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Abstract. We prove the existence of time-periodic, small amplitude solutions of autonomous
quasilinear or fully nonlinear completely resonant pseudo-PDEs of Benjamin-Ono type in Sobolev
class. The result holds for frequencies in a Cantor set that has asymptotically full measure as the
amplitude goes to zero.

At the first order of amplitude, the solutions are the superposition of an arbitrarily large number
of waves that travel with different velocities (multimodal solutions).

The equation can be considered as a Hamiltonian, reversible system plus a non-Hamiltonian (but
still reversible) perturbation that contains derivatives of the highest order.

The main difficulties of the problem are: an infinite-dimensional bifurcation equation, and small
divisors in the linearized operator, where also the highest order derivatives have nonconstant coef-
ficients.

The main technical step of the proof is the reduction of the linearized operator to constant coeffi-
cients up to a regularizing rest, by means of changes of variables and conjugation with simple linear
pseudo-differential operators, in the spirit of the method of Iooss, Plotnikov and Toland for stand-
ing water waves (ARMA 2005). Other ingredients are a suitable Nash-Moser iteration in Sobolev
spaces, and Lyapunov-Schmidt decomposition.
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1 The problem and main result
We consider autonomous equations of Benjamin-Ono type
g + Hutgy + Op (u®) + Nay(u) = 0 (1.1)

with periodic boundary conditions z € T := R/27Z, where the unknown u(¢, ) is a real-valued function,
t € R, H is the periodic Hilbert transform, namely the Fourier multiplier

HeI™ = —isign(j) 9%, j ez,
and Ny is of type (I) or (II),

() Na(u

= g1(z, u, Hu, ug) + 0z (g2(z, u, Hug)), (1.2)
O(I,U,Hu,um,HUzI)~ (13)

(1.1) is a quasilinear problem in case (I) and a fully nonlinear problem in case (II).

We assume that the function g;(z,y) is defined for y = (y1,...,¥yn) in the ball B; = {Jy| < 1} of R™,
n = 2,3,4, g; is 2m-periodic in the real variable x, and, together with its derivatives in y up to order 4,
it is of class C7 in all its arguments (z,y), with

Z 19y gillor(rxB) < Kooy (1.4)
0<]ar| <4



for some constant K, > 0. Moreover we assume that at y =0
0, 9i(x,0) =0 VaeN", |af <3, (1.5)

so that, regarding the amplitude, NVy(cu) = O(e*) as ¢ — 0.

We assume that the nonlinearity N(u) := 9,(u®) + Ny(u) behaves like the linear part 9; + HOys
with respect to the parity of functions w(¢,x) in the time-space pair (¢,z). This means to assume the
reversibility conditions

g1(=z,y1, —y2, —y3) = —91(z,Y1,92,Y3), 92(=,y1,y2) = 92(7,y1,92), (1.6)
9o(=2; Y1, —Y2, —Y3, —Ya) = —9o(@, Y1, Y2, Y3, Ya), (L.7)
so that in both cases (I) and (II) NV (u) is odd for all even u, namely
u(—t,—z) =u(t,z) = N(u)(-t,—z)=-N(u)(t,x). (1.8)
Assumptions (1.2), (1.3), (1.6), (1.7) are discussed in Section 2.
Remark 1.1. Examples of such nonlinearities are:
(D) Na(w) = (Huo)* Hugs + alz)uy +uug +b()ul, (D) Ni(u) = a(z)(Huea)* + ug,
where a(z) is odd and b(z) is even. O

We construct small amplitude time-periodic solutions u(t, z) of period T' = 27 /w, w > 0, where the
period T is also an unknown of the problem. Rescaling the time ¢ — wt, this is equivalent to find
27-periodic solutions of the equation

Wity + Hitgy + 0 (u?) + Ny(u) =0, (1.9)

with u : T2 = R, w > 0.
Regarding the time-space pair (,z) as a point of the 2-dimensional torus T2, we consider the L?-based
Sobolev space of real-valued periodic functions

H® = H*(T*R) = {u = Z uper : u_p =1up €C, |ul?:= Z lug |* (k)% < oo}7 (1.10)
kez? keZ2

where s > 0, (k) := max{1, |k|}, and ey(t,z) := e'(kitthkaz)
The main result of the paper is the following theorem.

Theorem 1.2. There exist universal constants rg, So, co € N with the following properties.
Assume hypotheses (1.2), ..., (1.7) on the nonlinearity N, with r > ro. Let m > 2 and let 0 < ky <
ko < ... <k, be m positive integers that satisfy

ki + ... 4 k1 > km(m — 3/2), ki+...+kn#(m—1/2)] VjeN. (1.11)

Then there exist (i) a trigonometric polynomial

vy (t,x) == Zaj cos(kjx — kJQ t),

j=1

even in the pair (t, ), where a; € R,

4
2 _ . ‘ C .
aj = 1/ (iglkz) 4k;, Jj=1...,m;

(12) constants C, el > 0 that depend on ki, ..., km, Kgr;



(7it1) a measurable Cantor-like set G C (0,el) of asymptotically full Lebesgue measure, namely

91 (0,€0)|

>1—-¢goC Veo < &5,
€0

such that for every e € G problem (1.9) with frequency
w=1+ 3

has a solution u. € H*°(T? R) that satisfies
e — on sy < €20, ue(—t, —) = e (b, 2), / we(t, 2) dt dz = 0.
T2

Moreover u. € H*(T?) for every s in the interval sop < s < (r +cp)/2.
If g;, i =0,1,2 in (1.2),(1.3) is of class C*, then also u. € C>=(T?).

Remark 1.3. (i) The smallest example of ki, ..., k,, satisfying (1.11) is m = 2, k; = 2, ko = 3. For
every m > 2 there exist infinitely many choices of integers k1 < ... < k,,, that satisfy (1.11). See also
Remark 5.2.

(#4) so, 7o and ¢ can be explicitly calculated: sop = 22, ¢g = 28 (non-sharp calculation); for rg see
(9.22) and the lines below it. O

2 Motivations, questions and comments
The original Benjamin-Ono equation
Uy + Htgy + v, =0 (2.1)

models one-dimensional internal waves in deep water [5], and is a completely integrable [1] Hamiltonian
partial pseudo-differential equation,

uHu, — ud ) .

_A'_i

Ou=JVH(u), J= -0, H(u):/< 2 6

The local and global well-posedness in Sobolev class for (2.1) and many generalizations of it (other
powers uPu,, other linear terms J,|D,|%u, 1 < a < 2, etc) have been studied by several authors in
the last years: see for example Molinet, Saut & Tzvetkov [31], Colliander, Kenig & Staffilani [14], Tao
[37], Kenig & Ionescu [20], Burq & Planchon [13], Molinet [29], [30], and the references therein. On
the contrary, to the best of our knowledge, there are few works about time-periodic or quasi-periodic
solutions of Benjamin-Ono equations. One of them is [2], where 2-mode periodic solutions of (2.1) are
studied by numerical methods; another one is [28], which deals with an old very interesting question.

In [28] Liu and Yuan apply a Birkhoff normal form and KAM method to show the existence of quasi-
periodic solutions of a Benjamin-Ono equation that is a Hamiltonian analytic perturbation of (2.1), with
Hamiltonian of the form

H(u)4+eK(u), H = Benjamin-Ono, VK (u)= bounded operator.
The resulting equation is of the type
Ou = —0,{Hu, + tu® +eVK(u)} = Au+ F(u), (2.2)

where the Hamiltonian vector field has a linear part A, which loses d4 = 2 derivatives, and a nonlinear
part F', which loses dr = 1 derivative and, for this reason, is an unbounded operator.

In general, as it was proved in the works of Lax, Klainerman and Majda on the formation of singular-
ities (see for example [25]), the presence of unbounded nonlinear operators can compromise the existence
of invariant structure like periodic orbits and KAM tori. In fact, the wide existing literature on KAM
and Nash-Moser theory mainly deals with problems where the perturbation is bounded (see Kuksin [27],



Craig [15], Berti [6] for a survey. See also Moser [32] where the KAM iteration is applied in problems
where the Hamiltonian structure is replaced by reversibility).

For unbounded perturbations, quasi-periodic solutions have been constructed via KAM theory by
Kuksin [27] and Kappeler & Poschel [24] for KAV equations where d4 = 3 and the gap between the loss
of derivatives of the linear and nonlinear part is v := (d4 — dp) = 2, in analytic class; more recently, in
[28] for NLS and (2.2) where d4 = 2 and v = 1, in C* class; by Zhang, Gao & Yuan [38] for reversible
NLS equations with d4 = 2 and v = 1; and by Berti, Biasco & Procesi [7], where wave equations with
a derivative in the nonlinearity become a Hamiltonian system with d4 = 1 and v = 1, in analytic class.
See also Bambusi & Graffi [4] for a related linear result that corresponds to a gap v > 1.

Periodic solutions for unbounded perturbations have been obtained for wave equations by Craig [15]
for v > 1; by Bourgain [12] in the non-Hamiltonian case uit — uzy + u + uf = 0; by the author in [3]
for the quasi-linear equation uy — Au(1l + [ |Vu|?dz) = e f(t,z), where the integral plays a special role
(J |Vu|?dz depends only on time). Also the pioneering result of Rabinowitz [36] for fully nonlinear wave
equations of the form

Ut — Uy + iy + EF (X, U, Uy, Up, Uggy Uzt Ugt) = 0

certainly has to be mentioned here; however, the dissipative term a # 0 destroys any Hamiltonian or
reversible structure and completely avoids the resonance phenomenon of the small divisors.

The threshold v = 1 in Hamiltonian problems with small divisors has been crossed in the works of
Tooss, Plotnikov and Toland [34], [23], [21], [22] about the completely resonant fully nonlinear (y = 0)
problem of periodic standing water waves on a deep 2D ocean with gravity. So far their very powerful
technique, which is a combination of (1) changes of variables and conjugations with pseudo-differential
operators to obtain a normal form, and (2) a differentiable Nash-Moser scheme, is essentially the only
known method to overcome the small divisors problem in quasi-linear and fully nonlinear PDEs.

Note that recently normal form methods for quasi-linear Hamiltonian PDEs have also been successfully
applied to Cauchy problems, see Delort [16].

Thus, some of the general, challenging and open questions that come from the aforementioned works
are these:

e Which gap ~y is the limit case for the existence of invariant tori for nonlinear Hamiltonian PDEs?
How many derivatives can stay in the nonlinearity?

e What is the role of the Hamiltonian structure? Can it be replaced by other structures?

The motivations of the present paper are in these questions. Theorem 1.2 joins the above mentioned
results in the aim of approaching an answer, at least in simple cases, and shows that

(i) if the dimension is the lowest for a PDE, (¢,x) € T?, and
(77) the derivatives in the nonlinearity have a suitable structure (see (1.2),(1.3),(1.6),(1.7)),

then problem (1.1), where v = 0 (the nonlinearity A (u) loses 2 derivatives like the linear part) admits
solutions that bifurcate from the equilibrium v = 0. The Hamiltonian structure here is replaced by
reversibility: (1.1), in general, is a non-Hamiltonian perturbation of the cubic Benjamin-Ono Hamiltonian
equation

opu + HOppu + ax(ui") =0,

but N (u) satisfies the reversibility condition (1.8).
Let us explain the reversible structure in some detail. As a dynamical system, problem (1.1) is

Opu(t) = V(u(t)), (2.3)

a first order ordinary differential equation in the infinite-dimensional phase space L?(T;R), where the
vector field V : H2(T;R) — L*(T;R), u + V(u) is

V(u)(x) = —HOppu(z) — 0p(u?(x)) — Ny(u)(x).



The phase space can be split into two subspaces L? & L? of even and odd functions of z € T respectively,
u=u’+u’, u(—z)=u(z), u’(—x)=—u(x), xzcT, ucL?T;R).

To decompose u = u® + u° means to split the real and imaginary part of each Fourier coefficient of
u € L*(T;R), namely

u(@) =Y ;e u(m) =Y (Red,) e, w’(z) =) i(lmiy)e ",

JEZ JEL JEZ

Consider the reflection
R: u=u"+u’ — Ru=u®—u’. (2.4)

R is a R-linear bijection of L?(T;R), and R? is the identity map. In terms of Fourier coefficients,

R: u(x) = Zﬂj €¥* s Ru(x) = Zﬁijeij‘”, (2.5)

JEL JEZ

where E is the complex conjugate of ;. Note that Ru is real-valued for every real-valued u. (2.3) is a
reversible system in the sense that
VoR=—-RoV. (2.6)

It is immediate to check (2.6) for the linear part Hd,, of V using (2.5), and for the cubic part 9, (u?)
using (2.4). To prove (2.6) for Ny(u), using (1.6), (1.7) and (2.4) one has

a(-z) = —f(z), a(@):=Ni(Ru)(z), B(z):=Ni(u)(z).

Splitting a = a® + a°, B = 3¢ + $° and projecting the equality a(—x) = —B(z) onto L? and L? give
a® = —(¢ and a° = 8°, namely RS = —«, which is (2.6) for Nj.

(2.6) implies that V(u) € L2 for all u € L2 N H2. For, L? is the set of fixed points u = Ru, therefore
V(u) = =RV (u), whence (V' (u))¢ = 0.

By (2.6), if u(t) solves (2.3), then also Su(t) := R(u(—t)) is a solution of (2.3). Thus we look for
solutions of (2.3) in the subspace X of the fixed points of S. It is easy to see, using (2.4), (2.5), that X
is the space of functions u(¢, z) that are even in the time-space pair (¢, ), namely u(—t, —z) = u(t, x).

To prove Theorem 1.2 we apply (and slightly modify, under certain technical aspects; see below) the
method of Iooss, Plotnikov and Toland. Like in [23], the main difficulties here are: (¢) in the bifurcation
equation, which is infinite-dimensional (for this reason (1.1) is said to be a completely resonant problem);
and, especially, (i¢) in the inversion of the linearized operator, which has non-constant coefficients also
in the highest order derivatives and, therefore, contains small divisors that are not explicitly evident.

The main tool in the inversion proof is the reduction of the linearized operator £ to constant coefficients
up to a regularizing rest, by means of changes of variables first (to obtain proportional coefficients in
the highest order terms), then by the conjugation with simple linear pseudo-differential operators that
imitate the structure of £ (they are the composition of multiplication operators with the Hilbert transform
H), to obtain constant coefficients also in terms of lower order, and to lower the degree of the highest
non-constant term.

Since we look for periodic solutions, after a finite number of steps this reducibility scheme implies the
invertibility of £, by standard Neumann series.

Other, and minor, technical points are the following. Like in [23], the Lyapunov-Schmidt decom-
position is not used directly on the nonlinear equation, as it would be made in classical applications
(see [6] for the Lyapunov-Schmidt decomposition in completely resonant problems). Instead, it is used
a first time at the beginning of the proof, in a formal power series expansion of the nonlinear problem,
to look for a suitable starting point of the Nash-Moser iteration. In other words, this means to find a
non-degenerate solution of the “unperturbed bifurcation equation”. In Theorem 1.2 the existence and
the non-degeneracy conditions are the first and the second inequality in (1.11) respectively. Then the



Lyapunov-Schmidt decomposition is used a second time in the inversion proof for the linearized operator,
in each step of the Nash-Moser scheme.

This method seems to be more complicated than the usual Lyapunov-Schmidt decomposition on the
nonlinear problem, at least at a first glance. However, it simplifies the analysis when working with changes
of variables (namely compositions with diffeomorphisms of the torus T?). In fact, changes of variables do
not behave very well with respect to the orthogonal projections onto subspaces of L?, because they are
not “close to the identity” in the same way as multiplications operators are (in the language of harmonic
analysis, changes of variables are Fourier integral operators, and not pseudo-differential operators. See
also Remark 7.3). For this reason, it is simpler to work in the whole function space H*(T?) instead of
distinguishing bifurcation and orthogonal subspaces, at least for the first step of reducibility.

Nonetheless, in our setting (4.4) we keep track of the natural “different amount of smallness” between
the bifurcation and the orthogonal components of the problem. Thanks to this small change with respect
to [23], we avoid factors e ! in the Nash-Moser scheme and simplify the measure estimate for the small
divisors.

Regarding the Nash-Moser scheme, the recent and powerful abstract Nash-Moser theorem for PDEs
that is contained in [10] does not apply directly here, as it designed to be used with Galerkin approxima-
tions, while in our Nash-Moser scheme, after the reduction to constant coefficients, it is natural to insert
the smoothing operators in a different position: see (9.5). Even if our iteration scheme is very close to
the usual one, this small difference brings our problem out of the field of applicability of the theorem in
[10].

Going back to the “unperturbed bifurcation equation”, we point out that the restriction of the func-
tional setting to the subspace X of even functions (a restriction that can be made because of the reversible
structure) eliminates a degeneration and makes it possible to prove the non-degeneracy of the solution.
Moreover, the solutions we find in Theorem 1.2 are genuinely multimodal: for m = 1 the second inequality
in (1.11) is never satisfied, whereas for every m > 2 there exist suitable integers k1, ..., k,, that satisfy
(1.11) and produce a non-degenerate solution. This is a nonlinear effect: the solutions of Theorem 1.2
exist as a consequence of the nonlinear interaction of different modes.

Regarding the special structure (1.2),(1.3), the restriction of assuming (I) or (II), instead of considering
the more general case

N4(U) = g(x,u7Hu,UI,HUI,'LLII,H’U,ZI), (27)

is due to a technical reason: when Njy(u) is of the type (I) or (II), in the process of reducing the
linearized operator £ to constant coefficients we use simple transformations, namely changes of variables,
multiplications, the Hilbert transform #H and negative powers of 9, (which are Fourier multipliers). On
the contrary, in the general case (2.7) these special transformations are not sufficient to conjugate £ to
a normal form, and one needs more general transformations: changes of variables should be replaced by
general Fourier integral operators. In the intermediate case in which Ny in (2.7) does not depend on
Uz (but it does on Huy), an additional term of the type b(t)0,H appears in the transformed linearized
operators after the changes of variables. This term could be removed by a simple Fourier integral operator:
see Remark 7.1.

Regarding the choice of the leading term 9, (u?) in (1.1) (which is the first natural case to study after
the integrable one 9, (u?)), we remark that the cubic power has no special reversibility property: 0, (u?)
satisfy the reversibility condition (2.6) for every (both even and odd) power p € N. The proof of this fact
is the same as above: if f(u) = 9,(uP), using (2.4) one proves that {f(Ru)}(—z) = —{f(u)}(z), then
foR=—-Rof.

Finally, the coefficient 3 in the frequency-amplitude relation w = 1432 could be replaced by any other
positive number: 3 is simply the most convenient choice to do when working with the cubic nonlinearity
O (u?®). On the contrary, what is determined by the nonlinearity in an essential way is the sign of that
coefficient: for the equation

g + Httgy — 0 (u?) + Ny(u) = 0,

in which the cubic nonlinearity has opposite sign, Theorem 1.2 holds with w = 1 — 3¢? (the only changes
to do are in the bifurcation analysis of Section 5).



The paper is organized as follows. In Section 3 the setting for the problem is introduced. In Section
4 the formal Lyapunov-Schmidt reduction is performed up to order O(s*). In Section 5 non-degenerate
solutions ©; of the “unperturbed bifurcation equation” are constructed. Here the non-homogeneous
dispersion relation of the unperturbed Benjamin-Ono linear part

L+jljl =0,

where [ is the Fourier index for the time and j the one for the space, is used in a crucial way. The basic
properties of this relation are proved in Appendix 10. In Sections 6 and 7 the linearized operator is reduced
to constant coefficients. Most of the proofs of the related estimates are in Appendix 12 and use classical
results of Sobolev spaces (tame estimates for changes of variables, compositions and commutators with
the Hilbert transform) that are listed in Appendix 11. In Section 8 the transformed linearized operator
is inverted. In Section 9 the Nash-Moser induction is performed, and the measure of the Cantor set of
parameters is estimated.

Acknowledgements. 1 express my gratitude to Massimiliano Berti for many fruitful discussions and
suggestions, Pavel Plotnikov, Gérard Iooss and Thomas Alazard for useful conversations, and John Toland
for introducing me to the problem.

This work is partially supported by the Italian PRIN2009 grant Critical Point Theory and Perturbative
Methods for Nonlinear Differential Equations, and by the European Research Council, FP7, project New
connections between Dynamical Systems and Hamiltonian PDFEs with Small Divisors Phenomena.

3 Functional setting

Let
F(u,w) = wuy + Huge + N(u), N(u):= 0, (u®) + Ny(u).

Let Z := L?(T?,R). Decompose
7P =1 +Li + Ly, LZ&={(0,0}, Z7={10):1#0}, Zx={(j):j#0, l€ZL},
let
2 27
Zoc =R, Zr= {u e L¥(T) : / u(t)dt:O}, Zp = {u €Z: / ult, z) dz = 0},
0 0
so that Z = Z¢ @ Zp ® Zg, namely every u(t,x) € Z splits into three components
u(t7 l‘) = (Z + Z + Z )’Ill’j ett+iz) — o, + Zﬂl,o et + Z Uy (t) ez’jx7
% T7% 1#0 370

and denote Il¢, Iy, Il the projections onto Zg, Zr, Zg. Let Zy be the space of zero-mean functions,
and P the projection onto Zj,

Zog=Jr®Zp, P:=1-1lc=1lr+1lg. (3'1)

We define 0, ! as the Fourier multiplier
—1ije _ L ije —1
0, e :i—je Vi#0, 0, 1=0,

and similarly 9;'. Note that 0,10, =g, HH = —1g.

To eliminate a degeneration that appears in the bifurcation equation, as it was mentioned above where
the reversible structure was discussed, we consider the subspaces of even/odd functions with respect to
the time-space vector (t,x):

X:={ueZ: u-t,—z)=ult,x)}, Y:={ueZ: u-t,—z)=—u(t,z)}.



In terms of Fourier coefficients, every u € Z is u = ), .2 urex with u_j, = @, (because u is real-valued),
namely ux = ax + ibg, with ax,br € R and a_j = ag, b_ = —by, therefore

X = {u: Z arer : ap €ER, a_g :ak}, Y = {'LL: Z ibreg : b €R, b_p = —bk}7
kez? kez?

and L?*(T?,R) = Z = X @Y. The usual rules for even/odd functions hold: uv € X if both u,v € X or
both u,v € Y, and wv € Y if u € X, v € Y. Moreover H, 0,,, 0; are all operators that change the parity,
namely they map Y into X and viceversa, because they are diagonal operators with respect to the basis
{ex} with purely imaginary eigenvalues. Assumption (1.6) implies that the nonlinearity A" maps X N H?
into Y, like the linear part wd; + 0., H does, therefore F(u,w) € Y for all u € X N H?.
Also, we denote
XO =XnN ZO,

while Y N Zy =Y. We set problem (1.9) in the space Xy of even functions with zero mean, namely we
look for solutions of the equation
Flu,w) =0, ue X (3.2)

Notation. To distinguish L?- and L*>-based Sobolev spaces, in the whole paper the following notation
is used: two bars for L%-based Sobolev norms ||ul|s (1.10), and one bar for L>-based Sobolev norms

luls = |Jul|wso = Z sup [0 ,yu(t, z)|, s€N.

0<al<s (62

4 Linearization at zero and formal Lyapunov-Schmidt reduction
Let o -

L =0+ 0uoH, L[e"D] =i(l + j|j]) '),
Split Z2 =V UW,

Vi={(lj) ez I+jljl =0y ={(=jlil.j): j€Z}, W:=Z*\V

and Z=V oW,

V.= {uzZukekeZ}, W .= {u: ZukekeZ}.

keVy kew

V' is the kernel of L and W is its range. Also, let V :=V N Zy, so that Zy =V, & W.
We write a finite number of terms of a formal power series expansion to obtain a good starting point
for our Nash-Moser scheme. Let

w:lJrZwkek, u:ZukskGZo, U = Vg + wg, v € Vo, wg € W.
k>1 E>1
Then
Flu,w) = Lu + (w — 1)0pu + 05 (u®) + Ny(u)
=¢eLu; + 52{Luz + wlﬁtul} + 53{LU3 + w1 O0sug + waOpuy + &C(u?)}
+ 84{LU4 + w1 Osuz + wadsuig + w3dsuy + Oy (3usug) + 5_4N4(5u1)} +0(e%)

= ZEkfk.

k>1

In general, Ny (gu1) also contains terms of higher order than €*; in any case, Ny(u) — Ni(eui) = O(£%).
At order ¢, 71 = Lu; = 0 if w; = 0 and uy = v1 € V. Then F5 becomes

FQ = LU2 + w18tu1 = LU/Q + wlatvl.



Lwy € W and w10;v1 € Vy. Since we look for vy # 0, we have Fo = 0 if wo =0, w1 =0, ug = vp € Vj.
At order €® the nonlinearity begins to give a contribution: F3 = Lws + w201 + 0,(v3). The
“unperturbed bifurcation equation” is the equation ITy F3 = 0 in the unknown v;, namely

wodyv1 + My 0, (v3) = 0. (4.1)

In the next section (see Proposition 5.3) we construct nontrivial, nondegenerate solutions @7 of (4.1) with
ws = 3. A solution vy of (4.1) for any other value wy > 0 can be obtained by homogeneity by taking
vy = A1, A = (wa/3)Y/2. Hence there is no loss of generality in fixing wy = 3. At order &%,

Fa = Luy + 30;v9 + w30pv1 + 8$(3’U%1}2) + 6_4N4(€U1).

We fix wg = 0. The “linearized unperturbed bifurcation equation” is the equation Iy, Fy = 0 in the
unknown vy, namely

30,v9 + Hvax(3’l}%’02) = —5_4HvN4(EU1), (42)

which has a unique solution ¥2(¢) because ¥; is a nondegenerate solutions of (4.1). Thus, at u =
evy + 202(g) and w = 1 + 32,

F(ety + €20, 1+ 36%) = 3y 0, (03) + 'y 0, (302 02) + Na(evy + £202) — Ny(evy)
+ Ty Na(e0y) + €590, (30,03) + £°0,.(03). (4.3)

With these power of ¢, the sufficient accuracy is achieved to start the quadratic Nash-Moser scheme (see
section 9). Hence, for € > 0, let

F(u,¢) := (e My + ey ) F(ety + £2u,w) (4.4)
= e 2P F(ety 4 2u, 1+ 3£%)
= Iy {30,u + 0, (303u + e3v1u” 4 e2u®) + e *Ny(ety + %u)} (4.5)

+ My { Lu + £230pu + €0, [(v1 + eu)®] 4+ e 2 Ny(evy + €%u)},

wi=1+3e% P.i= My +1y, P7'=c Iy +y.
By (4.3), F(v2,¢) = O(e) (see Lemma 8.5 for precise estimates). For ¢ > 0, problem (3.2) becomes
F(u,e) =0, wue€ Xo. (4.6)

Like F does, F also maps Xy into Y.

5 Bifurcation

In this section we construct a solution v € V) of (4.1) and prove its non-degeneracy. Recall that in V it
is I+ j|j| = 0. Let o
gi(t,x) := e alilt+in) s ez (5.1)

Note that g;,¢;, =1 = gqo if j1 +j2 = 0.

Lemma 5.1. 1) (Product of two terms). Let ji,j2 € Z be both nonzero integers. Then Iy (gj,q5,) =0
except the case when j1 + jo = 0.

2) (Product of three terms). Let ji, jo,j3 € Z be all nonzero integers. Then Ilv(q;,q;,q;,) = 0 except
the case when ji + jo = 0 or j; + jz3 = 0 or ja + j3 = 0.

Proof. See Appendix 10. O



Consider m positive distinct integers 0 < k1 < ky < ... < k;,, m > 1, and let
K:= {kl,k’g,. . .,k‘m, —]{1, —kQ, .. .,—k}m} .
Consider three elements v,v’,v” € Vo N X with only Fourier modes in K,
v=>Y a;q, V=) big, V=Y ¢a,
JjeK jEK jeK
with a_; = a; € R, and similar for b;, c;. Then
" = Y a b0 050G Tv (V") = Y @y bi05, Ty (4,45, 55) -
J1,J2,J3€K J1,J2,J3€EK

Develop the sum with respect to ji. Let k € K. For j1 =k, Iy (¢;,¢;,9;,) is nonzero only if:

=k =k =k =k
jo=k or jo=—k or jo # *k or jo £ Lk . (5.2)
Js=—k VERSR\® Jz=—k J3 = —J2

Hence in the sum only these four cases give a nonzero contribution:

My (vo'v") = Z arpbicr qn + Z agbicj g + Z agbjck q; + Z agb;c; qi - (5.3)
ke k.jex kek,j#+k kek,j#+k

Since Dy jutk = Dokjek — Dokek.j=k — 2kek.j=—k» the third sum in (5.3) is

Z agbjck q; = Z agbjck q; — Z arbycr qr — Z arbrcr gk

kel j£+k kjeK ke ke
= Z arbjcr q; — Z arbycr qx — Z arbrcr qr
k.jex ke ke
(in the last equality we have made the change of summation variable k = —k’). Analogously, the fourth

sum in (5.3) is

Z arbjc; g = Z arbjc; g — Z arbiCr qr — Z anbiCr qr -

keK,jA+k kjeK kek keK
Thus
Iy (vo'v") = Z { — 3apbicy + ag ( Z bjCj) + by, ( Z ajCj) + i ( Z ajbj) } qr - (5.4)
kek jek jeK jex

1,1

The formula for Iy [0, (vv'v")] = 0,11y (vv'v”) simply has ik g instead of . For v = v = 0", (5.4)
gives

Iy (v®) :32 (—aiJrZa?)aka.
kek jek

Then

30,0 + Ty [0, (%) =33 (— k| — a3+ ag) ar ik g .

keK jex

This is zero if

(Zai)—az:uﬂ\ VEk e K. (5.5)

jeK
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Since Y ek af = 2(af, + ... +af ), (5.5) is equivalent to

a%l + 2(1%.2 + 2aﬁ3 + ...+ 2(12m =k
Qail + a%2 + 2ai3 + ...+ 2a%m = ko (5.6)

203, +2a;, + 203, +...+ai  =km,
which is a system of m equations in the m unknowns aﬁl, ceey azm. Let M the m x m matrix that has
1 on the principal diagonal and 2 everywhere else. M is invertible, and its inverse M ~! is the m x m
matrix that has « on the principal diagonal and S everywhere else, with

m—3/2 1
= - ) ﬁ = .
m—1/2 m—1/2
Hence (5.6) is equivalent to
ap, =p1, ap, =p2, .. G, = Pm, (5.7)

where (p1,...,pm) == M~ (ky,..., k), namely
1 m
pi::aki+ﬁzkj :m(ij)—ki, i=1,...,m. (5.8)
J#i Jj=1
(5.7) has solutions with all a; # 0 if all p; are positive. Note that p; > pj;1, because § —a =1 and
pj = pi+1 = akj + Bkjp1 — Bkj — akjin = ki —k; > 0.
Hence all p; > 0 if p,,, > 0, namely if
ki + ...+ kmo1 > En(m—3/2). (5.9)
When a; satisfy (5.7),

1 m
Z 2 _ 2 2 _ E .
Z Clj = Q(le 4+ ...+ a'km) = m— 1/2 o k'z . (510)

Remark 5.2. ky,...,k,, satisfy (5.9) if they are sufficiently close, as if they form a “packet” of integers.
Note also that if the smallest and the biggest integers satisfy the stronger condition

% < mmi:g’}? (5.11)
then ki, ko, ..., kn, satisfy (5.9) for every choice of the intermediate integers ko, ..., k1, because
ki +ka+...+kno1>(m—1ks > (m—3/2)kp,.
(5.11) is meaningful because (m —1)/(m — 3/2) > 1. O
Now we prove that for every f € VyNY there is a unique h € VN X such that
30:h + My 0, (3v°h) = f. (5.12)

Let feVNYand heVNX,

f=) iy eVnY, yj=-y;€R,  h=Y hjgGgeVnX, hj=hjeR
J#0 J#0
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Split
f=Tcf+gf, Tef=> iyiq, ef=> iyq;
JEK JjgK
and similarly h = Hxh + IIizh. The formula for Iy 8, (v2Ixch) is obtained from (5.4) with b; = a; and
¢j = h;, namely

Hvaz(v2(1'[;¢h)) = Z { — 3a%hk + 2ak<z ajhj> + hk(Za?)}zk qk -

ke JEK Jjex
Hence
30,(Ich) + My 0, (30°Tch) = 3y { — |k|hk — 3ahy, + 2az ( 3 ajhj) + Iy ( 3 a?) } ik g
ke JeEK jex

which is, replacing |k| by (5.5),

:32 { —2aihk+2ak(2ajhj)}ik% :GZ { _akhk+zajhj}akika.
kek jex kek

jek
Note that this sum has only Fourier modes in KC; in other words, the space of functions in V' that are
Fourier-supported on K is an invariant subspace for the operator 39; + Ily0,(3v2-) (with, of course, the
change of parity X — Y.
Thus, the equation 30;(TIxh) + Iy 0, (3v?(Ich)) = Tk f is equivalent to

*akhk + Z (ljhj = 6zzk = y;c Vk € ]C,
jex

namely to the system
Ay hkl y;ﬂ
M : =1 : (5.13)
ak,, Nk, Y.
because y’ , = yj, for all k € K, where M is the m x m matrix defined above (1 on the principal diagonal
and 2 everywhere else). Therefore there exists a unique solution of (5.13),

1
hi, = an (Oéy;ci + ﬂzy%)'
‘ J#i

dYonr<cy gl

jeER JjeEK

Since a; solve (5.7),

where C' > 0 depends only on k1, ..., k,, and m.
Now consider ITxh, I f. In the product

2 1
CIeh) = > ag,a5,h 45,455
J1,J2€K,53¢K

only the second case of (5.2) occurs, namely j; = k = —js € K, j3 ¢ K. Hence

My 0, ((eh)) = Y a%hjijqj:(Zai)Zijhjqj:mﬁx(H%h)

keK,j¢K kek  jgK m—1/2
by (5.10). Therefore
I PR S Ry N
3815(1_[]%]1) + Hvaw(?)’UQ(H;%h)) =3 Z ( - ‘j‘ + W) Zjhj qj-
JgK
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Analogously as above, note that this sum has only Fourier modes out of KC; in other words, the space
of functions in V that are Fourier-supported on the complementary of K is invariant for the operator
30; + Uy 0, (3v?) (with the change of parity X — Y). The condition for the invertibility is

ki+...+Fkn

T Al vigk (5.14)

When (5.9) holds, k1 + ...+ ky, > ky(m —1/2), therefore (k1 +. ..+ kp,)/(m —1/2) is automatically out
of K. Hence (5.14) can be more easily written in this equivalent form:

ki 4+ ...+ kn

i EN (5.15)
(5.15) implies that
L kit otk . .
—|J|+1m_71/2 > 6|4 Vj#0, (5.16)

where § > 0 depends only on k1, ..., k,, and m. Therefore the equation 30;(Ilzh) + Iy 0, (3v2(Ilxh)) =
i g has a unique solution IIj:h, with

c . .
|hyl < W\yjl Vi#0, j¢K.

Also, by (5.10) and Lemma 5.1, (k1 + ... + kp,)/(m — 1/2) = Ilc(v?), therefore (5.16) can be written as
e (w2) — [j]] > 8] for all j £0.
We have proved the following result:

Proposition 5.3 (Bifurcation for cubic nonlinearities). Let m > 2. Let 0 < k1 < ko < ... < ky, be m
positive integers that satisfy (5.9) and (5.15). Then there exist m positive numbers py, ..., pm > 0, given
by (5.8), and constants C,6 > 0 that depend only on ki, ...,k and have the following property.

Let K := {k1,...,km,—k1,...,—kn}. Every function v =, ajq; € Vo N X which is Fourier-
supported on K with

ail = P1, aim = Pm

is a solution of the unperturbed bifurcation equation 30;v + Iy 0, (v?) = 0.

For every f € VoNY there exists a unique h € Vo N X such that 30;h + Iy 0, (3v%h) = f.

If f € H%, s>0, then h € H**Y, with ||h||s+1 < C||f]ls. Moreover

e (v®) = [4]| =68l Vie€zZ, j#0.

6 The linearized equation
Remember that

F(u,e) = e 2P F(ev + e%u, w), w=1+3e% Pol=c2My + My,

€

where ¥ := ¥ is a solution of the unperturbed bifurcation equation (4.1) as in Proposition 5.3. The
linearized operator F’(u,e) applied to h, namely the Fréchet derivative 0, F'(u,)[h] of F with respect to
u in the direction h, is then

F'(u,e)h = e 2P F/(e0 + *u,w)[e*h] = P-L(u,€)h,
L(u,e)h := F'(ev + 52u,w)[h] = wiith + (1 + a1)HOpzh + acHOLh + a30ph + asHh + ash

where the coefficients a; = a;(t, ) = a;(u,€)(t, ) are periodic functions of (¢, z), depending on wu, e, and
are obtained from 9, (U?) and the partial derivatives of g, ga or go evaluated at (z,U(t, z), HU (¢, ), .. .),
U := &b + £?u. For example, in case (I)

a1(t,x) = (0y,92)(x, U(t, z), HU,(t, x)), as(t,x) = Ogaq (¢, x), (6.1)
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and in case (II)
ai(t,z) = (0y,90)(z, U(t,x), HU(t,x), Uy (t, x), HUz (t, x)), as(t,z) = 0. (6.2)

N(U) = 0,(U3) + O(U*), and U = v + £2u = O(e), therefore ay,az,as = O(e?), az, a5 = O(e?).
More precisely: let dp € (0,1) be a universal constant such that

(U, HU, Uy, HU ., HU,s ) || < 1 YU € HY(T?), |U||4 < do. (6.3)

Proposition 6.1. Let K > 0. There exists g9 € (0,1), depending on K, with the following property: if
e € (0,e0), ||lulla < K, and
levr + e*ulla < eol|v1]la + 3 llulla < o, (6.4)

then the coefficients a;(u,e)(t,x), 1 =1,...,5 satisfy
la1]s + |azls + |az — €230%| + |aals + |as — €2(30°)o]s < 3C(s, K)(1 + ||lullssa), 0<s<r.  (6.5)
a; s of class C' as a function of (u,€), with

Y 10uai(u, e)hlls + [Ouas(u,€)[h] — £*60h; + |Duas (u, ) [h] — *(60h).]s

i=1,2,4
< C(s, K) ([ hlls+a + llulls+allhlla), (6.6)
Z |0-a;(u,€)|s + |0-a3(u, €) — 602 |5 + |0.as(u, e) — £(60?),|s < e2C(s, K)(1 + ||ulls44), (6.7)
i=1,2,4

for 0 < s < r. The constant C(s,K) > 0 depend on s, K, and K, , of (1.4). In these estimates the
norm ||01||s+4 appears like a constant C(s) depending on s.

Proof. In Section 12. O

Remark 6.2. In general, the inequality ||[Hul||p~ < C|lu||r is false (see, for example, [26]), while it is
trivially true that |Hu||s < ||ul|s for all s. Therefore to obtain the estimate |Huzz||ne < C|lulls (which
is used to prove (6.3)) the right chain of inequalities is |Hugy|| e < C||Hugs|l2 < Clluge|l2 < Cllulls. O

Since v,u € X,
ay,a3,a4 € X, as,a5 €Y,

and L(u,e) maps X N H? =Y.
As a pseudo-differential operator, we write

L:=L(u,e) =wi + (1 4 a1(t, ) )HOps + ao(t, v)HOy + as(t, )0y + asa(t,x)H + as(t, x).

In this operator notation a function p(t, z) is identified with the multiplication operator h — p(¢, z)h, and
the composition is understood: for example, O,p is the operator pd, + p,, because 9, (ph) = pd.h + pih.
To emphasize that we are in the space of zero mean functions, write

L :=PLP,
where P = I — Il is defined in (3.1). Since F maps Xo — Y, also F'(u,e) maps Xy — Y, therefore
Lh=Lh Vhe X

because Ph = h and Pf = f for all h € Xq, f €Y.

7 Reduction to constant coefficients

In this section the linearized operator is conjugated to a linear operator with constant coefficients plus a
regularizing rest. The transformation is performed in several steps.
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7.1 Change of variables

As a first step in the reduction proof, we construct a change of variables that transforms £ into a new
operator with constant coefficients in the highest order derivatives 0; and H0O,,. Since £ maps X into
Y, we want that our transformation maps Xg -+ Xg and Y — Y.

We consider diffeomorphisms of the torus (¢, 2) € T? which are the composition of (i) a time-dependent
change of the space variable x — = + §(t,z), and (i7) a change of the time variable ¢ — ¢ + «(t) that
does not depend on space. Diffeomorphisms of this type preserve the special role of the time variable as
“a parameter” with respect to pseudo-differential operators of the space variable like H.

Let

VT2 = T2, (ta) = (t+at), 2+ B(t2) = (1,9)

and let ¥ be the transformation ¥ : u +— Wu,
(Yu)(t, z) := u(¥(t, ) = ult + aft), z + Bt z)) = u(r,y).

a(t) and B(t, z) are periodic functions in Y to be determined.

The conjugate ¥~ 1pW¥ of any multiplication operator p : h(t,x) — p(t,z)h(t,x) is the multiplication
operator (U~1p) that maps v(7,y) — (¥~ ip)(,y)v(r,y). By conjugation, the differential operators
become

U190 = 14 (T 1) (1)) 0 + (T8 (1,y) Oy, U190, = [1 + (U 18,)(7,9)] Oy,

U0, 0 = [1+ (U B8)(1,9)]2 Oyy + (V1 Bea)(1,9) 0y, UT'HY = H + Ry,

where Ry is defined by the last equality, and it is regularizing in space, bounded in time, see Lemma
11.5(4i1).

Since o, €Y, ¥ maps X — X and Y — Y. However, in general, ¥ does not map Xg into Xy.! To
obtain a transformation of X onto itself, consider the projection onto Zj,

U := PUP.
Since ¥~ = I, one has PO~ = Pl = 0, and
PUIP =PU (] -TIg) =P (7.1)

As a consequence,
(PU'P)(PUP) = PU~'PUP = PO 'UP =P,

therefore U : Zy — Z, is invertible, with inverse
()~ = (POP)~! = PO P

Thus U is a linear bijective operator of Xg — Xg and Y — Y. Also,

~/ 2 ~I 5 1 ~/ 2 ~I 3
(¥, Plh = [llg, ¥]h =1 (&' + By + &' By)h = W /’Jr? h (&' + B, + &' By) dr dy, (7.2)

where (1,y) — (7 4+ a(r), y + B(7,y)) = ¢~ 1(r,y) is the inverse of ¥, and similarly
(WP = [, ¥ =He(of + Be + o/ ).

These commutators are regularizing operators, both in space and time (by integrations by parts, any
derivative applied to the argument h moves to «, 8 or &, ).
By (7.1),
L1 :=U"1LU = PUTPLPUP = PU~LPUP = PL, P,

IFor example: let u(t,z) = cost € Xo, 8 = 0 and « such that the inverse of t — t +a(t) is 7 = 7+ (1/2) sin7. Changing
variable in the integral, [1»(¥u)dtdz = (1/2) [r2 cos® Tdr dy > 0, therefore Yu ¢ Xo.
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where

L1 =w[L+ () ()]0 + [1+ (T ar)(7,9)] [1+ (71 B2) (7, y)]* Dyy M

+ {[1 + (\I/_la'l)(Tv y)} (\I’_lﬁwm)(Tv y) + (‘I’_la’2)(7—’ y)[l + (\I/_lﬂw)(Tv y)]} ayH

H {8 (ry) + (¥ as)(r )L+ (P71 80) (7, 9)]} 9y
+ (P ag) (T, y)H + (¥ as)(1,) + Ru,

Ri=[1+ @ an)(ry)] 1+ (T 8) (7, 9)]* Oy R

AL+ (T a) (1, 9)] (T Boo) (1,y) + (T az) (7, 9)[1 + (U718, (7, )]} 0y R

+ (U aa) (1, y) Ry — P(Y ™ as) (7, y) [T, V]

(7.3)

because LIIc = asllc. We look for «, 8 such that the coefficients of 0. and 0,,H are proportional,

namely
[+ (T an)(r )] [+ (7 B) (1, 9)]° = pa [L+ (T 1)(7)]
for some po € R. (7.4) is equivalent to
(1+ ax(t,2)) (14 Balt,))” = o (14 (1),
Take the square root of (7.5),

14 B.(t,x) = ué/Q (1+ o/(t))l/z(l + al(tyx))_lm,

and integrate in dz,

1 27
L=py* (14 ()75 / (1+a1)""/?da.

s

Take the square,

pz (1+d'(t) = (% /0%(1 + al)—1/2d:p>_2 =: p(t).

Integrating in dt determines po € R,

1 27 1 27 _92
=1Ilc(p) = — — 1 —1/2q dt
H2 a(p) 277/0 (271'/0 (I+a) x) ’

then a(t) € Y is also determined,

1 -
a(t) = — 7 (Lrp)(t).
H2
Since a1 € X, also p € X, therefore a € Y, as it was required. (7.6) gives
_ p g (p) —1/2
Bm: 1/2 1+a 1/2—1: —1= ) =1+a ’
A & Hric(p) Oric(p)’ ¥ ( &
therefore the Zg-component of 3 is determined,
1 -1

(UeB)(t,z) =

(TIrp)(t) + e (p) (0, Hgp)(t, z).

(7.4)

(7.7)

(7.8)

Since a1 € X, also p € X, and lIgf € Y, as it was required. The Zp-component of 5 will be determined

later. With this choice of a, 8, (7.4) is satisfied. By (7.4),
L1 =MLy,
where M is the multiplication operator of factor [1 + (¥~ta/)(7)],

Lo = wor + p20yyH + as(7,y) OyH + a7(1,y) Oy + ag(7,y) H + ag(T,y) + Ra,
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1 ((1+a1)Bez +a2(l + Bs 4 a

QG(Tvy) =v 1(( 1) 1—|—Oé/2( ))(Tvy)a aS(Tvy) = ! 1+4Oé/ (Tay)v
g1 wpBt + az(1+ Bw) L oq—1 as

a7(T7 y) =V ( 1+a )(T7 y)a CLg(T, y) =V 1+a (Ta y)7

1
BT T

We show that
ag(T,Y) € Zp. (7.10)

For each fixed 7 =t + «(t), changing variable y = x 4+ 5(t,z), dy = (1 4+ 5.(t,z)) dx in the integral,

& [P O () B (t,0) + aa(t, 2)(1 + Bt )
| = [ o (1 + Balt, ) do.

By (7.5),
(14 a1)Bez + az(1 + B2)
1+ o

In case (I) as = (a1), (see (6.1)), therefore
(1+a)(1+B:) (1+a)(1+5:)

in case (II) ag = 0 (see (6.2)), therefore

(14 a1)Bes +as(1+B2)  Bow
(1+a1)(1+B,) “ 115 9 {log(1 + B)}-

(1+ a1)Bes + az(1 + Be)

(1 +Bz) = M2

= 0, {log[(1 + a1)(1 + B.)]};

Hence in both cases (I) and (II), by periodicity, f027r ag dy = 0, which is (7.10).

Remark 7.1. The assumptions (I),(IT) on the nonlinearity Nj(u) have been used to prove (7.10). In
more general situations, when (I)(II) are not satisfied, a term b(7)H09, also appears, where b(T) € Zp
is the Zp-component of the coefficient ag (which here is zero by (7.10)). This term can be removed by
using the Fourier integral operator

u(ryy) =Y uy(r) € o Au(r,y) = uy(r) vl

JEL JEZ
where p(7) = 0-1b(7). O
Now we choose the Zp-component of 5 so that IIra; = 0. Denote (¢) := (Il 5)(¢). As above,

%/TC”(W) dy = % 0 7rwﬁt(t,l’)+Ci3J(rt,aﬂfzt()1+3z(t,m)) (L4 uft,a3) o

This integral is equal to some constant p; € R if and only if

Wy (t) +o(t) = m(L+a'(t), o) = %

27
/ (wﬁtE(l +BE) +as(1+ 65)2) dr, BY¥:=Tgp. (7.11)
0
Hence an integration in dt on T determines 1 € R and v € Zp,

_ malt) - (0 Tiro)(1)

o € Zrp. (712)

pm =1lc(o), ()

Thus
Me(a7) = w1, a7y —p1 € Zg. (7.13)

17



o € X because a3z € X, therefore v € Y as it was required. Hence § = v+ (IIg3) € Y. As a consequence,
ag,a9 €Y, ar,ag € X. (7.14)
Since I =P+ I,
L1 =PLP =PMLP = (PMP)(PLP) — PMILLoP = MLs,
where y 5 .
M :=PMP, L3:=PL3P, L3=Ly— M 'MllcLs.

Thus
L3 = wor + p20yy " + as(7,y) OyH + a7(1,y) Oy + ag(7,y) H + ag(1,y) + Rs,

R3 =Ry — M *MIcL,.
M is invertible, its inverse M1 maps Xo — Xg and Y — Y, and

1

M= mh = s Temh), i) =

e (7.15)

whence
(Pm)

I¢(m)
Formula (7.15) can be proved by a direct calculation: MM~ h = M~'Mh = h for all h € Z.

From Proposition 6.1 and the explicit formulae above, jg, i1, p, v, 3,7 all depend on (u,¢) in a C!
way, and the following estimates hold.

MﬁlMHc = *( ) IIc.

Proposition 7.2. Let K > 0. There exists eg € (0,1), depending on K, such that, if ¢ € (0,¢p),
lulls < K, and ||ulls,e0 satisfy (6.4), then all the following inequalities hold.
pa(u,€) and pi(u,e) satisfy

2 = 1| < C(K),  |Oupa[h]| < *C(K)I]l4, |Ocpi2] < 2C(K),  (7.16)
i — 2L (30%)| < 2C(K),  |dum[h]] < ' CE)I|Alls,  |0-p1 — elle(60%)] < 2C(K).  (7.17)

Y(t,z) = (t+alt),z + B(t,x)) and its inverse =1 (1,y) = (7 + a(7),y + B(1,v)) are diffeomorphisms of
T2, with

lali + 1Bl + a1 + 8L < C(K) <1/2,  |als + |Bls + |als + |B]s < °Cs, K)(1 + |[ulls+a), (7.18)
forall1<s<r. o, B,&/f are C* functions of (u,e). For 1< s <r—1, their derivatives satisfy

|Bualh]ls + [0uBIh]]s + |0ud[h]]s + |0uB[R]ls < e*C s, K)(Ihllsra + [[ullstsllR5), (7.19)

|0-atls + 10215 + [0=als + 10815 < Cls, K)(1+ [|ull s+5)- (7.20)
The operators ¥, ¥~ satisfy
1 flls + 1127 flls < Cls, K)F s + Nullsall F1)s - 12 Fllo + 127 fllo < 211f o, (7.21)

1@ =D flls + 1 =D flls < EC(s, K) ([ flls1 + Nullsesl 1), (7.22)
forall1 < s <. (7.21),(7.22) also hold for ¥, ¥, Moreover, for 1 < s <r,

(O fls+ 107 fls < C(s, K)(Sfls + lullstal 1), [9Flo =127 flo = | flo, (7.23)
(U = D) fls + (U7 = D) fls <2C(s, K)(| flst1 + Nullsss]£]1)- (7.24)
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The operators W, W1 depend on (u,e) via o, 8. The derivatives of W f, WL f with respect to u in the
direction h and with respect to ¢ satisfy

10 (T ARl + 10 (¥ A)Als < *Cls, ) fls1llblls + 1 1 lPllsta + llullsss I Fl1R]5),  (7.25)
10T f|ls + 102" flls < 2C s, K) ([ fllss1 + ullsss ] £110), (7.26)

forall1 <s <r—1. (7.25) and (7.26) also hold with | | instead of || ||s on the left-hand side and on f.
(7.25) and (7.26) also hold for ¥, &1,
For2<s<r,

(M =D flls + [(MT =D flls <Cls, K)(If]ls + Nullsyall £ll2)- (7.27)
The derivatives of Mf, M~ f with respect to u in the direction h and with respect to e satisfy

10u (M) B]lls + 10 (M HRs < *CCs, K) (£ llslBlle + [1F1l21Alls+5 + lullsvsll fllzRls),  (7-28)
10-MFls + 10-M 1 fls < €2C(s, K) ([ £Ils + lullsoll £1]2), (7.29)

for2<s<r-—2.
The coefficients of L3 satisfy

lagls + |a7 — €230%[5 + |ass + |ag — €2 (30%)a]s < 3C(s, K) (1 + [|[ul|st6), (7.30)
|Ouagh]|s + |0uaz[h]|s + |Buas[h]]s + [Ouag[h]|s < e*C(s, K)([|hlls4a + lullsssllhlls),  (7.31)
|Ozag|s + |Ocar — 56172|5 + |0:casls + |Oca9 — 5(6172)m|5 < 520(5, K)(1+ ||lul|s+6)- (7.32)

For s,mi,ma >0, m=mi+mg, m+s+1<r,
1057 R0 flls < €C (s, 1m0, K) (|15 (1 + ullms) + Nl s+masllfllo)- (7.33)
Form,s>0, m+s+3<r,
IR0y flls < €2Cs,m, K)(1Fls(1 + [ullmsr) + [ flollllstmerr), i=1,2,3. (7.34)
Proof. In Section 12. O

Remark 7.3. The loss of one derivative for the difference ¥ — I in (7.22),(7.24) is typical of any change
of variables: in general, if we want to estimate a difference h(x + p(x)) — h(z) with a factor of size p, we
can do nothing but making a derivative, h(z + p(z)) — h(z) ~ b/ (z)p(z). O

7.2 Descent method: conjugation with pseudo-differential operators

We construct an invertible linear operator d = POP that maps Xg — Xg and Y — Y and conjugates Ls
to a new operator ~ .
Ly:=d L3 =PLP, L, =D+R, (7.35)

where D has constant coefficients and the remainder R is regularizing in space, bounded in time. We
look for D of the form

D = wd; + p2dyy M + p10y + v + oM + (V) + v H)O ! + (Vg + v_oH)D, 2,

where po, 11 are the constants calculated in the previous section, vy, vy, k = 0, —1, —2 are constants to
be determined. We look for ® such that (PL3P)(PPP) — (POP)(PDP) is an operator of order < —3 in y.
Write @ as

=P+ Py + o+ D3, O = (¥ +HBF)O K, £ =0,1,2,3,
namely ®,h = oMo h+H(BHF O, *h), where o¥) (1, y), B*)(7,y) are functions to be determined. @ is

close to the identity if a(?) is close to 1 and all the other a®), 3(*) are small.
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Calculate and write the terms of order 1,0, —1,—2 in y, and move all the ‘H’ on the left-hand side,
introducing the corresponding commutators (for example, write aH as Ha + [, H]). Note that

H2=HH=Tlp=—-1+1p, Tf:=I1-Mg=1Tr+c.

I3 is regularizing in y because it is the operator that takes the mean of a function with respect to y.
Therefore, up to a regularizing rest, sums and products of terms of the type (o + H3) follow the same
algebraic rules as those of complex numbers, where the role of i is played by H. As a consequence, to
perform the calculations up to terms containing II% or commutators with H it is comfortable to introduce
the complex notation:

f(k) = k) + Z'B(k), L3 =wo; + Mgiayy + a76(“)y + ags + R3, arg:= a7+ iag, agg:= ag+ iag,
D = wi; + 1210y, + 10y + co + c_16y_1 + c_28y_2, e =V +iv_yg,
where i means H.

We stress that this is only a notation, as H maps real-valued functions into real-valued functions, and
therefore ao + Hp is real when a, § are real. Straightforward calculations (use P = I — I for ag) give

L3® — ®D =P(T10y + To + T-10, ' + +T-20,” + R4)P, (7.36)
where the coefficients T}, are
T = Qr©, Ty =Qf® +SfM —cy 1O,
Ty = Qf(l) + Sf(o), T 5= Qf(3) + S’f(z) —c_ f(l) —c_o f(0)7 (7.37)
Q, S mean
Qf = 2ipaf, + (are —v) f, Sf:= (L3 =Rz —co)f =wfr +iuafyy +arefy, + (ags —co)f,
and the rest R4 is the sum R3P® — agllc® + terms of order 9, 3 + other regularizing terms that
(a) contain a commutator [g, H], where g € {aj,a(k)7ﬁ(k) :7=6,7,8,9, k=0,1,2,3}; or
(b) contain 5.
The complete formula for R4 is in Appendix 12. For example, typical terms are

HJEB(O)é‘g, QGHJEﬁél)@;l, [aﬁ,’l-[}aéo), [ﬂ(l),H]ﬁy.

Now we choose v;, al®), 3¥) such that all T,,, n = 1,0, —1, —2, vanish. Every T}, is an operator of the
form T,h = pph + H(gnh) for some functions p, (7, y), gn(7,y). Thus T,, = 0 if

To solve (7.38), which is a system of two equations in the real-valued unknowns a*), 5(*) we use complex
notation again. Consider the complex-valued unknown f*) = o) 4+ i3®*) where now i is the standard
imaginary unit of C. Then the real system (7.38) is equivalent to the complex ODE Qf(®) =0 for n =1,
and similar complex equations for n = 0, —1, —2, according to (7.37). Hence we look for complex-valued
solutions f*) of the four complex equations T), =0, n = 1,0, —1, —2.

Reduction of Ty. — Let

a%s(1,y) = arg(T,y) — 1 = a7 (1, y) — p1 + ias(7, y).

Remember that a7 — v, a6 € Zg (see (7.10),(7.13)). Ty =0 if

Qf” = 2ipafi + azi(ry) f* = 0. (7.39)
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The solutions of (7.39) are the exponentials f(°) = exp(y), where (7, y) satisfies
ipapy + aty(T,y) = 0. (7.40)

(7.40) determines the Zg-component of ¢,

(07 a)(r,y) + i=— (9 T par)(7,y).

(Meg)(ry) = 5 (9 'L (r,y) = 205

2p9 2#2

Reduction of Ty. — Since f©) = exp(yp),

SO = OO 6O = wor +ins (2 + @yy) + arey + (ass — co). (7.41)

Moreover

?
(a76)* + 5 — v azg

i,uztpi + arepy = 2t

-
4pi2
by (7.40) and because ayg = a¥y + v. Since Qf©® = 0, we solve the equation Ty = 0 by variation of
constants: f() =M £O) s a solution of Ty = QfM + SO =0 if nV solves

2ipz i + ¢ = 0. (7.42)

(7.42) has a periodic solution n() if g(®) € Zp. The condition

e (9") = E e ((a76)?) + He(ags) — co = 0

determines the constant cg,

co = E Hc((a76) ) + Hc(agg) e C.
The condition

7 (g'") = w(Ire), + M7 ((a%s)?) + Iz (ags) = 0

i
dpo
determines the Zp-component of ¢,

i

(Mrep)(1) = —

T (07 My ) () — (0 Thrans)(7) € Zr,

So ¢ e Zg, (7.42) can be solved, and the Zg-component of nM is determined,

(M) (r,y) = =— (0, 9 ) (7, y) € Zg. (7.43)

212

Reduction of T_y. — Since f() =M 0 §#0) = £0)4(0) hy (7.40) and the definition of S,
SFV — ey fO =8O 4y 2ips £ + az6 £ O] + FO [wn® +ipany) — c1] = F g,

where
g =g +wn® +inon) + pin(d —c_y. (7.44)

By variation of constants, f?) = 72 £ is a solution of T_; = Qf® + SfM) —c_; f©O =0 if n® solves

2ipz (P + g = 0. (7.45)

(7.45) has a periodic solution @ if ¢1) € Zp. By (7.42), ¢ = —2ipy n{", therefore

nWg® = —2ipy n™ V) = —ipz0,{(nV)*} € Zg.
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As a consequence, the condition ¢(*) € Zp determines
r(n) =0, c1=0. (7.46)
Thus (7.45) can be solved, and the Zg-component of 7(?) is determined,

7

5 (079 ) (). (7.47)

(ITpn @) (7, y) =

Reduction of T_y. — Since c_1 = 0, T_y = Qf®) + Sf? — ¢_, fO. By the same calculations as
above,

SFP —en fO =g SfO 40 [2ipa fO + aze f O] + FO [wn® +ipanfy) — en] = f09P,

where
9? =g+ won® +ipan) + pnl —co. (7.48)

By variation of constants, f®) = 53 f(0) is a solution of T_y = Qf®) + Sf3) —c_y O =0 if n® solves
2ipa (P + g = 0. (7.49)

(7.49) has a periodic solution 7 if ¢® € Zg. Both (II7n?)g(® and (IIn?)g(® belongs to Zz because
g9 € Zp. Hence

Lz (n®¢) = Mr[(en®)g®@ + (rn®)g® + ([en®)g V] = Hr[(en?)g™)],

and the same for II¢ () g). 7 is given by (7.47). The condition I7¢?) = 0 determines
1
rn® = —= O M [(Tgn'?) g ), (7.50)

the condition IIg(®) = 0 determines
¢z = Te[(Men®)g ).
Thus ¢® € Zg, (7.49) can be solved, and the Zg-component of 53 is determined,

i _
(ILgn®) (7, y) = s (0, g (7,y). (7.51)

The only terms that have not been determined by the four equations 77 = 0,...,T_9 = 0 are o (p),
o (nM), Te(n®), Te(n®), and Tz7(n®). Fix all of them to be 0. Split real and imaginary part,

1 1 1. 1 -1
Re (p) = ST O My |(Mpaz)ag) — — 07T (ag) - T (9, "as), (7.52)
1 1 2 2 1 -1 1 -1
Im (¢) = " dnw 0 Ur[(lgar)” — (a6)”] — — 0"l (as) + 2% (9, Ugar), (7.53)
a0 = eRe®) cos(Im (p)), BO =R sin(Im (). (7.54)

By (7.14),
Re(p)e X, Im(p)eY, aPeX, pOey.

As a consequence, ¢(©, 7™M ¢@) n@) ey +iX, ¢ 3 e X 4+4Y, and
aMey, gWex, aPeXx, pPecy, aPey, B eXx.

Hence @ preserves the parity, namely ® maps X - X and ¥ — Y.
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By (7.14), (Ilgaz)as € Y, ag € Y, therefore

, 1
vy, =Re(e) =0, vp=Im(c) = % Hc[(HEa7)2 - ag] + I (as). (7.55)

v_1=v_,=0,and
Vo =Re(c_a) =0, v_y=1Im(c_s)=Im{Il[(ITgn®)g]}. (7.56)

Put
Ho = Vo, H—2:i=V_2.

Since Ty, Ty, T—1,T—o vanish, (7.36) becomes L3® — D = PR4P, and (7.35) holds with
Ly=D+R, D=uwd+pHoy + 0y, + poH + p_oMo,?, R:=> PRy (7.57)
If ® is invertible, we have transformed £ into £4, namely
Fm UNMBLG 1, fy = 6N S, (7.58)
From the formulae above, pg, iz, a®), 3(%) are C' functions of (u, ¢), and the following estimates hold.

Proposition 7.4. Let K > 0. There exists 9 € (0,1), depending on K, such that, if ¢ € (0,e9),
lullio < K, and ||u||4,c0 satisfy (6.4), then all the following inequalities hold.

|uo| < £*C(K), [Bupto[R]] < *C(K)[All5, |0:110] < €*C(K), (7.59)
2| < *C(K), |Oup—2[h]| < e*C(K) A2, |0=1-2| < *C(K). (7.60)

The operator b : Zy— Zy is invertible, and maps Xg — Xo and Y — Y. o, ! satisfy
(@ = Dflls + 1@ = D) flls < 2C (s, K)(IIflls + llullssr2ll fll2)  Vf € Zo, (7.61)

for all 2 < s < r—7. The deriatives of ®f, 1 f with respect to u in the direction h and with respect
to € satisfy

10u(@£)[B]lls + 10u(@ )IA]lls < *C(s, K) U sllllsa + [ I2lBllssr2 + Jullssrzl fll2lRllia),  (7.62)

10-® £« + 10:2" flls < eCs, K) (|1 fIls + [l s 22l fIl2)- (7.63)

Moreover
10-(@ = ) flls < 2C(s, K) (|10 flls + [1£]ls + llullss13(10-F 12 + 1 £]12)), (7.64)
105(® = 1) flls < €2C(s, K) (105 flls + I1flls + llwllsra(10F fll2 + [ fll2),  k=1,2, (7.65)

for2<s<r-—9, foral feZy R o
The operators U@, WM, @101, &I M=IU~! gre all of the type I + S, where S satisfies

1S£lls < 2C(s, K)(Iflls1 + Nullssrzll fll2), 2<s<r-T. (7.66)
The rest R satisfies
1ROy flls < *Cls, K)IIflls + lullssazllfllz), 0<m <3, 2<s<r-—12. (7.67)

Proof. The proof is in Section 12. O
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8 Inversion of the transformed linearized operator

In view of the Nash-Moser iteration, we invert £4 = D+ R on a subspace of Fourier-truncated functions.
Let
ZN = {U = > w ek:} CZ, k=(j)ez? |kl=[l+1jl, Zov:=ZoNZy,
|kI<N
with N > 0 sufficiently large to have v € Zx, namely K C [—N, N|, where K is defined in Section 5 (see
Proposition 5.3). Let Iy, I3 denote the orthogonal projections onto Zy and Z3 respectively. Let

Xon =XoNZy, Yn:=YNZy, Von:=WNZyn, Wyx:=WnN2IZy.

Uy Lally maps Xon — Yn because Li: Xo— Y. Since Zoy = Von & Wy, to prove that HyLally :
Xon — Yy is invertible, we project on the subspaces Voy and Wy (Lyapunov-Schmidt decomposition,
like in Section 4): given f € Yy,

. Iy, Lallyy o b+ Ty, LaTlyy b = 11
MnLillyh=f <= { Vo LTl o - vy Lallwy i = v / (8.1)
HWN ['4HV0Nh + HWN £4HWNh = HWN f
Since D is diagonal, D maps V — V and W — W, therefore
Iy Ly0ly = Iy Ry, Iy L4y = My RITy. (8.2)

Lemma 8.1 (Inversion on Vyy). Let K > 0. There exists ¢y € (0,1), depending on K, such that, if
g € (0,e0), |lullio < K, and ||u||4,e0 satisfy (6.4), then

HV0N£4HVON Von N Xy = VonNY

is invertible, with

. _ C(s,K)
(Mo LaTlven )~ hlls < =5 (Ihllomr + lullsas [1ll2), 3 <s <r—8. (8.3)

Proof. L4 =® 1L3® (see (7.35)). Split L3 = L + e2A + 3B, where

L=0,+0,H, Ah=30.h+0,(30°h),
B = 573{(/L2 — 1)8yy7-l + ag 8y7'[ + (07 — 623’1_}2) 8y +agH + ((19 — 62(3’1_)2)y) + Rg}

By (7.16),(7.30),(7.34),
IBRls < C(s, K) (Iyylls + 1hylls + 12lls + ullsr (g llo + [Rll0)), 2 < s <r—3. (84)
Let S; : Zo — Zo, Sy := e 2(®—1I), Sy := e~ 2(®~1—1T) (recall that P = I on Zp). Since Iy L = LIIy = 0,

My, LaIly,, = My, @ L3 @Iy, = Iy, (I 4 €289)P(L + €2 A 4 > B)P(I + 25111y,
= 62HV0N (A + 5Bl)HVON7 (85)

where
By = £S5PLPS; + S95PA + cAPS; + £3S,PAPS; + &~ 'PBP®.

By Proposition 5.3, Ily, , Ally,, : Vov N Xo = Von NY is invertible, with
||<HVONAHVON)_1h||S < CHhHS,1 Vh e VonNY, Vs>0, (86)
where C' > 0 depends only on the set K. By (7.61),(7.64),(7.65), for 2< s <r—9,

151hlls + [1S2hlls < C(s, K)([IAlls + [[ulls+a2]/2]l2),
10.81hl|s < C(s, K)(10.1]ls + 2]l + [l ssra(l0-hll2 + [[B]]2)), 0. = Or, Dy, Dy,
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for all h € Zy. Then, since L = 8, + H2, Ah = 30.h + 30°9,h + (30°),h, and by (8.4),
My Billvg hlls < C s, K)([|Blls41 + [[ullsra Rlls), 2 <s <7 =9, (8.7)
because [|02h||s = [|HO2h||s = [|0:h]ls < [[hlls41 for all h € V. Thus, by (8.6), (8.7),
1My Billvyy ) (M Ally )~ lls < Cs, K)([IR]ls + Jullsaa [2]]2), 2 <s <=9,
for all h € Von NY. Since By maps X into Y, By := (Ily, , B11ly,, ) (ITy; , Ally, )~ maps Y into Y. By
standard Neumann series with tame estimates (see Lemma 11.2), I 4+ ¢Bs is invertible as an operator of
Von NY onto itself, with

I(Z +eB2) " hlls < Cls, K)([[Alls + lulls+aa [Pll2), 2<s <7 =9, (8.8)

provided that eC(K) < 1/2, for some C(K) > 0 depending on K, K, ,,|7]19. By (8.6) and (8.8),
HVON (A + EBI)HVUN = (I + EBQ)_l(HVONAHVON) : XoNVon = Y NV is invertible, with

{ITvy (A + eB1)llv } hlls < Cs, K) (IR ]ls—1 + [lullssrs [[ll2), 3 <s<r—8.
By (8.5) the thesis is proved. O
By Lemma 8.1, the Vyy-equation of system (8.1) can be solved for Iy, , h,
My, h = (I, L4TTy, ) " My, o f — oy LaTlw B (8.9)

Substituting Iy, , h, and using (8.2), the W-equation of system (8.1) becomes

A(Ilwyh) = f1, (8.10)

where
A= HWN Z4HWN - (HWN 7~2’HVON ) (HVON E4HVON )71 (HVONIIQ’HWN)’ (811)
fi= HWN f= (HWN 7§'HVUN ) (HVON Z4HVON )_1HVUN I (812)

L4 =D+R, where D = WO+ Hyy +p1 0y +poH+p—oH9, %, which is (7.57). In the basis {etlr+iny,
D is diagonal with eigenvalues

Mg =N (ue) = i(wl + pajlj| + i — posign(j) — pogsign(4)(ij)~?), (8.13)
where w = 1+ 3¢2 and p;(u, ) are C! functions of (u,¢). By (7.16), (7.17), (7.59), (7.60),
o — 1+ |2 — 1] + [pa] + [po] + [p—2] < 1/2 (8.14)
for e < g sufficiently small. Remember the notation (j) = max{1, |j|}.

Lemma 8.2 (Inversion on Wy ). Let K > 0. There exists eg € (0, 1), depending on K, with the following
property. Let € € (0,e9), ||ulli9 < K, and assume that ||ull4,e0 satisfy (6.4). Let

A1 (u, €)] > v(l,j) € W, (8.15)

1
2(j)3
where

Wy = {(l,5) e W: il <N} ={(l,5) € Z* : 1+ jlj| # 0, [] <N}

Then A: XoNWyx — Y N Wy is invertible, with

AT Rlls < Cls, K)(Ihlls4s/2 + lullssr61a/2lbll2),  3/2<s <r—12-3/2. (8.16)
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Proof. Since £, = D + R, we have A = Dw, + Rwy, where
Dwy :=wy Pllwy, Rwy = HWNﬁHWN - (HWN,]?’HVON)(HVON‘C~4HVON)_1(HVON7§’HWN)'

Like A, also Dy, and Rw, map X into Y. Dw, : Wy — Wy is invertible because A;; # 0 for all
(l7j) € Whn. Let

U=03+Tr + e, U = WTHY 1y = (i5)° Vj#0, Up=1.
I\ ]|U;| > 1/2 for every (I,j) € Wi because [U;] = (j)>. As a consequence,
U Dy bl < 2|hlls VYh e Wn, Vs> 0.
By (7.67) and (8.3),
[RwyURlls < [[Rwydyhlls + [Rwy (Ir + e)hlls < €2Cs, K)(|hlls + [|ulls+16]lh]l2)
for 3 < s <r — 12, whence
IRw Dy hlls = I(Rwy U) U™ Dy )hlls < 2C(s, K)([1Alls + llullssrellhllz), 3 <s <r—12.
For s =3, [|Rwy Dy hlls < e2C(K)|[h||s. By Lemma 11.2, I + Ry, Dy}, is invertible on Wy, with

I+ Ravy Dy )" hlls < Cls, K (Il + fullassllillz), 3 < s <r—12,

if 2C(K) < 1/2. Therefore A = (I + RWND;[}N)DWN is also invertible. Now HD;[,lNhHS < C|h|ls43/2
because, for indices (I,5) € W such that |\, ;| < 1, one has |j|> < C|i| by the triangular inequality and
(8.14), so that 1/|N; ;| < 2(j)3 < C(1)3/2. Hence (8.16) follows. O

Remember the definition P. := ¢2IIy + .

Lemma 8.3 (Inversion of HN£~4HN). Assume the hypotheses of lemmata 8.1 and 8.2. Then for every
f € Yn there exists a unique h € Xon such that UxyLylyh = f. The inverse operator (I yL4Ily) "t
maps Yn — Xon, with

(TN Lalln) " flls < e72C (s, K) (I f lsvs2 + lullsyrrrssall fll2), (8.17)
Iy LTIy ) T P flls + (1P (I LaTIn) T flls < Cls, K) ([ fllswa/2 + Nl sazsapal fl2), (8.18)

3/2<s<r—12-3/2.

Proof. Use (8.1), (8.9), (8.10), (8.11), (8.12), (8.3) and (8.16). O

Lemma 8.4 (Derivatives of (IIyL4IIx)"'). Let K > 0. There exists eo € (0,1), depending on K, with
the following property.
Let € € (0,e0), |ull22 < K, assume that ||u|l4,e0 satisfy (6.4), and that (8.15) holds. Then, for
2<s<r—18,
10u(Ty L4TIn) ) flls < €71 C (s, K) (I f lswollPll1a + 1 £ 18 (1]l sx16 + 1ullss23llhll14)),
10 (M LaIIN) " flls < e72C s, K)(I[ flls+6 + l[ulls+25ll Flls),
10 (T L4TIN) ™ [R] P2 fl|s + (| P-0u (T L4TTn) " B f s
<eC(s, K) (I flls+ellbllia + 1 £ lsCInllst16 + l[ells+2slll14)),
{0- (N LaIly) T Y Pe flls + | Pe{0: (M Lalln) T} flls < €7 C s, K)(I[ fllsto + llullsv2sl flls)-
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Proof of Lemma 8.4. By Proposition 6.1, for all 0 < s <7,

I£f1ls < Cls, K)(IF stz + llullsall £112),
0. LA fNls < €2C (s, K) (I f ls2llhlla + 1 Fll2(Bllsa + NullsrallRlla),
10-LS s < eC (s, K)(If sz + llullsrall fll2).

Hence, from formula (7.58), using the estimates (7.25), (7.26), (7.28), (7.29), (7.62), (7.63) for &, ¥, M
and their inverse,

I£4flls < C(s, K)(IFlls+2 + llullssrall f12),
10uLalhlf s < €*Cls, K) (I st allbllia + I A5 (IRl ssra + JullsssllRllia)),
10-Laflls < eC (s, K)IF s+ + lulls+1s]| £115).
for 2 < s <r —10. The Lemma follows from formula (11.9) and Lemma 8.3. O

8.1 Further estimates
In this section we collect some tame estimates that will be used in the Nash-Moser iteration.
Lemma 8.5 (Tame estimates for F'). (i) There exists €9 € (0,1), depending only on ||v1]|5, such that
ellolla + e2[|T2lla < o, IT2(e)lls < C(s),  0:02(e)|s < €7 C(s), (8.19)
1F(D2(e),€)lls < eC(s), [|0-{F(va(e), €)}]s < C(s), (8.20)

for every e € (0,e9), 2 < s <r.
(ii) Assume that go,u, h satisfy €ol|v1]|4+€3(||ulla+ ||R]l4) < do (8o is the universal constant of (6.4)),
and ||ullg + ||h]la < K. Let

Q(u, h,e) := F(u+ h,e) — F(u,e) — 0, F (u, €)[h]. (8.21)

Then, for2 < s <r,e € (0,&),
1Q(u; ks e)lls < C(s, K)lla(llAlls+2 + lullst2llpla)- (8.22)

(i1i) Assume that o|v1 |4 + €2|lulla < o, namely (6.4), and ||ulls < K. Then
[1E(u, e)lls < C(s, K)(1+ [lulls+2), (8.23)
10 F (u; €)[Al]ls < C(s, K)(||hlls+2 + llulls2(lPll4), (8.24)
10 F (u, €)[1]lls < e C(s, K) (1 + [ulls+2), (8.25)
forall2 < s<r,ee(0,¢e).

Proof. In Section 12. O

Remark 8.6. Estimate (8.22) actually holds with an additional factor € on the right-hand side. However,
this makes no essential difference in our iteration proof below. O

Lemma 8.7. Assume the hypotheses of Lemma 8.4. Then

WMy Lally) Ty "M IIP |, < C(s, K)(I flls+5/2 + llullst1745/2[1 fll2) (8.26)
for2<s<r-—12-3/2.
Proof of Lemma 8.7. By (7.21) and (7.61), the term on the left-hand side in (8.26) is

< C(s, K) (|| (Mn Lally) T N @ T MY P flg o+ [fufl a2 | (M £ally) T TN @~ MTHITHR, o)
for 2<s<r—7 Write @ !M-10~! as T + S, where S satisfies (7.66). Since Iy P. = P.Ily,
(N LyIIy) Iy M YO P f = (MnLyTly) L PIIN f + (M Lylly) N SP. f,

then use (8.18) for (IIyLyIx) ' P.ITy f, and use (8.17), (7.66) for (IIy LMy ) TN SP. f. O
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9 Nash-Moser iteration and Cantor set of parameters

Let
x:=3/2, a>0, N,:=explax"), neN, (9.1)

with Ny = exp(a) sufficiently large to have K C [—Ng, Ny] (K is defined in Section 5). Consider the
corresponding increasing sequence of finite-dimensional subspaces Z,, := Zy,,, with respective projections
II,, :==1l,. For all s,a > 0, II,, enjoys the smoothing properties

ML ul|s4a < NY|ulls Yu e H?, (9.2)

T ulls < Ny ullsya Yu€ HTS

where II- = I — II,,. Note that (9.2), (9.3) hold even if N,, > 0 is not an integer number.
In the previous sections we have proved the transformation

F'(u,e) = P~ L(u,¢) = P L(u,e) = P71OUMPL P 1! (9.4)

where ¥, M, ®, L4 all depend on (u, ¢). Following a suitable Nash-Moser scheme, we construct a sequence
(un) € C*°(T?) of e-dependent trigonometric polynomials by setting ug := U2 as defined in Section 5,
ho := 0, and

Up+1 = Up + hn+1a thrl = _HnJrl@nén(Hn+1£~4,an+1)71Hn+1§);1/\;{;1(II:LIPEF(U%); (95)

provided that the inverse operator Z,, := (Hn+1[24(un)l_[n+1)*1 is well defined on Z,, 1. The notation in
(9.5) means ) ) )
Lan = La(uy) = Lo(un(e),e), Wy = T(uy,) = ¥(uy(e),e),

and similarly for M, P. Also, L4, = Dy, + R,,. We omit to write explicitly the dependence on € only
to shorten the notation. At a first glance, (9.5) could seem an unusual and excessively complicated
Nash-Moser scheme. However, in some sense it is “the most natural” for the present problem, as the
“normal form” for the linearized operator is given by L4, = D, + R, therefore it is natural to impose
Diophantine conditions on the eigenvalues of D,, and to insert smoothing operators II,, before and after
it.

With h,, 41 defined by (9.5), one has hyy1 = —11, 19, ®,Z, 11,4 1¢n,

F(un) + F'(up)hnsr = o i= P10 M @, {115, 0 — Ty Rolly 1 Tl icn + Lagbn ) (9.6)

where ~ o o o
Cp =0 M PF (uy), by =@, 0, I 0,0, T, 10,41

(9.6) follows directly from (9.5), and is proved in Section 12. Hence

F(Un+1) = TTL + Q(un7 hn+1)7 (97)

where @ is defined in (8.21).

By Lemma 8.3, I1,, 11 £~4(un)Hn+1 is invertible if the eigenvalues A ;(un, ) of D, satisfy the Diophan-
tine condition (8.15) for u = u, and N = N, ;. Let W, := Wy, . Define recursively the set of the
“good” parameters e, those for which (8.15) holds: let Gy := (0,&¢), and define

Gt = {g € Gt My, )] > V(1,j) € Wn+1}, n>0. (9.8)

1
2(4)3
G, is the set of the parameters e for which (ug, hg, Ak, Gi) can be defined recursively for k = 0,...,n.
On the contrary, after constructing (ug, by, Ak, Gx) for k < n,

Bn+l = gn \ gn—i—l

is the set of the “bad” parameters ¢ for which the Diophantine condition (8.15) on the eigenvalues
A1 (un,€) is violated on |I| 4 [j| < Nypy1, the inverse of (I1,41L4(un),41) is not well-defined, hg,q1
cannot be defined by (9.5), and the recursive construction stops. Therefore at the n-th step we eliminate
the bad set By, 11, and restrict the parameter set to the subset G, 11 C G,,. For convenience, put By := (.
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Proposition 9.1 (Nash-Moser induction and measure estimate for the parameter set). There ezist
universal constants 1o, 9 > 0 and constants C,C", ¢y, a, b, ey > 0 depending only on vy, Kg ., such that if
Go = (0,¢0), €0 <&, > 10, and a defines N, in (9.1), then the following induction hold.

Let (P,) = {(Pn)(2), (Pn)(49)}, n > 1, be the following set of statements.

(Pn)(3). Gy is an open set. The Lebesque measure of B,, satisfies |B,| < e2Cb,,, where the sequence
(bn) satisfies Yo" b, = C' < c0.
(
a

P,)(ii). For every e € G, hyn(c) € Z,, is well-defined. h, : G, — Z,, € = hy,(€) is of class C* as
function of e, with

1B (e)llso < exp(=bx"),  [10:hn(€)llsg < ™" exp(=bx™). (9.9)

(Py) holds. If (P,) holds, then, using (9.5),(9.8) to define hypi1 and Gpi1, (Pny1) also holds.
As a consequence, the Cantor set Goo := (1,50 Gn C (0,€0) has Lebesgue measure

\QOO| Z 50(1 — EQC).
For every € € G, the sequence (uy(g)) converges in H*°(T?) to a limit us(g), which solves
F(ux(g),e) =0.

Moreover, ux(g) € H*(T?) for every s in the interval so < s < (r + cg)/2.
If gi;, i = 0,1,2 in (1.2),(1.3) is of class C*, then also us(g) € C°(T?).
S0, To and cg can be explicitly calculated: sg = 22, co = 28; for ro see (9.22) and below.

We split the proof of Proposition 9.1 into two parts: the Nash-Moser sequence (P,)(i) with its
regularity in subsection 9.1, then the measure estimate (P,)(¢) for the parameter set in subsection 9.2

9.1 Proof of the Nash-Moser iteration

First step. Let us prove (Py)(it). For ¢ € Gy, (9.5) defines h; = hy(e). By (8.19), the condition (6.4)
holds. By (8.19), if 22 < r, then ||v3(€)||22 < C for all € € (0, €), for some constant C. Take this constant
C as the “K” in all the lemmata of the previous sections, so that the assumption K > ||ul|22 is satisfied
for u = ug = v2(e), for all € € (0,&9). In this way, to indicate the dependence on K in all the constants
C(s, K) is redundant, and we simply write C(s, K) = C(s). By (9.5), (8.26), (8.19) and (8.20),

1halls = [Zo@oZoIlicolls < C(s)(1F (uo)llsrs/2 + lluollssrrys 2l F(uo)ll2) < eCls)
if s4+1745/2 < r. Hence the first inequality in (P;)(i4i) holds if
£0C(s) < exp(—bx). (9.10)

O:hy is obtained by differentiating every term in formula (9.5) with respect to e and applying the estimates
for 0.V, 0.9, 0-{(I11 L4(uo(e),e)IT1) "1}, etc; using (8.19) for O.v2, and (8.20) for 9. {F (v2(e),e)}, we get

10-ha ()]s < C(s)

for € € (0,e0), s+ 17+ 5/2 < r. Therefore the second inequality in (P;)(éi¢) holds if (9.10) holds (with
a possibly different constant C(s), as usual).
Inductive step. Now assume that (P,) holds, n > 1, and prove (P,1)(i%). By (9.9),

l[unlls < fluolls +Z Ihells < lI32lls + C (), C(b): Zexp (9-11)
k=1

Note that C(b) is independent on n, it is decreasing as a function of b, and C(b) — 0 as b — 4o0c. Hence,
for s > 22, |Jupll22 < ||D2]l22 + C(b) < 2||v2]l22 = C for all € € (0,¢p) if

b>C, (9.12)
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for some C > 0. As in the previous step, take this constant C as the “K” and replace C(s, K) with C(s)
in all the lemmata of the previous sections. Moreover, (6.4) is satisfied for © = w,, if g9 is sufficiently
small, independently on the parameters. Also, |lu,|s < C(s).

By (9.5), (9.2) and (8.26), for « > 0,2 <s—a <r—12—-3/2,

thJrlns S Ng+1‘|an&)nIan+lcn”sfo¢
< N1 C(s = a)(1F (un) | s—ats/2 + 1tnlls—atr7rs /2] F(un)l2)- (9.13)

Take o := 17+ 5/2, and denote s’ := s — 17. Since s’ > 2,
Monsalls < (9.13) < N CEUE @)l + ltnls [ F(un)llz) < N CO)IF ()l
because ||u,||s < C(s) by (9.11). By (9.7), F(u,) = rn—1 + Q(tn—1, hy). Therefore
[Pntalls < Ar+Ag,  Ari= N7 Cs)rnallss Ag = Ny C(9)|Qun—1, hn)lle. (9-14)
By (9.6), rn—1 is the sum of 3 terms, say (I)+(II)+(III). The first one is
M) =P 10, M, &, (T2 ML T PP (0, ).

Using (7.66), like in the proof of Lemma 8.7, no negative power of € appears in the estimate of (I). Using
(9.3) to deal with IT-, for 3 >0,2 < s+ 3 <r — 8, one has

1Dl < C(s + BN P(1F (un—1) | +p+2 + llun—1 ]l +413 [ F (n-1)ll2)-
The same argument applies to (IT) and (III), whence
Irn-tlls < C(s" + BNy P (IF (un—1)llsr+ 548 + [un—1lls+g10l F (1)),
2 < s+ <r—16. Applying (8.23),
Il < O + BINTP (14wt lospsr0) = Cls + NP+ fun 1 lospiz)  (915)

Now estimate the “high norm” By := ||hg|ls+p+2. To each k = 0,...,n, apply (9.13) with s + 5+ 2
instead of s, and use (8.23): for 2< (s++2) —a <r—12—-3/2,

Akt1lls+p+2 < N§+1C(5 +B8+2- a)(\\F(Uk)||s+ﬁ+2fa+5/2 + ||Uk||s+ﬁ+2fa+17+5/2||F(“k)||2)
< N C(s + B) (L + Jluklls4p+2) (9.16)

where, as above, a := 17+ 5/2. For (8.19), ||ug|ls4s4+2 < C(s+ B) if s+ 8+ 2 < r. Then, by (9.16),
Bi = |hlls4ps2 < NP'C(s + ), and

k k
By1 < NeaCls + B) (1+ uollsspsa + D Ihillespse) < NeCls+8)(1+ 3 B;)  (917)
j=1 j=1
for 1 <k <n. By (9.1), this implies that
1Pkllstp42 = Bi < exp(bx”), (9.18)

k =1,...,n+ 1. For, by induction: (9.18) holds for k¥ = 1 if C(s + f) exp[(@a — b)x] < 1, namely if
(b — aa) is larger than some constant depending on (s + 3). Suppose that (9.18) holds for all j € [1, k],
k>1. Forb>1,

k
1+ Zexp(l_)xj) < Cexp(bx*), VkeN,
j=1
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for some universal constant C'. Then, by (9.17), (9.18) also holds for k+1 if C(s+3) exp[x* (aax —bx +b)]
< 1, namely if ~
b—3aa > C(s+p) (9.19)

for some C(s + 3) > 0, and (9.18) is proved. Thus ||u,—1||s+s1+2 < C(s + B) exp(bx™~ 1), and, by (9.15),
Irn-1ller < Cs + B)explx" (b — Bax)],  Ar < C(s + B) exp[x" " (b+ aax” — fax)]-

As a consequence, A, < % exp(—by"*?) if
a(fx — ax®) = b1 +x*) = C(s + ) (9.20)

for some C(s+ 3) > 0.
Estimate Ag. Since |[un_1llsip2 = [un—1]s—15 < C(s), by (8.22) we have Ag < NSy ,1C(s)||hn|l2.
This is < £ exp(—bx" 1) if B
b—3aa > C(s) (9.21)

for some C(s) > 0. Now fix

b:=Ba+Da, B:=[x®+1+x)Ba+1)]x L (9.22)

Since x = 3/2 and o = 17 + 5/2, 3 is a universal constant, and the constants C(s + 3) can be written
as C(s). Fix a > C(s) sufficiently large to satisfy (9.19), (9.20), (9.21) and (9.12). Then fix gg < C(s)
sufficiently small to satisfy (9.10). All the above conditions on s hold if

2<s<r—-2-p.

Hence the minimal value for r is ro := 24 + 8. Put sg := 22. For s = sg = 22 and r = rq, all the above
constants that depend on s and K, become constants depending only on K ,,. With this choice of
parameters, the first estimate of (P,,41)(4i%) is proved.

The second estimate of (P,+1)(4i¢) can be proved by the same arguments. Observe that in every
estimate for J. there is an additional factor 1/e: indeed, terms like e? or P., after being differentiated,
have one degree less as powers of . Terms like F(uy,¢), \i/(un,s), ..., after being differentiated with
respect to €, contain also terms like 0y, F'(tn, €)[0ctin], aulif(un,s)[agun], ..., and the loss of one degree
as a power of € comes from (9.9). The estimates for 9, and 0. of all the terms are given in the previous
sections (and remind formula (4.5) for F'(u,€)).

For each ¢ for which the sequence (uy,(£)) can be constructed, by (9.9) u,, = ug+Y_,_, by is a Cauchy
sequence in H*°(T?), therefore u, () converges in H*° to some limit us,(g) € H* as n — oo. Since the
map H% — H* 72 u — F(u,¢) is continuous, ||F(up,e) — F(tUso,€)|so—2 — 0. On the other hand, we
have proved that

”F(umf)HS’ < ||Tn—1|‘5’ + ”Q(un—hhn)Hs’ = C(SO)Nn_fl(AT + AQ) < C(SO)N;fl eXp(—BXn'H) —0

as n — oo, where s’ = sg — 17 = 5. Thus F(us,e) = 0.

Now let 22 = 55 < 81 < S2, with 57 = Asg + (1 — A)s2, and X € (1/2,1). Apply (9.16) with so instead
of s+ 8+2: for so —a<r—12—-3/2 we get

1Phallss < NiZa Cls2) (1A fluglls,)  VE >0,

for some constant C(s2) depending on sg. For (8.19), |luglls, < C(sz2) if s < r. Then the “very high
norms” By, := ||hi||s, satisfy B] = ||h1]|s, < N{*C(s2), and

k
B, < N,§‘+1O(52)(1 + ZB;), k> 1.

j=1
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Therefore there is a constant K (s9) such that
lhklls, = By < K(s2) eXp(BXk), k>1. (9.23)

Let us prove (9.23). Since b — 3aa > 0, where a, b have been fixed above, the inductive step (k = k + 1)
holds for all k > ko(s2), for some kq(s2) depending on sy which is sufficiently large. Note that the constant
K (s3) have no role in the inductive step. Then choose K (s2) := max{||hz||s, exp(—bx*) : 1 < k < ko(s2)},
so that (9.23) holds for all £ > 1. Now, by (11.1), (9.23) and (9.9),
hscllsy < 20 Pll3 11357 < 2K (s2)'~ exp(=Abx*) exp((1 — A)bx*) = C(s2, A) exp((1 — 22)bx"),

and the series >, exp((1 — 2A)bx*) converges because (1 —2)\) < 0. This implies that |Juccl|ls, <
lluollsy + Doy Prllsy < oo. Since s1 < (so + s2)/2 and sy < r — 12 —3/2 4+ o, a = 17+ 5/2, this
argument holds if

r+ 28
5

If g;, 1 = 0,1,2 that defines the nonlinearity A is of class C°°, then there is no upper bound for s;, and
the argument applies for every s; > s, whence u, € C.

S1 <

9.2 Proof of the measure estimate

Go = (0,&9), Bo = (0. Let us estimate Gy,y1, 8,41, n > 0.
The set G, is defined by (9.8). u,(¢) is a C* function of e, and ux(u,e), k = 2,1,0, -2 is a C*
function of (u,e). Therefore each eigenvalue A\ j(un(¢),€) is C! in €. B,,4; is the union

1
Bhi1 = U s = {6 € Gt A (un, )] < g } (9.24)
(l)j)ewnJrl

Write the eigenvalues A ;(un (), ¢€) as
Ay (un(e), ) = iw(l+ p}(e)),

do o i(un(e),e) o —po(un(e),e)
el s wrve pal e e )

(where we mean sign(j)j 2 = 0 for j = 0). Since w =1+ 3% > 1, |\ j(un(e),€)| > |l + p}(e)], and

:u72(un(5)> 8) Sign(j)
1+ 3e2 72

pn(g) = :U/Q(UTL(E)’E)

n n n 1 ;
1S ={ee g+l < 2<j>3} (L, j) € Wat1. (9.25)

For j =0, p?(e) = py(e) = 0, therefore Q?,o = () for all [ # 0. The pair (I,j) = (0,0) does not belong to
Wh+1, hence the case j = 0 gives no contribution to the union (9.24). So let j # 0.

p2(un(e),e) .2 3 m(un(€),8) o o 3 i (un(e),€) 3 0
S 1—-3e+0(e), 132 = 3be” + O(e”), BT 0o(®), k=0,-2,

where b := I (9?), and the precise meaning of O(?) is given by (7.16), (7.17), (7.59), (7.60). Therefore

PO =dliln+ @) e = (B —1) = s+ 2 400

r?(e)| < C for some C > 0 independent of j,n,e. Also, by Proposition 5.3,
J
. . 3b ) )
b1l > i, )—3+m‘ >35 VjeN, j#0.
As a consequence,

26 <[ri(e)| < C
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for e < go sufficiently small to have |7 (e) +3 — 3b/|j[| < . Suppose that € € Q}fj # (0. Then, by the
triangular inequality,

+ Ce2|512. (9.26)

L " " L 1
L+ jlill < [T+ pj(e)l + | —pje) +4lil] < 2Py ) < 5t

1
2(5)°
[+ jl7]l > 1 because [ + j|j| is a nonzero integer. Thus we have a “cut-off”: if Q{fj # (), then 1 <
1/2 + Ce?|j|?, and

C < ljl < ol 0.27)
for some C > 0. Moreover, by (9.26), [ belongs to the interval

—jlil = 1/2 = C&3|j|* <1< —jlj| +1/2 + C3|j . (9.28)

As a consequence, for any fixed j with |j| > C/eg, the number of integers ! such that QZ‘] # () does not
exceed the number of integers [ in the interval (9.28), namely

BI: O £ 0) < 201/2+ CEJ?) +1 < 'Rl (9.29)

because 2 < Ce?|j|? by (9.27) (and the number of integers in an interval [a, b] is at most (b —a+ 1)). By
(9.25), (9.29) implies that B,,4; is the union of a finite number of closed sets, hence G,, ;1 is open.
From the chain rule, (7.16), (7.17), (7.59), (7.60), and ||0-u, (£)||12 < e~1C (which follows from (9.9)),

() = e~ 6+ 75 + 0(2).

Hence, for any fixed j, the sign of 9.pj () is the sign of j(—1+ b/[j|), which is constant with respect to
e. By (9.27),

, 6b . .
10-p} (2)| = |y|25‘ —6+ T O(a)’ > |jl*ed > Clj

if €9 is sufficiently small. So p? is strictly monotone as a function of ¢, and, as a consequence, Q?j is an
interval, say [e1,€2]. If p} is increasing, then

1
o = ) — ) / D.p(e) de > Cljl(ez — 1) = CLiIIN,,

and analogous calculation if p7 is decreasing. Thus

< < (9.30)
171
Also, Q] < |Q ;| because ', C Q”]
Now spht the union (9. 24) into two parts, the union over the “old” indices (I, j) € Wyht1 NW,, = W,
and the one over the “new” indices (I,7) € Wy41 \ Wa. By (9.29) and (9.30), the Lebesgue measure of
the union over the new indices is

" " C 1
‘ U 0 < Z|Ql,j\ < Z 7 |4 60|J|2 05(2) Z W = Ce% Cn+1,

new new Nn<|j|<Nnt1 N, <|j|SNpt1

where

co = Z W, Cnt1 i= Z ——, and z_%cnzz,—:C'<oo.

2 2
1<|51<No Nin<|j|<Nnt1 1 l7]=1 ‘j‘

For old indices, let € € Qlej, with (I, j) € W,,. By the triangular inequality, w,, = u,—1+ hy,, and estimates
(7.16), (7.17), (7.59), (7.60) for Oy pr(u,c),

[+ 2y @ < L+ + Ipj (e) — P ()] < 2| E + O hn(e)12-
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Since Q}fj C Gn, and (1,5) € W,

- 1 _ 1 .
P C{e€bn g <P O < 5z + C P In(e) s }-
141 71
As above, p7~! is strictly monotone as a function of ¢, [0.p} ' (¢)| > C|jl, and [|hn()|l12 < exp(—bx™)

by (9.9). Hence
An . T 1
1] < CegljI? exp(—bx )m
because |j| < N,. By (9.29) and (9.1), the Lebesgue measure of the union over the old indices is then
\ o <DTlop <oef YT N exp(—bx™) < CefNitexp(—bx") = Cefexplx" (b + 4a)].

old old |71<Ny,

< 053Nn eXp(—EXn)

Since b —4a > a > 1 by (9.22), 37 exp[x"(—b+ 4a)] = C' < co. We have proved that
Busa| < Cefbnsr, Y b =C < oc.
n=0

Therefore | Up>1 By | < €3C, whence |Goo| > £0(1 — £0C).

10 Appendix A. Kernel properties
Proof of Lemma 5.1. 1) Let ji, jo be nonzero. gj,q;, = q;j, € V for some js € Z if and only if
J1+Jd2=17s, —alil— ja2liel = —Jslisl.
Let ny := |jg| and jx = oxng, o € {1, -1}, k =1,2. If 01 = 09, then
Ja =J1+j2=o1(ny +n2), Jaljal = jilsr] + jaljal = o1(nT +n3),

therefore |j3|2 = (n1 4+ n2)? = (n? + n3), and this is impossible because nyng > 0. If 01 = —09, then

Js=Jj1+j2 = o1(ny —ng), jsljis| = jilji] + jalje| = o1(ni —n3),

whence |ng — n1|(n1 +ng — |ng — n1|) = 0. This holds only for ny = n;.
2) Let j1, j2, j3 all nonzero. gj,q;,q;, = g;, € V for some j, € Z if and only if
J1+Jo 4 Js = ja,  —giliil = jelj2| — jsljs| = —jaljal-
Let ng := |jkl, jx = oxnk, k = 1,2,3,4, with 01,092,053 € {1,—1} and 04 € {1,0,—1}. If 01 = 02 = 03,

then

—n%—n%—ng—i—(nl—i—ng—&—ng)Q:O,

which is impossible because nq,ns,n3 > 0. If 01,02, 03 are not all equal, say 01 = 03 = —0o3, then
oang = js = j1 +Jj2 +jz = o1(n1 +na —n3),

ouni = jalja| = j1lg1| + j2lj2| + jslda] = o1(nf +n3 —nd).

If j4 = 0, then
ny + no = ngs, n%—i—ng:n%,

which is impossible because ning > 0. Thus js # 0, 04 # 0. As a consequence,

2. .2 2 2
ny+ng —ng =ong, n]+ns—n3=oni, o:=o0104€{1l,—1}.
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If o = —1, then

2 2 2 2
n1 +ng +ng =ng, niy+n;+ny=ng,

which is impossible, as already observed. Thus ¢ = 1 and
ny — N3 = Ng — Na, (n1 —7’L3)(TL1+77/3) = (n4—n2)(n4+n2).

If n1 # ng, then the second equality implies ny + n3 = n4 + no. Therefore the sum of the two equalities
gives
ny = N4, N3 = N2,

hence js + j3 = 0 because 09 = —o3. If, instead, n; = ng, then also ny = ng4, and j; + j3 = 0 because
01 = —03. O

11 Appendix B. Tame estimates

In this Appendix we remind classical tame estimates for changes of variables, composition of functions
and the Hilbert transform, in Sobolev class on the torus, which are used in the paper. For these classical
estimates see also, for example: [23], Appendix G; [18], Appendix; [9], section 2; [19]. Before that, remind
standard Sobolev norms properties (Lemma 11.1) and tame estimates for operators (Lemma 11.2).

Lemma 11.1. Let d € N, d > 1, and s > d/2. There exists an increasing function C(s) > 0, s > so,
with the following properties.
(i) Bmbedding. lulz= < C(so)llullsy for all u e H*(T4,C).
(i1) Algebra. |luv|s, < C(s0)||ullsollv]lsy for all u,v € H*(T%, C).
(#3t) Interpolation. For 0 < s1 < s < 89, s = As1 + (1 — \)sa,
lulls < 2lull3, [lull;*  Yu € H*(T?,C). (11.1)

For0<s; <01 <03 < sy,

[ullo [ulloy < 4llulls, llulls, Vue H™(T?C). (11.2)

(11.1),(11.2) also hold with all ||ul|s replaced by |u|s, u € W*>(T4), s € N.

(iv) Asymmetric tame product. For s > sq,

luvlls < C(s)llullslvllso + Clso)llullsollvlls  Vu,v € H*(T). (11.3)

(v) Mized norms tame product. For s >0, s € N,
luvlls < C(s)([ullslvlo + [ullofv]s) Vu e H(T?), v e W*>(T). (11.4)

Proof. (ii3): see [33], page 269. (iv): see the Appendix of [10]. (v): write D*(uv) = X:B_M:a(Dﬁu)(D'Yv)7
use the elementary inequality ||(D®u)(D7v)|lo < ||DPulo|DYv|o, then the interpolation (i44). O

Lemma 11.2. Let 0 < 59 < s, and cg,cs > 0. Let S be a closed linear subspace of Z (for example,
S=ZyorS=2ZynNY). Let T :SNH*®* — SN H% be a linear operator.
(i) Tame Neumann series. Let co < 1/2. Assume that

(T = Dflls < collflls + sl fllsor 1T =D fllso < coll Fllso (11.5)

forall fe SNH*. ThenT : SN H% — SN H® is invertible, with

1@ = D flls < 260l lls +4esll fllaos 1T = Dllsy < 2¢0]1 o (1L.6)

(i) Tame derivative of the inverse with respect to a parameter. Let

1T~ flls < collflls + esllfllsor 177 Fllso < coll fllso (11.7)
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for all f € SNH?*. Assume that T depends in a C' way on a parameter \ in a Banach space, and the
derivative (8>\T)[ |f of Tf with respect to X\ in the direction \ satisfies

IOT)NFlls < Boll Flls + bl fllsor  1OTIAS s < Boll Flls (11.8)
for all f € SN H?®, for some constants by,bs > 0. Then T~ is also a C' function of X,
AT A = =T (TN T, (11.9)
IONT A fls < (4c3bo)lIfIls + (16cobocs + 4cgbs)l| fllses  1ONT ™ [N fllso < c5boll fllso- (11.10)
Proof. (i). Let A:=1I —T. By induction,
147 Flls < 5l flls + csncg ™ [ fllsor - 14" Fllsg < Gl fllsgs n 21,

where A%f means A(Af) and so on. Since cg < 1/2,

ZHA f||g§co(zco)||f|\ +e, (ch I fllso < 200l 1l + A1 lso:

Hence, by Neumann series, 7' is invertible, and T — I = > | A" satisfies (11.6).
(#i) Formula (11.9) follows from differentiating the equality TT Lf = f with respect to the parameter
A, (11.7),(11.8),(11.9) give (11.10). O

Lemma 11.3 (Composition of functions). (i) Let f(z,y) be defined for y = (y1,...,Ym) in the ball
By ={y e R™: |y? =" |yil*> < 1} and all z = (21,...,24) € R, and let f be 27 periodic in
r1,...,xq. Assume that f has continuous derivatives up to order r > 0 which are bounded by || f|cr < oo.
Let u € H" (T4, R™), with u(x) € By for all z. Let f(u)(x) = f(z,u(z)). Then

17 @) < Clifller(lull + 1).
The constant C' depends on r,d, m.
(ii) Let f, f be like in (i), and assume that 10y fller < Ky for all |of < N +1. Let F) (w)[R]"™ denote
the n-th Fréchet derivative of f at w in the direction [h]" = [h,...,h]. (f)(u)(x) is simply the n-th

Fréchet derivative of f(x,y) with respect to the variable y, evaluated at the point (z,y) = (x,u(x)) ). If
u,h € H" (T4, R™), with u(x),u(z) + h(z) € By for all x, then

N
[t 1) =37 = FGar | < o WA bl + [l e ).
n—=0 . T

C depends on r,d,m,N.
(iii) Let w € H™P(T4 R). Let D*u(x) be the list of all partial derivatives 0Su(z) of order |a| = k.
Let f(u)(x) = f(z,u(x), Du(x), ..., DPu(x)), where f is like in (i) for a suwitable m. Then
17 @)l < Cllfllor (ullr4p + 1)

provided (u(x), Du(x), ..., DPu(x)) € By for all xz. C depends on r,d, p.
If, in addition, |0y fllc- < K, for all |af < N + 1, then

N

(ORI STl

n= O

C depends on r,d,p, N.

 SCK, 110 (el rp + Ihllwre l[ullrtp). (11.11)

(iv) The previous statements also hold when all the L?-based Sobolev norms ||ul|, are replaced by the
L*°-based Sobolev norms [ul, = |lullwre =3 4o, | DFul| o -
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Proof. (i). See [33], section 2, pages 272-275. (i7). Use Taylor’s formula with integral rest and the
inequality || fol u(N, ) dA||? < fol (X, )||? dX, which holds for u()\,z) € H"(T%), depending on the pa-
rameter A, by Holder’s inequality. As an alternative, see [35], Lemma 7 in the Appendix, pages 202-203.
(#i1). Cousider @ = (u, Du, ..., DPu) and apply (i), (i1). See also [33], page 275. (iv). See [17], Lemma
2.3.4, page 147 for (i) in the W™ case. (it), (473) can be adapted with no difficulty (the W™ norms
satisfy the algebra and interpolation properties, which are the core of the proofs). O

(731) of Lemma 11.3 is used for the nonlinearity N(u). (i) is also used for N = 0, u = 0, mainly for
fly) =e¥, fly) = cos(y), fly) =1 +yP peR:

F(h) = F(O)]s < Clhl, Wh e W™(T%R), |hlo <1, (11.12)

where C' depends on f and s.

The next lemma is also classical, see for example [18], Appendix, and [23], Appendix G. However, in
those papers it is stated slightly differently than in Lemma 11.4, especially part (i), therefore we prove
it, adapting Lemma 2.3.6 on page 149 of [17].

Lemma 11.4 (Change of variable). Let p : R? — R? be a 2m-periodic function in W™ m > 1, with
|Dplo < 1/2. Let f(z) =z + p(x). Then:

(i) f is invertible, its inverse is f~(y) = g(y) = y + q(y), where q is periodic, ¢ € W™ (T R?),
and |qlm < C|plm. More precisely,

lglo = [plo,  [Dglo <2|Dplo <1, |Dqlm-1 < C|Dplm—1.

The constant C' depends on d, m.
(ii) If u € H™(T%,C), then uo f(x) = u(x + p(z)) is also in H™, and, with the same C as in (i),

[wo fllm < Clullm + [Dplm—1lull1)-
(#it) Part (i) also holds with || ||x replaced by | |k, namely |uo flm < C(Jt|m + | Dplm—1|ul1).

Proof. (i). For every y € R?, the map G, : R? - R%, G, (z) = y — p(z) is a contraction because |Dp|o <
1/2, therefore G, has a unique fixed point = Gy(x) in R?, and the inverse function g = f~! : R — R?
is globally defined. Let ¢(y) := g(y) — y.

Since p is periodic, f(z + 2mm) = f(z) + 2mm for all m € Z%. Applying g to this equality gives
x + 2mm = g(f(x) + 2rm), namely g(y) + 27m = g(y + 27m) where y = f(z), and this means that ¢ is
periodic. Hence g, like f, is also a bijection of T? onto itself.

The identity f(g(y)) = y gives

ay) +p(y+a) =0, q@+p)+px)=0 Vo,yeR™ (11.13)

(11.13) implies that |¢|lo = |plo. By Neumann series, the matrix Df(z) = I + Dp(z) is invertible for a.e.
z, (Df(z))~t =Y0" (=Dp(z))", and |(Df)~*|o < 2. Differentiang (11.13),

oo

Dq(y) = —[Df(y +a()] ' Dply+aly) = >_[~Dp(g(y))]", (11.14)

n=1

whence |Dglo < 2|Dpl|o < 1. Differentiating (11.14),

(D29)(y) = —[(D)(9(v))] " (D*p)(9(y)) Dg(y) Dy(y),

and |D%qlg < 8|D?p|o. (i) is proved for m = 1 and m = 2.
In general, by the “chain rule”, the m-th Fréchet derivative of the composition of functions w o v is

D™uov)(@)=> Y  Cy(DFu)(v(@)) [D"v(x),...,D*v(x)], (11.15)

k=1j1+...+Jr=m
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where jq,...,jr > 1, and Cy; are constants depending on k, j1,. .., jr ([17], page 147). Apply (11.15) to
fog:since f(g(y)) =y, D™(fog) =0 for all m > 2. Separate k = 1 from k > 2 in the sum (11.15) and
solve for D™g,

D™g(y) = —Dgl(y Z > Cy(DE(g() D7 g(y), - .., D g(y)].

k=2 ji+...+jr=m

D™g = D™q and DFf = D*p because k,m > 2. Since k > 2,itis 1 < j; <m —1foralli=1,...,k,
because there are at least two j1, ja, each of them > 1, and > j; = m. For k = m one has j; = 1 for all
i=1,...,m, and the corresponding term in the sum is estimated

|(D™p)og[Dg,...,Dgllo < |D"plo|Dglg" < C|Dplm-1,

because |Dglo = |I + Dglo < 2. For 2 < k < m — 1, at least one among j1,...,Jjr is > 2 (otherwise
k =m). Let ¢ be the number of indices j; that are > 2, so that 1 < ¢ < k. It remains to estimate

—

m— k

> > Creo (D*p)(9(v)) [Dg(y)]* (D7 q(y), .., D q(y)], (11.16)

k=2 ¢=1 o1+...4+op=m—k+/4

where indices j; > 2 have been renamed o1, .. .oy, the number of indices j; = 1is k— ¢, and D g = Dq
because o; > 2. Every factor Dg in (11.16) is estimated by |Dgl|o < 2. For the remaining factors use the
interpolation between 0 and m — 2, which is possible because 1 < o; — 1 < m — 2, and use the formula
o1+ ...+op=m—k+V¥,

[(D¥p) o g (D7'q)... (D7 q)|o < ID’“‘2D2plo|D“1‘1Dqlo .| D771 Dyly

m—2—(k—2) _y ! m—2—(o;—1) -1
S C|D2p|0 m—2 ‘D2 m— 2 |Dq\0 m—2 |Dq|m 2
=1

_ _ k=2 =y
= C|Dq|~ " (|D?plo|Dglm—2)" " "=2 (ID*plm—2|Dglo) =2
< C|Dg|g~ (ID*plo|Dglm—2 + [D*plm—2|Dalo)
< C(IDglm—2 + |Dplm-1).
Collecting all the terms in the sum, we have proved that
[D™qlo < C(IDplm—1 + |Dglm—2)- (11.17)

Now use the induction on m. We have already proved (Py,,) |Dq|m-1 < C|Dp|m—1 for m = 2. Assume
that (P,—1) holds. Then (P,,) follows from (11.17).

(iii) follows a similar argument, using formula (11.15) and interpolation for W*> norms; see [17],
Lemma 2.3.4, page 147.

(1) Jlu o fllo < C||lullo, because, changing variable = g(y) in the integral,
o £ = | luts@)de = [ jut)l? |det Dyy)ldy < | aet Dyl [ futo)lPdy < Cllulf. (118)

The m-th derivative of uwo f, m > 1, is given by formula (11.15). The L? norm of a typical term of the
sum is estimated by
ID*u(f(2)) [D7 f(x),..., D7 f(@)]llo < [(D*u) o fllol D fllpee .. | D7 fl| o=

|(D*u )Of||0 < C||DFullp < C||Du||k 1 by (11.18). Use interpolation (11.1) for || Dul|x—1 and interpolation
with TW*°° norms for all D7*~'Df between 0 and m — 1, which is possible because k — 1, j; — 1 are all in
the interval [0, m — 1]. (Remember that Df is periodic, while f is not). We get

ID*ullol| D fllzs .. |ID* fllze < CUDFIEZ (1Dullm—rlDf ||z + | Dullo]| Dfllym-1.<)-
Now || Df||r~ <2, and ||Df]lwm-1.00 < C(1+ || Dp|lwm-1.0). The sum gives the thesis. O
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The next lemma estimates the commutator of H with multiplication operators and changes of variables
that are used in the paper. See also [23], Appendices H and I.

Lemma 11.5 (Commutators of H). 1) Let s,mi,ms € N, with s > 2, my,mg >0, m =m1 + my. Let
f(t,x) € HT™(T?,C). Then [f,H]u = fHu — H(fu) satisfies

1077 [f, M0 ulls < C)([[ullsllfllmva + [[wll2l[ fllmts)-
2) Let a: T — T a function, and Au(t,z) = u(a(t),z). Then [A,H] =0.

3) There exists a universal constant § € (0,1) with the following property. Let s,my,mg € N, m =
my + ma, B(t,x) € Wstm+tLeo(T2 R) with |8|; < §. Let Bh(t,x) = h(t,z + B(t,z)), h € H*(T?,C).
Then

105 (B™HB — H)97 2 hls < Cs,m)(|Blam+1[|Blls + |Blsm-+1[1Blo0)-

Proof. 1) Let u(t,z) = Y, cqui(t) €, f(t,x) = 3, cp fr(t) €7, and
S = {(k,j) € 2% : sign(k) — sign(j) £0}, S(k) = {j € Z: (k, ) € S}.
Since H(e**) = —isign(k)e'*®,
O f HOT P u =Y fik ) 6(k, 5) (i)™ (ik)™2 €97 = 3 (the same),
k,jEZL (k,j)ES
where §(k, j) := —i (sign(k) — sign(j)). If (k,j) € S, then
k=gl =1kl +1l, Ll <li—kl [kl <I]j—k
Therefore |7 k™2| < |k — j|™. If j, k are Fourier indices for the space and n,! for the time,
m e 2 . m 2 S\\ 25 m 2 2s
o 7, 107 ul2 < 37 (D inrswlli = k™ uam]) (0> < 30 (30 102 assllwl) (a)*
nj Lk a€Z?  beZ?

and this gives the usual tame estimate for the product (97" f)u. The estimate holds with || ||s, with
S0 >d/2=2/2=1, so we fix sg = 2.

2) Trivially AHu(t,z) =Y, ur(a(t)) (—isignk) e = HAu(t, z).

3) Following [23], Appendix I, it is convenient to use the representation of H as a principal value
integral,

-1 t,z u(t,
Hu(t,x) = —p.v./ M de' = — hm / / * ) dx’. (11.19)
2 T tan 5 (z — ') 2 e—o+ U J, 4o Jtang z')

Let I + 3 be the inverse of I + B, namely z + (¢, z) = y if and only if v = y + B(t, y). Changing variable
'+ Bt 2) =y, de’ = (14 By (t,y')) dy’ in the integral,
1 i 1 ~ ~
B™'HBu(t,y) = ;p-v-/ u(t,y') 3y'{ log sin (5 [y +B(ty) -y — B¢, y')D } day',

—1T

therefore

(B 1B = Hjutty) = [ uts/) Kitoy')dy' (11.20)

where the kernel K is

y+ Bty —y — B(t,y’)])

1 sin 5[
K(t,y,y') = =0,1
(t.y.y) = 0y Og( e —
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If g is sufficiently regular, then K is bounded, and the integral in (11.20) is no longer a singular one.
Denote R = B~'HB — H. Then

m m . 7 m / _ / m M m / /
O RO ulty) = [ (O u)e) O K )by’ = [ ult.y') ()00 Kty
every space derivative goes on K and does not affect u. Hence

Rulf = [ | [ att.) Ky
T2 T

for |95 (9, ROy u)||o replace K with 95719)5> K and for |97 (9, Ry u)||o calculate the usual deriva-
tives of a product. Thus

NPIK (g, y)* dy' dydt < CIK[G [[ull3,

10y ROy 2 ulls < C[lulls| Klm + [[ullo| Kls4m)-
Now write K = (1/m)d, log(1 + f), where

sin [y + A(t,y) — y'—ﬁ(t y)] —sing(y—v)

f(t, y7 y/) Sln (y y ) )
and decompose f = abc,
, s(v—y) n_ Blty) - B,
a(yvy)*m b(t,y,y') = T / By(t, My + (1= N\)y') d,
_|_

ct,y,y') = /01 cos (y v [5(2 y) =~ B(t,y’)]) dA.

a € C= for |y' —y| < 7 (by periodicity, take T = [y — 7,y + 7] when integrating in dy’). [b|s < ClfBss1 <
C|B|s+1 by Lemma 11.4(¢). All the derivatives of ¢ of order < s are bounded if f € W*°° with tame
estimate

lels < C(s,1Bl0) (1+[Bls) < C(s,18lo) (1+[8]5)-
As a consequence |f|gp < 1/2if |B]1 < ¢ for some universal § € (0,1), and |K|; < C(8)|8]s+1- O

Remark 11.6. Inequality 1) of Lemma 11.5 can also be proved in a simple way using (11.19), see [23],
Appendix H. O

12 Appendix C. Proofs

Proof of Proposition 6.1. Apply Lemma 11.3(iv): let f(z,y) = 0y gi(z,y), |a| = 1. By (1.5), agf(:z:,O) =
0 for all |8] < 2, and, by Taylor’s formula (11.11) for N = 2 (with f defined as in Lemma 11.3),

2

) =i -Y

— ™))" < C(NUBIU 2 < COUNZNU | s44- (12.1)
Suppose that a; = (95 g:)(x, U, HU,...) = f(U), where U = ¥ + £?u. Then (12.1) gives

jasls < C(s)llet +eullflet+e*ullsra < C(s)([0]la +eK)?([0]l s +ellullsra) < e*C(s, K) A+ Julls44)

because |lul|s < K and ||9]|s+4 is a certain constant C(s) depending on s. Also as,a4,a3 — 3U? and
a5 — 3(U?), are of the type (05g;)(x,U, HU,...), therefore they satisfy the same estimate as a;. The
additional part in a3 and as comes from the CU.blC term 0, (U?) of the nonlinearity V' (U). One has

|U? — £20%|, = €®|20u + eu?|s < 3C (s, K)|uls < £3C(s, K)||ulls 42

because U = v + £2u, and the estimate for a3 — £2392 follows. Similarly for as.

The derivatives 0ya; and d.a; are obtained differentiating the equality a1 = (9y¢:)(z, U, HU,...),
therefore they involve 85 g; with || = 2. Then apply Taylor’s formula (11.11) with N = 1 and evaluate
at U, as above. O
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Remark 12.1. In the estimate for 0,a; there is a factor €2 more than in the one for O.a; because
0,U[h] = e2h = O(£?), while .U = v + 2eu = O(1). The point becomes very evident in the simplest
case g(z,U,...) = U%. O

Proof of Proposition 7.2. By Proposition 6.1, for s =0 and ¢ < g, |a1]op < e3C(K) < e3C(K) < 1/2
if 9 is small enough. | [‘adz|s < 27|a|s for all a(t, z). Applying (11.12) with f(y) = (1+y)?,p = —1/2,-2
gives

Ip— 1], < C(s, K)larls < 3C(s, K)(1+ [[ullara), 0<s<r (122

Differentiating the formula for p(u,€), and using estimates on aq,
|0up(u, €)[h]]s < C(s, K)(|0uar [h]]s + la1|s|duar[hllo) < e*C(s, K)(|hllsva + l[ullseallhlla),  (12.3)

and similarly |0.p(u,e)|s < e2C(s, K)(1 + ||ul|ss4), for all 0 < s < 7.

po = Ilc(p), therefore, using (12.2) with s =0, |u2 — 1| = |Tla(p — 1) < |p — 1|0 < €3C(0, K)||ul|4 =
e3C(K) < 1/2. Also, |Oupa(u,e)[h]] = [He(Bup(u,e)[h])| < |Oup(u,€)[h]lo, then use (12.3) with s = 0.
Similarly for Oeps.

« satisfies (7.7), namely po(1 + o) = p. Thus o = uy [(p — 1) + (1 — p2)], whence |a/|s < 2(]p —
1|s +|p2 — 1|). Moreover |als4+1 < C|a’|s because a € Y, a(0) = 0, and |a(t)| = |a(t) — a(0)| < 7|a/|o for
all |¢| < m (Poincaré inequality for odd functions). The derivatives of a are obtained differentiating the
equality pa(1 + a') = p. Similar argument for T8 using (11.12), because MpB, = p/2(1 4+ a1) /% — 1
by (7.8). Thus a(u,e) and g F(u, ) satisfy

|a|s+1 + |HEﬁ‘s + ‘HEB:DIS S Egc(SaK)(l + Hu||s+4)7 (124)
Oualh]]s+1 + 0. (WEB)[h]]s < 'C(s, K)(|hllsra + lullstallpla),  0<s<m (12.5)
|0-alsq1 + [0 pBls < C(s, K)(1+ ||uflsra)- (12.6)

o is defined in (7.11), namely o = I c{w(IlgB):(1 +gB:) + a3(1 +gB;)?}. Since I3 = O(&?),
the only term of order €% in o comes from ag and it is €Il71 ¢ (30%). v is a finite sum of ¢; (5.1), therefore
II7(9?) = 0. As a consequence,

o — 62H0(3172) = HTJrc{w(HEﬁt)(l + HE51> + ag(HEﬁw)<2 + HE/BZE) + ((lg — 82352)}.

Then, using the estimates for I3, (a3 — £2302) and their derivatives,

|0 — 2Mo(30%)] 51 < e®C(s, K) (1 + [Juf|s14), (12.7)
0w (u,)[B]]s—1 < e'C(s, K)([[Pllsta + l[ullssallhlla),  1<s<m (12.8)
0.0 (u, ) — el (692)|s—1 < €2C(s, K)(1 + |[ulls14) (12.9)

(s — 1 because [IIgB:|s—1 < |Ugfls).

By (7.12), 1 = Il (o), and the estimates for p; follow from (12.7),(12.8),(12.9) with s = 1.

Since 0 — p; = 0 — e(o) = (o), by (7.11) wy' = (1 + ') — 0 = pya’ — (o). By Poincaré
inequality, |vy|s < C|y'|s—1 because v € Y. The estimates for v = Il follow from those for o, a, pt; and
their derivatives, using the fact that w = 1+ 3¢%. Hence (12.4), (12.5), (12.6) hold not only for I1z3, but
also for v = Ilrf3, and, as a consequence, for 3 too, for 1 < s <.

By Lemma 11.4(3), |a|s +|8|s < C(s)(|a]s +|Bs). Choose a smaller &, if necessary, to have e3C(K) <
1/2 in (7.18). (7.21),(7.23) hold by Lemma 11.4. Since

a(t) +alt+a(t) =0, Bt,z)+B(t+alt),z+B(tz) =0 Y(tz)eT? (12.10)

the derivatives of &, 3 with respect to the parameters (u, ) are obtained by differentiating (12.10) with
respect to u or €, whence

Oualh) = —(1+ar) U Houalhl},  9uBlh] = —(1+ B,) W {uBlh]} — - ¥~ {Bualh]},
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and similarly for 0.@, d.8. (Given a diffeomorphism depending on a parameter, this is nothing but
the formula for the derivative of the inverse diffeomorphism with respect to the parameter.) Using
(12.5),(12.6) and (7.23), for s + 1 < r we get

10uBIR]ls < e*C s, K)(Ihllsa + Nullsssllhlls), 10515 < €2C(s, K)(L + [lullsts),

and the same for &. These inequalities also hold for «, 8 (actually, «, 8 satisfy (12.5),(12.6), which are
stronger).
To prove (7.22), consider the one-parameter family of changes of variables

(\I’/\f)(t’x) = f(%\(ﬁ@)a %\(t,x) = (t + )\a(t),x + )‘/B(t7x))7 0<A< L
One has

(U =D f(t,x) = it @) — f(o(t, z)) = / (VA @a(t, ) - (alt), B(t,x)) dA.

0

Use Lemma 11.4 to estimate || Uy fi||s and ||y f||s, then use (11.4). The same holds for ~'. The
estimate for ¥, W~! hold because ||Ph||; < ||h]|s for all s. Repeat the same argument with norms | |, to

prove (7.24). By the chain rule, the derivative of ¥ f with respect to w in the direction h is

Ou(Wf)[h] = 0u{f(t + a(t),z + B¢, x))}[h] = (¥ fi)Oualh] + (¥ f)OuBh,

therefore (7.25) follows using the interpolation (11.4) for products. Similarly for (7.26).

Since

1+ (@) ()1 +a'(r) =1,
(M —1I) is the multiplication by the factor (U~'a/) = —&/(1+@&') =: p. Hence (M —I)f = P(M —1I)f =
P(pf) for all f € Zy, because P = I on Z;. By Lemma 11.3, p satisfies the same estimate as &', and
|&/|s < C(s)|a'|s < C(s)|alst+1, then use (12.4) and apply (11.3) to get
Ipflls < CUEIF]ls +*Cls, K)( + [lullsra) [ fll2, 2<s <7

For the derivatives 0, M[h], d-M use (7.19),(7.20). Apply Lemma 11.2 to obtain the estimates for
(M~1 — 1) and its derivatives.

The estimates for a;, i = 6, ..., 9 follow from formulae (7.9) and the estimates for ¥=1. In a; put the
term 2392 in evidence, namely write

wB + as(1 + Bz) wh + (az — b)(1 + Bs) + b(Bx — &)
1+ o 14+ o
estimate ¥~1(q) using (7.23), the inequalities for o, 3, (a3 —b), and |b|, = C(s). For ¥~1(b) = b+ (¥~1 —
I)b, use (7.22). Similarly for ag. Similar calculations for the derivatives d,a;[h], O-a;.
To prove (7.33), write ¥ as the composition of the two changes of variables A, B,

U =AB, Ah(t,x)=h(t+ a(t),z), Bh(t,x)=h(t,z+ p(t,z)),

where 31 := A71(B), namely B;(t + a(t),z) = B(t,z). By Lemma 11.5(ii), V"'H¥ = B~1A"'HAB =
B7'HB. By the inequality (7.23) for the change of variable A, |31]s < e3C(s, K)(1 + ||u|/s+4). Then
apply Lemma 11.5(41).

In Ry (see (7.3)) the coefficients of 857?,7.[, k =0,1,2, are functions fj that satisfy | fx|s < C(s, K)(1+
[lu|lsts5) for s +1 < 7 (two of them are ag, ag without the denominator (1 + o), the other one is (7.4)).
By (11.4),(11.2), and (7.33),

10y Ry hlls < €2C(s,m, K)(1Alls (1 + lullms7) + Ihllowllstme7), & =0,1,2,

=b+4gq, b:=e%30% ¢:=

i

for m >0, s+m+3 < r. For the last term in R; use (7.2), the estimate for ¥ ~'as, integration by parts
e (fo, )| = [He[(0;" f)R]], the inequality [IIc(fh)| < C|flol|hllo, Lemma 11.4(é) to pass from &, 3 to
a, B, and (11.2):

IB(E " a5) [Tle, WO Bl = [0 as | |[ e, WO h| < 2C(s,m)(L + Jullosmea)ilo.  (12.11)

The estimate for R, follows. R satisfies the same estimate as R because Ry = M~IR,. For R3, note
that Ilc Ly = He(ag + Re). Use (7.27) for M~1, then the same arguments as for (12.11). O
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Formula for R,.

R4 = Rgpq) - CLQHC(I)
+ Z {HEMQ( Mok 28 FH 4 5(k)3;k+2> + agllf (ﬁg’“)af + 5““)8;’“*1)

+a8HEﬁ<’< 07" = (B0, "+ + o0, + pop 0,2 |

+ < — 7'[(2/12041(,1) + agaM) — (a7 — /M)Oé(l))Hﬁ + ((2M25§1) +agBWY) — H(ar — ,ul)ﬁ(l))ﬂl

Y

3
+ > {lae, 1) (a0, " + a® ) 4 [z, H] (B0, + BUG; ) + las, Hla® o, -

3
+ [ag, H] B0, } + ) [B% — o™ H] (120, ¥ + 100, F + 20, 7?)
k=0

3
+ (WOZS’) — 12B5) — agBY) + azal’) — (as — p10)B® + aga™® + 5y B(k)ay_k_z) 9,
k=1

3
+ ’H(wﬂ(g + ,112()[(3) + aﬁoz )+ a7ﬂ(3) + (ag — uo) ) +agB®) — pu_y Za“)a;k*?) 8;3.
-1

Proof of Proposition 7.4. From the estimates for s, p1, ag, az, as, ag of Proposition 7.2 and formulae
(7.52),(7.53) for ¢ it follows that

Re ()]s + [Tm ()[ls < *C (s, K) (A + [[uflste), (12.12)
10uRe (2)[A][ls + 10uTm () [B]]]s < e*C(s, K)([hllse + [lullsvclllla), (12.13)
10:-Re (9)[|s + [10=Tm (p)[|s < eC(s, K)(1 + [ulls+c), (12.14)

for 2 < s <r —1, where ¢ = 6 (in this proof we use (11.3) to estimate any product). As a consequence,
by Lemma 11.3 and (7.54), a(®) — 1 and () and their derivatives satisfy the same estimates (12.12),
(12.13), (12.14), with ¢ = 6.

g9 is given by (7.41), therefore its real and imaginary part satisfy (12.12), (12.13), (12.14), with
c=38, for 2 < s < —3. The same for n(!) because of (7.43), (7.46). By formulae (7.44), (7.47), (7.50),
(7.48), (7.51), the same holds for ¢, 7 with ¢ = 10, 2 < s < 7 — 5, and for ¢g®, ), with ¢ = 12,
2<s<r—7. Since f*) =k £ k=12 3, all coefficients a*), 5*) k' =1,2,3 and their derivatives
satisfy (12.12), (12.13), (12.14), with ¢ =12, for all 2 < s <r — 7. By (11.3),

(@ = 1) flls < C| coeff [l2]| flls + C(s)]| coefE [|s[|.f]]2,
where ‘coeff’ are (oz(o) — 1),ﬁ(0),a(k),ﬂ(k), k=1,2,3, and C does not depend on s. Therefore
(@ = D flls < 2CE)|flls +2Cls, K) (1 + [lulls12)If]12-

The estimates for 9, ®[h] and 0. are obtained in the same way, using the estimates for the derivatives
of the coefficients. Similarly, (7.64),(7.65) follow because 0.(® — I)f = (& — I)0,f + @, f, where &, is

the operator of the same type as ® that has coefficients a(Tk), 5’“ instead of a®, (k) k. =0,...,3. Since
IPflls < || f]ls, all the estimate for ® — I also hold for ® — P = P(® — I)P. (7.61),(7.62) and (7.63) also
hold for @~ by Lemma 11.2.

To prove (7.66) for @~ M~1¥~1 write

PIM W =T4+S S=@'-D4+M DI (@ -DM T

then apply (7.22), (7.21), (7.27) and (7.61). Similarly for the other operators.
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The estimates for po, pi—2 and their derivatives follow from formulae (7.55), (7.56) and the estimates
for K2, a6, a7, as, ag, 77(2)79(0)
Now study the rest R. By (7.34), for 2 < s <r — 6,

IR30y" flls < *C (s, K)(Iflls + I fllollulls+10), 0 <m <3. (12.15)

By definition, ¢ is a combination of multiplications and H, 0, 1. Every 9, can be moved from the right
to the left of any multiplication operator with elementary calculus: [a,d,] = —a,, namely, for every a, f,

ady f = O0y(af)—ayf, a@jf = 6§(af)—28y(ayf)+ayyf, aa{j’f = 83((1]“)—38§(ayh)+38y(ayyf)—ayyyf.

Recall that the coefficients a(®), 3(%) satisfy (12.12), (12.13), (12.14), with ¢ = 12, 2 < s < r — 7. Moving
0, to the left of ®, m = 0,1,2,3, the coeflicients a®_ B%) are subject to up to 3 derivatives in y. So
applying (12.15) gives

[RsP@Iy fls < e°C(s, K)(IIflls + ullss10ll fll2), 0<m <3, 2<s<r—10.
Each term R(,) of type (a) containing [b, H] can be estimated by Lemma 11.5(¢), whence
IR flls < 2C(s, K)(Iflls + lullssarll fll2), 0<m <3, 2<s<r—12

and the same inequality also holds for each term R of type (b) that contains [%. Thus it holds for
[R40," f||s- Since R := &~ 'PR4 by (7.57), the estimate for R, follows from (7.61). O

Proof of (9.6). (The meaning of A, B,a,b,c in the following proof is independent on the rest of the
paper). By (9.4),

F(up) + F'(up)hny1 = F(uy) + Pgl\iln./\;lni)n&;(un)i);l\i/;lhm_l
= P70, M, @, {0 M PoF (un) + La(un) @5 0 g ) (12.16)
Let p = {...} be the quantity in parentheses in (12.16). Let
c:i= @;1M;1®;1P5F(un) =M, 41c+ Hf;H c,
Li(un) = A+ B, A:=T, 1 Li(u)y1, B =TT Lo(un) g+ La(u,)TTE, .
With these abbreviations, by the definition (9.5) k41 = anH\Iln(i)nA*lHan, whence
O 0y =a+b, a:=—-A"', e b:=3
Now p=c+ (A+ B)(a+1b), and Aa +II,,41¢ = 0. Therefore
p=1I1 c+ Ba+ (A+ B)b.

I, La(u) gy = I, RIL,.1 because L4(u,) = D+R and D is diagonal. Moreover £~4(un)Hﬁ+1a =
0 because a € Z,,. Thus (9.6) follows.

Proof of Lemma 8.5. (i) Lemma (8.5) simply follows from Lemma 11.3. In particular, v2(e) satisfies
(4.2). By Proposition 5.3, (ITy Ally) : VN X =V NY, h 30;h + 1110, (303h) is invertible, with

|(Ty ATly) “'hlls < Chllso1 VA eV NY, s>1, (12.17)

where C' depends only on the set K, like in (8.6). By (1.5) and (11.11), ||Nx(h)||s < C(s)||R||3 || s+2 for
0 < s <r. Hence
[02(e)[ls < Ce™|Na(evn)ls—1 < C(s) o ][illv1]ls+1 = C'(5) (12.18)

where C’(s) depends on s and |9 ||s41. (12.18) for s = 4 implies that ||v1 |4 +€2||D2]|s < dp for all € < &,
for some €y depending on ||v1]|5.

44



To complete the proof of (8.19), differentiate (4.2) with respect to e, then use (12.17),
[0-02(e)[|s < C(de™® My Na(et)|ls—1 + &[Ty Ni(em1) [B1]]|s-1) < e C(s).

(8.20) follows from formula (4.3) and estimates (8.19). To prove (i%), observe that
Q(u,h,e) = 2P ! (896{3(51714—521&) (e2h)?+ (%)} + Ny (e01 +e2ute?h) =Ny (ev1 +e%u) —Nj (€01 +£2u) [EQh]),

then apply (11.11) to Nj.
(#i7) follows from (4.5) by the usual tame estimates. O
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