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Abstract—The discovery of the Birkhoff normal form around circular, co-planar motions for
the planetary system opened new insights and hopes for the comprehension of the dynamics
of this problem. Remarkably, it allowed to give a direct proof (after the proof in [18]) of the
celebrated Arnold’s Theorem [5] on the stability of planetary motions. In this paper, after
reviewing the story of the proof of this theorem, we focus on technical aspects of this normal
form. We develop an asymptotic formula for it that may turn to be useful in applications. Then
we provide two simple applications to the three-body problem: we prove that the “density”
of the Kolmogorov set of the spatial three-body problem does not depend on eccentricities
and the mutual inclination but depends only on the planets’ masses and the separation among
semi-axes (going in the direction of an assertion by V. I. Arnold [5]) and, using Nehorošev
Theory [33], we prove, in the planar case, stability of all planetary actions over exponentially-
long times, provided mean-motion resonances are excluded. We also briefly discuss difficulties
for full generalization of the results in the paper.
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1. INTRODUCTION AND RESULTS

1.1. The planetary many-body problem consists in determining the dynamics of (1 + n) masses
undergoing Newtonian attraction. The term “planetary” is reserved to the case when one mass, the
“sun”, or “star”, denoted with m̄0, is taken to be much greater than the others, μm̄1, · · · , μm̄n,
which are called “planets”. Here μ � 1 is a small number. After the “heliocentric1) reduction”
of invariance by translations, this dynamical system is governed by the 3n degrees of freedom
Hamiltonian

Hplt =
n∑

i=1

(
|y(i)|2
2mi

− miMi

|x(i)|

)
+ μ

∑

1�i<j�n

(
y(i) · y(j)

m̄0
− m̄im̄j

|x(i) − x(j)|

)
(1.1)

on the “collisionless” phase space

(y, x) = (y(1), · · · , y(n), x(1), · · · , x(n)) ∈ (R3)2n : x(i) �= 0, x(i) �= x(j)

endowed with the standard 2-form

Ω := dy ∧ dx :=
n∑

i=1

3∑

j=1

dy
(i)
j ∧ dx

(i)
j ,

where y(i) = (y(i)
1 , y

(i)
2 , y

(i)
3 ), x(i) = (x(i)

1 , x
(i)
2 , x

(i)
3 ). Here, mi, Mi are suitable auxiliary masses related

to m̄i and μ via

Mi = m̄0 + μm̄i, mi =
m̄0m̄i

m̄0 + μm̄i
.

A procedure commonly followed in the past [5, 18, 22, 33] to regard the system as a “close to
integrable”, was to use a symplectic set of variables, usually called “Poincaré variables”. These
variables, that we denote

(Λi,λi,ηi,ξi,pi, qi) 1 � i � n,

are “six per planet”. They were introduced by H. Poincaré by modifying another set of “action–
angle” variables (Λi,Γi,Θi, �i, gi, θi) ∈ R

3 × T
3 (where T := R/(2πZ), having the Λi’s in common,

called “Delaunay variables”. Delaunay variables are “natural”, “action–angle” variables related

1)See, e.g. , [42].
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862 PINZARI

to the “Cartesian variables” (y(i), x(i)) in (1.1) via the integration of each of the “two-body”
Hamiltonians

|y(i)|2
2mi

− miMi

|x(i)|
in a domain of phase space where such Hamiltonians are simultaneously negative. In this case, the
“unperturbed motions” of Hplt (i.e. , neglecting the term proportional to μ in (1.1)) correspond
to Keplerian ellipses Ei having their foci in common. Poincaré variables are in part “action–angle”
(i.e. , (Λi,λi) ∈ R × T), in part “rectangular” (i.e. , (ηi,ξi,pi, qi) ∈ R

4). The couples (Λi,λi), often
referred to as “fast variables”, are related to semi-major axes and mean anomalies of Ei’s, while the
“secular variables” zi = (ηi,ξi,pi, qi) are related to their eccentricities, perihelia (ηi,ξi); and to the
directions of their planes (pi, qi). See, e.g. , [5, 15, 18] for precise definitions. In Delaunay–Poincaré
variables, any of the two-body Hamiltonian above takes the “Kepler form”

h
(i)
Kep(Λi) = −m3

i M
2
i

2Λ2
i

. (1.2)

It is “properly degenerate”: two degrees of freedom disappear, as it is well known. This proper
degeneracy naturally reflects on the system (1.1), which in fact takes the form

HP(Λ,λ, z) = hKep(Λ) + μfP(Λ,λ, z) (1.3)

where hKep(Λ) is the n degrees of freedom “Keplerian” part −
∑n

i=1
M2

i m3
i

2Λ2
i

, while fP(Λ,λ, z) is the
3n degrees of freedom “perturbation”

∑

1�i<j�n

(
y(i) · y(j)

m̄0
− m̄im̄j

|x(i) − x(j)|

)
(1.4)

in (1.1), expressed in Poincaré variables. Here, we have denoted as (Λ,λ, z) the 3n-dimensional
collection of

Λ = (Λ1, · · · ,Λn), λ = (λ1, · · · ,λn), z = (z1, · · · , zn). (1.5)

The phase space of the variables (Λ,λ, z) is commonly taken to be P := Pε = A× T
n × B where,

typically, A is a set of “well spaced” semi-major axes ai = ai(Λi)

A : ai � ai(Λi) � ai 1 � i � n (1.6)

for some ai < ai < ai+1, while B := Bε is a suitable ε-neighborhood (for example, a ball of radius ε)
of z = 0 ∈ R

4n. This corresponds to consider small eccentricities and inclinations of the ellipses Ei’s.
Clearly, the radius of B and the parameters ai, ai in the definition of A have to be chosen so as to
exclude collisions among the Ei’s.

The averaged (“secular”) perturbing function

(fP)av :=
1

(2π)n

∫

Tn

fPdλ

of the system (1.3) turns out to have an elliptic equilibrium point2) in z = 0 for any Λ [5]. This
equilibrium is a consequence of the symmetries (which, expressed in Poincaré coordinates are often
referred to as “D’Alambert rules”) of (fP)av due to invariance of the system (1.1) by reflections
with respect to the coordinate planes and rotations around the coordinate axes. Therefore, the
“secular equilibrium {z = 0}”, i.e. , the (2n)-dimensional manifold A× T

n × {0} ⊂ A × T
n × R

4n,
is invariant for the motions of the “secular system”

(HP)av := hKep + μ(fP)av.

2)Namely, (fP)av has an expansion (fP)av = C0(Λ) + Q(Λ) · z2 + O(z4; Λ), where Q(Λ) · z2 is a quadratic form and
the (4n) × (4n) matrix Q(Λ) is such that JQ(Λ), with J the standard symplectic (2n) × (2n) matrix, has only
purely imaginary eigenvalues ±iΩ1, · · · , ±iΩ2n.
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In general, the secular system is not integrable and its dynamics may be very complicated. Due to
its elliptic equilibrium, it is natural to ask whether it is possible to find another neighborhood B̃
of the origin and a symplectic change of variables of the form

φP
bnf : (Λ̃, λ̃, z̃) ∈ P̃ = A× T

n × B̃ → (Λ,λ, z) ∈ P = A× T
n × B

which sends {z̃ = 0} to {z = 0} and conjugates HP to

HP ◦ φP
bnf =: Hbnf = hKep + μfP

bnf , (1.7)

so that (fP
bnf)av is in “Birkhoff normal form” of some order 2s around this equilibrium (s ∈ N).

Namely, letting z̃ = (ũ, ṽ), (fP
bnf)av is a polynomial of degree s in ( ũ2

1+ṽ2
1

2 , · · · ,
ũ2
2n+ṽ2

2n
2 ), plus a

remainder of order O
(
(ũ, ṽ)2s+1

)
. As for the possible transformations φP

bnf realizing (1.7) (which,
when existing, are not not unique), it is common to look for those of the form

φP
bnf : Λ = Λ̃, λ = λ̃ + ϕ(Λ̃, z̃), z = S(Λ̃)(z̃ + Z(Λ̃, z̃)) (1.8)

where ϕ : A× B̃ → T
n, Z : A× B̃ → R

2n, with Z(Λ̃, z̃) = O(z̃2; Λ̃) are suitable smooth function
in B̃ and S(Λ̃) is a real-valued symplectic3) matrix function on Λ̃ of order (2n) × (2n) such that

the transformation z = S(Λ)ẑ puts the quadratic part of (fP)av into the form
∑2n

i=1 Ωi(Λ) û2
i +v̂2

i
2 ,

where ẑ = (û, v̂). Such definitions are standard at least for systems depending only on the z-
variables [3, 23, 46] (i.e. , neglecting the projection of φP

bnf over (Λ,λ) variables); the extension
to properly-degenerate systems as given in (1.8) being quite straightforward, since it calls for a4)

“natural” procedure in order to achieve (1.7). Actually, this definition has been implicitly used5)

by several authors [5, 18, 22, 42], relatively to the same context considered here. Let us recall
that, as soon as “a” φP

bnf , as in (1.8) were existing, (fP
bnf)av would be uniquely defined6). Since

we expect [39] that (fP
bnf)av would retain many properties of the dynamics of the system (1.1)

and due to the relevant physical meaning of the secular equilibrium {z = 0}, we refer to systems
H = hKep + μfbnf as in (1.7)–(1.8) (or, simply, to (fbnf)av), as “the” planetary Birkhoff normal
form (clearly, this does not exclude that different normal forms around different invariant objects
may be studied).

The problem of the existence of the systems (1.7) was settled by V. I.Arnold [5] and involved
efforts by M. R.Herman, J. Laskar, P. Robutel, F.Malige [22, 27, 30, 42]. Its solution has been
achieved in [16, 38]. Let us recall the historical background around this problem and facts that are
necessary to explain the results of the paper. For more details, we refer to the review papers [10, 19].

1.2. In 1962 V. I. Arnold announced (International Congress for Mathematicians, Stockholm,
[24]) and one year later published his more than celebrated “theorem on the stability of planetary
motions”; or the “Planetary Theorem”, for short.

Theorem 1 (V. I.Arnold, [5, p. 127]). In the n-body problem there exists a set of initial
conditions having positive Lebesgue measure and such that, if the initial positions and velocities
belong to this set, the distances of the bodies from each other will remain perpetually bounded.

3)It verifies StJS = J , with “t” denoting transpose and J the standard symplectic matrix.
4)In general, having a properly-degenerate system H = h(Λ) + μf(Λ, λ, z), (Λ, λ, z) ∈ A×T

n ×B, A ⊂ R
n, 0 ∈ B ⊂

R
2m, n, m ∈ N, with fav having an elliptic equilibrium in z = (u,v) = 0, one first considers [46] a transformation

τ̂ : z = S(Λ)ẑ that preserves du ∧ dv for any Λ, so as to put the quadratic form of fav in the form
�

i Ωi
û2

i +v̂2
i

2
.

Next, provided the first order Birkhoff invariants Ωi’s do not verify resonances (linear combinations with integer
coefficients) on A up to an order 2s, another smooth transformation τ̃ : ẑ = z̃ + Z(Λ, z̃) preserving dû ∧ dv̂

may be found with Z = O(z̃2; Λ) which puts the transformed averaged perturbation in Birkhoff normal form of
order 2s [23]. The last (standard) step consists in producing a transformation of the form (1.8) which preserves
dΛ ∧ dλ + du ∧ dv.

5)In [18], with Z ≡ 0.
6)Up to O

�
(ũ, ṽ)2s+1

�
.
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Arnold gave the details of the proof of the Planetary Theorem the case of three bodies constrained
on a plane: the “first” non trivial case. The complete proof of this remarkable statement in the
general case revealed to be much more difficult than expected for the strong degeneracies of the
problem.

Arnold’s ideas for proving Theorem 1 relied on two essential ingredients: (i) reduction of the
system (1.3) to Birkhoff normal form of suitably high order7) to which to apply (ii) an abstract result
of perturbation theory precisely suited to this situation. Arnold succeeded completely point (ii),
leaving instead open, in the case of the problem in the space, the completion of (i). As for
point (ii) he realized that the major technical difficulty to be solved was the proper degeneracy
of the system (1.3). Arnold was aware that, because of this fact, previous results studied by
Kolmogorov [26], Moser [31] or he himself [2] on the conservation of quasi-periodic motions with
as many frequencies as the number of degrees of freedom could not be applied, since any non-
degeneracy assumption required by such theorems would be dramatically violated8). He then proved
an abstract result (that he called the “Fundamental Theorem”, see Appendix A; Theorem 8) stating
the existence of a positive measure set of quasi-periodic motions (“Kolmogorov set”) for systems
in the form (1.7). He proved the existence of such motions under the condition that both the
unperturbed term H0 and the secular part Pav (respectively, hKep and (fP

bnf)av in the application)
of the perturbation should be non-degenerate in the sense of the Hessian. Namely, the matrix
∂2H0 and the matrix β (“torsion”) appearing in the expansion of Pav should be non-singular (see
conditions (ii) and (iii) in Theorem 8).

Notice that the thesis of Theorem 8 establishes that the “density” of the invariant set Kμ,ε in
phase space Pε, i.e. the ratio measKμ,ε/measPε depends on ε, the radius of B = Bn2

ε . This is a
precise byproduct of the proper degeneracy of the system and, especially, of the fact that Pav, in
general, is non integrable, so that, at a certain point of the proof of Theorem 8, ε is to be used as a
small parameter9). Relatively to the application to the planetary problem, one should then expect
that invariant tori accumulate more around the part of in phase space close to zero inclined and
circular motions. See also the text Section 1.3 a) for more notices.

As mentioned above, Arnold checked the assumptions of the Fundamental Theorem in the case
of the planar three-body problem. In the case the problem in the space, Arnold was aware that
some extra-difficulty related to the “rotation invariance” of the system (1.1) was to be overcome.
Namely, the invariance by the two-parameter group of (non-commuting) transformations

(y(i), x(i)) → (Ry(i),Rx(i)), R ∈ SO(3). (1.9)

From a dynamical point of view, rotation invariance is caused by the conservation, along the Hplt-
trajectories, of the three components, C1, C2 and C3, of the “angular momentum”

C =
n∑

i=1

x(i) × y(i), (1.10)

where “×” denotes skew-product.
Arnold realized [5, Chapter III, Section 5, n. 3, p. 141] that the two non-commuting integrals C1

and C2 cause another strong degeneracy (besides the proper degeneracy) in the system: one of the
first order Birkhoff invariants associated to (fP)av, Ω2n(Λ), vanishes identically: there is a resonance,
among the first order Birkhoff invariants Ωj’s, which is identically satisfied. And, moreover, another

7)Arnold proved the theorem with 2s = 6, but indeed 2s = 4 is enough [12].
8)Compare, for example, the condition studied in [2], where for a system H(I, ϕ) = H0(I) + μP (I, ϕ) in action–

angle variables, he requires that one of the determinants |∂2
I H0| or

�
�∂2

I H0 ∂H0

∂H0 0

�
� should be non-singular. Using,

for example Delaunay coordinates, instead of Poincaré’s, one would obtain a system in action–angle variables with
3n degrees of freedom, but H0 depending only on n actions, causing the identically vanishing of the determinants
above.

9)See [5, p.158], Eq. (4.1.15) and the bound for ˜̄H1 below, with the following correspondences: ¯̄H1 + ˜̄H1 is Pav of

Theorem 8; ¯̄H1 is the (integrable) truncation of Pav of degree six; ε = ε2.
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identically satisfied resonance appears (the origin of which turns to be much more mysterious than
the rotational one; see however [1] for an investigation of this resonance) which, even though not
mentioned in [5], was later pointed out by Michael Robert Herman: the sum of the remaining first
invariants Ω1(Λ), · · · , Ω2n−1(Λ), vanishes identically. Such two resonances,

Ω2n(Λ) ≡ 0,
2n−1∑

i=1

Ωi(Λ) ≡ 0,

which are proper of the problem in the space, are usually referred to, respectively, as “rotational”,
“Herman” resonance or, jointly, “secular resonances”. Clearly, the secular resonances represent an
obstruction to the construction of the Birkhoff normal form.

To overcome the problem of the secular resonances (or, at least, of the rotational one), Arnold
proposed, in [5, Chapter III, Section 5, n. 4–5], a sketchy program of which he did not give the
complete details. We anticipate that filling such details will reveal, in the next, to be not trivial at all,
since indeed it will require new ideas, but at the end will be completely achieved [16, 27, 30, 38, 42].
Previously to [16, 38], a different, independent strategy of proof of Theorem 1 will be thought and
successfully achieved by Michael Robert Herman and Jacques Féjoz [18, 22].

Arnold suggested two qualitatively different strategies to handle the case of two and the one of
and more than two planets. For two planets, he suggested to use a classical tool known as “Jacobi
reduction of the nodes”, in order to reduce all the integrals of the system. Reducing the integrals
corresponds to eliminate the cause of the vanishing eigenvalue and, as a byproduct, to lower the
number of degrees of freedom of the system from six to four (this is in fact the minimum number
of degrees of freedom in the spatial three-body problem, due to the fact that the integrals C1,
C2 and C3 do not mutually Poisson-commute). At a practical level, Jacobi reduction of the nodes
corresponds to substituting, in the Hamiltonian, the Delaunay variables

Θ1 =
G
2

+
Γ2

1 − Γ2
2

2G
, Θ2 =

G
2
− Γ2

1 − Γ2
2

2G
, θ1 = 0, θ2 = π (1.11)

and leave the remaining ones (Λi,Γi, �i, gi) (i = 1, 2) unvaried. Here, G := |C| =
√

C2
1 + C2

2 + C2
3

is the Euclidean of C, which, being an integral of the system, is regarded as an “external
parameter”. Even though the substitution (1.11) is commonly attributed to Jacobi10) [25], in a
slightly different11) setting, it was proved to leave the Hamilton equations unvaried with respect to
the variables (Λ,Γ, �, g) by Radau [41].

In the 90’s Michael Robert Herman pointed out that the application of the formulae (1.11) to
the spatial three-body problem as given in [5] contains a flaw. Since this flaw is related to one of
the results of the paper, we shall provide more details about it in the next Section 1.3 a). As for
the purposes of the present survey, we limit to mention that Arnold aimed to deduce conditions
(ii) and (iii) of Theorem 8 of the spatial problem from that corresponding ones of the planar one
that he had previously studied, arguing that the perturbing function of the spatial problem might
be considered a small perturbation (for small inclinations) of the one of the planar one. The flaw
was next repaired by Jacques Laskar and Philippe Robutel [27, 42] who, starting from Arnold’s
indications, constructed the normal form around the elliptic equilibrium of the reduced problem. As
the authors pointed out, such equilibrium is not related to the equilibrium of the planar problem,
since it corresponds to two inclined circular motions of the planets, whose mutual inclination cannot
be taken arbitrarily close to zero (because Jacobi reduction is singular in this situation). See also [18,
Proposition 81 and the comment below] for a technical discussion of this issue. A careful evaluation
of the involved range of variations of all the relevant physical parameters (planets’ masses ratio,
semi-axes ratio and mutual inclination) is a remarkably nice aspect of the study in [42].

10)The “original” reduction by Jacobi in [25] is not in the framework of Hamiltonian systems. It consists in a
procedure for lowering the order (as number of equations) of the system of differential equations of the three-
body problem.

11)Instead of “reducing” Delaunay variables (Λ, Γ, Θ, �, g, θ), Radau wrote (the same) equations to reduce the
variables (R,Φ, Θ, r, ϕ, θ), where (Θ, θ) are the same as in the Delaunay’s set, while (R, Φ, r, ϕ), with Φi = Γi, are
related to (Λ, Γ, �, g) via the “planar Delaunay map” described in (1.12) below.

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 6 2013
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In the case of more than two planets, where an analogue tool to Jacobi reduction was not
available, Arnold conjectured [5, Chapter III, Section 5, n. 5] it were possible to reduce only
two (out of three) non-commuting components of C (or functions of them). He believed this
should let the system free of the vanishing eigenvalue. More precisely, Arnold imagined it were
possible to construct a system of coordinates having analogue properties to Poincaré coordinates,
but containing, among them, a couple of integrals (Φ1,Φ2) that should simultaneously play the
rôle of Poincaré’s coordinates (pn, qn) and disappear from the Hamiltonian (being a couple of
integrals), so as to eliminate the identically vanishing frequency Ω2n. He briefly sketched the first
step of a possible procedure for constructing (by series) such variables, but then stopped there. It
was again Michael Robert Herman who realized this proof was not complete. Many years later,
F. Malige, P. Robutel and J. Laskar [30] notice that, for the three-body case, Jacobi’s reduction of
the nodes may be decomposed in two steps, the first of which provides a set of variables on the
“vertical angular momentum (invariant, ten-dimensional) manifold” C1 = C2 = 0 having analogue
properties (apart for the fact they do not define the couple (Φ1,Φ2), because the “direction” of C is
fixed) of Arnold’s variables for this case. Analogously to Arnold’s paper, for the case of more than
two planets, the authors provide a an iterative procedure in order to obtain formal expansions of
the coordinates.

Note that the two strategies that Arnold imagined for the two cases look very different: Jacobi
reduction for n = 2 is singular (for planar motions) and reduces completely the integrals of the
system, hence, two degrees of freedom; the procedure projected in [5, Chapter III, Section 5, n. 5]
for n � 3 would, if existing, reduce only one degree of freedom and, apparently, seems regular. It
will turn out [16, 38] that, actually, such strategies can be simultaneously achieved for any n � 2
and, moreover, are intimately related12).

The first complete proof of Arnold’s Planetary Theorem in the general case appeared in [18],
including efforts by Michael Robert Herman. As mentioned above, this important and beautiful
result was reached with a different kam technique, in particular, avoiding Birkhoff normal form: only
the properties of the “frequency map” (Λ1, · · · ,Λn) → (∂hKep,Ω) associated to the system (1.3)
are exploited in [18]. The underlying elegant, kam Theory in [18] (for “smooth” systems) goes back
to [43] (analytic) and exploits “non-planarity” or “gauchness” non-degeneracy conditions previously
studied, since the late 60s and up to the 80s, by Pyartli, Arnold, Parasyuk, Sprinzuk and others;
see [18] and references therein, for more information. Moreover, the problem of secular resonances
is solved in [18] via arguments of abstract reductions, [4]. The fact of avoiding Birkhoff normal
form was a ingredient precisely wanted by Michael Robert Herman, in order to simplify the proof
avoiding annoying computations, [22]. However, he also investigated the aspect of planetary (at
least, formal) torsion and expressed doubts on its non-singularity, since he claimed [22, p. 24] “J’
ignore si detβ est identiquement nulle ! ”.

With a similar proof, based on non-planarity of the frequency map, but using only real-analytic
kam theory in [43], Chierchia and Pusateri find real-analytic tori [14, 40]. Here, following an
initial idea by Herman [22], secular degeneracies are reduced by adding an extra-integral to the
Hamiltonian.

Another proof of Theorem 1, involving, as Arnold projected, the construction of the Birkhoff
normal form for the system (1.3) was found in the PhD thesis [38]; the results of which were next
published in the 2011’s papers [12, 13, 16]. The starting point for this was a set of “action–angle”
variables (Λ,Γ,Ψ, λ, γ, ψ) ∈ R

3n × T
3n, qualitatively analogue to Delaunay variables, but better

suited to the SO(3)-invariance of the Hamiltonian (1.1). Such variables exhibit, among their actions,
the three components of the angular momentum, in a different form; precisely, Ψn−1 := |C| = G,
Ψn := C3 and ψn := ζ, the longitude of the “node” (the intersection) of the plane orthogonal to
C with a prefixed plane, when this is defined. Indeed, Ψn−1, Ψn and ψn, at contrast with C1,
C2 and C3, verify standard commutation rules13). There follows that the three variables ψn−1,
ψn and Ψn are cyclic in the system (1.1), which so is reduced to (3n − 2) degrees of freedom. In

12)Clearly, our remark deals with the explicit construction of symplectic coordinates. Indeed, reducing symmetries
via the use of quotient spaces in Hamiltonian systems is always possible [4] and, for the planetary system, has
been achieved in [18].

13)Ie, {Ψn−1, Ψn} = {Ψn−1, ψn} = 0, {Ψn, ψn} = 1.
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particular, the couple (Ψn, ψn) disappears from from the Hamiltonian (“rotational degeneracy”).
The use of the variables (Λ,Γ,Ψ, λ, γ, ψ), substantially, reduces to the change in (1.11) in the case
of n = 2 planets. Namely, when n = 2, the change of variables between the (Λ,Γ,Ψ, �, γ, ψ) and
Delaunay variables (Λ,Γ,Θ, �, g, θ) restricted to Ψn = Ψn−1, ψn−1 = ψn = 0 gives (1.11), besides
γi = gi. This restriction has no influence on the Hamiltonian, and hence, in this setting, we recover,
and extend to general n � 2, Radau’s proof that Jacobi reduction of the nodes (1.11) preserves
Hamilton equations, for the remaining variables.

The variables (Λ,Γ,Ψ, �, γ, ψ) may be obtained via a simple symplectic modification of analogue
sets of variables (R,Φ,Ψ, r, ϕ, ψ), having the same (Ψ, ψ) that had been considered, in the 80’s, by
Francoise Boigey [8] for n = 3 and, in their full generality, by André Deprit [17] for n � 4. By their
relation with the (R,Φ,Ψ, r, ϕ, ψ), we might call the (Λ,Γ,Ψ, �, γ, ψ) the “planetary” version of
Boigey–Deprit variables or “Deprit’s elements” [37]. Indeed, considering the symplectic “planar”,

“Delaunay” transformations that let the “two body Hamiltonians” R2
i

2mi
+ Φ2

i

2mir2i
− miMi

ri
into (1.2),

one obtains the change

(Λi,Γi, �i, γi) → (Ri,Φi, ri, ϕi). (1.12)

Precisely in this planetary form of (Λ, Γ, Ψ, �, γ, ψ), Boigey–Deprit variables were rediscovered by
the author, who was mainly stimulated by their application to this problem. Part14) of the proof
of the symplectic character of the (Λ,Γ,Ψ, �, γ, ψ) found in [38] was later published in [13].

Differently from Delaunay variables, the elements (Λ,Γ,Ψ, �, γ, ψ) (as well as the “original” ones
by Deprit) are not “six per planet”, because of a complicated, hierarchical structure of planes and
nodes. Incidentally, this structure led Deprit to formulate a very negative judgment and doubts on
the possible practical usefulness of his variables [17, p. 194]. This complication might also be related
to the fact that, except15) for the case n = 2, where they reduce to Jacobi’s, Deprit’s variables had
never been applied before, in none of their two previous forms, to rotation invariant systems.

Analogously to what happens for Delaunay variables, also the variables (Λ,Γ,Ψ, �, γ, ψ) exhibit
singularities when eccentricities or suitable mutual inclinations among the planes of the structure
vanish. And, analogously to what Poincaré did for Delaunay variables, it is possible to describe
also such singular situations switching to new symplectic variables, in part action–angle, in part
rectangular, called “rps variables” (“Regular”, “Planetary” and “Symplectic”). They are denoted
with analogue symbols as Poincaré variables16)

Λ = (Λ1, · · · ,Λn), λ = (λ1, · · · , λn),
z = (η1, · · · , ηn, ξ1, · · · , ξn, p1, · · · , pn, q1, · · · , qn),

(1.13)

since they are qualitatively similar to them. Indeed, also in this set the couples (Λi, λi)’s are related
to semi-major axes and (suitable) mean-longitudes on the instantaneous ellipses Ei; the (ηi, ξi)’s to
their eccentricities and perihelia; the (pi, qi)’s, to the directions of their planes. These latter couples
are however very different from their analogue ones in Poincaré’s set: the first (n − 1) couples of
(pi, qi)’s are related to the mutual inclinations among planes; the last one (pn, qn) to the direction
of C with respect to a prefixed frame. rps variables are well fitted to rotation invariance of the
problem, since (pn, qn) is a couple of integrals of the motion. Indeed, pn and qn are functions only
of the integrals Ψn−1 = G, Ψn = C3 and ψn = ζ:

⎧
⎨

⎩
pn =

√
2(G − C3) cos ζ,

qn = −
√

2(G − C3) sin ζ.

14)The variables (Λ, Γ, Ψ, �, γ, ψ) were recovered in [38] in two steps. For n = 2, looking for a symplectic change
of variables (Λ, Γ, Ψ, �, γ, ψ) → (Λ, Γ, Θ, �, g, θ) from Delaunay’s to the new ones, so as to fix the new actions
(Λ, Γ, Ψ), which had previously checked to Poisson-commute. This part of the proof, containing elementary
however lengthy computations, was never published, nor in [38]. After realizing the existence of Deprit’s paper [17],
it was substituted with a shorter proof, both in [38] and in [13]. The case of n � 3, which goes by induction, was
interely published in [13].

15)See, e.g. , [20].
16)Clearly, the variables (1.13) were not discussed in [8]–[17], where the (Λ, Γ, Ψ, �, γ, ψ) were not considered.
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Another amusing common aspect of rps variables with Poincaré’s, besides regularity17), is that the
system retains D’Alembert rules, as it happens for the system (1.3). More details on the relation
between Poincaré’s and rps variables may be found in [15].

Clearly, rps variables play the rôle of the set that Arnold conjectured in [5, Chapter III, Section 5,
n. 5] and (pn, qn) the one of (Φ1,Φ2).

At this point, the proof goes as follows. In place of the “Poincaré Hamiltonian” (1.3), we consider
the “rps Hamiltonian”

Hrps = hKep(Λ) + μfrps(Λ, λ, z̄) (1.14)

with

z̄ = (η, ξ, p̄, q̄), (1.15)

where η = (η1, · · · , ηn), p̄ = (p1, · · · , pn−1) and so on. The variables (pn, qn), which do not appear,
are kept fixed once forever. The system (1.14) has (3n− 1) degrees of freedom and an extra-integral,

G = |C|, which is a linear function of Λ1, · · · , Λn, η2
1+ξ2

1
2 , · · · , p2

n−1+q2
n−1

2 :

G =
n∑

i=1

Λi −
n∑

i=1

η2
i + ξ2

i

2
−

n−1∑

i=1

p2
i + q2

i

2
.

D’Alembert rules imply that z̄ = 0 (which now corresponds to zero eccentricities and inclinations
with respect to C) is an elliptic equilibrium point for (frps)av. We then construct the Birkhoff
normal form of order four associated to (1.14) around the elliptic equilibrium z̄ = 0. Namely, we
conjugate the system (1.14) to a system Hrps

bnf = hKep + μf rps
bnf analogue to (1.7), via a symplectic

transformation φrps
bnf analogue to (1.8), but with (4n − 2) replacing 4n, for the dimension of the

z̄-variables. This construction is possible since the first order Birkhoff invariants (Ω1, · · · ,Ω2n−1)
associated to (frps)av can be explicitly computed, at least asymptotically. They turn out not to
verify resonances of any arbitrary order 2s on a domain A (depending on s) of semi-axes as
in (1.6), besides Herman’s. Since it has been proved [15] that (Ω1, · · · ,Ω2n−1) coincide with the
first (2n − 1) first order Birkhoff invariants associated to (fP)av in (1.3), in particular, the non-
resonance (up to Herman’s) of (Ω1, · · · ,Ω2n−1) on A refines an analogue statement in [18], where it
is proved that Herman resonance is the only one identically satisfied by (Ω1, · · · ,Ω2n−1). Herman
resonance, however, does not prevent the construction of Birkhoff normal form (which so turns
out to exist for any choice of s) since, due to the integral G, (frps)av exhibits a symmetry18) for
which only resonances

∑2n−1
i=1 kiΩi = 0 with

∑2n−1
i=1 ki = 0 are relevant for the construction of the

Birkhoff normal form, while19) Herman resonance is not in this class. The final step is to compute
(asymptotically) β and check non-trivial torsion.

In this setting, it is also possible, at the cost of introducing a singularity in correspondence
of co-planarity, to reduce completely the integrals of the system, eliminating the integral G. This
gives rise to quasi-periodic motions bifurcating from a different equilibrium point with (3n − 2)
independent frequencies. Such “full reduced” quasi-periodic tori, not mentioned in [5] had been
previously found in [18], via a different technique.

Let us conclude this survey with two considerations.

17)Following [30], the reduction performed by the rps variables might be called “partial reduction”, at contrast with
the “full reduction”, also discussed in [16, 38], that reduces the number of degrees of freedom to the minimum,
(3n − 2). Pay attention not to confuse, however, the regular “partial reduction” performed by rps variables with
the elementary (but singular) reduction that can be obtained reducing the integral C3 in Poincaré variables. This
latter one does not exhibit a cyclic couple and has nothing to do with the aforementioned Arnold’s claim in [5,
Ch. 3, Section 5, 5].

18)The Hamiltonian flow (Λi, λi, ηi + iξi, pj + iqj) → (Λi, λi + τ, (ηi + iξi)e
−iτ , (pj + iqj)e

−iτ ), with 1 � i � n, 1 �
j � n − 1, generated by G, corresponding to rotations around the C-axis. Note that in Poincaré’s variables we
have an analogue symmetry, which is the flow generated by C3 = (Θ1 + · · · + Θn). Here, we have to replace (η, ξ),
(p̄, q̄) with, respectively, (η, ξ), (p, q).

19)In a different context, this observation is already in [30].
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Firstly, we might ask how the Birkhoff normal form associated to the system (1.14) is related
to the system (1.3).

Let

φP
rps : (Λ, λ, z) → (Λ,λ, z)

denote the change of variables between the two sets and φ̄rps
bnf the (trivial) lift of “a” φrps

bnf as
above over (Λ, λ, z), i.e. , including also (pn, qn) via the identity. It has been proved [15] that φP

rps

has the form (1.8) (see Theorem 5 below), therefore also the composition φ̄P
bnf := φP

rps ◦ φ̄rps
bnf has

the same form. Then we find, in a indirect way, that also the system (1.3) admits, via φ̄P
bnf , the

form (1.7), with (fP
bnf)av = (f rps

bnf)av, independent of p2
n+q2

n
2 . This fact may be interpreted, on one

side, as a remarkable counterexample to Birkhoff theory (the system (1.3) — indeed, (fP)av — is
an example of resonant system with non-resonant Birkhoff normal form) and, on the other side,
shows that, without reduction, the unique Birkhoff normal form that can be obtained for the
system (1.3) is degenerate at any order. Namely, besides having an identically vanishing frequency,
any coefficient of (fP

bnf)av with one of the indices equal to 2n vanishes. In particular, the torsion
of (fP

bnf) vanishes identically and hence this answers negatively to the question raised by Herman
in [22, p. 24] mentioned above. In general, this degeneracy of the normal form of the unreduced
system is another aspect of the rotational degeneracy remarked above.

The second comment is that, even if symmetry considerations and some extra work on the
computation of the Ω1, · · · , Ω2n−1 for the system in Poincaré variables (1.3) might lead to the
observation that the secular resonances do not affect the direct construction of the system20) (1.7)
starting with (1.3), nevertheless, the rotational degeneracy discussed above shows that such normal
form would be useless.

1.3. This paper is concerned with a more detailed study of the planetary Birkhoff normal form.
Before describing it, we anticipate two applications.

a) A “uniform” theorem on quasi-periodic motions. The former result of this paper
is a refinement of the proofs found in [16, 38, 42] about quasi-periodic motions in the (spatial)
three-body problem.

As mentioned in the previous section, both the proofs of Theorem 1 given in [42] for n = 2
and [16, 38] for n � 2 are based on the direct application of Theorem 8 or refined versions of it [12].
This implies that one has to take smaller and smaller values of the range of the secular variables
(eccentricities and inclinations), in order to find a major number of tori.

Arnold realized that in some particular cases we might assert something more.
For example, he knew that, already in the case of the planar three-body problem, the smallness

condition on eccentricities can be relaxed. In Arnold’s words:

[5, Chapter III, Section 1, n.6, p. 128]. “In the case of three bodies [on a plane] we can obtain
stronger results (. . . ). It turns out that it is not necessary to require the eccentricities to be small;
all that is necessary is that they should be small enough to exclude the possibility of collision.”

And in fact, he stated

Theorem 2 (V. I.Arnold, [5, p. 128]). Consider the case of the planar three-body problem. Fix
positive numbers a1 < a1 < a2 < a2. Let Dε0 be a domain21) defined by

Dε0 : a1 � a1 � a1, a2 � a2 � a2,

2∑

i=1

mi

√
Miai(1 −

√
1 − e2

i ) � ε2
0

20)At least at low orders. The fact that only resonances
�2n

i=1 kiΩi = 0 with
�2n

i=1 ki = 0 are relevant for the
construction of the Birkhoff normal form holds also for the system (1.3) in Poincaré variables. The resonance
with k1 = · · · = k2n−1 = 1 and k2n = −(2n − 1) prevents taking 2s = 2(2n − 1).

21)The second inequality is just 1
2
‖(η, ξ)‖2

2 � ε20.
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(for a suitably chosen ε0, depending on m̄1, m̄2, a1, a2 so that collisions22) are excluded). For any
κ > 0 it is possible to find μ∗ > 0 such that if

0 < μ � μ∗ (1.16)

an invariant set Kμ ⊂ Dε0, with

measKμ � (1 − κ)measDε0

formed by the union of invariant four-dimensional tori, on which the motion is analytically
conjugated to linear Diophantine quasi-periodic motions.

The main point of this theorem is that κ does not depend on ε0, which in turn related to the
bound on eccentricities, but only on μ∗ (incidentally, we note that, even if Arnold does not specify
the relation between μ∗ and κ, in the statement, following the proof, one finds μ∗ ∼ κ

1/a∗
∗ , with

some small number a∗). The key point [5, Chapter III, Section 5, n. 2, p. 139] of the proof of
Theorem 2 is that, for this problem, (fP)av is integrable, since it has two degrees of freedom (the
two eccentricities) and two commuting integrals: the third component C3 of C and itself. Using
this ingredient, he shows that, via a simple modification23) of the proof of Theorem 8, he proves
a less general result than Theorem 8 but however very useful in this case: Compare Theorem 9 in
Appendix A. In the thesis of Theorem 9 ε0, the radius of Bn2

ε0 , does not appear in the measures
ratio measKμ/measPε0 .

Arnold believed that Theorem 2 admitted a generalization to the case of the spatial three-body
problem. His generalization should go as follows. Letting D′

ε to be the set where semi-major axes
(a1, a2), eccentricities (e1, e2) and inclinations (ι1, ι2) of the two planets verify inequalities

D′
ε : (a1, a2, e1, e2) ∈ Dε0,

2∑

i=1

mi

√
Miι

2
i � ε2

he claimed

“Theorem” 1 ([5, Chapter III, Section 1, n. 7, p. 129]). “An analogous theorem [to Theo-
rem 2] is valid for the space three-body problem. In this case D′

ε is defined (. . . ) [as above] with
sufficiently small ε.”

Arnold did not provide the exact statement of this “theorem”. From the underlying context it
might be argued that he believed it were possible replace condition (1.16) with

0 < μ � μ∗, 0 < ε � ε∗

(with, possibly, μ∗, ε∗ ∼ κ1/a′
∗), so as to have an invariant set K′

μ,ε with larger and larger measure
only letting masses μ and inclinations ε → 0, while keeping eccentricities finite. In fact, he aimed
to use Theorem 9 also for this case, since we read, as a “proof” of “Theorem” 1:

[5, Chapter III, Section 5, n. 4, p. 141]. “The space three-body problem reduces to a certain
plane problem which turns into the plane three-body problem when the inclinations tend to 0. By
comparison with 2. [the averaged plane three-body problem is integrable] and using again Ch. I,
Section 8 [Theorem 9], we arrive at the results of Section 1, n. 7 [“Theorem” 1].”

The first sentence of this “proof” contains a flaw. Later results for the spatial three-body
problem [16, 38, 42], being based on Theorem 8 (rather than on Theorem 9) are actually weaker
than “Theorem” 1, since they do not state that the measures ratio measKμ,ε/measPε depends
only on the planets’ masses and on the inclinations and does not depend on the eccentricities.

22)See the first equation after [5, Eq. (3.1.5)], with ε0 replaced by ε20.
23)I. e., replacing in [5, Eq. (4.1.15), p. 158] ¯̄H1 with ¯̄H∗

1 := ¯̄H1 + ˜̄H1,
˜̄H1 with 0 and, in the Equation just below,

neglecting the bound on ˜̄H1 and replacing the bound on H2 with μ2δ−T , T � 1, as it follows from the “Lemma
on averaging over rapid variables” [5, Chapter IV, Section 5, p. 147] with M = M̄ = μ, to which we also refer for
notations.
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In this paper, we shall prove a result which goes in the direction of “Theorem” 1, but is not quite
the same. In a sense, we replace ε, the bound on inclinations, with α, the bound on the semi-major
axes ratio. We also extend such result to the planar, general problem with24) n � 3 planets.

Theorem A. In the spatial three-body problem, there exist positive numbers α∗, μ∗, ε∗, c∗, 1/C∗
and 1/β∗ smaller than one such that, if the numbers α and μ (where μ is the parameter in (1.1))
verify

0 < μ � μ∗, 0 < α � α∗, μ � c∗ log(α−1)−4β∗

for any choice of a−, a+, with a− < αa+, in the domain Dα where semi-axes a1, a2, eccentricities
e1, e2 and mutual inclination ι verify

Dα : a− � a1 � α a2 � αa+, |(e1, e2, ι)| < ε∗

a set Kμ,α ⊂ Dα may be found, formed by the union of invariant 5-dimensional tori, on which the
motion is analytically conjugated to linear Diophantine quasi-periodic motions. The set Kμ,α is of
positive Liouville–Lebesgue measure and satisfies

measKμ,α �
(
1 − C∗( 4

√
μ(log α−1)β∗ +

√
α)
)

measDα.

The same assertion holds for the planar (1 + n)-body problem.

b) A “full” Nehorošev stability theorem The latter result of the paper is concerned with
the stability for the planetary system. To introduce it, we recall the following fundamental result
by N. N. Nehorošev25), mainly motivated by its application to the Hamiltonian (1.3).

Theorem 3 (N.N.Nehorošev, 1977, [33, 34]). Let

H(I, ϕ, p, q) = H0(I) + μP (I, ϕ, p, q), (I, ϕ, p, q) ∈ P ⊂ R
n1 × T

n1 × R
2n2

be of the form of (1.3), real-analytic. Assume that H0(I) is “steep”. Then, one can find a, b > 0,
C and μ0 such that, if μ < μ0, any trajectory t → γ(t) = (I(t), ϕ(t), p(t), q(t)) solution of H such
that

(p(t), q(t)) ∈ Π(p,q)P, ∀ 0 � t � T0 :=
1

Cμ
e

1
Cμa (1.17)

verifies

|I(t) − I(0)| � r0 :=
C

2
μb ∀ 0 � t � T0.

As for the definition of “steepness”, we refer to the papers [32–34]; see also [36] for an
equivalent definition. We aim to point out that, despite of the almost 150-pages length of the
proof of Theorem 3 and the complication of notion of steepness, in [33] Nehorošev easily26) applied
Theorem 3 to the planetary Hamiltonian HP in (1.3) (with I = Λ, the actions related to the
semi-axes, and (p, q) = z in (1.5), the secular variables), since the unperturbed term H0 = hKep is
concave, a special case of steepness. Nehorošev then obtained a spectacular result of stability for the
planetary semi-axes (implying, in particular, absence of collisions) over exponentially-long times for
all initial data in phase space (see also [35] for a different approach and improved estimates). Up no
now, Nehorošev’s result is the only rigorous, global (i.e. , valid on the whole phase space, or, possibly,
on a very large open subset of it) stability result for the planetary problem. Indeed, there do exist

24)The proof holds also for n = 2, but for this case Theorem 2 gives a stronger result.
25)A more technical statement of Theorem 3 is given in Appendix D: Compare Theorem 11. Recall that other

improved statements of Theorem 3 have later been found in particular cases: see, for example, [9, 39] and
references therein.

26)The only delicate point in the application of Theorem 3 to HP consisted in checking assumption (1.17), that
Nehorošev accomplished using the conservation of the third component C3 of the total angular momentum (1.10)
along the HP-trajectories. Note that, in the non-degenerate case, i.e. , when the variables (p, q) do not appear,
this assumption is void.
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in literature results involving also strong numerical efforts for physical systems (see,e.g. , [21, 44]
and references therein) true on Cantor sets (in general, they are obtained via kam techniques).

A physically relevant and widely studied open problem is related to the study of the stability
of the whole system; i.e. , the study of the secular variation of eccentricities and inclinations of the
planets’ instantaneous orbits, besides the ones of semi-axes. See, for example, [28] and references
therein. Partial rigorous results in this direction have been obtained in [15], where it has been proved
that, if eccentricities and inclinations are initially suitably small, they remain confined with respect
to their initial values over polynomially long times, up to exclude the so-called27) “mean-motion
resonances”. More precisely, the following result has been proved.

Theorem 4 ([15]). Whatever is the number of planets, for any arbitrarily fixed s ∈ N, with s � 5,
one can find positive numbers C, aj, aj, ε, ε with aj < aj < aj+1 and ε < ε such that for any κ > 0,
ε < ε � ε̄, in the domain where semi-major axes ai, eccentricities ai and mutual inclinations ιj
verify

D̂s,ε : aj � aj � aj ε � max
i,j

{ei, ιj} � ε

under suitable relations between μ and ε, one can find an open set ˆ̂Ds,μ,ε such that, for all the

motions starting in ˆ̂Ds,μ,ε, the displacement of eccentricities and inclinations with respect to their
initial values is bounded by κε, for all

|t| � Cκ

μεs
.

The proof of Theorem 4 again relies with the Birkhoff normal form of the system discussed in
section 1.2; the time of stability is related in fact to the remainder of this normal form. No analysis
of resonance zones, trapping arguments. . . is used for its proof. An undesirable aspect of Theorem 4,

is that the size of ˆ̂Dσ,ε decreases with with the time of stability.
In this paper, we prove a stronger result, at least for the planar three-body problem.

Theorem B. In the planar three-body problem, there exist numbers ā−, ᾱ, ε̄, ā, b̄, c̄, d̄ such that,
for any ā−, ā+, with ā− < ᾱā+ and ε < ε � ε̄ in the domain

D̄ε : ā− � a1 � ᾱ a2 � ᾱā+, ε � |(e1, e2)| � ε

under suitable relations between μ and ε, one can find an open set ¯̄Dμ,ε ⊂ D̄ε, defined by absence of
mean-motion resonances up to a suitable order, such that, for all the motions with initial datum in
¯̄Dμ,ε, one has

|ai(t) − ai(0)|, |ei(t) − ei(0)| � r̄ := max{δb̄, μ1/12, ε} ∀ 0 � t � T̄ =
e

1
δ̄ā

δ̄

where δ̄ := μd̄ε
c̄ .

1.4. Let us sketch the proofs of Theorems A and B and make some comment.
The proof of Theorem A is a remake of Arnold’s ideas for the proof of Theorem 2 described

in Section 1.3 a). Let us denote as f3b the function frps in (1.14) for the three-body case; (f3b)av,
its averaged value. We shall see below that a suitable approximation (f3b)(2)av defined in Eq. (1.20)
below, is integrable. This fact has been already used, in different settings, in [29, 47] and [37].
Moreover, the same property of integrability is proved to hold for the planar many-body problem;
see below for more details on this assertion. Then, we apply a suitable slight generalization of
Theorem 9 (Theorem 6), which allows to work on (f3b)(2)av , (fpl)

(2)
av , respectively.

The proof of Theorem B is an application of the Nehorošev’s Theorem. Essentially, it relies on
checking “steepness” of the first terms of the Birkhoff normal form associated to hKep + μ(f3b)av,
in the planar case, in all of its degrees of freedom. Here the difficulty is that, at contrast with

27)I.e., resonances of the Keplerian frequencies ωKep := ∂hKep.
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the application in [33] (where only the concavity of hKep is exploited), the “full torsion” of the
system, given by the Hessian of hKep and the matrix β of the second-order Birkhoff invariants, is
not convex, nor quasi-convex. Its eigenvalues are alternating in sign. Therefore, it is necessary to
consider higher orders of Birkhoff normal form and apply more refined conditions for steepness. It
is not clear, in general, what is the right order of the Birkhoff series to be involved and, especially,
how steepness can be checked for systems with many degrees of freedom (see [45] for a study in
this direction and [36] and references therein for a different approach). For three-degrees of freedom
systems Nehorošev proved that the “three-jet condition” (recalled in Appendix D) is “generic”. But
the planar three-body problem, after reducing completely rotations, has three degrees of freedom,
so it is not surprising that this problem satisfies three-jet. We do this check in Section 4.4.

Before passing to describe technical aspects, we provide a few comments.

– Theorem B is stated for the planar three-body problem. As previously outlined, the secular
problem associated to it is integrable: its Birkhoff normal form converges. And in fact this
circumstance allowed Arnold to obtain refined results for this case (see Section 1.3, a)).
One might ask if, analogously to the result of Theorem 2, the set ¯̄Dμ,ε may be chosen to
be independent of ε. However, with our proof we are not able28) to refine the result in
that direction. The reason is technical: instead of the (integrable) secular system Hpl3b :=
hKep + μ(fpl3b)av that would be more natural, during the proof we consider a non integrable

system close29) to it, by performing not only one but many steps of averaging with respect to
fast (mean motion) frequencies. Therefore, we need to truncate the Birkhoff series associated
to this closely to integrable system and this is the reason we have the dependence of ε.
Indeed30), the estimates of theory developed in [33], which we use in a quantitative way
during the proof of Theorem B (see Theorem 11), do not allow us to perform just one step
of averaging.

– In Section 4 we do more than we need for Theorem B. We compute the Birkhoff normal form
of the spatial three-body problem, which is31)

(fbnf)av = −m̄1m̄2

a2
− m̄1m̄2

a2
1

4a3
2

((
1 + 3

t1
Λ1

+ 3
t2
Λ2

− 3
(

1
Λ1

+
1
Λ2

)
t3

)

− m̄1m̄2
a2

1

4a3
2

(
− 3

2
t21
Λ2

1

+ 6
t22
Λ2

2

+
3
2

t23
Λ2

1

+ 9
t1t2

Λ1Λ2
− 12

t1t3
Λ2

1

− 9
t2t3
Λ1Λ2

+ 10
t32
Λ3

2

− 3
2

t33
Λ2

1Λ2
− 9

2
t21t2

Λ2
1Λ2

− 105
4

t21t3
Λ3

1

− 18
t22t3

Λ1Λ2
2

+ 18
t1t

2
2

Λ1Λ2
2

+
105
4

t1t
2
3

Λ3
1

+
9
2

t2t
2
3

Λ2
1Λ2

− 36
t1t2t3
Λ2

1Λ2

)(
1 + O

(
Λ1

Λ2

))
+

a2
1

a3
2

O
(
|t|7/2

)
+ O

(
a3

1

a4
2

))

(1.18)

and then we reduce to the planar case setting t3 = 0. However, we are not able to extend
Theorem B to the spatial case, since we are not able to check steepness for this case. The
three-jet condition might fail at least on manifolds of co-dimension one: see Remark 3.

– Besides the previous case, a possible extension of Theorem B to the general planar problem
might be helped by the fact that, for this case we know a good approximation of (fbnf)av, at
any order. This result is a corollary of the analysis of Section 2. See also Section 1.5 below.

– In our strategy of proofs, the planetary Birkhoff normal form (hence, the system (1.14) in
rps variables) plays a central rôle. The author is not aware (and would be interesting to
know) what kind of results could be obtained (and what would be the relative difficulty) via
Herman–Féjoz’s normal form [18].

28)The dependence of ¯̄Dμ,ε on ε may be read in inequality just before (4.3) and by the formula (4.3), that define
this set.

29)Compare the system hKep + μ(N̂ + N̂∗) in (4.14).
30)Compare Lemma 5 in Section 4.3.
31)In particular, truncating this formula to the fourth order we recover the formulae found in [16, 38].
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1.5. The main novelty of this paper (with respect to our previous ones on this subject) is a
technical lemma of geometrical nature (Proposition 1, which, in turn is a consequence of the more
general Proposition 2. See also the second item in Remark 1) that helps in the analysis of the
secular perturbing function of the system (1.14). This reflects on the computation of the Birkhoff
invariants at higher orders.

Let us remark, in this respect that, in general, computing the Birkhoff invariants of the planetary
problem is a huge work. See, for example the computations of the torsion in [5] (n = 2, planar),
[42] (n = 2, spatial), [22] (n � 2, planar), [16, 38] (n � 2, spatial). So, our main progress relies on
an improvement of the technique of computation of such invariants, which is particularly desirable
if one wants to extend Theorem B to the general problem.

Let us introduce it briefly, referring to the following section for details.

Consider the system (1.14) and, in particular, its secular perturbing function (frps)av. Since the
indirect32) part has zero λ-average, (frps)av is given by

(frps)av = −
∑

1�i<j�n

m̄im̄j

(2π)2

∫

T2

dλidλj

|x(i)(Λ, λi, z̄) − x(j)(Λ, λj , z̄)|
.

De-homogeneizating with respect to aj, we expand each of the terms

(f (ij)
rps )av := −m̄im̄j

(2π)2

∫

T2

dλidλj

|x(i)(Λ, λi, z̄) − x(j)(Λ, λj , z̄)|

in powers of the ratio ai
aj

, with aj fixed:

(f (ij)
rps )av = (f (ij)

rps )(0)av + (f (ij)
rps )(1)av + (f (ij)

rps )(2)av + · · · . (1.19)

Clearly, to this expansion there corresponds an analogue expansion of

(frps)av = (frps)(0)av + (frps)(1) + (frps)(2)av + · · · . (1.20)

Analogously to what happens for the Poincaré Hamiltonian (1.3), one has that, in these expansions,
the zeroth order terms (f (ij)

rps )(0)av are independent33) of z̄ by well known properties of the two-body
potential and that the linear terms (f (ij)

rps )(1)av vanish by Fubini’s and Newton equation34). The lowest

order information on (frps)av is then given by the second-order terms (frps)
(2)
av .

By [16, 38] (frps)
(2)
av may be splitted into a sum

(frps)(2)av = (fpl)(2)av + (fvert)(2)av (1.21)

of a “planar” and35) a “vertical” part, where (fpl)
(2)
av corresponds to the term that we would have

for the problem in the plane, while (fvert)
(2)
av vanishes for (p̄, q̄) = 0 and is even in (p̄, q̄). In Section 2

32)The former term in (1.4) is of often referred to as “indirect part”; the latter as “direct part”. As far as the author
knows, this terminology has been introduced by the French school. The vanishing of the average of the indirect
part, known Poincaré variables, holds also in rps variables.

33)They are given by given by− m̄im̄j

aj
.

34)I. e., by the vanishing of

1

2π

�
T

x(j)(Λ, λj , z̄)

|x(j)(Λ, λj , z̄)|3 dλj =
1

Tj

� Tj

0

d

dt
y(j)(Λ, ωjt, z̄)dt

with some Tj and ωj = 2π
Tj

.
35)We follow the terminology in [18].
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we prove that (fpl)
(2)
av , (fvert)

(2)
av are given by, respectively,

(fpl)(2)av = −1
4

∑

1�i<j�n

m̄im̄j
a2

i

a3
j

1 + 3
2e2

i

(1 − η2
j +ξ2

j

2Λj
)3

(fvert)(2)av = +
3
4

∑

1�i<j�n

m̄im̄j
a2

i

a3
j

1
2π

∫
T
(x̂(i) · Ĉ(j))2dλi(
1 − η2

j +ξ2
j

2Λj

)3 , (1.22)

where ei’s are the eccentricities, expressed in terms of Λi and η2
i +ξ2

i
2 ; Ĉ(j) are the planets’ normalized

angular momenta C(j)

|C(j)| and x̂(i) := x(i)(Λ,λi,z)
ai

.

The author is not aware if the formulae (1.22) had been already noticed before (they hold also in
the case of the Poincaré system (1.3)). Such formulae are the thesis of Proposition 1, that we prove
using a new set of symplectic variables, defined in (2.10), and tools of normal form theory. The
variables (2.10) in a sense resemble the well known Adoyer–Deprit variables of the rigid body, with
the difference that have six degrees of freedom instead of three. Also the thesis of Proposition 1
resembles certain formulae for the rigid body, as outlined in Remark 1.

In particular, inspecting (1.22), it is to be remarked that (fpl)
(2)
av not only is integrable, but is in

Birkhoff normal form. This fact implies the validity of Theorem A for the planar general problem.
Moreover, since this formula is of great help in the computation of its Birkhoff invariants at any
order, applications to extension of Theorem B to this case are foreseen.

Secondly, formulae (1.22) imply that, in the three-body case (n = 2), (f3b)
(2)
av := (frps)

(2)
av |n=2 is

independent of the argument of (η2, ξ2), therefeore, it is integrable (compare [29], for an analogue
assertion in a different setting and, e.g. , [20, 37, 47] for applications). More in general, for n � 2,
(frps)

(2)
av is independent on the argument of (ηn, ξn). But while, for this general case, the expression

of (fvert)
(2)
av in terms of rps variables is complicated, due to the factors (x̂(i) · Ĉ(j))2, it is not so for

three bodies, where there is only one of such factors (i = 1, j = 2). The aspect of the corresponding
vertical term is nice:

(f3bvert)(2)av =
3
4
m̄1m̄2

a2
1

a3
2

1

(1 − η2
2+ξ2

2
2Λ2

)3

(
(1 +

3
2
e2
1)(ivv
) +

5
2
(
(u


1)
2v2 + (v
)2u2

1

)
ē2
1

)
s̄
2 (1.23)

where ui, u∗
i are the Birkhoff variables associated to (ηi, ξi); (v, v∗) to (p1, q1), ē1 and s̄ are suitable

functions in normal form. Since the first non-normal terms in this formula appear from the fourth
order on, the computation of the sixth orders Birkhoff invariants for the three-body case is quickly
done: it takes less than two pages (see Section 4.1) and gives (1.18).

2. AN ASYMPTOTIC FORMULA FOR THE SECULAR PERTURBATION
Let, for fixed 1 � i < j � n,

fij(Λ, z̄) :=
1

(2π)2

∫

T2

dλidλj

|x(i)(Λ, λi, z̄) − x(j)(Λ, λj , z̄)|
so as to write

(frps)av(Λ, z̄) = −
∑

1�i<j�n

m̄im̄jfij(Λ, z̄). (2.1)

Here36) (Λ, λi, z) → x(i)(Λ, λi, z̄) denotes the x(i)-projection of the map

φ−1
rps : (Λ, λ, z) → (y, x) ∈ R

3n × R
3n. (2.2)

36)Actually, the map (2.2) depends on z, rather than z̄. However, by the independence of the Hamiltonian (1.14)
of (pn, qn), we may arbitrarily fix such couple of variables to some value, e.g. , (0, 0). Abusively, just in (2.4) and

similar formulae below, we denote again as (Λ, λ, z̄) → (y(Λ, λ, z̄), x(Λ, λ, z̄)) the map φ−1
rps|(pn,qn)=(0,0).

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 6 2013



876 PINZARI

Consider the formal expansions

fij = f
(0)
ij + f

(2)
ij + · · · (2.3)

in powers of the semi-major axes ratio αij := ai/aj , with aj fixed. Here,

f
(k)
ij :=

1
k!

dk

dεk

[
1

(2π)2

∫

T2

dλidλj

|εx(i)(Λ, λi, z̄) − x(j)(Λ, λj , z̄)|

]

ε=0

.

In particular, we focus on the second-order term of this expansion, given by

f
(2)
ij =

1
(2π)2

∫

T2

dλidλj
3(x(i)(Λ, λi, z̄) · x(j)(Λ, λj , z̄))2 − |x(i)(Λ, λi, z̄)|2|x(j)(Λ, λj , z̄)|2

2|x(j)(Λ, λj , z̄)|5
. (2.4)

Note that (frps)
(2)
av in (1.20) corresponds to

(frps)(2)av = −
∑

1�i<j�n

m̄im̄jf
(2)
ij . (2.5)

Let C(i)(Λ, z̄) := x(i)(Λ, λi, z̄) × y(i)(Λ, λi, z̄) (by definition of the map (2.2), C(i)(Λ, z̄) is indepen-
dent of λi). We have the following identity

Proposition 1.

f
(2)
ij = −

Mjm
2
j

4

1
2π

∫

T

(
3(C(j) · x(i))2 − |x(i)|2|C(j)|2

)
dλi

|C(j)|4

(
1
2π

∫

T

dλj

|x(j)|2

)
. (2.6)

Note that Eqs. (2.5), (2.6) and the formulae of |C(j)|, |x(j)| in terms of rps variables (see [16, 38]
and eventually Appendix B) imply (1.21)–(1.22).

We first discuss

2.1. The Three-body Case

Let

P(2) :=
1

(2π)2

∫

T2

dλ1dλ2
3(x(1)(Λ,λ1, z) · x(2)(Λ,λ2, z))2 − |x(1)(Λ,λ1, z)|2|x(j)(Λ,λ2, z)|2

2|x(2)(Λ,λ2, z)|5
,

where, for i = 1, 2,

(Λ1,Λ2,λi, z) ∈ A2 × T
1 × B8 → (y(i)(Λ1,Λ2,λi, z), x(i)(Λ1,Λ2,λi, z)) ∈ R

3 × R
3

are two mappings such that

(A) The map (Λ1,Λ2,λ2, z) → (y(2)(Λ1,Λ2,λ2, z), x(2)(Λ1,Λ2,λ2, z)) verifies

|y(2)(Λ1,Λ2,λ2, z)|2
2m2

− m2M2

|x(2)(Λ1,Λ2,λ2, z)|
= −m3

2M
2
2

2Λ2
2

; (2.7)

(B) The map

φ̄ : (Λ1,Λ2,λ1,λ2, z) → (y(1), y(2), x(1), x(2)) (2.8)

is symplectomorphism of A2 × T
2 × B8 into R

12 (where A2 ⊂ R
2, B8 ⊂ R

8 are open and
connected).
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Proposition 2. Under assumptions (A) and (B), the following identity holds

P(2) = −M2m
2
2

4

1
2π

∫
T

(
3(C(2) · x(1))2 − |x(1)|2|C(2)|2

)
dλ1

|C(2)|4

(
1
2π

∫

T

dλ2

|x(2)|2

)
(2.9)

where C(2)(Λ1,Λ2, z) := x(2)(Λ1,Λ2,λ2, z) × y(2)(Λ1,Λ2,λ2, z).

Remark 1.

– Note that, in the case n = 2, the map (2.2) satisfies assumptions (A) and (B), hence
Proposition 2 is just Proposition 1 in this particular case.

– We shall prove more than (2.9): letting P(1)(Λ,λ1, z) as in (2.18) below, then P(1) satisfies
an analogue identity as in (2.9), but neglecting the first average 1

2π

∫
T

dλ1 (compare the last
sentences in the proof of Proposition 2).

– The formula (2.9) resembles the expression of the averaged quartic term in the spin-orbit
problem, using Andoyer–Deprit coordinates: see [6, Eq. (24)], in turn based on the expansions
in [11, Section 12].

In the next sections, we prove Proposition 2. Next (in Section 2.5), we discuss the general case.

2.2. A Six-degrees of Freedom Set of Symplectic Variables

The proof of Proposition 2 is based on the use of a “ad hoc” variables for the three-body problem.
Let us introduce them.

Let (k(1), k(2), k(3)) be a prefixed orthonormal frame in R
3 and let

(y(1), y(2), x(1), x(2)) ∈ (R3)4, (y(i), x(i)) = (y(i)
1 , y

(i)
2 , y

(i)
3 , x

(i)
1 , x

(i)
2 , x

(i)
3 )

be a system of “Cartesian coordinates” in the configuration space R
3, with respect to

(k(1), k(2), k(3)).
Denote as

C(i) := x(i) × y(i)

(with “×” denoting skew product) the ith angular momentum, and let C := C(1) + C(2) the total
angular momentum. For u, v ∈ R

3 lying in the plane orthogonal to a vector w, let αw(u, v) denote
the positively oriented angle (mod 2π) between u and v (orientation follows the “right hand rule”).
Define the “nodes”

ν1 := k(3) × C, ν2 := C × x(1), ν3 := x(1) × C(2).

Let P12

 denote the subset of (R3)4 where C, C2, x(1), x(2), ν1, ν2 and ν3 simultaneously do not

vanish. On P12

 define a map

φ−1 : (y(1), y(2), x(1), x(2)) → (C3,G,R1,Θ,R2,Φ2, ζ, g, r1, ϑ, r2, ϕ2)

via the following formulae

φ−1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C3 := C · k(3)

G := |C|

R1 :=
y(1) · x(1)

|x(1)|

Θ :=
C(2) · x(1)

|x(1)|

R2 :=
y(2) · x(2)

|x(2)|
Φ2 := |C(2)|

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ := αk(3)(k(1), ν1)

g := αC(ν1, ν2)

r1 := |x(1)|

ϑ := αx(1)(ν2, ν3)

r2 := |x(2)|

ϕ2 := αC2(ν3, x
(2))

(2.10)
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Note that the variables (2.10) provide a reduction of the angular momentum which is regular for
planar motions (when C(1) ‖ C(2) ‖ C, Θ = 0 and ϑ = π).

Proposition 3. The map φ−1 in (2.10) is invertible on P12
∗ and preserves the standard Liouville

1-form λ =
∑6

i=1 PidQi.

We denote as

R1(i) =

⎛

⎜⎜⎜⎝

1 0 0

0 cos i − sin i

0 sin i cos i

⎞

⎟⎟⎟⎠ , R3(θ) =

⎛

⎜⎜⎜⎝

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞

⎟⎟⎟⎠ .

The invertibility is proven by exhibiting the inverse φ. Indeed, the definitions in (2.10) and
elementary geometric considerations easily imply the following

Lemma 1. On φ−1(P12
∗ ), the inverse map of φ−1 in (2.10) has the following analytical expression:

φ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1) = R3(ζ)R1(i)R3(g)R1(i1)

⎛

⎜⎜⎜⎝

0

0

r1

⎞

⎟⎟⎟⎠

y(1) :=
R1

r1
x(1) +

1
r21

C(1) × x(1)

x(2) = R3(ζ)R1(i)R3(g)R1(i1)R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

r2 cos ϕ2

r2 sin ϕ2

0

⎞

⎟⎟⎟⎠

y(2) = R3(ζ)R1(i)R3(g)R1(i1)R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

R2 cos ϕ2 − Φ2
r2

sinϕ2

R2 sin ϕ2 + Φ2
r2

cos ϕ2

0

⎞

⎟⎟⎟⎠

(2.11)

where, if i, i1, i2 ∈ (0, π) are defined by

cos i =
C3

G
, cos i1 =

Θ
G

, cos i2 =
Θ
Φ2

(2.12)

and C, C(2) by

C := R3(ζ)R1(i)

⎛

⎜⎜⎜⎝

0

0

G

⎞

⎟⎟⎟⎠

C(2) := R3(ζ)R1(i)R3(g)R1(i1)R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

0

0

Φ2

⎞

⎟⎟⎟⎠ (2.13)

then

C(1) := C − C(2). (2.14)

To prove symplecticity we shall use the following easy

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 6 2013



ASPECTS OF THE PLANETARY BIRKHOFF NORMAL FORM 879

Lemma 2 ([13]). Let

x = R3(θ)R1(i)x̄, y = R3(θ)R1(i)ȳ, C := x × y, C̄ := x̄ × ȳ,

with x, x̄, y, ȳ ∈ R
3. Then,

y · dx = C · k(3)dθ + C̄ · k(1)di + ȳ · dx̄,

with k(1) := (1, 0, 0), k(3) := (0, 0, 1).

Proof of Proposition 3. Let us preliminarly verify that, if C(i) are as in (2.13)–(2.14), and y(i), x(i)

as in (2.11), then as expected,

x(i) × y(i) = C(i). (2.15)
Indeed, for i = 2, this identity follows trivially from the definitions. To check that it holds also for
i = 1, one can do as follows: firstly, to check that x(1) ·C(1) = 0. This is an elementary consequence
of (2.11) and, in particular, of (2.12). Next, using the rule of the double skew product, one has

x(1) × y(1) = x(1) ×
(

R1

r1
x(1) +

1
r21

C(1) × x(1)

)

= 0 +
1
r21

(
r21 C(1) − (x(1) · C(1))x(1)

)
= C(1).

Define now
C̄(1) := R1(−i)R3(−ζ)C(1)

C̄(2) := R3(g)R1(i1)R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

0

0

Φ2

⎞

⎟⎟⎟⎠

¯̄C(1) := R1(−i1)R3(−g)

⎛

⎜⎜⎜⎝

0

0

G

⎞

⎟⎟⎟⎠−R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

0

0

Φ2

⎞

⎟⎟⎟⎠

¯̄C(2) := R3(ϑ)R1(i2)

⎛

⎜⎜⎜⎝

0

0

Φ2

⎞

⎟⎟⎟⎠

¯̄̄C(2) :=

⎛

⎜⎜⎜⎝

0

0

Φ2

⎞

⎟⎟⎟⎠

and

¯̄y(1) :=

⎛

⎜⎜⎜⎝

0

0

R1

⎞

⎟⎟⎟⎠ +
1
r21

¯̄C(1) ×

⎛

⎜⎜⎜⎝

0

0

r1

⎞

⎟⎟⎟⎠ , ¯̄x(1) :=

⎛

⎜⎜⎜⎝

0

0

r1

⎞

⎟⎟⎟⎠

¯̄̄x(2) :=

⎛

⎜⎜⎜⎝

r2 cos ϕ2

r2 sin ϕ2

0

⎞

⎟⎟⎟⎠ , ¯̄̄y(2) :=

⎛

⎜⎜⎜⎝

R2 cos ϕ2 − Φ2
r2

sinϕ2

R2 sin ϕ2 + Φ2
r2

cos ϕ2

0

⎞

⎟⎟⎟⎠
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so as to write

y(1) = R3(ζ)R1(i)R3(g)R1(i1)¯̄y(1)

x(1) = R3(ζ)R1(i)R3(g)R1(i1)¯̄x(1)

x(2) = R3(ζ)R1(i)R3(g)R1(i1)R3(ϑ)R1(i2)¯̄̄x(2)

y(2) = R3(ζ)R1(i)R3(g)R1(i1)R3(ϑ)R1(i2)¯̄̄y(2).

Applying repeatedly Lemma 2, Eq. (2.15) and the rule

Rx ×Ry = R(x × y) for all R ∈ SO(3), x, y ∈ R
3

gives

y(1) · dx(1) = C(1) · k(3)dζ + C̄(1) · k(1)di + C̄(1) · k(3)dg + ¯̄C(1) · k(1)di1 + R1dr1
y(2) · dx(2) = C(2) · k(3)dζ + C̄(2) · k(1)di + C̄(2) · k(3)dg + ¯̄C(2) · k(1)di1 + ¯̄C(2) · k(3)dϑ

+ ¯̄̄C(2) · k(1)di2 + R2dr2 + Φ2dϕ2.

Taking the sum of the two equations and recognizing that, if

e(i) := R3(ζ)R1(i)k(i), f (i) := R3(ζ)R1(i)R3(g)R1(i1)k(i)

then

(C(1) + C(2)) · k(3) = C · k(3) = Gcos i = C3

(C̄(1) + C̄(2)) · k(1) = C · e(1) = 0

(C̄(1) + C̄(2)) · k(3) = C · e(3) = G

(¯̄C(1) + ¯̄C(2)) · k(1) = C · f(1) = (Gk(3)) · (R3(g)k(1)) = 0
¯̄C(2) · k(3) = Φ2 cos i2 = Θ
¯̄̄C(2) · k(1) = 0

we have the thesis:

y(1) · dx(1) + y(2) · dx(2) = C3dζ + Gdg + Θdϑ + R1dr1 + R2dr2 + Φ2dϕ2.

�

2.3. Two-steps Averaging for Properly-degenerate Systems

In this section we discuss a uniqueness argument for normal forms of degenerate systems.
Consider a real-analytic and properly-degenerate Hamiltonian

H(I, ϕ, u, v) = H0(I) + αP(I, ϕ, u, v), 0 < α < 1

defined on some phase 2(n1 + n2)-dimensional phase space of the form V × T
n1 × B2n2, where V ,

B2n2 are an open, connected sets of R
n1, R

2n2 . Perturbation theory (e.g. , [5, 7, 12, 33, 39]) tells us
that, under suitable assumptions of non resonance of the unperturbed frequency map ω := ∂IH0
and of smallness of the perturbation αP, the system may be conjugated, at least formally, to a new
system

Hp(I, ϕ, u, v) = H0(I) + (αP̄1(I, u, v) + · · · + αpP̄p) + αp+1Pp+1, (P1 ≡ P) (2.16)

where the term inside parentheses (“p-step normal form”) is of degree p and is independent of ϕ.
Quantitative versions of this fact are well known in the literature since [5] and have been more and
more refining themselves (depending on needs) both in the non-degenerate [11, 39] and degenerate
case [5, 7, 33, 35]. Moreover, we know that, when the system in non-degenerate, i.e. , the variables
(u, v) do not appear, the p-step normal form is uniquely determined (though the change of variables
realizing it may be not). In general, when the system is degenerate, uniqueness does not hold.
However, the following lemma is easily proved.
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Lemma 3. Let37) n1 = 1 and H be a properly-degenerate system, such that

Pav :=
1
2π

∫

T

P(I, ϕ;u, v)dϕ ≡ 0. (2.17)

Then, the two-step normal form

H̃(Ĩ , ϕ̃; ũ, ṽ) = H0(Ĩ) + (αP̄1(Ĩ ; ũ, ṽ) + α2P̄2(Ĩ; ũ, ṽ)) + O(α3)

is uniquely determined, up to real-analytic and symplectic changes (Ĩ , ϕ̃; ũ, ṽ) ∈ Ṽ × T × B̃2n2 →
(I, ϕ;u, v) ∈ V × T × B2n2 , α-close to the identity.

Proof. Let p � 0. Assuming to have reached the form in (2.16) (with the term inside parentheses
identically vanishing for p = 0), the (p + 1)th Hamiltonian Hp+1 is obtained applying to Hp any
transformation in the class of infinitesimal transformations having as αp+1 germ the time-one flow
of αp+1ψp+1, where

ψp+1 :=
∑

k �=0

P(p+1)
k (I;u, v)
ik · ω(I)

eik·ϕ + ψ̄p

if Pp+1 has the Fourier expansion

Pp+1 =
∑

k �=0

P(p+1)
k (I;u, v)eik·ϕ

and ψ̄p is any function independent of ϕ. Moreover, as it is known, P̄j’s and Pj ’s are related by

P̄p+1 = (Pp+1)av =
1
2π

∫

T

Pp+1dϕ.

Therefore, if we perform two steps of the procedure, i.e. , with p = 0, 1, we find the two-step normal
form is defined by P̄1 = Pav = 0 and

P̄2 =
1
2

1
2π

∫

T

{ψ1,P}dϕ,

where {·, ·} denotes Poisson parentheses with respect to all the variables. (The relative transfor-
mation will be given by φ1 ◦ φ2, where φj is generated by αjψj .) Therefore, to prove uniqueness,
all we have to do is to check that, if we change ψ1 → ψ1 + ψ̃1, where ψ̃1 is independent of ϕ, the
function P̄2 does not change. And in fact this term changes by adding

1
2

1
2π

∫

T

{ψ̃1,P}dϕ.

Since ψ̃1 is independent of ϕ, Poisson parentheses and the integral may be exchanged and we see
that this term vanishes

1
2

1
2π

∫

T

{ψ̃1,P}dϕ =
1
2

1
2π

{
ψ̃1,

∫

T

Pdϕ
}

=
{

ψ̃1,
1
2
Pav

}
= 0

because of (2.17). �

37)We assume n1 = 1 to avoid complications due to resonances of the frequency-map. This is enough for the purposes
of the paper. Analogue statements for the case n1 � 1 may be available.
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2.4. Proof of Proposition 2

To prove Proposition 2, we write P(2) as

P(2) =
1
2π

∫

T

P(1)(Λ,λ1, z)dλ1 (2.18)

where

P(1)(Λ,λ1, z) :=
1
2π

∫

T

dλ2
3(x(1)(Λ,λ1, z) · x(2)(Λ,λ2, z))2 − |x(1)(Λ,λ1, z)|2|x(2)(Λ,λ1, z)|2

2|x(2)(Λ,λ2, z)|5
. (2.19)

Then we consider the auxiliary Hamiltonian

HDip(y(1), x(1), y(2), x(2)) :=
|y(2)|2
2m2

− m2M2

|x(2)|
− αm2M2

x(1) · x(2)

|x(2)|3

on the phase space

{(y(1), x(1), y(2), x(2)) ∈ (R3)4 : x(2) �= 0}
endowed with the standard symplectic form

ω := dy(1) ∧ dx(1) + dy(2) ∧ dx(2)

and α � 1 a small positive parameter.

By assumption (A), in the variables (Λ,λ, z) in (2.8), HDip takes the form

H(Λ1,Λ2,λ1,λ2, z) = HKep(Λ2) + αP(Λ1,Λ2,λ1,λ2, z)

= −M2
2 m3

2

2Λ3
2

− αM2m2
x(1)(Λ,λ1, z) · x(2)(Λ,λ2, z)

|x(2)(Λ,λ2, z)|3
.

(2.20)

Lemma 4. Under assumptions of Proposition 2, the Hamiltonian in (2.20), endowed with the
symplectic form

2∑

i=1

dΛi ∧ dλi +
4∑

i=1

dui ∧ dvi, z = (u, v)

verifies the assumptions of Lemma 3, with the “variables” (I, ϕ) := (Λ2,λ2) and the “parameters”
(Λ1,λ1, z). Its (unique) two-step normal form is

H̃(Λ1,Λ2,λ1, z) = HKep(Λ2) + α2M2m2P(1)(Λ1,Λ2,λ1, z) + O(α3)

with P(1) as in (2.19).

Proof. Consider the auxiliary Hamiltonian

H
(Λ1,Λ2,λ1,λ2, z) = H(Λ1,Λ2,λ1,λ2, z) + α2M2m2Q(Λ1,Λ2,λ1,λ2, z), (2.21)

where H is as in (2.20) and

Q(Λ1,Λ2,λ1,λ2, z) :=

−3(x(1)(Λ1,Λ2,λ1, z) · x(2)(Λ1,Λ2,λ2, z))2 − |x(1)(Λ1,Λ2,λ1, z)|2|x(2)(Λ1,Λ2,λ1, z)|2
2|x(2)(Λ1,Λ2,λ2, z)|5

.

Let us apply Lemma 3 to H, with (I, ϕ) corresponding to (Λ2,λ2) and (u, v) to (Λ1,λ1, z). The
assumption (2.7) implies that the zero-averaging (with respect to λ2) assumption for P is satisfied:

∫

T

Pdλ2 =
∫

T

(−m2M2
x(1) · x(2)

|x(2)|3
)dλ2 = −m2M2x

(1) ·
∫

T

x(2)

|x(2)|3
dλ2

= m2M2ω
(2)
Kepx

(1) ·
∫

T

∂λ2y
(2) = 0.
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Denote as

H̃(Λ̃1, Λ̃2, λ̃1, z̃) := H ◦ ψ(Λ̃1, Λ̃2, λ̃1, z̃) = HKep(Λ̃2) + α2M2m2P(1)(Λ̃1, Λ̃2, λ̃1, z̃) + O(α3)

the two-step normal form which H is put in via Lemma 3, where denotes the symplectic, α-close-to-
the identity transformation realizing it. Then, since ψ is α-close to the identity, H
 is transformed
into

H̃
 = H̃(Λ̃1, Λ̃2, λ̃1, z̃) + α2M2m2Q(Λ̃1, Λ̃2, λ̃1, λ̃2, z̃) + O(α3).

Hence, at expenses of a further λ̃2-averaging (α2-close to the identity), H̃
 is transformed into

Ĥ(Λ̂1, Λ̂2, λ̂1, ẑ) = H̃(Λ̂1, Λ̂2, λ̂1, ẑ) + α2M2m2Q(1)(Λ̂1, Λ̂2, λ̂1, ẑ) + O(α3)

= HKep(Λ̂2) + α2M2m2P(1)(Λ̂1, Λ̂2, λ̂1, ẑ) + α2M2m2Q(1)(Λ̂1, Λ̂2, λ̂1, ẑ)

+ O(α3),

with

Q(1)(Λ̂1, Λ̂2, λ̂1, ẑ) :=
1
2π

∫

T

Q(Λ̂1, Λ̂2, λ̂1, λ̂2, ẑ)dλ̂2.

On the other hand, H
 in (2.21) may be written as

H
(Λ1,Λ2,λ1,λ2, z) = H

2b

(Λ1,Λ2,λ1,λ2, z) + O(α3)

with

H

2b

(Λ1,Λ2,λ1,λ2, z) :=
|y(2)(Λ1,Λ2,λ2, z)|2

2m2
− m2M2

|x(2)(Λ1,Λ2,λ2, z) − αx(1)(Λ1,Λ2,λ1, z)|
.

Due to assumption (B), we find a real-analytic symplectomorphsm

(Λ̌1, Λ̌2, λ̌1, λ̌2, ž) → (Λ1,Λ2,λ1,λ2, z)

α-close to the identity, which conjugates H

2b

to HKep(Λ̌2) = −M2
2 m3

2

2Λ̌2
2

and hence H
 is conjugated

to

Ȟ∗ = −M2
2 m3

2

2Λ̌2
2

+ O(α3).

By comparison with Ĥ above, uniqueness claimed by Lemma 3 implies

P(1) + Q(1) = O(α3)

which is the thesis. �

We are now ready for the
Proof of Proposition 2. For the purposes of this proof, if f : x ∈ T → f(x) ∈ R is continuous, we
denote as 〈f〉x := 1

2π

∫
T

f(x)dx.

Consider the Hamiltonian H in (2.20); let φ̄ as in (2.8) and φ as in (2.11). Denote as
Hred := H ◦ φ̄−1 ◦ φ the expression of H in the variables (2.10). This is

Hred = H ◦ φ̄−1 ◦ φ =
R2

2

2m2
− M2m2

r2
+

Φ2
2

2m2r22
− M2m2α

r1
r22

√
1 − (

Θ
Φ2

)2 sin ϕ2. (2.22)

Let us split Hred into two parts, a “radial” and a “tangential” one:

Hrad :=
R2

2

2m2
− M2m2

r2
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and

Htan :=
Φ2

2

2m2r22
− M2m2α

r1
r22

√
1 − (

Θ
Φ2

)2 sin ϕ2

and focus on Htan. We shall eliminate the dependence from the angle ϕ2 up to order α3. To
this end, define h0, P0 via Htan =: h0 + αP0 and denote � := ∂Φ2h0 = Φ2

m2r22
. Since 〈P0〉ϕ2 = 0,

a Hamiltonian vector field the time-one flow of which eliminates the dependence on ϕ2 up to O(α2)
has as Hamiltonian the function ψ0 defined as a primitive

ψ0 =
1
�

∫ ϕ2

αP0 = M2m
2
2α

r1
Φ2

√
1 − (

Θ
Φ2

)2 cos ϕ2

with 〈φ0〉ϕ2 = 0. It is a remarkable fact that r2 is cancelled. Since φ0 is also independent of R1, R2

and ϑ, this implies that its time-one flow, that we denote

φ0 : (R̃1, R̃2, Φ̃2, Θ̃, r̃2, r̃2, ϕ̃2, ϑ̃) → (R1,R2,Φ2,Θ, r2, r2, ϕ2, ϑ),

leaves (R2, r2,Θ, r1) unvaried. Using again 〈P0〉ϕ2 = 0, we then have that H0 is conjugated to

H1 = Htan ◦ φ0 = h0 + α2P1 + O(α3),

where

P1 =
1
2
{ψ0,P0} = −M2

2 m3
2

2
r̃21

r̃22Φ̃
4
2

(
Θ̃2 − 1

2
(Φ̃2

2 − Θ̃2)(1 + cos 2ϕ̃2)
)
.

A further step of averaging defined by the time-one flow

φ1 : (R̂1, R̂2, Φ̂2, Θ̂, r̂2, r̂2, ϕ̂2, ϑ̂) → (R̃1, R̃2, Φ̃2, Θ̃, r̃2, r̃2, ϕ̃2, ϑ̃)

of

ψ1 =
1
�

∫ ϕ2

α2(P1 − 〈P1〉)

= +
α2

�

∫ ϕ2 M2
2 m3

2

4
r21

r22Φ
4
2

(Φ2
2 − Θ2) cos 2ϕ

= +α2 M2
2 m4

2

8
r21
Φ5

2

(Φ2
2 − Θ2) sin 2ϕ2

with 〈ψ1〉ϕ2 = 0. As in the previous step, ψ1 is independent of (R1,R2, ϑ) and, again r2, hence, φ1

leaves (R2, r2,Θ, r1) unvaried. Then H1 is let into the form

H2 = H1 ◦ φ1 = h0 + α2P2 + O(α3),

where

P2 = 〈P1〉ϕ2 = −M2
2 m3

2

4
r̂21

r̂22Φ̂
4
2

(3Θ̂2 − Φ̂2
2).

Including also the term Hrad (left unvaried by this sequence of transformations) we finally have
that the Hamiltonian Hred in (2.22) is transformed into

Ĥ := Hred ◦ φ0 ◦ φ1 =
R̂2

2

2m2
− M2m2

r̂2
+

1
2m2r̂22

(
Φ̂2

2 − α2 M2
2 m4

2

2
r̂21
Φ̂4

2

(3Θ̂2 − Φ̂2
2)
)

+ O(α3). (2.23)

Let now

(ŷ(1), ŷ(2), x̂(1), x̂(2)) ∈ R
3 × R

3 × R
3 × R

3

be related to (C3,G, R̂1, R̂2, Φ̂2, Θ̂, ζ, g, r̂1, r̂2, ϕ̂2, ϑ̂) via relations analogue to (2.11)-(2.12), i.e. ,
(ŷ, x̂) = φ−1(C3,G, R̂1, R̂2, Φ̂2, Θ̂, ζ, g, r̂1, r̂2, ϕ̂2, ϑ̂), with φ−1 as in (2.10) and let (Λ̂, λ̂, ẑ) be defined
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via (ŷ, x̂) = φ̄(Λ̂, λ̂, ẑ), with φ̄ as in (2.8). In the variables (Λ̂, λ̂, ẑ), the he Hamiltonian (2.23) takes
the form

H̃ := Ĥ ◦ φ−1 ◦ φ̄ = −M2
2 m3

2

2Λ̂2
2

− α2

2m2r̂22

M2
2 m4

2

2
r̂21
Φ̂4

2

(3Θ̂2 − Φ̂2
2),

where Θ̂ = Ĉ(2) · x̂(1), r̂i = |x̂(i)|, Φ̂2 = |Ĉ(2)|, with Ĉ(2) = x̂(2) × ŷ(2) have to be regarded as functions
of (Λ, λ̂, ẑ). A further λ̂2-averaging, α2-close to the identity

φ̂ : (Λ̂, λ̂, ẑ) → (Λ̂, λ̂, ẑ)

transforms H̃ into

Ĥ := H̃ ◦ φ̂ = −M2
2 m3

2

2Λ̂2
2

− α2P̂(Λ̂, λ̂1, ẑ), P̂(Λ̂, λ̂1, ẑ) :=
M2

2 m3
2

4
r̂21
Φ̂4

2

(3Θ̂2 − Φ̂2
2)

1
2π

∫

T

dλ̂2

r̂22
, (2.24)

where Θ̂ = Ĉ(2) · x̂(1), r̂i = |x̂(i)|, Φ̂2 = |Ĉ(2)| have to be regarded as functions of (Λ̂, λ̂, ẑ). Note that
we have used that Θ̂ = Ĉ(2) · x̂(1), r̂1 = |x̂(1)|, Φ̂2 = |Ĉ(2)| are independent of λ̂2. By construction,
the overall change

φ̄−1 ◦ φ ◦ φ0 ◦ φ1 ◦ φ−1 ◦ φ̄ : (Λ̂, λ̂, ẑ) → (Λ,λ, z)

is symplectic, α-close to the identity and puts the Hamiltonian H in (2.20) into the form claimed in
Lemma 3. By the uniqueness claimed by this theorem, in comparison with the result of Lemma 4,
we have that P̂(Λ̂, λ̂1, ẑ) in (2.24) satisfies

α2P̂(Λ̂, λ̂1, ẑ) = −α2 M2
2 m3

2

4
r̂21
Φ̂4

2

(3Θ̂2 − Φ̂2
2)

1
2π

∫

T

dλ̂2

r̂22
≡ α2M2m2P(1)(Λ̂, λ̂1, ẑ) + O(α3),

where P(1) is as in (2.19) (and, as above, Θ̂, Φ̂2, r̂1 and r̂1 are regarded as functions of
(Λ̂1, Λ̂2, λ̂1, λ̂2, ẑ)). This formula is (2.9), neglecting 1

2π

∫
T

dλ1. In particular, it proves the second
item in Remark 1 and implies (2.9). �

2.5. Proof of Proposition 1

We shall need definitions and a result from [15], to which paper we refer for notations and details.
Let, as in [15], P6n

P , P6n
rps ⊂ R

3n × R
3n denote the respective domains of the maps

φP : (y, x) ∈ P6n
P → (Λ,λ, z) ∈ R

n × T
n × R

4n, φrps : (y, x) ∈ P6n
rps → (Λ, λ, z) ∈ R

n × T
n × R

4n

between “Cartesian” and, respectively, Poincaré, rps variables. Consider the common domain of
φP and φrps, i.e. the set P6n

rps ∩P6n
P . On the φrps-image of such domain consider the symplectic map

φrps
P : (Λ, λ, z) → (Λ,λ, z) := φP ◦ φ−1

rps (2.25)

which maps the rps variables onto the Poincaré variables. Such a map has a particularly simple
structure:

Theorem 5 ([15]). The symplectic map φrps
P in (2.25) has the form

λ = λ + ϕ(Λ, z) z = Z(Λ, z), (2.26)

where ϕ(Λ, 0) = 0 and, for any fixed Λ, the map Z(Λ, ·) is 1:1, symplectic38) and its projections
verify

ΠηZ = η + O(|z|3), ΠξZ = ξ + O(|z|3), ΠpZ = Vp + O(|z|3), ΠqZ = Vq + O(|z|3)
for some V = V(Λ) ∈ SO(n).

38)I.e., it preserves the two form dη ∧ dξ + dp ∧ dq.
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Now we proceed to prove Proposition 1. Consider the inverse maps

φ−1
rps : (Λ, λ, z) ∈ M6n

rps →
(
yrps(Λ, λ, z), xrps(Λ, λ, z)

)

φ−1
P : (Λ,λ, z) ∈ M6n

P →
(
yP(Λ,λ, z), xP(Λ,λ, z)

)

with M6n
rps := φrps(P6n

rps), M6n
P := φrps(P6n

P ). Let y
(i)
rps ∈ R

3, · · · be the ith projection of yrps, · · · ;
i.e. , to be defined by

yrps =
(
y(1)
rps, · · · y(n)

rps

)
, · · ·

Let, finally,

α2
ij(f

(2)
ij )P :=

1
(2π)2

∫

T2

dλidλj
3(x(i)

P (Λ,λi, z) · x(j)
P (Λ,λj , z))2 − |x(i)

P (Λ,λi, z)|2|x(j)
P (Λ,λj , z)|2

2|x(j)
P (Λ,λj , z)|5

and39)

α2
ij(f

(2)
ij )rps :=

1
(2π)2

∫

T2

dλidλj
3(x(i)

rps(Λ, λi, z) · x(j)
rps(Λ, λj , z))2 − |x(i)

rps(Λ, λi, z)|2|x(j)
rps(Λ, λj , z)|2

2|x(j)
rps(Λ, λj , z)|5

.

We shall use the following properties, easily deducible from [15]:

(i) For 1 � i � n, y
(i)
rps, x

(i)
rps depend on λ only via λi. Analogously, y

(i)
P , x

(i)
P depend on λ only via

λi. In particular y
(i)
P , x

(i)
P depend on Λ only via Λi and depend on z only via zi, but this will

not be used.

(ii) For any 1 � i < j � n, the map

(Λi,Λj ,λi,λj , zi, zj) →
(
y

(i)
P (Λ,λi, z), y

(j)
P (Λ,λj , z), x

(i)
P (Λ,λi, z), x

(j)
P (Λ,λj , z)

)
(2.27)

satisfies assumptions (A) and (B) of Proposition 2. Note that, unless we are in the case n = 2,
this is not true for the map

(Λ, λi, λj , z) →
(
y(i)
rps(Λ, λi, z), y(j)

rps(Λ, λj , z), x(i)
rps(Λ, λi, z), x(j)

rps(Λ, λj , z)
)
. (2.28)

In particular, both (2.27) and (2.28) satisfy assumption (A) (for any n and any 1 � i < j � n),
but assumption (B) fails for (2.28) (when n > 2).

(iii) Letting C(i)
rps := x

(i)
rps × y

(i)
rps and, analogously, C(i)

P := x
(i)
P × y

(i)
P , then, for any 1 � i � n, C(i)

rps

does not depend on λi and, analogously, C(i)
P does not depend on λi. This is because, as

remarked in (ii), both (2.27) and (2.28) satisfy (A).

By the previous items, may apply Proposition 2 to the map (2.27). We find

α2
ij(f

(2)
ij )P(Λ, z) = −

Mjm
2
j

4

×

1
2π

∫

T

(
3(C(j)

P (Λ, z) · x(i)
P (Λ,λi, z))2 − |x(i)

P (Λ,λi, z)|2|C(j)
P (Λ,λj , z)|2

)
dλi

|C(j)
P (Λ,λj , z)|4

× 1
2π

∫

T

dλj

|x(j)
P (Λ,λj , z)|2

.

Letting now z = Z(Λ, z) and changing the integration variables λi = λi + ϕi(Λ, z) with Z, ϕ as
in (2.26) we have the thesis. �

39)As observed in footnote 36, the map φ−1
rps depends explicitly on (pn, qn), while SO(3)-invariant expressions, such

as the right hand side of the formula below, do not.
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3. PROOF OF THEOREM A
In this section, we aim to prove Theorem A. The preliminaries are as follows.

(i) In the case of spatial three-body problem, let

H3b := hKep(Λ) + μf3b(Λ, λ, z̄) (3.1)

the Hamiltonian Hrps in (1.14) for n = 2. Here, aj have to be regarded as functions of Λj ,
via

aj(Λj) =
1

Mj

(
Λj

mj

)2

. (3.2)

Let
A : a− � a1 � αa2 � a+. (3.3)

Let f
(k)
ij be as in (2.3); then split

(f3b(Λ, λ, z̄))av = N + Ñ (3.4)
with

N := (f3b(Λ, λ, z̄))(0)av + (f3b(Λ, λ, z̄))(2)av , Ñ := −m̄1m̄2

∞∑

j=3

f
(j)
12 (3.5)

where (f3b(Λ, λ, z̄))(0)av does not depend on z̄, (f3b(Λ, λ, z̄))(2)av corresponds to (fav)
(2)
av in (1.19)

for this case. As we shall discuss in Claim 4, N is integrable and, due to the choice of A, Ñ

verifies |Ñ | � const α3.

(ii) In the case of the planar (1 + n)-body problem, let

Hpl := hKep(Λ) + μfpl(Λ, λ, zpl)

the Hamiltonian Hrps in (1.14), with (p̄, q̄) = 0. Assume the following asymptotics for semi-
axes. Fix three numbers 0 < a < a, α < a

a . Then take

Apl : aj � aj � āj 1 � j � n (3.6)

(again with aj = aj(Λi) as in (3.2)) where

aj := α2[( 3
2
)n−j−1]a, aj := α2[( 3

2
)n−j−1]a, an := a, ān := ā

with 1 � j � n − 1. Notice that this asymptotics requires that the aj ’s are closer and closer
as j increases.
By (2.1) and (2.3),

(fpl)av = Npl + Ñpl

with

Npl := (fpl)(0)av + (fpl)(2)av , Ñpl := −
∑

1�i<j�n

m̄im̄j

∞∑

k=3

f
(k)
ij |pl

where (fpl)
(0)
av does not depend on zpl = (η, ξ), (fpl)

(2)
av is as in (1.22) and f

(k)
ij |pl are as in (2.3),

in the planar case. As discussed in (1.22), (fpl)
(2)
av is integrable and, moreover, due to the choice

of the aj , aj ,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|(fpl)(2)av | � const max
1�i<j�n

sup
A

(
a2

i

a3
j

)
� const

1
a

(
α

a

a

)2

|Ñpl| � const max
1�i<j�n

sup
A

(
a3

i

a4
j

)
� const

1
a

(
α

a

a

)3

.
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As for the proof for the three-body problem, we shall need some details from [16] and [15] (to which
papers we refer for proofs) that we recall in the following section.

3.1. Symmetries of the Partially Reduced System

The Hamiltonian (1.1) remains unvaried by reflections with respect to coordinate planes
{x1 = x2}, {x3 = 0} or rotations, for example, around the k(3)-axis. These transformations are,
respectively,

R1↔2 : x(i) →
(
x

(i)
2 , x

(i)
1 , x

(i)
3

)
, y(i) →

(
− y

(i)
2 , −y

(i)
1 , −y

(i)
3

)

R−
3 : x(i) →

(
x

(i)
1 , x

(i)
2 , −x

(i)
3

)
, y(i) →

(
y

(i)
1 , y

(i)
2 , −y

(i)
3

)

Rg : x(i) → R3(g)x(i), y(i) → R3(g) y(i)

where R3(g) denotes the matrix

R3(g) :=

⎛

⎜⎜⎜⎝

cos g − sin g 0

sin g cos g 0

0 0 1

⎞

⎟⎟⎟⎠ , g ∈ T.

Note, in particular, that R−
3 and Rg are symplectic transformations, while R1↔2 is an involution.

The expressions of R1↔2 , R−
3 and Rg in terms of the variables (1.13) turn out to be the same40) as

in Poincaré variables. They are

R1↔2

(
Λ, λ, z

)
:=

(
Λ, π

2 − λ, S1↔2z
)
; R−

3

(
Λ, λ, z

)
=
(
Λ, λ, S−

34z
)

Rg

(
Λ, λ, z

)
=
(
Λ, λ + g, Sgz

) (3.7)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S1↔2(η, ξ, p, q) := (ξ, η, q, p)

S−
34(η, ξ, p, q) := (η, ξ,−p,−q)

Sg :
(
ηj + iξj, pj + iqj

)
→

(
e−ig(ηj + iξj), e−ig(pj + iqj)

)

with i :=
√
−1.

Since the Hamiltonian Hrps (1.14) is independent of (pn, qn), in the above transformations, we
may neglect this latter couple of variables and replace41) z with z̄ in (3.7). In particular, the one-
parameter group {R̄g}g∈T defined by

R̄g : (Λ, λ, z̄, pn, qn) → (Λ, λ + g, Sg z̄, pn, qn) g ∈ T (3.8)

leaves Hrps unvaried. This group of transformations corresponds to be the time-g flow of

G =
n∑

i=1

Λi −
n∑

i=1

η2
i + ξ2

i

2
−

n−1∑

i=1

p2
i + q2

i

2
(3.9)

which is the Euclidean length of the angular momentum (1.10): G = |C|, expressed in the
variables (1.13). Therefore, R̄g may be identified to be the group g-rotations about the C-axis.

40)See, for example [22].
41)Recall the definitions in (1.13)–(1.15).
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In view of such relations, amusing symmetries (discussed42) in [16]) appear among the Taylor
coefficients of the expansion of the perturbation frps and hence also of its averaged value (frps)av.
These symmetries are often referred to (for the classical Poincaré system (1.3)) as D’ Alembert

rules. To describe such relations, we switch43) to “Birkhoff coordinates”

wi =
ηi − iξi√

2
, wn+j =

pj − iqj√
2

, w

i =

ηi + iξi

i
√

2
, w


n+j =
pj + iqj

i
√

2
(3.10)

with 1 � i � n and 1 � j � n − 1 and we regard (abusively) frps and (frps)av as functions of
(Λ, λ, w,w
).

Claim 3 ([15, 16]).

(i) R3-invariance implies that frps is even in (wn+1, · · ·w2n−1, w


n+1, · · ·w


2n−1) (equivalently, it
is even in (p̄, q̄));

(ii) R̄g-invariance implies that, the only non-vanishing monomials appearing in the Taylor
expansion of (frps)av in powers {wi, w∗

i }1�i�2n−1 are those with literal part wαw∗α∗
for

which
2n−1∑

i=1

(αi − α∗
i ) = 0. (3.11)

Claim 3 and the independence of f
(2)
12 on the argument of (η2, ξ2) (see the Introduction) have the

following corollary. Let A be as in (3.3) and let M10
ε0 := A× T

2 × B6
ε0.

Claim 4. N (namely44), f
(2)
12 ) is integrable. More precisely: (i) it depends on (η2, ξ2) only via η2

2+ξ2
2

2 ;
(ii) one can find ε0 > 0 and a symplectic change of variables

(Λ, λ̆, z̆) → (Λ, λ, z̄)

defined on the phase space M10
ε0 := A× T

2 × B6
ε0 of the form

φ̆ : Λ = Λ, λ = λ̆ + ϕ(Λ, z̆), z̄ = Z̆(Λ, z̆) (3.12)

defined for |z̆| < ε0 which transforms N into a new function N̆(Λ, z̆) depending only on
η̆2
1 + ξ̆2

1

2
,

η̆2
2 + ξ̆2

2

2
and

p̆2
1 + q̆2

1

2
. In particular, ψ̆ preserves

η̆2
2 + ξ̆2

2

2
and

η̆2
1 + ξ̆2

1

2
+

p̆2
1 + q̆2

1

2
.

Proof. Since f
(2)
12 is even in (p̄, q̄) = (p1, q1) and has only monomials with α2 = α


2, Eq. (3.11)
with n = 2 implies that f

(2)
12 is even in (η1, ξ1), (η2, ξ2) and (p1, q1) separately. Moreover, f

(2)
12 is

integrable45). Let z̄ = Z̆(Λ, z̆) the transformation (parametrized by Λ) verifying
2∑

i=1

dηi ∧ dξi + dp1 ∧ dq1 =
2∑

i=1

dη̆i ∧ dξ̆i + dp̆1 ∧ dq̆1

42)In [16], R̄g-invariance is called “rotation invariance”. Here, to avoid confusions, we reserve this name only to the
transformations (1.9).

43)dηi ∧ dξi = dwi ∧ dw∗
i and dpj ∧ dqj = dwj+n ∧ dw∗

j+n
44)Recall that f

(0)
12 is independent of z̄.

45)To integrate f
(2)
12 , one can first reduce the integral G0 :=

η̆2
1+ξ̆2

1
2

+
p2
1+q2

1
2

via the change of variables

η1 + iξ1 = (η̆1 + ĭξ1)e
ig0 , p1 + iq1 =

	
2(G0 − η̆2

1 + ξ̆2
1

2
)eig0

with g0 cyclic in f
(2)
12 (but not in f3b). Note that this reduction does not cause singularities in f3b, since f3b is

even in (p1, q1). Next, once f
(2)
12 is reduced to one degree of freedom, its integration is trivial.
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such that N̆(Λ, z̆) := N̄ ◦ Z̆ has the claimed properties. Then, it is standard to prove that
z̆ → Z̆(Λ, z̆) may be lifted to a transformation as in (3.12) (compare, for example, [16, Propo-
sition 7.3]). �

3.2. kam Theory

In this section we complete the proof of Theorem A.

Let ε0, φ̆ is as in Claim 4. For (Λ, λ̆, z̆) ∈ M10 := A× T
2 × B6

ε0, define

H̆3b(Λ, λ̆, z̆) := H3b ◦ φ̆(Λ, λ̆, z̆)

= hKep(Λ) + μf̆3b(Λ, λ̆, z̆)
(3.13)

where φ̆ is as in Claim 4. By Claim 4

(f̆3b)av = N̆ + Ñ (3.14)

where N̆ depends only on η̆2
1+ξ̆2

1
2 , η̆2

2+ξ̆2
2

2 , p̆2
1+q̆2

1
2 and

|Ñ | � const α3. (3.15)

To the system (3.13) and to the system Hpl defined at the beginning of Section 3 (compare item
(ii)) we shall apply an abstract result (Theorem 6 below) that refines and generalizes Theorem 9;
see Remark 2. This is as follows.

Let n1, n2 ∈ N, B2n2
ε = {y ∈ R

2n2 : |y| < ε} denote the 2n2-ball of radius ε and let

Pε0 := V × T
n1 × B2n2

ε0 (3.16)

where V is a open, connected set of R
n1 . Let

H(I, ϕ, p, q;μ) := H0(I) + μP (I, ϕ, p, q;μ) (3.17)

be real-analytic on Pε0 and such that

(i) ω0 := ∂H0 is a real-analytic diffeomorphism of V ;

(ii) the average Pav(I, p, q;μ) =
1

(2π)n1

∫

Tn1

P (I, ϕ, p, q;μ)dϕ has the form

Pav(I, p, q;μ, α) = N(I, J ;μ) + Ñ(I, p, q;μ), where

J = (p2
1+q2

1
2 , · · · ,

p2
n2

+q2
n2

2 ) and supV ×B2n2 |Ñ | � κ;

(iii) the Hessians ∂2
I H0 ∂2

I,JN(I, J ;μ) do not vanish, respectively, on V , V × B2n2
ε0 .

Theorem 6. Under the previous assumptions, one can find positive numbers C∗, μ∗, κ
, ε1 < ε0
depending only on H and ε0 and an integer β depending only on n1, n2, such that, for

|μ| < μ∗, |κ| < κ∗, |μ| < (log κ−1)−2β (3.18)

a set K ⊂ Pε1 exists, formed by the union of H-invariant n-dimensional tori, on which the H-
motion is analytically conjugated to linear Diophantine quasi-periodic motions. The set K is of
positive Liouville–Lebesgue measure and satisfies

measK >
(
1 − C∗( 4

√
μ(log κ−1)β +

√
κ)
)

measPε1. (3.19)
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Remark 2. Theorem 6 generalizes and refines Theorem 9: to obtain Theorem 9 from Theorem 6
it is sufficient to take κ = μ. In this case condition (3.18) becomes just a smallness condition on μ

(as inTheorem 9) and, by (3.19), K fills Pε1 up to a set of density (1 − C̃μa) with any 0 < a < 1
4 .

This should be compared with the measure estimate given in Theorem 9, where a ∼ 1
n .

The proof of Theorem 6 is completely analogous to the proof of [12, Theorem 1.4] and hence is
only sketched in Appendix C.

We can now conclude the
Proof of Theorem A.

(i) In the case of the spatial three-body problem, apply Theorem 6 to H̆3b := H3b ◦ φ̆ (where φ̆
is as in (3.12)), hence, with

n1 = 2, n2 = 3, V = A, κ = const α3, N = N̆

where A is as in (3.3), N̆ as in (3.14) and ε0 as in Claim 4.

(i) In the case of the planar (1 + n)-body problem with n � 3, apply Theorem 6 with

n1 = n, n2 = n, V = Apl, κ = const ᾱ3, N = Npl,

where Apl is as in (3.6), ᾱ := αa
a and ε0 so small to avoid collisions. �

4. PROOF OF THEOREM B
In this section, we shall prove the following theorem, which is a more detailed statement of

Theorem B. Let

Hpl3b = hKep + μfpl3b := H3b|p1=q1=0 (4.1)

and denote as

M8
pl3b : a− � a1(Λ1) � αa2(Λ2) � αa+, ε � |zpl| � ε � ε̄, λ1, λ2 ∈ T (4.2)

its eight-dimensional phase space, where aj(Λj) are as in (3.2). Here, H3b is as in (3.1) and
zpl := (η1, η2, ξ1, ξ2).

Theorem 7. There exists positive numbers ε̄, ᾱ, μ̄, β̄, τ , K̄
, ā, b̄, c̄, d̄ such that, if

0 < α � ᾱ, 0 < μ � μ̄, μ � c̄(log ε−1)−β̄

one can find a an open set M̄8
pl3b ⊂ M8

pl3b defined by the following inequalities for the Keplerian
frequencies ωKep := ∂ΛhKep

|ωKep · k| �
4
√

μ

c̄K̄
∀k : 0 < |k|1 � K̄

with

K̄ = K̄
 log(ε−1) (4.3)

such that for the Hpl3b-flow starting from M̄8
pl3b the following holds. This flow is symplectically

conjugated, via a {μ1/12, ε2}-close to the identity transformation φ to a flow

t → (Λ̃1(t), Λ̃2(t), η̃1(t), η̃2(t), ξ̃1(t), ξ̃2(t))

such that, letting t̃i(t) := η̃2
i +ξ̃2

i
2 , then, for i = 1, 2,

|Λ̃i(t) − Λ̃i(0)| � δb̄, |t̃i(t) − t̃i(0)| � δb̄ ∀ 0 � t � e
1

δā

δ
,

with δ := μd̄ε.
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For part of the proof, we shall deal with the spatial system H3b in (3.1). Next (in Section 4.4),
letting p1 = q1 = 0, we shall reduce to the planar system Hpl3b in (4.1).

Proof Step 0. Let us denote again as φ̆ a suitable symplectic transformation, whose existence is
guaranteed by [16, 38], that conjugates H3b to a Hamiltonian H̆3b having the same form as the one
in (3.13)–(3.15), but with N̆ + Ñ in Birkhoff normal form up to order 2m, with possibly smaller A
of the form of (3.3), ε0. In the domain (4.2), φ̆ is ε2-close to the identity.

4.1. Step 1: The Birkhoff Normal Form of Order Six

In this section, we aim to compute the Birkhoff normal form of order six if the three-body
problem (planar and spatial).

Let

ŭi :=
η̆i − iξ̆i√

2
, ŭ


i :=
η̆i + iξ̆i√

2i
, v̆ :=

p̆1 − iq̆1√
2

, v̆
 :=
p̆1 + ĭq1√

2i
. (4.4)

We shall show that, if t1 := iŭ1ŭ


1, t2 := iŭ2ŭ



2, t3 := iv̆v̆
,

Claim 5. The Birkhoff normal form of order six of (f3b)av is given by (1.18).

Note that the
(
1 + O(Λ1

Λ2
)
)
-factor in (1.18) has not been written for simplicity (it is available

from below).

Proof. By Claim 4, the proof of (1.18) amounts to compute the Birkhoff normal form of order six

of N in (3.5), up to an error of order a3
1

a4
2
. The constant term f

(0)
12 in (3.5) contributes with − m̄1m̄2

a2

to (1.18). We check that the Birkhoff normal form of f
(2)
12 is corresponds to what remains in (1.18).

Recalling the definition of f
(2)
12 in (2.5) and the formulae in (1.21), (1.22) and (1.23), we have that

the explicit formula of (2.6) in terms of rps variables is

f
(2)
12 =

a2
1

4a3
2

(
1 + 3iu1u



1ē

2
1 − 3ivv


s̄
2 − 9(iu1u



1)(ivv
)s̄2ē2

1

− 15
2
(
(u


1)
2v2 + (v
)2u2

1

)
ē2
1s̄

2
)
f,

(4.5)

where ē1, s̄, f are suitable functions of iu1u


1, iu2u



2 and ivv
 (see Appendix B for more details).

Here we shall need only the first terms of their respective Taylor expansions, which are

ē2
1 =

1
Λ1

− iu1u


1

2Λ2
1

s̄
2 =

1
Λ1

+
1
Λ2

+
iu1u



1

Λ2
1

+
iu2u



2

Λ2
2

−
(

1
4Λ2

1

+
1

4Λ2
2

+
1

Λ1Λ2

)
ivv


+
1
Λ3

1

(iu1u


1)

2 +
1
Λ3

2

(iu2u


2)

2 −
(

1
Λ2

1Λ2
+

1
2Λ3

1

)
(iu1u



1)(ivv
)

−
(

1
Λ1Λ2

2

+
1

2Λ3
2

)
(iu2u



2)(ivv
) +

(
1

4Λ1Λ2
2

+
1

4Λ2
1Λ2

)
(ivv
)2 + · · ·

f = 1 + 3
iu2u



2

Λ2
+ 6

(
iu2u



2

Λ2

)2

+ 10
(

iu2u


2

Λ2

)3

+ · · ·

(4.6)

Since f
(2)
12 depends on (u2, u



2) only via iu2u



2, this “action” (besides being preserved by the

transformation ψ̆ in (3.12)) is also preserved at any step of Birkhoff normalization. Since the
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factor f in (4.5) depends only on iu2u


2 (see Appendix B), we may leave such factor aside and look

separately at the term inside parentheses

F := 1 + 3iu1u


1ē

2
1 − 3ivv


s̄
2 − 9(iu1u



1)(ivv
)s̄2ē2

1 −
15
2
(
(u


1)
2v2 + (v
)2u2

1

)
ē2
1s̄

2.

Using this expression and (4.6), we see that the coefficients of iu1u


1 and ivv
 (“first order Birkhoff

invariants”), are, respectively, given by46)

Ωu1 =
3
Λ1

, Ωv = −3
(

1
Λ1

+
1
Λ2

)
.

Letting

f := −15
2
(
(u


1)
2v2 + (v
)2u2

1

)
ē2
1s̄

2, φ := −15
2

1
2i(Ωu1 − Ωv)

(
(u


1)
2v2 − (v
)2u2

1

)
ē2
1s̄

2,

one sees that the first step of Birkhoff normalization is obtained transforming F with the time-one
flow of φ. Then F is transformed into

F1 := 1 + 3iu1u


1ē

2
1 − 3ivv


s̄
2 − 9(iu1u



1)(ivv
)s̄2ē2

1 +
1
2
{φ, f} + o(6).

where o(6) stands for an expression starting with degree seven in (u1, v, u

1, v


). The Birkhoff normal
form of order six of F, obtained with a further step of Birkhoff normalization, is then

F2 := 1 + 3iu1u


1ē

2
1 − 3ivv
s̄2 − 9(iu1u



1)(ivv
)s̄2ē2

1 +
1
2
Π{φ, f} + o(6). (4.7)

where 1
2Π{φ, f} is obtained picking up normal terms47) of 1

2{φ, f}. But,

1
2
Π{φ, f} =

225
2

1
(Ωu1 − Ωv)

((iu1u


1)(ivv)2 − (iu1u



1)

2(ivv))s̄4 ē4
1 (4.8)

where it is enough to replace s̄, ē1 with their respective lowest order terms in (4.6).

In view of (4.5), (4.6), (4.7) and (4.8), we have that (1.18) follows. �

4.2. Step 2: Full Reduction of the SO(3)-symmetry

The next step is to reduce completely the SO(3)-symmetry from the system H̆3b. Recall the
definition of A in (3.3), ε0 as in Claim 4.

Since the procedure we follow is analogue48) to the one in [16, Section 9], we shall skip some
detail and refer to [16, Section 9] for complete information. We switch to a new set of symplectic
variables (Λ1,Λ2, G, û2, û2, λ̂1, λ̂2, ĝ, û


2, û


3) defined via49)

φ̂ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Λi = Λi

λ̆i = λ̂i + ĝ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŭ2 = û2e
iĝ

ŭ

2 = û


2e
−iĝ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̆2 = v̂2e
iĝ

v̆

2 = v̂


2e
−iĝ

46)Note that we do not need to assume non-resonance of (Ωu1 , Ωv) since N in (3.14) is integrable.
47)Ie, monomials of the form (iu1u

�
1)

α(ivv�)β .
48)The formulae in [16, Section 9] are a bit different from (4.9), since in [16, Section 9] we reduce the last couple

of variables, denoted as [16, (p̆n−1, q̆n−1)] (corresponding to (p̆1, q̆1) in our case), while in (4.9), we reduce the
first couple. This different choice has two reasons: (i) it provides simultaneously reduction in the planar and the

spatial problem and (ii) formulae are a bit simpler, since the term t31 does not appear in (1.18).
49)Analogue transformations were considered in [30].
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŭ1 =
√

�2/2 − t̂2 − t̂3e
iĝ

ŭ

1 = −i

√
�2/2 − t̂2 − t̂3e

−iĝ

(4.9)

with ŭ1, ŭ2, v̆, ŭ

1, ŭ


2, v̆
 defined as in (4.4), �2/2 := Λ1 + Λ2 −G, t̂2 := iû2û


2, t̂3 := iv̂v̂
. From the

last couple of definitions, one sees that G is just the function in50) (3.9) (with n = 2) and hence
its conjugated angle, ĝ, is cyclic in the system. Let (η̂2, ξ̂2), (p̂1, q̂1) the real variables associated,
respectively, to (u2, u



2), (v, v
) via (3.10) and ẑ := (η̂2, p̂1, ξ̂2, q̂1). Fix �
 < ε0. There follows from [16,

Remark 9.1-(iv)] that φ̂ is well defined and symplectic in the domain defined by (λ1, λ2, ĝ) ∈ T
3

and

G ∈ R, (Λ1,Λ2) ∈ AG := {(Λ1,Λ2) ∈ A : 0 < �
 � �(Λ, G) < ε0}, |ẑ| < �
.

As usual, being ĝ cyclic, we regard G as an external fixed parameter so as to have a reduced
(four-dimensional) phase space for the variables (Λ, λ̂, ẑ).

Let

ĤG := H̆3b ◦ φ̂ = hKep + μf̂G(Λ, λ̂, ẑ) (4.10)

denote the fully reduced system (where H̆3b is as in Claim 4) on the phase space

M̂8
G := AG × T

2 × B4

�

. (4.11)

We may assume that the function N̂ + Ň , where N̂ := N̆ ◦ φ̂ and Ň := Ñ ◦ φ̂, is again in Birkhoff
normal form of order 2m. If not, proceeding as in [15, Proof of Proposition 5.1], one can find a
ε2m+1-close to the identity symplectic transformation φ̌ such that N̂ ′ + Ň“ := (N̂ + Ň) ◦ φ̌ is so.
In the following statement, replace eventually φ̂, N̂ and Ň with, respectively, φ̂′ := φ̂ ◦ φ̌, N̂ ′, Ň ′.

Proposition 4. The system (4.10)–(4.11) verifies

(f̂G)av = N̂ + Ň

where N̂ + Ň is in Birkhoff normal form of order 2m, |Ň | � constα3. Moreover, the first three
orders of N̂ are given by

N̂ := −m̄1m̄2

a2
− m̄1m̄2

a2
1

4a3
2

((
1 − 3

(
1
Λ1

− 1
Λ2

)
t̂2 − 3

(
2
Λ1

+
1
Λ2

)
t̂3

)

− m̄1m̄2
a2

1

4a3
2

(
− 3

2
t̂22
Λ2

1

+ 9
t̂2t̂3
Λ2

1

+ 12
t̂23
Λ2

1

− 9
2

t̂32
Λ2

1Λ2
− 105

4
t̂32t̂3
Λ3

1

− 315
4

t̂2t̂
2
3

Λ3
1

− 105
2

t̂33
Λ3

1

)(
1 + O

(
Λ1

Λ2

)
+ O(�2)

)

+ O(|t|7/2)
)

.

(4.12)

Proof. The term N̂ is easily computed from (1.18) and (4.9), which amounts to replace, in (1.18)

t1 :=
�2

2
− t̂2 − t̂3, t2 = t̂2, t3 = t̂3.

We then find (4.12). �

50)As discussed in [16, Proposition 7.3] any step of Birkhoff normalization commutes with R̄g in (3.8), the the time-g
flow of G in (3.9); equivalently, it preserves G.
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4.3. Step 3: Averaging Fast Angles

In the next step we introduce, on a suitable phase space

M8
G := D̄ × T

2 × B4
ε1/4 ⊂ M̂8

G, (4.13)

(where M̂8
G is as in (4.11); ε1 � �
 will be arbitrary) a new system

HG := hKep(Λ) + μ(N̂(Λ, z) + N̂
(Λ, z)) + μfG(Λ, λ, z) (4.14)

where N̂ is as in the previous sections, N̂
 (as well as N̂) depends only on t1 = iu1u


1, t2 = iu2u



2,

t3 = ivv
 and is suitably small and fG is suitably small.

Lemma 5. There exist positive numbers M̄ ρ0, s0, depending only of hKep and f3b in (1.14) such
that, for any given m ∈ N, one can find γ
, α∗, μ
, C (depending only on m, ε0, s0) such that for
any μ, α, γ̄ > 0, τ > 2, K̄ > 6

s0
, verifying 0 < α < α∗, 0 < μ < μ
,

γ̄ � γ
 max{√μK̄τ+1, 3
√

με1K̄
τ+1}, ρ̄ :=

γ̄

2M̄K̄τ+1
� ρ0, (4.15)

an open set D̄ ⊂ AG with

meas
(
AG \ D̄

)
� Cγ̄ measAG

defined by the following inequalities for the Keplerian frequencies ωKep := ∂ΛhKep

|ωKep · k| � γ̄

M̄K̄τ
∀k : 0 < |k|1 � K̄

such that for any positive number ε1 � �
 a real-analytic transformation51)

φ : (Λ, λ, z) ∈ D̄ρ̄/16 × T
2
s0/48 × B4

ε1/4 → (Λ, λ̂, ẑ) ∈ (AG)ρ0 × T
2
s0

× B4

�

exists, which is
{

μK̄2(τ+1)

γ̄2 , με1K̄3(τ+1)

γ̄3

}
-close to the identity and lets the Hamiltonian (4.10)–(4.11)

into HG := ĤG ◦ φ as in (4.14) with N̂ as in Proposition 4, N̂
 in Birkhoff normal form of order
m, with Birkhoff invariants μK̄2τ+1

γ̄2 -close to 0 and

|fG| � Cμ max{e−K̄s0/6, ε2m+1
1 }. (4.16)

The proof of Lemma 5 uses analogue techniques as the ones in [12, Theorem 1.4], therefore
we shall only sketch it briefly, referring the reader to [12] for more details. It relies on Normal
Form (Averaging52)) Theory for properly-degenerate systems and the classical Birkhoff theory (see,
e.g. , [23]). As for Normal form theory, we refer to the theory developed in [7] (see also [12]), which,
in turn, generalizes ideas and techniques of [39] to the degenerate case. For information on Normal
Form theory, see [5, 7, 12, 33, 39] and references therein.

Sketch of proof of Lemma 5. We shall describe only how to change the proof of [12, Theorem 1.4]
in order to obtain the proof of Lemma 5. We refer, in particular, to [12, Steps 1–4 in the proof of
Theorem 1.4]. First of all, choice, in [12, Steps 1–4 in the proof of Theorem 1.4],

n1 = 2, n2 = 2, V = AG, κ = α3, ε0 := �
, H := ĤG

h = hKep, Pav = N̂ + Ň , P := μf̂G,

51)We refer to [39] for (now, standard) notations of the kind Aρ, or T
n
s , where A is a subset of the reals and ρ, s

are positive numbers.
52)Sometimes distinction between “Normal Form” and “Averaging” Theory is made, depending on the strength

of the remainder. For an exponentially small remainder, as in [7, 33, 39], “Normal Form” Theory is often used
(after [39]); for a quadratically-small remainder, “Averaging” Theory is used, after [5]. Normal form Theory is
obtained with suitably many steps of averaging.
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I = (Λ1,Λ2), ϕ := (λ̂1, λ̂2), p := (η̂2, p̂1), q := (ξ̂2, q̂1)

Ω :=
3
4
m̄1m̄2

a2
1

a3
2Λ1

(
1
Λ1

− 1
Λ2

,
2
Λ1

+
1
Λ2

)
+ O

(
a3

1

a4
2

)
.

Next, modify [12, Steps 1–4 in the proof of Theorem 1.4] as follows.

In [12, Step 1], neglect [12, Eq. (36)], so as to “leave K̄ free” and hence replace log ε−1

with s0
30K̄ wherever it appears (i.e. , [12, Eqs. (41), (42), (43)]). Neglect the second line in [12,

Eq. (40)]. At the end of [12, Step 1, 2, 3, 4], in the definition of H̄, H̃, Ȟ, H̆, respectively,
replace ε5 with e−K̄s0/6. At the beginning of [12, Step 2, 3, 4], in the definition of, respectively,
ṽ, v̂, v̌, replace ε with ε1 � ε0. In [12, Step 2] replace “N̄ also has a μ(log ε−1)2τ+1γ̄−2-close-
to-0 elliptic equilibrium point” with “N̄ also has a μK̄2τ+1γ̄−2-close-to-0 elliptic equilibrium
point”. Replace53) [12, Eqs. (43), (44), (45), (46)] with, respectively: (43)’: |p̄ − p̃|, |q̄ − q̃| �
C μK̄2τ+1

γ̄2 , |ϕ̄ − ϕ̃| � C max
{

ε21K̄τ+1

γ̄ , με1K̄3τ+2

γ̄3 ,
}

; (44)’: |p̃ − p̂|, |q̃ − q̂| � C max{με1K̄2τ+1

γ̄2 }, |ϕ̃ −

ϕ̂| � C max{με21K̄3τ+2

γ̄3 }; (45)’: |Ω̂ − Ω|, |R̂| � C μK̄2τ+1

γ̄2 and (46)’: |p̂ − p̌|, |q̂ − q̌| � C
με21K̄2τ+1

γ̄2 ,

|ϕ̂ − ϕ̌| � C
με31K̄3τ+2

γ̄3 , by suitably modifying the proofs below. Moreover replace Equation just

before [12, Eq. 45] with54) N̂ (I, p, q) := Ñ ◦ φ̂ = N̂ + R̂ (where N̂ is as in (4.12)) and replace the last
line in [12, Step 4] with “where N̆(Ĭ , r̆) is a polynomial of degree m in (In1+1, · · · , In2)”. Lemma 5
follows, with N̂
 := N̆ − N̂ and f̂G := μ(e−K̄s0/6P̆ + O(ε2m+1

1 )). �

We then apply Lemma 5 to the system (4.10)–(4.11) with K̄ as in (4.3), with ε, α replaced by
ε1, α∗ and

γ̄ = γ

4
√

μK̄τ+1, (4.17)

where γ
 is as in (4.15). By the thesis of Lemma 5, we conjugate ĤG in (4.10)–(4.11) to HG

in (4.13)–(4.14), with fG satisfying (4.16), via a symplectic transformation which, by the choice of
γ̄ in (4.17), is μ1/12-close to the identity.

4.4. Step 4: Nehorošev Theory

We apply Nehorošev Theory (i.e. , Theorem 11) to the system HG in (4.13)–(4.14), in the planar

case, i.e. , with t̂4 = 0.
For information on the tools that are used, compare [32–34] and Appendix D.
In applying Theorem 11, we shall take

n1 = 3, n2 = 0, V = D̄, B4 := B4
ε1/8, ρ := min{ρ̄/16, s0/48, ε1/8}

H0(Λ1,Λ2, t1) := hKep(Λ1,Λ2) + μ(N̂ + N̂
)(Λ1,Λ2, t1), P := μfG (4.18)

where ρ̄, s0 and ε1 are as in Lemma 5

We have to check55) steepness of H0(Λ1,Λ2, t1) and the smallness condition (D.1) of P . The first
check is provided by the following claim.

Claim 6. The function H0 in (4.18) is (g,m,C1, C2, a1, a2, δ1, δ2)-steep, with

g = ĝ, m = m̂, ai = âi, δi = min{√α∗, ε
2
1}δ̂i, Ci = μα2

∗Ĉi (4.19)

where (ĝ, m̂, Ĉ1, Ĉ2, â1, â2, δ̂1, δ̂2) suitable numbers independent of α∗, μ, ε1.

53)In [12, Eq (45)] με should be replaced by μ. This does not affect the thesis of [12, Theorem 1.4].
54)The symbol N̂ used in [12] is here replaced with N̂ , to avoid confusions with (4.12).
55)Recall that, for n2 = 0, as it is in our case, condition (D.2) is void; see Appendix D.
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Proof. We take, in (4.12), t̂3 = 0. The system has three degrees of freedom. We firstly prove
steepness for a suitable “rescaled” system associated to F. That is, if N̂0 := − m̄1m̄2

a2
is as in (4.12)

and N̂1 := N̂ − N̂0 we consider the system

Fresc(Λ̂1, Λ̂2, t̂2) := m̄2
1m̄0α∗

(
h

(1)
Kep(m̄1

√
m̄0α∗Λ̂1) + β2h

(2)
Kep(Λ̂2) + μN̂0(Λ2)

+ μβ3(N̂1 + N̂
)(m̄1
√

m̄0α∗Λ̂1, Λ̂2, ε
2
1t̂2)

) (4.20)

with α∗, ε1 as in Lemma 5

β2 := α
−3/2
∗ , β3 := μ−1α−3

∗ ε−2
1 . (4.21)

We check that Fresc is steep by verifying the three-jet condition: See Appendix D. The three-jet
condition (D.5) for the system (4.20) is (neglecting mixed terms, which are smaller)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

η1 + β2α
3/2
∗ (

â1

â2
)3/2η2 + β3α

3
∗ε

2
1μ

3
4

m̄2

m̄0
(
â1

â2
)3η3 = 0

η2
1 +

m̄1

m̄2
β2α

2
∗(

â1

â2
)2η2

2 − β3α
3
∗με4

1

1
4

m̄2

m̄0
(
â1

â2
)3η2

3 = 0

η3
1 + (

m̄1

m̄2
)2β2α

5/2
∗ (

â1

â2
)5/2η3

2 + β3α
7/2
∗ με6

1

9
16

m̄1

m̄0
(
â1

â2
)7/2η3

3 = 0

(4.22)

where we have used mi = m̄i + O(μ), Mi = m̄0 + O(μ) and neglected higher order terms going
to zero with μ, ε1, α∗. If we eliminate η1 from the first and the second equation and from the
first and the third equation, we obtain a homogeneous system of two equations in (η2, η3) that,
in view of (4.21), generically, the has only solution η2 = η3 = 0, implying that also η1 = 0. This
implies that the function Fresc (4.20) is (2ĝ, m̂/2, Ĉ1, Ĉ2, â1, â2, δ̂1, δ̂2)-steep with suitable values of
(ĝ, m̂, Ĉ1, Ĉ2, â1, â2, δ̂1, δ̂2) which are of order 1 in μ, α∗, ε1. This readily implies that F in (4.18) is
(g,m,C1, C2, a1, a2, δ1, δ2)-steep, with (g,m,C1, C2, a1, a2, δ1, δ2) as in (4.19). �

Remark 3. In the case of the spatial three-body problem, instead of (4.22), we would have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 + β2α
3/2
∗

(
â1

â2

)3/2

η2 + β3ε
2
1α

3
∗μ

3
4

m̄2

m̄0

(
â1

â2

)3

η3 + β3ε
2
1α

3
∗μ

3
2

m̄2

m̄0

(
â1

â2

)3

η4 = 0

η2
1 +

m̄1

m̄2
β2α

2
∗

(
â1

â2

)2

η2
2 − β3ε

4
1α

3
∗μ

1
4

m̄2

m̄0

(
â1

â2

)3

η2
3 + β3ε

4
1α

3
∗μ

3
2

m̄2

m̄0

(
â1

â2

)3

η3η4

+ 2β3ε
4
1α

3
∗μ

m̄2

m̄0

(
â1

â2

)3

η2
4 = 0

η3
1 +

(
m̄1

m̄2

)2

β2α
5/2
∗

(
â1

â2

)5/2

η3
2 + β3ε

6
1α

7/2
∗ με6

1

9
16

m̄1

m̄0

(
â1

â2

)7/2

η3
3 + β3ε

6
1α

3
∗μ

105
32

m̄2

m̄0

(
â1

â2

)3

η2
3η4

+ β3ε
6
1α

3
∗μ

315
32

m̄2

m̄0

(
â1

â2

)3

η3η
2
4 + β3ε

6
1α

3
∗μ

105
16

m̄2

m̄0

(
â1

â2

)3

η3
4 = 0

It is not clear to the author if this system exhibits non-trivial solutions, so the analysis of this case
is deferred to a subsequent paper.

We can now complete the
Proof of Theorem 7. It remains only to check condition (D.1), with P , ρ as in (4.18). In view
of (D.3), (D.4), (4.19) and the choice of γ̄ in (4.17), we have ρ � ρ
 min{ε1, 4

√
μ} and hence

M
 � c̃

ρ
min{(μα2

∗)
q, ρq} � c̃

ρ
min{(μα2

∗)
q, εq

1, ρ̄q}

� c̃

ρ
min

{
(μα2

∗)
q, εq

1,
( γ̄


2M̄

)q

μq/4
}

� c


ρ
min

{
(μα2

∗)
q, εq

1

}
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for some q > 1 > c
 depending only on n1, n2, a1, a2. Noticing that (4.16) and Cauchy inequality
imply

M := sup |∂P | = μ sup |∂fG| � C̃
μ

ρ
max{e−K̄s0/6, ε2m+1

1 }

one sees that condition (D.1) is met, provided one previously fixes, in Lemma 5, 2m + 1 � q, K̄ as
in (4.3), with a suitable K̄
 and takes ε1 < ( c�

C̃
)1/(2m+1)(μα2

∗)
q/(2m+1). The thesis then follows, with

α, ε replaced by α∗, ε1 and φ := φ̆ ◦ φ̂ ◦ φ ◦ φ̂−1. �

APPENDIX A. THE FUNDAMENTAL THEOREM AND ANOTHER
RESULT IN ARNOLD’S 1963 PAPER

Here we recall two theorems in [5]. The former is named the “Fundamental Theorem” in [5] and
is as follows.

Recall the definition of Pε0 in (3.16).

Theorem 8 (V. I.Arnold, [5, p. 143]). Consider a Hamiltonian of the form

H(I, ϕ, p, q) = H0(I) + μP (I, ϕ, p, q)

which is real-analytic on Pε0 where V ⊂ R
n1 is open and connected, B2n2

ε0 ⊂ R
2n2 is a ball of radius

ε0 around the origin and T := R/(2πZ). Assume that

(i) I ∈ V → ∂IH0 is a diffeomorphism;

(ii) Pav is in Birkhoff normal form56) of order 6;

(iii) the matrix β of the “second order Birkhoff invariants”: is not singular: |det β| �= 0 on V .

Then, there exists ε0 > 0 such that, for

0 < ε < ε0, 0 < μ < ε8, (A.1)
one can find a set Kμ,ε ⊂ Pε ⊂ Pε0, with

measKμ,ε � (1 − ε16(n1+n2))measPε

formed by the union of H-invariant (n1 + n2)-dimensional tori on which the H-motion is analyti-
cally conjugated to linear Diophantine57) quasi-periodic motions.

The latter is less general, but used in [5] to prove Theorem 2.

Theorem 9 (V. I.Arnold, [5, Ch. I, Section 8, p. 107]). Under the same assumptions as in
Theorem 8, but replacing (ii), (iii) and (A.1) with

(ii)′ Pav has the form

Pav(I, p, q) = N(I, J) + Ñ(I, p, q) where J =
(

p2
1+q2

1
2 , · · · ,

p2
n2

+q2
n2

2

)
and Ñ = o(μ);

(iii)′ the Hessian ∂2
(I,J)N is non-singular: det ∂2

(I,J)N �= 0 on V × B2n2
ε0

and condition (A.1) with condition

|μ| < μ∗

one can find a set Kμ ⊂ Pε0 , with

measKμ � (1 − μa)measPε0

(where a decreases with n1 + n2) having the same properties as the set Kε of Theorem 8.

56)We refer to [23] for information on Birkhoff Theory.
57)I.e., the flow is conjugated to the Kronecker flow θ ∈ T

n1+n2 → θ + ω t ∈ T
n1+n2 , with ω ∈ R

n1+n2 satisfying
|ω · k| � γ|k|−τ

1 for all k 	= 0, for suitable γ, τ > 0.
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APPENDIX B. PROOF OF (1.22), (1.23) AND (4.5)

The formulae in (1.22) and (1.23) are a consequence of Proposition 1 and the formulae developed
in [16, 38] (see, e.g. , [16, Appendix A]). Indeed, from such papers there results that, if

ai :=
1

Mi

(
Λi

mi

)2

, e2
i =

η2
i + ξ2

i

Λi
−
(

η2
i + ξ2

i

2Λi

)2

=: 2iuiu


i ē

2
i

ζi : ζi − ei sin ζi = λi + arg(ηi, ξi)

c̄ :=
2Λ1 + 2Λ2 − 2iu1u



1 − 2iu2u



2 − ivv


4(Λ1 − iu1u


1)(Λ2 − iu2u



2)

, s̄ :=
√

2c̄(1 − ivv
 c̄)

then, the expressions of C(2) · x(1), |C(2)|, r1 = |x(1)| and r2 = |x(2)| in terms of the rps variables
are

C(2) · x(1) =
(
(û1v


 − û

1v)x(1) + i(û1v


 + û

1v)x(2)

))
s̄|C(2)|

|C(2)| = Λ2 − iu2u


2, |x(i)| = ai(1 − ei cos ζi)

x
(1)
1 :=

1
M1

(
Λ1

m1

)2

(cos ζ1 − e1), x
(1)
2 :=

1
M1

(
Λ1

m1

)2 √
1 − e2

1 sin ζ1

with

ûi :=
ui√
iuiu


i

=
ηi − iξi

√
2
√

η2
i + ξ2

i

, û

i :=

u

i√

iuiu

i

=
ηi + iξi

√
2i
√

η2
i + ξ2

i

.

Then we have

(C(2) · x(1))2 =
(
ivv


(
(x(1)

1 )2 + (x(1)
2 )2

)
+
(
(û


1)
2v2 + (v
)2û2

1

)
((x(1)

1 )2 − (x(1)
2 )2)

+ 2i
(
(û


1)
2v2 − (v
)2û2

1

)
x

(1)
1 x

(1)
2

)
s̄
2|C(2)|2

and hence, taking the λ1-average (recall the relation dλ2 = (1 − e2 cos ζ2)dζ2)

1
2π

∫

T

(C(2) · x(1))2dλ1 =
(
ivv
a2

1(1 +
3
2
e2
1) +

5
2
(
(u


1)
2v2 + (v
)2u2

1

) a2
1e

2
1

2iu1u

1

)
s̄
2|C(2)|2. (B.1)

Here, we have used

1
2π

∫

T

(
(x(1)

1 )2 + (x(1)
2 )2

)
dλ1 =

1
2π

∫

T

r21 =
1
2π

∫

T

a2
1(1 − e1 cos ζ1)3dζ1

= a2
1(1 +

3
2
e2
1)

1
2π

∫

T

(
(x(1)

1 )2 − (x(1)
2 )2

)
dλ1 =

1
2π

∫

T

dζ1

(
a2

1(cos 2ζ1 + e2
1

+e2
1 sin2 ζ1 − 2e1 cos ζ1)(1 − e1 cos ζ1)

)
=

5
2
a2

1e
2
1

1
2π

∫

T

x
(1)
1 x

(1)
2 dλ1 =

1
2π

∫

T

a2
1

√
1 − e2

1(cos ζ1 − e1)(1 − e1 cos ζ1) sin ζ1dζ1 = 0.

Note that (B.1) implies (1.23). In turn, (1.22) for n = 2 and (1.23) give (4.5), with f :=
1
2π

∫
T

dζ
(1−e2 cos ζ)

(1 − η2
2+ξ2

2
2Λ2

)2
=

1

(1 − η2
2+ξ2

2
2Λ2

)3
(recall the relation dλ2 = (1− e2 cos ζ2)dζ2 and use 1

2π

∫
T

dζ
(1−e2 cos ζ) =

1√
1−e2

2

= 1

1− η2
2+ξ22
2Λ2

).

REGULAR AND CHAOTIC DYNAMICS Vol. 18 No. 6 2013



900 PINZARI

APPENDIX C. PROOF OF THEOREM 6

Theorem 6 is an easy consequence58) of the following more technical statement.

Theorem 10. Under the same notations and assumptions as in Theorem 6, one can find γ∗, C∗
such that, for any ε0, one can find positive numbers ε1 < ε0, μ∗ and α∗ such that, for any α, μ, γ1,
γ̄2, γ̄ verifying

|α| < α∗, |μ| < μ∗, μγ̄2 � γ1

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ∗ 4
√

μ(log α−1)τ+1 � γ̄ � γ∗

γ∗ max
{
α2,

√
μ(log α−1)τ+1

γ̄

}
< γ1 < γ∗

γ∗ max
{
α2(log (γ1

2/α3))τ∗+1,
√

μ(log α−1)τ+1γ̄−1
(

log
(

γ1
2

μ(log α−1)2τ+1γ̄−2

))τ+1}
< γ̄2 < γ∗ε2

0,

(C.1)

where τ > n := n1 + n2, then, one can find a set K ⊂ P formed by the union of H-invariant n-
dimensional tori, on which the H-motion is analytically conjugated to linear Diophantine quasi-
periodic motions. The set K is of positive measure and satisfies

measK >

[
1 − C

(
γ̄ + γ1 +

γ̄2

ε2
0

+ αn2

)]
measPε1 .

Furthermore, the flow on each H-invariant torus in K is analytically conjugated to a translation
ψ ∈ T

n → ψ + ωt ∈ T
n with Diophantine frequencies.

This result is a slight modification of [12, Theorem 1.4] (which, in turn, had been obtained
in [38]). Then here we briefly sketch its proof, describing only the necessary changes with respect
to [12, Proof of Theorem 1.4] and referring the reader to that paper for more details.

To proceed, we need to recall

– the definition of “two velocities” Diophantine vector59) in [12, Eq. (19)];

– the functional setting and notations described at the beginning of [12, Section 2];

– the “averaging (iterative) Theorem” [12, Lemma A.1];

– the “two-scale kam Theorem” [12, Proposition 3].

Sketch of proof of Theorem 10. Let ρ0, s0, ε0 (possibly with a smaller value of ε0) be positive
numbers such that H in (3.17) has analytic extension on the complex set

Pρ0,s0,ε0 = Vρ0 × T
n1
s0

× B2n2
ε0 .

Take three numbers γ̄, γ1, γ2 = μγ̄2 verifying (C.1) and μγ̄2 < γ1, where γ∗ is some large number,
depending only on n1, n2, to be chosen below.

As in [12, Proof of Theorem 1.4, Step 1], start with removing, in H, the dependence on ϕ up
to high orders. But, at difference with [12, Proof of Theorem 1.4, Step 1], apply [12, Lemma A.1]

58)To obtain Theorem 6 from Theorem 10, it is sufficient to choose

γ̄ = γ∗ 4
√

μ log(α−1)τ+1, γ1 = γ2 = γ2
∗ max{α2, 4

√
μ} < γ∗ε

2
0, C∗ :=

C

ε20
.

59)This is a suitable generalization of the standard definition of Diophantine numbers, introduced in [5].
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(instead of [12, Proposition 1]), with �1 = n1, �2 = 0, m = n2 h = H0, g ≡ 0, f = μP , B = B′ = {0},
rp = rq = ε0, s = s0, ρp = ρq = ε0/3, σ = s0/3, Λ = {0},

e−K̄s0/3 := κ i.e. , K̄ =
3
s0

log κ−1, (C.2)

A = D̄, r = ρ̄, ρ = ρ̄/3, where D̄, ρ̄ are defined as in [12, (37)] By [12, (38)], and the choice of γ̄,
the following standard measure estimate holds

meas
(
V \ D̄

)
� Cγ∗

√
μ(log κ−1)τ+1 meas V

where C depends on the C1-norm of H0. Proceeding as [12, (39)] and the immediately following
formula, one sees that the “non-resonance” condition [12, (64)] on D̄ρ̄ and the “smallness”
condition [12, (65)] are then verified, provided μ is chosen small enough, because of the choice
of γ̄ and γ∗. By the thesis of [12, Lemma A.1], we find a real-analytic symplectomorphism

φ̄ : (Ī , ϕ̄, p̄, q̄) ∈ W(ρ̄,ε0)/3,s0/3 → (I, ϕ, p, q) ∈ Wv0,s0

where Wv0,s0 := D̄ρ0 × T
n1
s0

×Bε0 (v0 = (ρ0, ε0)), and, by the choice of K̄ in (C.2), H is transformed
into60)

H̄ := H ◦ φ̄ = h + μPav + μP̄

= h + μN + μÑ + μP̄
(C.3)

where Pav = N + Ñ corresponds to g+ of [12, Lemma A.1], P̄ corresponds to f+ and hence, by the
choice of K̄ in (C.2), the assumption on Ñ and the thesis [12, (68)] of [12, Lemma A.1], one has
that the new perturbation μÑ + μP̄ verifies

‖μÑ + μP̄‖v0/3,s0/3 � Cμ max
{

K̄2τ+1

γ̄2
μ, e−K̄s0/3, κ

}

� Cμ max
{

K̄2τ+1

γ̄2
μ, κ

}
.

(C.4)

In view of [12, (69)], the transformation φ̄ verifies

|I − Ī|, |p − p̄|, |q − q̄| � C
μ(log κ−1)τ

γ̄
, |ϕ − ϕ̄| � C

μ(log κ−1)2τ+1

γ̄2
.

Continue as in [12, Proof of Theorem 1.4, Step 5], but replacing the set in [12, (47)]. with the
set

A :=
{
J ∈ R

n2 : ρ1 < Ji < ε2
0/9, 1 � i � n2

}
(C.5)

where ρ1 < ε2
0/9 will be fixed in the next step, on so as to maximize the measure of preserved tori.

Next define D as in [12, (48)] (but with A as in (C.5)) and

ρ := min{ρ1, ρ̄/3}, s := s0/3. (C.6)

Introduce the change of variables

(J, ψ) =
(
(J1, J2), (ψ1, ψ2)

)
∈ Dρ × T

n1+n2
s → (Ī , ϕ̄, p̄, q̄)

defined as in [12, (49)], but replacing “checks” with “bars”, This lets the Hamiltonian (C.3) into

H(J, ψ) = H0(J1) + μN(J) + μ(P̄ + Ñ), (J, ψ) ∈ Dρ × T
n1+n2
s .

Next, analogously to [12, Proof of Theorem 1.4, Step 6], construct the Kolmogorov set and
estimate its measure via [12, Proposition 3].

60)Π0TK̄P = Pav =
1

(2π)n

�
Tn

Pdϕ.
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To this end, fix γ1 and γ2 = μγ̄2, with γ1, γ̄2 satisfying μγ̄2 � γ1 and (C.1). Let ρ1 in(C.5)–(C.6)
be chosen so that

ρ1 = č1 max

{
√

κ,

√
μ(log κ−1)τ+1/2

γ̄

}

with č1 some large number depending only on n1, n2 to be fixed below. Note that the needed
condition ρ1 < ε2

0/9 (compare the previous step; Eq. (C.5)) is satisfied for κ < (ε0/(3
√

č1))4

and61) μ < γ4

(ε0/(3

√
č1))8. The assumption that the frequency map ω := ∂(H0(J1) + μN(J)) is

a diffeomorphism of Dρ is trivially satisfied. Moreover, the numbers M , M̂ , · · · , M̄2 involved in [12,
Proposition 3] may be chosen as in [12, Proof of Theorem 1.4, Step 6], apart for E, which is chosen
as62)

E = C max{μκ, K̄2τ+1μ2γ̄−2}.
Then, we can take L as in [12, Proof of Theorem 1.4, Step 6], while

K = C log (E/(μγ1
2))−1

and

ρ̂ = c min
{

γ1

(log (E/(μγ1
2))−1)τ+1

,
γ̄2

(log (E/(μγ1
2))−1)τ+1

,
γ̄

(log κ−1)τ̄+1
, ρ1, ρ0

}
.

To check the “kam-smallness condition” [12, (32)], we divide the two cases E = Cμκ or E =
CK̄2τ+1μ2γ̄−2. If E = μκ,

ĉÊ � C max
{

κ
(

log
(γ1

2

κ

))2(τ+1)
max

{ 1
γ2
1

,
1
γ̄2
2

}
,
κ(log κ−1)2(τ+1)

γ̄2
,

κ

ρ2
1

,
κ

ρ2
0

}
,

with a constant C not involving č1. Then, from (C.1) and ρ1 � č1
√

κ there follows

ĉÊ < C max
{ 1

γ∗
,

1
č2
1

,
κ

ρ2
0

}
< 1 (C.7)

provided γ∗, č2
1 > C and κ < C−1ρ2

0. On the other hand, in the case E = Cμ2K̄2τ+1γ̄−2

ĉÊ � C max
{

μ(log κ−1)2τ+1γ̄−2
(

log
( γ1

2

μ(log κ−1)2τ+1γ̄−2

))2(τ+1)
max{ 1

γ2
1

,
1
γ̄2
2

},

μ(log κ−1)4(τ+1)

γ̄4
,

μ(log κ−1)2τ+1γ̄−2

ρ2
1

,
μ(log κ−1)2τ+1γ̄−2

ρ2
0

}
.

Using now that ρ1 � č1

√
μ(log κ−1)τ+1/2

γ̄ and again the definition of γ̄ in (C.1), we again find an

inequality like in (C.7), but with κ
ρ2
0

replaced by
√

μ

ρ2
0γ2

∗

Finally, since the KAM condition ĉÊ < 1 is met, [12, Proposition 3] holds in this case. Then, we
can find a set of invariant tori

K∗ ⊂ D̄r × T
n1 ×

{
2ρ1 < p2

i + q2
i < 2(ε0/3)2, ∀ i

}
r
⊂ (P√

2ε0/3)r

(with r < Cγ̄2) satisfying the measure estimate

meas
(
P√

2č2ε0
\ K∗

)
� meas

(
P√

2č2ε0
)r \ K∗

)

� C(γ̄ + γ1 +
γ̄2

ε2
0

+ κn2/4)measP√
2ε0/3). (C.8)

61)Use the definition of γ̄ in (C.1).
62)Compare, in particular, (C.4) for the choice of E and recall Equation (C.6) and the definition of ρ̄ and of K̄

in (C.2).
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We omit to detail how (C.8) follows from [12, (34)]. For example, the reader may easily modify the
end of [12, Proof of Theorem 1.4, Step 6].

The theorem is so proved with K := K∗ ∩Pε0/3, ε1 =
√

2ε0/3, κ∗ := min {C−1/4 √ρ0, ε0/(3
√

č1)},
μ∗ := min {C−2ρ4

0γ
4
∗ , γ4


(ε0/(3
√

č1))8}. �

APPENDIX D. THE THEOREM BY N.N. NEHOROŠEV

Below is a more technical statement of Theorem 3, as it follows from [33] and, especially, [34].

The statement in [33]–[34] is based on the notion of “steepness” for a given smooth function
H0(I) = H0(I1, · · · , In1) of n1 arguments. We shall adopt the definition given in [33]. This definition
involves a number of parameters, denoted, in [33], as (g, m, C1, · · · , Cn1−1, δ1, · · · , δn1−1, a1, · · · ,
an1−1). Accordingly, we shall call a given function (g, m, C1, · · · , Cn1−1, δ1, · · · , δn1−1, a1, · · · ,
an1−1)-steep, if it is steep with such parameters. See [33, p. 28 and p. 36] for details.

Theorem 11 ([33], p. 30; [34]). Let H = H0(I) + P (I, ϕ, p, q) be real-analytic on Pρ := Vρ ×
T

n1
ρ × B2n2

ρ and assume that I ∈ V → H0(I) is (g, m, C1, · · · , Cn1−1, δ1, · · · , δn1−1, a1, · · · ,
an1−1)-steep, with ρ < 1 < m. Then, one can find a, b ∈ (0, 1) and63) 0 < M
 < ρ1/b such that, if

M := sup
Pρ

|∂P | ∈ (0,M
) (D.1)

any trajectory t → γ(t) = (I(t), ϕ(t), p(t), q(t)) solution of H such that

(p(t), q(t)) ∈ B2n2, ∀ 0 � t � T :=
1
M

e
1

Ma (D.2)

verifies

|I(t) − I(0)| � r :=
1
2
M b ∀ 0 � t � T.

The number M
 can be taken to be64)

M
 = min
{(ρ

2

)1/b
, M0

}
(D.3)

where M0 verifies

M0 � c0

ρ
min

{(
Cn1−1

g

)p

,
( ρ

m

)p
,

(
m

Cr

)p

,

(
1

maxr δr

)p

, 1
}

(D.4)

for some c0 < 1 < p depending only on n1, n2 and a1, · · · , an1−1.

63)We changed a bit notations of [33]. Let us call P̄, ρ̄ the quantities that in the statement of [33, The main theorem,

p. 30] are called F , ρ (clearly, s, n, H1, G, D of [33] correspond to our n1, n2, P , V , B2n2). In the statement
of [33, The main theorem, p. 30], condition (D.2) is required, with P replaced by P̄−2r, where P̄−2r is a real
set defined as the biggest subset A ⊂ P̄ for which A2r ⊂ P̄ . Plainly (P̄−2r)2r+ρ̄ = P̄ρ̄. Letting P := P̄−2r and

ρ := 2r + ρ̄ we have our statement. Our condition M� < ρ1/b corresponds to [33] ’s assumption ρ̄ > 0.
64)See [34, p. 53]. By the previous note, we have to replace ρ in [34, p. 53] with ρ̄ := ρ − 2r.

Note that condition M� < ( ρ
2
)1/b implies ρ � ρ − 2r = ρ − Mb � ρ − Mb

� � ρ
2
. With this observation, we

are allowed to identify ρ of [34, p. 53] with our ρ. Letting then M0, M1 and M2 as in [34,

p. 53], one sees, using the formulae in [34, pp. 48–57], that M1 = c1
ρ8m4 (

Cn1−1
g

)p, while, since

ρ < 1 < m, M2 = c2 min



1

mρ2

� ρ

m

�p

,
1

mρ2



Cn1−1

g

�p

,
1

ρ2m



m

Cr

�p

,
1

mρ2



1

maxr δr

�p

,
1

mρ2

�
. Therefore,

M0 := min{M1, M2} verifies the inequality in (D.4).
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Steepness Conditions

In [33], a function H0 = H0(I) of n1 variables (I1, · · · , In1) is called “quasi-convex” in I if the
system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n1∑

j=1

∂IjH0(I)ηj = 0

n1∑

j,k=1

∂2
IjIk

H0(I)ηjηk = 0

has the only trivial solution. Concave or convex functions, having definite in sign Hessian ∂2
IjIk

H0(I),
are in particular quasi-convex. Moreover, H0 is said to satisfy the three-jet conditions if, again, the
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1∑

j=1

∂IjH0(I)ηj = 0

n1∑

j,k=1

∂2
IjIk

H0(I)ηjηk = 0

n1∑

j,k,h=1

∂3
IjIk,Ih

H0(I)ηjηkηh = 0

(D.5)

has the only trivial solution.

In [32] it is proved that quasi-convex functions and functions satisfying the three-jet condition
are steep.
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8. Boigey, F., Élimination des nœuds dans le problème newtonien des quatre corps, Celestial Mech., 1982,
vol. 27, no. 4, pp. 399–414.

9. Bounemoura, A. and Niederman, L., Generic Nekhoroshev Theory without Small Divisors, Ann. Inst.
Fourier (Grenoble), 2012, vol. 62, no. 1, pp. 277–324.

10. Chierchia, L., The Planetary N -Body Problem, in Celestial Mechanics, A. Celletti (Ed.), Encyclopedia
of Life Support Systems (EOLSS), vol. 6.119.55 (2012).

11. Chierchia, L. and Gallavotti, G., Drift and Diffusion in Phase Space, Ann. Inst. H. Poincaré Phys.
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