 + M A , . ,  

Q K > 
2 7 c 2 V - l  M r  v = (15 + 27c2 v-1 M ) r  ~ - r ~" 
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With this estimate for ~,, we have, by (4.2), taking 2 x//2 ~' < ~r, 

II er II~o, < 2x/~e'M' r < 2w#2e 'M '  r ~ . 
\ Qr / 

To optimize the above estimates we look for the integer top t for which (,j/2 Q' rv/ 

K) r is minimum. It is easy to prove that  top t = [( l /e)(K/x/~e ') l /v] ,  rop~ > 2 if 
O' < K/(2e)  ~ ,v/~, and therefore one has 

roVpt ~ 2 X//2 0' M' exp . . . .  I 

e ~' 

The theorem follows by inserting the above estimates in (6.7). 
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Abstract 

We consider the problem of finding a normal form for differential equations in the neighbour- 
hood of an equilibrium point, and produce general explicit estimates for both the normal form at 
a finite order and the remainder, using the method of Lie transforms. With such technique, the 
classical Poincar6-Dulac theorems are recovered, and the problem of the stability of a reversible 
system of coupled harmonic oscillators up to exponentially large times is discussed. 

Riassunto 

Si considera il problema di porre in forma normale un sistema di equazioni differenziali 
nell'intorno di un punto di equilibrio, e si danno in generale stime esplicite sia per la forma normale 
troncata ad un ordine finito che per i resti. Si fa uso delFalgoritmo della trasformata di Lie. Con 
questo metodo si riottengono i teoremi classici di Poincar6-Dulac, e si discute il problema della 
stabilit/t per tempi esponenzialmente lunghi di un sistema reversibile di oscillatori armonici accop- 
piati. 
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