Rem. Convergen 20 UNIFORNE f(x) f(x) unf. in E $\lim_{n\to\infty} \sup_{x\in E} \left| \int_{\infty} (x) - \int_{0}^{\infty} (x) \right| = 0$ $2e \quad f_n \in C(E, \mathbb{R}) \quad e \quad f_n \rightarrow f \quad unif$ elono f E CCE, R) (E i limito formo integrabel de for french allora fie intégeble e $\begin{cases}
\frac{1}{2} & = \lim_{n \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}$ re $f_m \in C^1(La, b7, R)$ $f_m \rightarrow f$ unif gunfallore f & C(Ce, b], R)

f(x) = g(x)della converge conversono VERSIONE CONTINUA 5 lu drone \$(x,y) dy (f(x,y) dy $= \int f(o,y) dy$ **Teorema 13.4** Sia E un insieme compatto di \mathbb{R}^n , F un insieme compatto e misurabile di \mathbb{R}^k , e f(\mathbf{x} , \mathbf{y}) una funzione continua in $E \times F$. La funzione

$$g(\mathbf{x}) = \int_{F} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

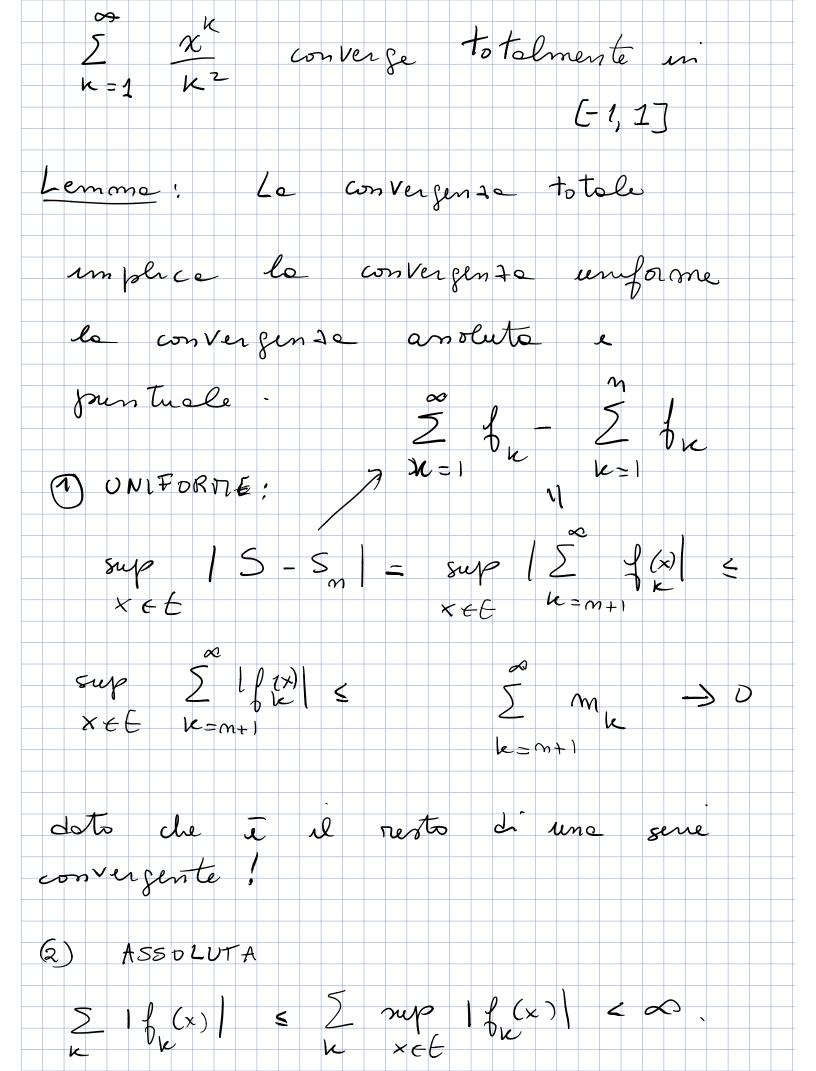
è uniformemente continua in E.

Doto the
$$E \times F$$
 is composite $f(x, y)$

is unif: cont. nu or (x, y)
 $f(x, y)$

vata $f_{\mathbf{v}}(\mathbf{x}, \mathbf{y})$ lungo la direzione \mathbf{v} esiste ed è con derivabile in E nella direzione \mathbf{v} , e si ha	ttinua in $E \times F$, la funzione $g(\mathbf{x})$ risulta				
$\frac{\partial g}{\partial \mathbf{v}}(\mathbf{x}) = \int_{F} \frac{\partial f}{\partial \mathbf{v}}(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$	$g(x) = \int f(x,y) dy$ [13.5]				
Dim. (Extro	ser du vusle				
CON VERGENZA TOTA	1262				
	1 f W:= sup [f(x)]				
	×et				
Definizione 13.3 Diremo che la serie di funzioni limitate					
$\sum_{k=1}^{\infty} f_k(\mathbf{x}) \leftarrow \qquad \underbrace{5}_{k=1} \text{sup}$	$ f(x) < \infty$				
converge totalmente in E, se converge la serie	delle norme:				
$\sum_{\infty} f < +\infty$					
$\sum_{k=1}^{\infty} f_k _E < +\infty.$					
$\sum_{k=1}^{\infty} J_k _E < +\infty.$	_				
k = 1					
	(mo e reguele)				
elt ein di vomente					
k = 1	ma é régréele) otalmente en E				
elt ein oli vomente					
elternolivomente 5 Lex converse	otalmente en E				
elt ein oli vomente					
elternolivomente 5 Lex converse	otalmente in E				
elternolivomente 5 Lex converse	otalmente in E				

Teorema 13.5 (Derivazione sotto il segno di integrale) Se E è aperto, e la deri-



termem' postevi e ellore e convergente OSSERVAZIONE: Si juis us ore il on levo d'amvergente col se quente n' pur son Vere successore PARZIALE SOTINA $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}$ 9 (x) = $g(x) + \sum_{T \in \Lambda} f(x) \qquad \text{on} \qquad f(x) = g(x) - g(x)$ gun di tole che 5 m z 0 $| f(x) | \leq m_{J}$

ellon -
$$\sum_{j=1}^{\infty} \beta_{j}(x)$$
 converge totalmente

e $\beta_{m} = \beta_{1} + \sum_{j=1}^{\infty} \beta_{j}$ converge umform.

SERHE DI POTENZE

Una xui della form -

S(x) = $\sum_{j=0}^{\infty} a_{j}(x-x_{0})$ so dia zerie d' potenze

Centrala in xo

S(x) converge sempre un x = xo

1) Esistemo serie d' potenze chi convergeno

Sao in $x = x_{0}$.

Possieno sempre ipotissare chi $x_{0} = 0$

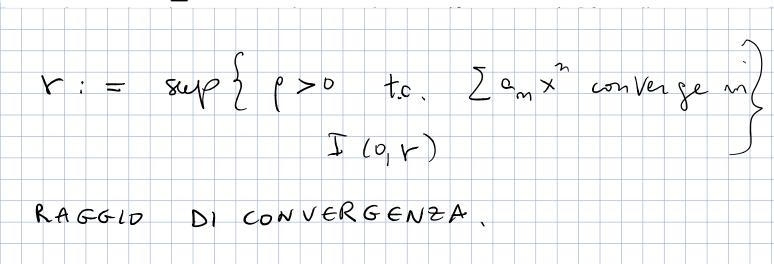
altrement combiamo la Variable

 $x - x_{0} = x_{0}^{2}$

Teorema 13.7 Se la serie [13.7] converge in un punto $\mathbf{y} \neq 0$, allora converge totalmente in $I(0, \rho)$ per ogni $\rho < |\mathbf{y}|$.

Dimantona	iana Daiahála				
5 a _m	<i>x</i>	converg	e in	× = 7	V _o
ave 2	$a_n \kappa_0$	2 0	ગ		
clor	ncuron	es te	q X	→ 0	
in parti	colore 1	a x	< m	<i>m</i> → ∞	
quin L'	per	1×1 ≤ f) < 1× ₀)		
$\sum a_m \times^n$	= 5	Q _m × _o			
qun d'	sup	Q X o	(× \mathrew	< m	m (P)
	1×1 ≤ p				n
ma	P < 1	qund		$m\left(\frac{1}{2}\right)$	20
e lo	Serie	con Ver	er to	tolmer	te.
			0		

Una conseguenza di questo teorema è che se chiamiamo r l'estremo superiore dei valori di x per i quali la serie converge, avremo che essa convergerà per |x| < r, cioè per $x \in I(0, r)$, e non convergerà per |x| > r. Il numero r si chiama $raggio di convergenza della serie <math>\sum a_n x^n$.



Teorema 13.9 Sia

$$\sum_{n=0}^{\infty} a_n x^n \tag{13.10}$$

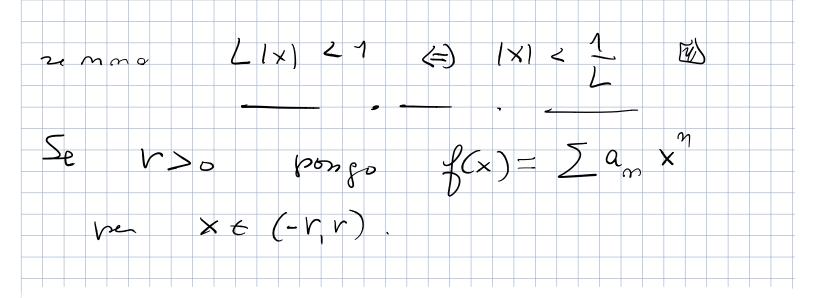
una serie di potenze, e supponiamo che esista il limite

$$\lim_{n\to\infty}\sqrt[n]{|a_n|}=L.$$

Allora

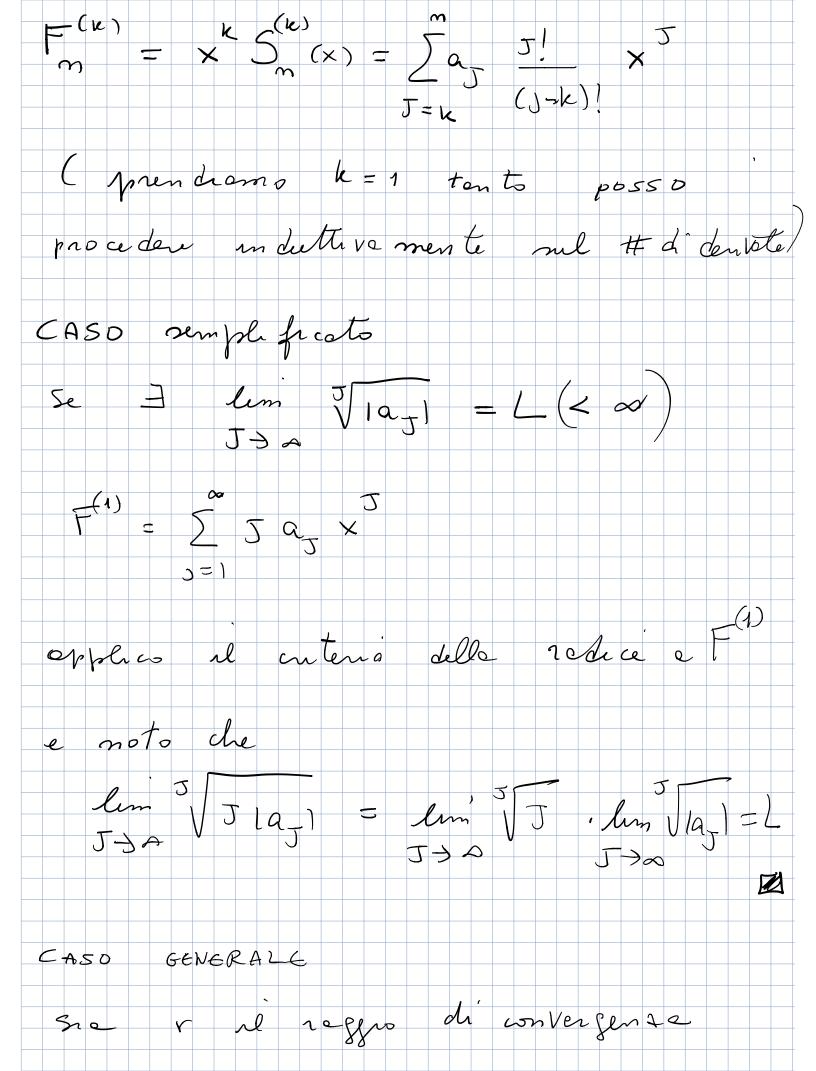
- 1. $se\ L = +\infty$ la serie converge solo $per\ x = 0$,
- 2. se L = 0, la serie converge per ogni $x \in \mathbf{R}$,

3. se
$$0 < L < +\infty$$
, si ha $r = \frac{1}{L}$.



Teorema 13.8 La funzione f(x) ha derivate di qualsiasi ordine continue in I(0, r).

 $L = 5_{m}(\times)$ 3. Applies i teorem sulle convergenta $S(x) = \sum_{m} a_{s} x$ $S_{m}(x) = \sum_{j=2}^{m} a_{j}, 5 \cdot (5-1) \chi$ $5_{m}(x) = \sum_{n=1}^{\infty} a_{n} \int (5-1) - (3-k+1) \chi$ Invece d'8 lu diene la convergenda d 5 posso studencre



di Zax non py due numen positivi to ocpeyer Dolo de y < r 5/aj y J converge quandi lati y J < m < 00 or dimostriamo che Σ Jaylx con Verge per x = P $\leq m \left(\frac{\ell}{u} \right)^{J}$ enteno della radice ma per al serie m 5 5 (P) Je convergente aun d' 2 jaj x conver je totolmente m [-e, p] \ \ p < V

I agge d'anvergende e r gund $g(x):=\sum_{j=1}^{\infty} j a_j x^{j-1}$ e sen defente e continue en (P, 2) $e \qquad f(x) = g(x)$ ora encle 3(x) é una sene d' potense quin d' posso opphione lo stero er joonen to de prima per due che i denvahrle e che la derivato è una sene di potense ottenuta portondo la denvoto dentro la somma (Rem. 10 rosero d'anvergenão resto sempre V.